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Consequences of a possible adiabatic transition betweenn51/3 and n51 quantum Hall states
in a narrow wire
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~Received 17 December 1996!

We consider the possibility of creating an adiabatic transition through a narrow neck, or point contact,
between two different quantized Hall states that have the same number of edge modes, such asn51 andn
5

1
3. We apply both the composite-fermion and Luttinger-liquid formalism to analyze the transition. We

suggest that using such adiabatic junctions one could build a dc step-up transformer, where the output voltage
is higher than the input. Difficulties standing in the way of an experimental implementation of the adiabatic
junction are addressed.@S0163-1829~98!02104-3#
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It has long been understood that quantized Hall sta
with different Hall conductances cannot be connected a
batically in the interior of a macroscopic two-dimension
electron system. For a pure system, where the quantized
states have energy gaps, the boundary between two q
tized states must be characterized by a vanishing energy
with associated low-energy excitations. In a disordered s
tem there are generally localized low-energy excitations
the interior of a quantized Hall region, which then becom
extended at the boundary between two quantized regi
The possible transitions between different quantized H
states have been elucidated~in the case of a fully spin-
polarized system! by the introduction of a ‘‘global phase
diagram’’ based on a unitary transformation which intr
duces a Chern-Simons gauge field and which, at the m
field level, maps fractional quantized Hall states onto inte
ones.1,2

In this Brief Report, we suggest that in anarrow quantum
wire there can be an adiabatic transition between two dif
ent quantized Hall states, under certain conditions. The m
important example, to which we restrict ourselves here, is
case of a transition between states withn51 and1

3. It should
be noted that for both these states, there is a single e
mode at a sharp sample boundary,3 so one can have a singl
pair of oppositely moving modes running continuous
through the transition region. We shall discuss the transi
between the two states in a narrow wire using a fermio
Chern-Simons mean-field description,2,4 in which the effec-
tive magnetic field changes sign in the transition region, a
using a bosonized Luttinger-liquid formalism, in which th
interaction coefficientg is allowed to vary continuously
within the transition region. We also show that the existen
of an adiabatic junction between the two quantized Hall
gions would allow construction of a dc step-up transform
where the output voltage is larger than the input volta
supplied by the power source.

Consider the geometry illustrated in Fig. 1, where there
a narrow wire~or ‘‘point contact’’! connecting two macro-
scopic quantized Hall regions, with different electron den
ties corresponding ton51 and 1

3, respectively. We assum
that each of the edges is sufficiently long that local therm
equilibrium is established on the edge at a voltage labe
570163-1829/98/57~7!/3781~4!/$15.00
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Vj , wherej 51 and 2 denote, respectively, the incoming a
outgoing channels on then51 side of the junction, andj
53 and 4 denote the incoming and outgoing channels on
n5 1

3 side. We also assume that the external current cont
are ‘‘ideal,’’ so V1 and V3 are equal to the voltages in th
leads.5

If the voltages of the external leads are equal to e
other, then the system will be in global thermal equilibriu
with all Vj being equal. More generally, ifeuV12V3u is
smaller than temperatureT, the voltagesV2 andV4 will be
linear functions ofV1 andV3, and we may write

V25aV11~12a!V3 , ~1!

V45bV11~12b!V3 , ~2!

wherea andb depend on the characterisitics of the conne
ing junction, includingT.

The current on edgej is given byI j5n jVj (e
2/h), and the

energy flux along the edge isI jVj /2. Thus current conserva
tion through the junction requires that

b53~12a!, ~3!

while the requirement that the outgoing power be equal to
less than the power incident on the junction implies

1/2<a<1. ~4!

The two limiting situations, where there is no energy lo
in the junction region, area51 and b50, which corre-
sponds to zero current transmission through the junction,
a5 1

2 and b5 3
2, which is what we mean by an ‘‘adiabati

junction.’’ This regime was also found by Wen6 who carried

FIG. 1. Junction connecting quantum Hall states with differe
filling factors n51 and 1

3. The quantum point contact is produce
by a narrow neck with the width of the order of the magnetic leng
Arrows show the direction of the edge states.
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3782 57BRIEF REPORTS
out a similar analysis for a different set of Hall states. T
more familiar case of a wide junction, where equilibration
established along a relatively long boundary separating b
regions withn51 and 1

3, corresponds to parametersa5 2
3

andb51, which is not dissipationless.
If we set V350, and supply a small voltageV1 to the

other current lead, then a voltmeter connected between
opposite edges of then5 1

3 wire will measure the voltage
V45bV1. Moreover, the two-terminal conductanceG, de-
fined as the ratio between the currentI in the leads and the
input voltageV1, is given by

G5be2/3h. ~5!

If we can construct a junction withb.1, then we can obtain
a voltageV4 which is larger than the input voltage, and w
obtainG.e2/3h. This last result violates the common beli
that the two-terminal conductance of a quantum Hall sys
is always less than the bottleneck with lowest conductan
as the two-contact resistance of ideal leads connected
singlen5 1

3 region would bee2/3h. This also emphasizes a
important point made by several authors that the questio
conductance is subtle, and should be formulated with a d
nite experimental arrangement in mind.7–9

A more efficient voltage transformer may be realized w
the ring geometry illustrated in Fig. 2. If a battery with vo
ageV is connected to ideal current contacts at points 1 an
and a load with resistanceR is connected to points 3 and 4
then if the junctions between the regions ofn51 and 1

3 are
perfectly adiabatic (b5 3

2 ), the voltage across the load resi
tor will be equal to 3V/(1112h/e2R). When R5`, this
device draws no current from the battery, and the out
voltage is 3V. More generally, the output current is one-thi
of the input current. IfR@12h/e2, the output voltage is close
to 3V, and the power lost in the transformer is small co
pared to the power delivered to the load.

To demonstrate the possibility of an adiabatic juncti
betweenn5 1

3 and 1 states, we first use the fermion–Che
Simons approach.2,4 In the mean-field approximation then
5 1

3 state is viewed as a completely filled Landau level
composite fermions. This also holds for then51 state ex-
cept that the effective magnetic field is opposite to the dir
tion of the external magnetic field. Therefore, a narrow w
at either filling factor with sufficiently sharp boundaries c
be described in the Landau gauge by a single-energy b
with two chiral edge channels. The two filling factors can

FIG. 2. Realization of the dc step-up transformer in the r
geometry. Two quantum point contacts separate regions with
ferent filling factors. If a battery with voltageV is attached to con-
tacts 1 and 2, then the voltage drop between 3 and 4 can be 3V in
the limit of infinite load resistance.
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easily distinguished in a wire much wider than the magne
length. In particular, the local electron density is three tim
greater in then51 state. However, when the width of th
wire is of the order of the magnetic length the distincti
between the two states disappears. Then the density is n
good way to differentiate between the states. In fact, on
mean-field level the two states look almost identical.

The transition between the two states can be carried ou
the following way. On one side we have a widen51 state
with a single energy band in the Landau gauge. The wire
then narrowed gradually on the scale of the magnetic len
When the width of the wire is of the order of the magne
length, the energy spectrum is mainly determined by the c
finement potential rather than the magnetic field. Therefo
reducing the effective magnetic field along the wire by
ducing the density should not change radically the ene
spectrum. Higher composite fermion energy bands co
sponding to other fractions remain unfilled so that there i
single pair of edge channels. As the filling factor is reduc
below 1

2 the effective magnetic field changes sign and
slowly brought to itsn5 1

3 value. Then the wire is widened
and represents a well-definedn5 1

3 state.
Although the composite fermion analysis can be exten

to find the chemical potentials of edge channels,10 we take a
different approach here. It has been argued by sev
authors11,9 that a quantum wire with filling factorn51 or
1
3 can be modeled by a Luttinger Hamiltonian of the form

H5
\

4pE2`

1`

vFdxF S dfL

dx D 2

1S dfR

dx D 2

1
g

2S dfL

dx
1

dfR

dx D 2G .
~6!

We define charge-density operatorsr j by df j /dx52pr j ,
and we assume commutation relations

@f j~x!,f j 8~x8!#5~21! j ip sgn~x2x8!d j j 8, ~7!

wherej 51 and 2 refers to the indicesR andL, respectively.
In the n51 state the density operatorsr j correspond to

the actual electron density at a given edge, andg50 for a
sufficiently wide wire. In then5 1

3 state, however,g58 and
the Hamiltonian~6! can be diagonalized by making a Bog
liubov transformation to the fieldsf̃ j , which correspond to
the actual electron density at a given edge,

f̃L5
1

2
~111/A11g!fL1

1

2
~121/A11g!fR ,

f̃R5
1

2
~121/A11g!fL1

1

2
~111/A11g!fR , ~8!

and obey slightly different commutation relations:

@f̃ j~x!,f̃ j 8~x8!#5~21! j ipn sgn~x2x8!d j j 8. ~9!

The general relation betweeng and the filling factor valid for
the simplest fractions, with a single edge state, is

n5~11g!21/2, ~10!

wheren21 must be an odd integer.3

The validity of the Luttinger Hamiltonian~6! is based on
the existence of the two chiral boson modes propagating

if-
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the opposite directions along the wire. Let us assume
conditions in the wire vary adiabatically~i.e., slowly on the
scale of the magnetic length!, in such a fashion that there ar
two running modes at any point in the transition region b
tween the two quantum Hall states. Then we can describe
system by a Luttinger Hamiltonian~6! with g5g1 for x
,2L/2, g5g2 for x.L/2, and g varying continuously
from g1 to g2 for 2L/2,x,L/2. ~The effects of deviations
from adiabaticity will be discussed below.!

To clarify the physics further, we note that according
the Luttinger-liquid theory, when the electron operators
expressed in terms offL and fR , in the region where the
wire is thin, one finds that the electron density in moment
space,̂ nk& has singularities at all odd multiples of the Ferm
momentumkF5pr, wherer is the density of electrons pe
unit length.12 The amplitudes of the singularities all vanis
rapidly when the strip becomes wide, however, except
the singularities atk56n21kF .10

By using commutation relations (7) with the Ham
tonian, we obtain the following equations of motion:

dfL

dt
52vFF S 11

g

2DdfL

dx
1

g

2

dfR

dx G ,
dfR

dt
5vFF S 11

g

2DdfR

dx
1

g

2

dfL

dx G , ~11!

where g and vF are functions ofx. The solution of these
equations depends on the particular form ofg. However,
there are two limits when they can be solved exactly, in
pendent of the wayg varies in the transition region.13 The
first limit is when the wavelengthl of the incoming pulse is
smaller that the lengthL of the transition region. In this cas
the solution can be found by making a Bogoliubov transf
mation to chiral modes~8!, which correspond to densit
waves confined to a single edge. Thus in this limit there is
reflection from the junction.13

The other limit is when the wavelengthl of the incoming
pulse is greater than the lengthL of the transition region.
Then we can solve the problem separately in the two exte
regions, and apply the matching conditions thatf j must be
equal at the two sides of the junction. We formulate a sc
tering problem by forming an incoming wave with a curre
of unit amplitude from the filling factorn1 side. Then the
current in the reflected wave is given by the reflection co
ficent r and the transmitted wave by the transmission co
ficient t. We find the current reflection and transmissi
coefficients14,15

t52n2 /~n11n2!, ~12!

r 5~n12n2!/~n11n2!, ~13!

wheren1 and n2 are related tog1 and g2 according to Eq.
~10!. It is easy to see that these coefficients satisfy the law
current conservationr 1t51, as well as the law of energ
conservation. In fact the coefficients can be obtained fr
these two conditions. For the particular valuesn151 and
n25 1

3, we find that the reflection coefficient is12. If the in-
coming wave originates from the filling factor13 side (n1
5 1

3 , n251), the reflection coefficient is2 1
2. Minus im-

plies that the reflected pulse has the opposite sign of den
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Our results are similar to a wave reflection in a classi
string with an impedance discontinuity,16 the impedance be
ing the inverse of the filling factor.

Knowing the reflection coefficients for the currents al
allows us to find edge-state chemical potentials on the
sides of the transition for dc transport. Let us send an infin
wavelength pulse from then51 side with a current such tha
the voltage on that edge isV1 and a pulse from then5 1

3 with
voltageV3. Then the outgoing currents can be found fro
Eqs. ~12! and ~13!. The voltages on the outgoing channe
are seen to obey Eqs.~1! and ~2!, with a5 1

2 andb5 3
2.

Next we consider the deviation from adiabaticity whic
may be present in a real system. An impurity, or an irreg
larity in the confining potential on the scale of magne
length, at pointx in the narrow-neck region can give rise
backscattering. This is reflected by adding to the Ham
tonian a term

H85g exp@ ifL~x!1 ifR~x!#1H.c. ~14!

The phase of the coefficientg will depend on the positionx,
and its magnitude will depend sensitively on the width of t
strip at that point. The amplitude will be very small ifx is in
a wide region, as there will then be little overlap between
wave functions for states on opposite edges of the wire.

The resistance due to backscattering is proportiona
ugu2, if ugu is small. According to the standard renormaliz
tion group analysis, however, for a wire of constant width
g.0, the value ofugu will increase with decreasing energ
scale. Specifically, for voltages sufficiently small so that o
is in the linear regime, the backscattering resistance of a w
should vary asT2y, with3,17

y5222/A~11g!. ~15!

For the present situation, whereg varies withx, if the tem-
perature is sufficiently high that the thermal length sc
\vF /kBT is small compared to the sizeL of the transition
region, Eq.~15! still holds, with g evaluated at the position
of the impurity. The value ofy obtained in this way would
be intermediate between the valuesy50 and 4

3, that corre-
spond to uniform quantum Hall strips withn51 and 1

3, re-
spectively. If the temperature is sufficiently low that the the
mal length is large compared toL, however, then we find,
from a normal-mode analysis,10 that the exponenty becomes
equal to 1, independent of the precise locationx of the
scatterer.18

In any case, we find that the adiabatic fixed point, wh
b5 3

2 and there is no backscattering, is unstable, accordin

a Luttinger-liquid analysis, so that any nonzero value of3
2

2b) will grow with decreasing temperature and voltag
Thus, to observe the effect of voltage amplification, one m

fabricate a junction with a value of (3
2 2b) as close as pos

sible to zero, and then make the measurement at a temp
ture which is not too low.

There are several difficulties standing in the way of t
experimental implementation of the dc transformer. First,
quantum point contacts must be approximately a magn
length wide yet adiabatic. Second, the edges of then51 and
1
3 states must be sufficiently sharp to support only a sing
edge channel.
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In order to make the junction as close as possible to a
batic, one would like to avoid any roughness in the confin
potential, as well as impurities, which could lead to bac
scattering. One must also worry, however, about the po
bility of an abrupt change in the electron density or its profi
across the width of the wire that could occur due to a sp
taneously formed domain wall, if the electron system go
through a first-order phase transition in the neck region.

Although we do not find any symmetry change betwe
the n5 1

3 and 1 states in a narrow wire, one cannot rule o
the possibility of having several phases separated by fi
order transitions. In fact, exact-diagonaliziation studies
systems with up to six electrons in a narrow wire suggest t
there might be several distinct phases, separated by s
transitions, between the densities which correspond ton51
and 1

3.
19,20 ~The calculated states have different density p

files across the wire, corresponding roughly to phases w
one, two, or three distinct rows of electrons.!

Even if there is a sharp transition in a long wire, howev
it might be possible to obtain a smooth transition in a pro
erly engineered point contact. Moreover, it is possible
a-
g
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-
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n
t
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f
at
arp

-
th

,
-

principle to cancel the reflected amplitude from one dens
discontinuity with a wave reflected by a second discontinu
or by an impurity placed at an appropriate position, usi
destructive interference. Such a complicated structure m
be difficult to achieve by design, but might occur naturally
some fraction of samples due to random flucuations dur
fabrication.

Shortly after this paper was originally submitted, a pap
was posted21 suggesting that conductanceG.e2/3h could
also occur in tunneling through a barrier between an5 1

3

edge and a three-dimensional electron gas. We believe
for a tunnel junction this would not occur at temperatur
low enough for the model to be applicable, but that it mig
occur for a pinhole of proper size and shape.
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