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Abstract: Many clustering algorithms have been used to analyze microarray gene

expression data. Given embryonic stem cell gene expression data, we applied several

indices to evaluate the performance of clustering algorithms, including hierarchical

clustering, k-means, PAM and SOM. The indices were homogeneity and separation

scores, silhouette width, redundant score (based on redundant genes), and WADP

(testing the robustness of clustering results after small perturbation). The results

showed that the ES cell dataset posed a challenge for cluster analysis in that the

clusters generated by different methods were only partially consistent. Using this

data set, we were able to evaluate the advantages and weaknesses of algorithms with

respect to both internal and external quality measures. This study may provide a

guideline on how to select suitable clustering algorithms and it may help raise issues

in the extraction of meaningful biological information from microarray expression

data.

Key words and phrases: Cluster analysis, gene expression, microarray, mouse em-

bryonic stem cell.

1. Introduction

DNA microarray technology has proved to be a fundamental tool in study-
ing gene expression. The accumulation of data sets from this technology that
measure the relative abundance of mRNA of thousands of genes across tens or
hundreds of samples has underscored the need for quantitative analytical tools
to examine such data. Due to the large number of genes and complex gene reg-
ulation networks, clustering is a useful exploratory technique for analyzing these
data. It divides data of interest into a small number of relatively homogeneous
groups or clusters. There can be at least two ways to apply cluster analysis to
microarray data. One way is to cluster arrays, i.e., samples from different tissues,
cells at different time points of a biological process or under different treatments.
This type of clustering can classify global expression profiles of different tissues
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or cellular states. Another use is to cluster genes according to their expression
levels across different conditions. This method intends to group co-expressed
genes and to reveal co-regulated genes or genes that may be involved in the same
complex or pathways. In our study, we focused on the latter method.

Many clustering algorithms have been proposed for studying gene expres-
sion data. For example, Eisen, Spellman, Brown and Botstein (1998) applied a
variant of the hierarchical average-linkage clustering algorithm to identify groups
of co-regulated yeast genes. Tavazoie et al. (1999) reported their success with
k-means algorithm, an approach that minimizes the overall within-cluster dis-
persion by iterative reallocation of cluster members. Tamayo et al. (1999) used
self-organizing maps (SOM) to identify clusters in the yeast cell cycle and human
hematopoietic differentiation data sets. There are many others. Some algorithms
require that every gene in the dataset belongs to one and only one cluster (i.e.,
generating exhaustive and mutually exclusive clusters), while others may gen-
erate “fuzzy” clusters, or leave some genes unclustered. The first type is most
frequently used in the literature and we restrict our attention to them here.

The hardest problem in comparing different clustering algorithms is to find
an algorithm-independent measure to evaluate the quality of the clusters. In
this paper, we introduce several indices (homogeneity and separation scores, sil-
houette width, redundant scores and WADP) to assess the quality of k-means,
hierarchical clustering, PAM and SOM on the NIA mouse 15K microarray data.
These indices use objective information in the data themselves and evaluate clus-
ters without any a priori knowledge about the biological functions of the genes
on the microarray. We begin with a discussion of the different algorithms. This
is followed by a description of the microarray data pre-processing. Then we elab-
orate on the definitions of the indices and the performance measurement results
using these indices. We examine the difference between the clusters produced
by different methods and their possible correlation to our biological knowledge.
Finally, we discuss the strength and weakness of the algorithms revealed in our
study.

2. Clustering Algorithms and Implementation

2.1. K-means

K-means is a well-known partitioning method. Objects are classified as
belonging to one of k groups, k chosen a priori. Cluster membership is determined
by calculating the centroid for each group (the multidimensional version of the
mean) and assigning each object to the group with the closest centroid. This
approach minimizes the overall within-cluster dispersion by iterative reallocation
of cluster members (Hartigan and Wong (1979)).

In a general sense, a k-partitioning algorithm takes as input a set S of ob-
jects and an integer k, and outputs a partition of S into subsets S1, . . . , Sk. It
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uses the sum of squares as the optimization criterion. Let xi
r be the rth ele-
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2. In particular, k-means works by calculating
the centroid of each cluster Si, denoted x̄i, and optimizing the cost function
c(Si) =

∑|Si|
r=1(d(x̄i, xi

r))
2. The goal of the algorithm is to minimize the total

cost: c(S1) + · · · + c(Sk).
The implementation of the k-means algorithm we used in this study was

the one in S-plus (MathSoft, Inc.), which initializes the cluster centroids with
hierarchical clustering by default, and thus gives deterministic outcomes. The
output of the k-means algorithm includes the given number of k clusters and
their respective centroids.

2.2. PAM (Partitioning around medoids)

Another k-partitioning approach is PAM, which can be used to cluster the
types of data in which the mean of objects is not defined or available (Kauf-
man and Rousseuw (1990)). Their algorithm finds the representative object (i.e.,
medoid, which is the multidimensional version of the median) of each Si, denoted
x̂i, uses the cost function c(Si) =

∑|Si|
r=1 d(x̂i, xi

r), and tries to minimize the total
cost.

We used the implementation of PAM in the S-plus. PAM finds a local
minimum for the objective function, that is, a solution such that there is no
single switch of an object with a medoid that will decrease the total cost.

2.3. Hierarchical clustering

Partitioning algorithms are based on specifying an initial number of groups,
and iteratively reallocating objects among groups to convergence. In contrast,
hierarchical algorithms combine or divide existing groups, creating a hierarchical
structure that reflects the order in which groups are merged or divided. In
an agglomerative method, which builds the hierarchy by merging, the objects
initially belong to a list of singleton sets S1, . . . , Sn. Then a cost function is used
to find the pair of sets {Si, Sj} from the list that is the “cheapest” to merge.
Once merged, Si and Sj are removed from the list of sets and replaced with
Si ∪ Sj. This process iterates until all objects are in a single group. Different
variants of agglomerative hierarchical clustering algorithms may use different
cost functions. Complete linkage, average linkage, and single linkage methods
use maximum, average, and minimum distances between the members of two
clusters, respectively.

In the present study, we used the implementation of average linkage hierar-
chical clustering in the S-plus package.



244 G. CHEN, S. A. JARADAT, N. B. JEE, T. S. TANAKA, M. S. H. KO AND M. Q. ZHANG

2.4. SOM (Self-organization map)

Inspired by neural networks in the brain, SOM uses a competition and co-
operation mechanism to achieve unsupervised learning. In the classical SOM, a
set of nodes is arranged in a geometric pattern, typically 2-dimensional lattice.
Each node is associated with a weight vector with the same dimension as the
input space. The purpose of SOM is to find a good mapping from the high di-
mensional input space to the 2−D representation of the nodes. One way to use
SOM for clustering is to regard the objects in the input space represented by the
same node as grouped into a cluster. During training, each object in the input is
presented to the map and the best matching node is identified. Formally, when
input and weight vectors are normalized, for input sample x(t) the winner index
c (best match) is identified by the condition:

for all i, ||x(t) − mc(t)|| ≤ ||x(t) − mi(t)||,

where t is the time step in the sequential training, mi is the weight vector of the
ith node. After that, weight vectors of nodes around the best-matching node
c = c(x) are updated as mi(t + 1) = mi(t) + αhc(x),i(x(t)−mi(t)) where α is the
learning rate and hc(x),i is the “neighborhood function”, a decreasing function of
the distance between the ith and cth nodes on the map grid. To make the map
converge quickly, the learning rate and neighborhood radius are often decreasing
functions of t. After the learning process finishes, each object is assigned to its
closest node. There are variants of SOM implementation.

We used the implementation in the SOM Toolbox for Matlab developed by
the Laboratory of Information and Computer Science in the Helsinki Univer-
sity of Technology (http://www.cis.hut.fi/projects/somtoolbox/) and adopted
the initialization and training methods suggested by the authors that allows
the algorithm to converge faster. That is, the weight vectors are initialized
in an orderly fashion along the linear subspace spanned by the first two prin-
cipal components of the input data set. In contrast to the algorithm used
in Tamayo et al. (1999), we used a batch-training algorithm implemented in
the Toolbox, which is much faster to calculate in Matlab than the normal se-
quential algorithm, and typically gives just as good or even better results (ref.
http://www.cis.hut.fi/projects/somtoolbox/documentation/somalg.shtml). For
a batch-training algorithm, learning rate α is not necessary. In our experiments,
the radius of the neighborhood function was initialized to be half the lattice edge
size and linearly decreased with the training epochs. To allow the SOM net-
work to fully converge, the number of training epochs was set to be proportional
to the lattice edge size. With the initialization methods we used, all clustering
algorithms studied here are deterministic.
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3. Microarray and Data Pre-processing

The microarrays we used were cDNA arrays developed in NIA and represent-
ing 15,000 distinct mouse genes (hence named “NIA mouse 15K microarray”)
(Tanaka et al. (2000)). The cDNA collections were derived from preimplantation
mouse embryos and 50% of the represented genes were newly identified. Undif-
ferentiated mouse R1 embryonic stem (ES) cells were induced into differentiation
spontaneously upon the withdrawal of leukemia inhibitory factor (LIF) and con-
ditioned media. Total RNAs were extracted from these cells across 6 different
time course points ranging from 4 h to 7 days and used for cDNA microarray hy-
bridizations. For each time point, three replicated microarray experiments were
done separately.

First, one-way ANOVA was performed to identify genes with significant ex-
pression changes during the ES cell differentiation, that is, the expression vari-
ations across the time course must be significantly larger than the variations
within the triplicates. Using p < 0.05 as a filtering criterion, we obtained 3805
genes for further analysis. Next, triplet data at each time point were averaged
and the ratio of expression levels of the six different differentiated states to the
undifferentiated state were calculated and log-transformed. Since, from a biologi-
cal point of view, we were primarily interested in the relative up/down-regulation
of gene expressions instead of the absolute amplitude changes, Pearson correla-
tion would be an appropriate similarity metric. However, all clustering programs
studied here use Euclidean distance as a dissimilarity metric. We normalized
each gene expression pattern as a vector to have unit length. After normaliza-
tion, Euclidean distance between two gene expression patterns has a monotonic
relation to their (non-centered) Pearson correlation, and thus the clustering re-
sults obtained with our programs were similar to those obtained using Pearson
correlation as metric. The input data for cluster analysis consisted of a matrix of
dimension 3805 by 6, in which each row vector (expression levels for a particular
gene) had length one.

4. Evaluation Indices and Performance Results with ES Cell Data

In this section, we first describe each evaluation index used. Following each
description is the performance measurement using that index for the clustering
results obtained from different algorithms.

Except for hierarchical clustering, all clustering algorithms analyzed here re-
quired setting k in advance (for SOM, k is the number of nodes in the lattice).
Determining the “right” k for a data set itself is a non-trivial problem. Here,
instead, we compared the performance of different algorithms for different k’s in
order to examine whether there were consistent differences in the performance of
different algorithms, or whether the performances were related to k. To simplify
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the situation further, we chose k equal to 16, 25, 36, 49 and 64, and the lattices
for SOM were all square. To compare hierarchical clustering with other algo-
rithms, we cut the hierarchical tree at different levels to obtain corresponding
numbers of clusters. Specific to SOM, we examined two situations where the
neighborhood radius approached one or zero. Theoretically, if the neighborhood
radius approaches zero, the SOM algorithm approaches the k-means algorithm.
However the dynamics of the training procedure may generate different results,
and this would be interesting to explore.

4.1. Homogeneity and separation

We implemented a variation of the two indices suggested by Shamir and
Sharan (in press): homogeneity and separation. Homogeneity is calculated as
the average distance between each gene expression profile and the center of the
cluster it belongs to. That is,

Have =
1

Ngene

∑

i

D(gi, C(gi)),

where gi is the ith gene and C(gi) is the center of the cluster that gi belongs to;
Ngene is the total number of genes; D is the distance function. Separation is
calculated as the weighted average distance between cluster centers:

Save =
1

∑
i�=j NciNCj

∑

i�=j

NciNcjD(Ci, Cj),

where Ci and Cj are the centers of ith and jth clusters, and Nci and Ncj are the
number of genes in the ith and jth clusters. Thus Have reflects the compactness of
the clusters while Save reflects the overall distance between clusters. Decreasing
Have or increasing Save suggests an improvement in the clustering results.

We used Euclidean distance as the distance function D. When expression
profiles are normalized to have unit length, Euclidean distance and Pearson cor-
relation are equivalent (dis)similarity metrics. However, due to the nonlinear
relation between the two metrics, the weighted average of one metric (such as
in Save) may behave differently from another. Since all algorithms in the study
used Euclidean distance as the dissimilarity metric, we thought it appropriate to
use Euclidean distance in the quality indices as well.

We should also point out that Have and Save are not independent of each
other: Have is closely related to within-cluster variance, Save is closely related to
between-cluster variance. For a given data set, the sum of within-cluster variance
and between-cluster variance is a constant.

The homogeneity of the clusters for algorithms studied is shown in Figure
1(a). The performances of k-means and PAM were almost identical. When the
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neighborhood radius was set to approach zero (SOM r0), SOM performed as
well as k-means and PAM. In contrast, when the neighborhood radius was set to
approach one (SOM r1), the homogeneity index of the clusters obtained by SOM
was not as good as those of k-means and PAM for all k’s tested. Average linkage
hierarchical clustering was the worst with regard to homogeneity. Figure 1(b)
shows the separation of the clustering results. Consistent with homogeneity, k-
means and PAM performed as well as SOM r0, and all were better than average
linkage clustering. However, SOM r1 appeared the worst with regard to this
index.

k-means
avg-linkage
PAM
SOM r0
SOM r1

hom
ogeneity

score

k (number of clusters)
Figure 1a. Homogeneity score for clustering outputs of k-means, avg-linkage,
PAM, SOM r0 and SOM r1 across k = 16, 25, 36, 49 and 64.

hom
ogeneity

score

k (number of clusters)

k-means

avg-linkage

PAM

SOM r0

SOM r1

Figure 1b. Separation score for clustering outputs among k-means, avg-
linkage, PAM, SOM r0 and SOM r1.
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4.2. Silhouette width

The second index we used to evaluate clustering results was the silhouette
width proposed by Rousseeuw (1987) (also MathSoft, Inc. (1998, Chap. 20), Vilo
et al. (2000)). Silhouette width is a composite index reflecting the compactness
and separation of the clusters, and can be applied to different distance metrics.
For each gene i, its silhouette width s(i) is defined as

s(i) =
b(i) − a(i)

max{a(i), b(i)} ,

where a(i) is the average distance of gene i to other genes in the same cluster,
b(i) is the average distance of gene i to genes in its nearest neighbor cluster.
The average of s(i) across all genes reflects the overall quality of the clustering
result. A larger averaged silhouette width indicates a better overall quality of the
clustering result.

k-means
avg-linkage

PAM

SOM r0

SOM r1

silhouette
w

idth
score

k (number of clusters)

Figure 2. Average silhouette width for clustering outputs among k-means,
avg-linkage, PAM, SOM r0 and SOM r1.

Figure 2 shows the averaged silhouette widths obtained in our study. The score
for k-means was very close to those for PAM and SOM r0, which were slightly better
than average linkage. Again, SOM r1 had the lowest score. It should be noted that the
scores for all the clustering methods in this study were below 0.2, which is rather low,
suggesting the clusters might not be well separated and the underlying structure in our
expression data was likely “blurry”.

4.3. Redundant scores

In our ES cell data set, there was a small portion of redundant genes, i.e., some
cDNA clones on the chip actually represented the same gene. After filtering as described
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previously, there were 253 such clones, which represented 104 genes. These included du-
plicates, triplicates, up to quintuplicates. Since identical cDNA clone probes should give
similar expression patterns (aside from experimental noise), a good cluster result should
cluster those redundant genes together with high probability. We tried to make use of
these redundant genes to measure the quality of our clustering results, by calculating a
separation score RSS =

∑
g

Cg

Rg
, where Rg is the number of clones in a redundant group

g, Cg is the number of clusters these clones are separated into. Ideally, Cg should be
one for every redundant group g. Because this score is biased to favor small number
of clusters, we also calculated a control score with 253 randomly picked genes put into
the same 104 groups. The difference of redundant separation scores (DRSS) between
the control and redundant gene sets was used as a measurement of clustering quality. If
this score is high, it suggests that the redundant genes are more likely to be clustered
together than randomly picked genes.

D
R

SS
k (number of clusters)

k-means
avg-linkage
PAM
SOM r0
SOM r1

Figure 3. Difference of redundant separation scores (DRSS) for clustering
outputs among k-means, avg-linkage, PAM, SOM r0 and SOM r1.

Redundant scores for the clustering results are given in Figure 3. Here, k-
means appeared to perform better than average linkage clustering consistently
through all k’s tested. Redundant scores for SOM r1 tended to be lower than
those of other algorithms, especially when k was relatively large. PAM and
SOM r0 were intermediate to k-means and average linkage clustering, without
obvious and consistent relation to them or to each other.

One cautionary point should be made. The DRSS scores in Figure 3 suggest
that for all methods, a portion of the redundant genes were not clustered to-
gether. Besides the measurement noise and sample preparation variations in the
experiments, an important factor is clone identity. The clones were verified with
complete or partial sequencing and BLAST against the GenBank nr repository.
Two clones were considered identical if they hit the same GenBank record with
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high enough scores in BLAST. However, it is possible that two clones contain ho-
mologous genes, of which one is not characterized and deposited into GenBank,
and thus they both map to the same gene in GenBank. When we examined the
clustering results, we found several cases where a “redundant” pair of clones had
quite different BLAST scores and were separated into different clusters. Those
“redundant” pairs of clones might not really be identical clones. Nevertheless,
the tendency of the “redundant” genes to be clustered together was significantly
larger than for randomly picked control genes. The difference between the scores
of “redundant” genes and the mean scores of control genes was typically more
than two or three times the standard deviation of the control scores.

4.4. WADP

A critical issue is the robustness of clustering results. That is, if input data
points deviate slightly from their current values, will we get the same clustering?
This is important in microarray expression data analysis because there is always
experimental noise in the data. A good clustering result should be insensitive
to the noise and able to capture the real structure in the data, reflecting of the
biological processes under investigation. To test the robustness of the results
obtained from different algorithms, we used the method proposed by Bittner
et al. (2000). Briefly, each gene expression profile was perturbed by adding
a random vector of the same dimension. Each element of the random vector
was generated from a Gaussian distribution with mean zero. We used standard
deviation σ = 0.01 for the perturbation, preliminary observation suggested that
this level of perturbation was relatively representative. After re-normalization
of the perturbed data, clustering was performed. For each individual cluster, a
cluster-specific discrepancy rate was calculated as D/M . That is, for the M pairs
of genes in an original cluster, count the number of gene pairs, D, that do not
remain together in the clustering of the perturbed data, and take their ratio. The
overall discrepancy rate for the clustering is calculated as the weighted average of
those cluster-specific discrepancy rates. This process was repeated many times
and the average overall discrepancy rate, the weighted average discrepant pairs
(WADP) was obtained (see Supplementary Information in Bittner et al. (2000)).
WADP equals zero when two clustering results match perfectly. In the worst
case, WADP is close to one.

Figure 4 shows the clustering robustness as measured with WADP, in which
clusters obtained with SOM r1 appeared to be significantly more stable than
all the other algorithms. WADP scores for k-means and average linkage were
relatively high regardless of k, and were not much different from each other.
WADP scores for PAM and SOM r0 appeared to be related to k. When k was 16
and 25, the clustering results with PAM and SOM r0 were relatively more stable



MICROARRAY PRE-PROCESSING 251

than k-means and average linkage. When k was large, the clustering stability of
PAM and SOM r0 were about the same as k-means and average linkage.

W
A

D
P

score

k (number of clusters)

k-means
avg-linkage

PAM
SOM r0
SOM r1

Figure 4. WADP (weighted average discrepancy pair) score for clustering
outputs among k-means, avg-linkage PAM, SOM r0 and SOM r1. For all
algorithms except PAM the results were averaged over 40 runs, while for
PAM, results were averaged over 10 runs due to its slowness. The error bars
show the standard error of means.

5. Comparison of Cluster Sizes and Consistency

One issue that may be related to the structural quality of clusters is the
cluster size distribution (number of genes in each cluster). Figure 5(a)-(e) show
the cluster sizes for each method in our study, with k equal to 36. Average
linkage clustering tended to give variable sizes of clusters, a few large clusters
containing hundreds of genes and many small clusters having only a few genes
(note the scale of y-axis in Figure (a) is different from all the other). Cluster sizes
for PAM and SOM r0 appeared to vary the least. The cluster size variability of
k-means was close to that of PAM and SOM r0, while the variability of SOM r1

was somewhat larger but better than average linkage. There appeared to be a
systematic bias in the cluster sizes related to the location of the nodes in the SOM
lattice when the neighborhood interaction was maintained as in SOM r1. That
is, clusters represented by the nodes at the corners or edges (such as cluster 6, 36
and cluster 32, 13, respectively) of the SOM lattice tended to have more genes
than those represented by the inner nodes. Having some large, not necessarily
dense, clusters due to its “greedy” algorithm might be a possible reason that
average linkage scored poorly in homogeneity.

To compare the consistency of clusters produced by different methods, we
again adopted WADP as a measurement. Because WADP puts the number of
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(d) SOM r0
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Figure 5. The cluster sizes for each method in our study when k was equal to 36.

pairs of genes in the first cluster result in the denominator, it is not symmetric,
i.e., WADP(A, B) is typically not WADP(B, A). Thus, we used the average of
WADP(A, B) and WADP(B, A) as the distance between cluster method A and
B. Based on this distance, a hierarchical tree was built to display the similarity
or dissimilarity of clusters generated by different algorithms. Figure 6 shows the
result when k was 36. It can be seen that k-means was similar to PAM, while
average linkage and SOM r1 tended to produce clusters not overlapping with
those of other methods. However, note that even the distance between k-means
and PAM was larger than 0.45, which meant more than 45% of gene pairs in
one clustering result were separated by the other method. This suggests that
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clustering results from different methods were only partially consistent, and that
caution needs to be taken when we interpret these results.

SOM r1

avg-linkage

SOM r0

kmeans PAM

Figure 6. The hierarchical tree generated with average linkage using aver-
age discrepancy rate of gene pairs as distance between clustering results of
different methods. The tree height represents the distance between the two
merging nodes.

6. Biological Interpretation of the Clusters

The biological functions of several genes, as well as their interaction in cer-
tain pathways governing the ES cell pluripotency, have been identified (Jaradat
et al. (to be submitted)). The Pou5f1(Oct-3/4) gene, which encoded the tran-
scription factor Oct-3/4 and expressed specifically in totipotent embryonic cells
and germ cells (reviewed by Pesce and Scholer (2000)), is widely accepted as a
marker that measures the pluripotency of ES cells. In our data, Oct-3/4 down
regulated immediately in response to the withdrawal of LIF and the conditioned
media, as shown in Figure 7(a). The down regulation of other genes, of which
many are unknown, at both 4 hours and 8 hours post-LIF withdrawal suggested
these genes might carry a similar function to Oct-3/4, or that they might be used
as alternative markers for ES cell pluripotency. Two examples of these genes are
p45 Nf-e2 and Baff. Both p45 Nf-e2 and Baff are transcription factors impor-
tant in erythroid and lymphocyte lineages, respectively (Chui, Tang and Orkin
(1995), Schneider et al. (1999)). In combination with an unidentified protein
complex called Rox-1, Oct-3 enhanced the expression of the Zfp42 gene, which
encoded an acidic zinc finger protein named Rex-1 (Ben-Shushan, Thompson,
Gudas and Bergman (1998)). Finally, Oct-3/4 and Hmg1 have been reported to
interact with each other at the protein level (Butteroni, De Felici, Scholer and
Pesce (2000)). There were two copies of Hmg1 genes (H3027D07, H3059H04,
http://lgsun.grc.nia.nih.gov/) in our data set. Another group of genes that ex-
ert similar functions included Ezh2, rae-28 and Cytocine-5-methyl transferase 3.
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All of these three genes play an important role in suppression mechanism at the
genomic levels (reviewed in Satijn and Otte (1999)).
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Figure 7. The normalized expression profiles of two groups of functionally
related genes: (a) group of genes related to Oct-3/4; (b) three genes with a
role in suppression mechanism at the genomic levels.
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The expression profiles of these two groups of genes are displayed in Figure
7(a) and 7(b), respectively. As an example, the locations of those genes in the
clusters produced by each method (when k = 36) are listed in Table 1. It can be
seen that five out of six genes in the first group were grouped together in cluster
#27 by k-means. They were also in the same cluster (#31) according to SOM r0.
In addition, note that although the six genes were placed in three different clusters
by SOM r1, those three clusters were represented by three adjacent nodes in the
SOM lattice. The three genes in the second group were clustered together by
three of the methods we applied and the other two methods grouped two genes
together.

Table 1. Two groups of functionally related genes and their locations in
clusters (k = 36).

Clone k-means average PAM SOM r0 SOM r1 Description

linkage

H3028H01 27 1 35 31 25 Mus musculus POU domain, class 5,

transcription factor 1 (Pou5f1), mRNA

H3054B12 27 12 35 31 31 Mus musculus p45 NF-E2 related

factor 2 (Nrf 2) mRNA, complete cds

H3053A01 27 12 30 31 31 Mus musculus B-cell activating factor

(Baff) mRNA, complete cds

H3027D07 27 1 30 31 31 Mus musculus high mobility group

protein 1 (Hmg1), mRNA

H3059H04 27 12 8 31 31 M.musculus HMG1 gene

H3036F04 23 24 36 19 19 Mouse REX-1 mRNA, complete cds

H3141B05 24 24 31 13 13 Mus musculus enhancer of zeste

homolog 2 (Drosophila) (Ezh2),

mRNA

H3105A03 24 24 31 13 13 rae-28=polyhomeotic gene homolog

clone Rae-2812 [mice, embryonal

carcinoma F9 cells, mRNA, 3542 nt]

H3094C02 24 24 25 13 7 Mus musculus partial mRNA for

carcinoma-5-methyltransferase 3-like

protein (Dnmt3l gene)

The numbers in each column are the cluster ID’s determined by each clustering program, re-
spectively. For SOM, the cluster ID numbers correspond to the locations of the nodes in the
lattice, with #1, #6, #31 and #36 at the four corners. For other algorithms, there are no

particular relations between the cluster ID’s.

To further access the biological meaning of the clusters, we examined the
distribution of sets of functionally classified genes. Among the 15K cDNA clones
on the microarray, 4027 clones were functionally classified according to their
homology to know genes or sequence match to know functional motifs of proteins
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(Kargul et al. (2001)). Those genes were in nine gross functional categories, such
as apoptosis, cell cycle, etc. After the filtering process described previously,
1279 out of the 3805 genes used in clustering were assigned to those functional
categories. Among the nine functional categories, five categories contained more
than 100 genes (see Table 2). The other four categories were ignored in the
following analysis since sample sizes were small.

Table 2. X2 scores of clustering results based on functional categories (k = 36).

X2 Score

Functional Category
(gene number) k-means linkage

(gene number) PAM SOM r0 SOM r1

Energy/Metabolism
(n = 201) 36.9 37.8 48∗ 52.7∗ 65.7∗∗

Matrix/Structural Proteins
(n = 298) 64.5∗∗ 58.8∗∗ 63.8∗∗ 70.7∗∗ 67.2∗∗

Protein Synthesis
/Translational Control
(n = 262)

96.1∗∗ 98.6∗∗ 83.2∗∗ 77.8∗∗ 81.8∗∗

Signal Transduction
(n = 220) 38.4 31.8 38.6 53.6∗∗ 43.8

Transcription/Chromatin
(n = 159) 27.0 41.7 26.9 37.0 28.3

∗p < 0.05
∗∗p < 0.01

For each category of genes, we calculated a X2 score for each clustering result
as

X2 =
∑

c

(Oc − Ec)2

Ec
,

where Oc is the observed frequency of genes in a cluster c, and Ec is the expected
frequency of genes in that cluster based on cluster size distribution. The X2

scores for the clustering results of the five methods we used (when k = 36) are
shown in Table 2. This X2 score is sometimes referred as a chi-square score, but
its distribution only approximates the chi-square distribution when the sample
size (gene number) and the expected frequency E are relatively large. In our
study, E was relatively small for some clusters and the cluster size distributions of
different clustering results could be quite different (e.g., hierarchical clustering vs.
other methods). Therefore, we obtained the levels of statistical significance with a
Monte Carlo simulation for each clustering method and functional category. The
stars in Table 2 denote the p-value levels based on the data from 1000 random
clusterings. For functional category “matrix/structural proteins” and “protein
synthesis/translational control”, X2 scores for all five clustering methods reached
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the p < 0.01 significant level, suggesting that the functionally related genes
in those two categories had some tendency to be clustered together. For the
functional classification of genes, we need to be cautious that on one hand, one
gene may have multiple functions and that on the other hand, genes in the same
functional category may be involved in different pathways and are turned on/off
in different biological processes. Such complicated relationships among genes
cannot be captured with a simple classification.

7. Discussion

Our experiments with ES cell data set indicated that the success of the clus-
tering methods we tried was limited, suggesting the intrinsic structure in the
data might be blurry. However, the clustering results appeared to reflect certain
biological relations among the genes, as shown in Section 6. Different algorithms
displayed different properties: k-means generated clusters with slightly better
structural quality; k-means and SOM r0 appeared more consistent with the bi-
ological information implicated in the redundant clones and the several known
genes involved in the same pathways. However, k-means was relatively sensitive
to noise perturbation in the data. On the other hand, when neighborhood inter-
action was maintained, SOM gave relatively stable clusters but of relatively low
structural quality. Average linkage hierarchical clustering was the worst among
the four algorithms in this particular test situation and PAM appeared to be
close to k-means.

These results are consistent with recent work of Yeung, Haynor and Ruzzo (in
press). They developed a figure of merit particularly suitable to time course data
and evaluated a number of clustering algorithms with several public microarray
data sets. In their report, k-means initialized using average linkage appeared
to perform slightly better than k-means initialized randomly. Regardless of the
initialization methods, k-means outperformed average linkage clustering most of
the time. In almost all cases, single linkage clustering performed poorly, likely
due to a “chaining” effect.

The relatively low quality of agglomerative hierarchical clustering (such as
average linkage) is probably due the “greediness” of the algorithm — when two
similar clusters are merged, it is not possible to do any refinement or correction
later.

The neighborhood constraint posed on SOM seemed to have a dual-effect
— it helped to improve the stability of the clustering but prevented further
optimization in the clustering structure. A comparison of SOM with different
neighborhood radius functions revealed a trade-off between the cluster stability
and structural quality. Since a unique feature of SOM is the topographic relation
between the mapping nodes, we could calculate the topographic error (TE) to
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measure the topology preservation of the map units (ref. http://www.cis.hut
.fi/projects/somtoolbox/documentation/), which appeared to be correlated to
the performance of SOM. When the neighborhood interaction was maintained (as
in SOM r1), TE for SOM was very low, and the clusters obtained were relatively
stable but not very compact. When the neighborhood interaction was gradually
removed (as in SOM r0), TE for SOM was much higher and the clusters obtained
became more compact, but at the cost of stability.

Theoretically, the SOM algorithm reduces to k-means if the neighborhood
radius is set to zero. This is confirmed in our study. The quality of clusters
obtained with SOM r0 was very similar to that of k-means, when evaluated with
homogeneity, separation, silhouette width and redundant scores. However, there
were some subtle differences in the WADP scores. When k was relatively small
(16 and 25), SOM r0 appeared to be more stable than k-means, as shown in
Figure 4. When k was 36 or larger, the total average of WADP scores for SOM r0

and k-means were close to each other. However, if we looked into the WADP
scores for each individual run, we could see a bi-modal distribution with SOM r0,
which was not present with k-means. (In fact, WADP scores for individual runs
for SOM r1 also had this kind of bi-modal distribution, but the frequencies at
the high score region were much lower.) This bi-modal distribution was also
reflected in the relatively large standard errors of WADP scores for SOM in
Figure 4. These observations suggest that the neighborhood interaction in the
early training phase still had some effects.

Indices such as homogeneity, separation, silhouette width and WADP only
examine the data themselves and the performance of clustering algorithms with
them. They may be categorized as “internal criteria” in the sense of Jain and
Dubes ((1988), Chap. 4). On the other hand, the redundant clones present
in the NIA microarray provided us with a unique opportunity to evaluate the
clustering with some a priori knowledge of the data. The redundant score may
be categorized as an “external criterion” in Jain and Dubes (1988), although
our a priori knowledge was only about a small subset of the genes. The current
redundant clones were randomly generated during the clone screening processes,
it may be more desirable to intentionally include duplicated gene representations
in the design of microarray.

There is no single “best” clustering method for all possible data sets, or for
all quality measures, different clustering algorithms have different features and
properties. The appropriateness of a particular algorithm is dependent on the
nature of the data. For example, PAM uses representative objects (medoids)
instead of means to represent cluster centers. It can handle data sets in which
only (dis)similarity between objects is defined but not the mean of objects. A
drawback is that the S-plus implementation is very slow. As a referee pointed
out, there is a much faster C-implementation of PAM written by Jenny Bryan,
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who is now at University of British Columbia. If the data themselves contain a
hierarchical structure, hierarchical clustering methods will be more appropriate
- partition algorithms, such as k-means, will not be able to capture this type of
information. A good feature of SOM is that clusters are represented by nodes
arranged in a topological order correlated to the similarity of the clusters. Thus, it
is easier for one to observe relations between clusters. This feature is particularly
valuable to achieve “soft” clustering when the data are distributed diffusely and
cannot be clearly segregated into isolated groups. Of course, the payoff for this
SOM feature is that clusters tend to be less compact than those of an algorithm
without the topological constraint.

In addition, the choice of algorithms depends on the information sought.
For example, k-means and PAM tend to produce “spherically” shaped clusters.
This property may be desirable for clustering gene expression profiles to find
co-expressed genes, because all the genes in a “spherical” cluster have sufficient
pairwise similarity, while the expression profiles of genes at the ends of an elon-
gated cluster may be quite different.

Of course there are many clustering algorithms including refinements and
extensions of the basic ones investigated here. Proposals and attempts have also
been made to combine the strength of different algorithms. For example, one
can use k-means or SOM to obtain gross partitions of data, then use hierarchical
clustering to refine each of them. Or, conversely, one can use k-means or SOM
to obtain many small clusters and then use hierarchical clustering to identify the
connection between those small clusters.

In any event, caution is required, as different algorithms tend to produce
somewhat different clusters. This is, on one hand, due to the nature of the
present data. On the other hand, it is due to the fact that these algorithms form
exhaustive and mutually exclusive clusters that are locally optimal. (Similar
problems are addressed by Goldstein, Ghosh and Conlon in this issue of the
journal, although they focus on clustering tissues (arrays)). Therefore, when we
examined the relations between genes, we did not limit ourselves to the cluster
boundaries forced by these algorithms, but also examined the expression profiles
of the genes in “similar” clusters nearby. For example, it is known that the
expression of Rex-1 is enhanced by Oct3. As shown in Table 1 and Figure 7(a),
although Rex-1 was not grouped with Oct-3/4, its expression pattern appeared
to be more similar to Oct-3/4 than Hmg1. It is likely that Oct-3/4 was near
the boundary of a cluster, e.g., #27 for k-means, and Rex-1 was located in an
adjacent cluster. It was informative to see that SOM r1 assigned Oct-3/4 to
cluster #25, which was between cluster #19 and #31 in the SOM lattice.

In conclusion, cluster analysis requires experience and knowledge about the
behavior of clustering algorithms, and can benefit from a priori knowledge about
the data and underlying biological processes. When a priori knowledge about the
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data is not available or insufficient, it may be desirable to try different algorithms
to explore the data and get meaningful clustering results through comparisons.

Acknowledgement

The authors wish to thank Michael Radmacher and Yidong Chen for provid-
ing their S-plus script to calculate WADP. The editor and two anonymous referees
provided useful comments. This work is supported by NIH grants GM60513 and
DA13748.

References

Ben-Shushan, E., Thompson, J. R., Gudas, L. J. and Bergman, Y. (1998). Rex-1, a gene

encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4

and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent

site. Mol. Cell. Biol. 18, 1866-1878.

Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon,

R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden,

C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich,

K., Beaudry, C., Berens, M., Alberts, D., Sondak, V., Hayward, N. and Trent, J. (2000).

Molecular classification of cutaneous malignant melanoma by gene expression profiling.

Nature 406, 536-540.

Butteroni, C., De Felici, M., Scholer, H. R. and Pesce, M. (2000). Phage display screening

reveals an association between germline-specific transcription factor Oct-4 and multiple

cellular proteins. J. Mol. Biol. 304, 529-540.

Chui, D. H., Tang, W. and Orkin, S. H. (1995). cDNA cloning of murine Nrf 2 gene, coding for

a p45 NF-E2 related transcription factor. Biochem. Biophys Res. Commun 209, 40-46.

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and

display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-

14868.

Goldstein, D. R., Ghosh, D. and Conlon, E. (2002). Statistical issues in the clustering of gene

expression data. Statist. Sinica 12, 219-240

Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm. Appl. Statist. 28,

100-108.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall, Englewood

Cliffs, NJ.

Jaradat, S. A., Tanaka, T. S., O’Neill, L., Chen, G., Banerjee, N., Zhang, M. Q., Boheler, K.

R. and Ko, M. S. H. (2001). Microarray analysis of the genetic reprogramming of mouse

ES cells during differentiation. Keystone Symposium on Pluripotent Stem Cells: Biology

and Application. Durango, Colorado.

Kargul, G. J., Dudekula, D. B., Qian, Y., Lim, M. K., Jaradat, S. A., Tanaka, T. S., Carter,

M. G. and Ko, M. S. H. (2001). Verification and initial annotation of the NIA mouse 15K

cDNA clone set. Nat. Genet 28, 17-18

Kaufman, L and Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley, New York.

MathSoft, Inc. (1998). S-Plus 5 for UNIX Guide to Statistics. Data Analysis Products Division,

MathSoft, Seattle.



262 G. CHEN, S. A. JARADAT, N. B. JEE, T. S. TANAKA, M. S. H. KO AND M. Q. ZHANG

Pesce, M. and Scholer, H. R. (2000). Oct-4: control of totipotency and germline determination.

Mol. Reprod Dev. 55, 452-457.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. J. Computat. Appl. Math. 20, 53-65.

Satijn, D. P. and Otte, A. P. (1999). Polycomb group protein complexes: do different complexes

regulate distinct target genes? Biochim. Biophys Acta. 1447, 1-16.

Schneider, P., MacKay, F., Steiner, V., Hofmann, K., Bodmer, J. L., Holler, N., Ambrose,

C., Lawton, P., Bixler, S., Acha-Orbea, H., Valmori, D., Romero, P., Werner-Favre, C.,

Zubler, R. H., Browning, J. L. and Tschopp, J. (1999). BAFF, a novel ligand of the tumor

necrosis factor family, stimulates B cell growth. J. Experiment. Med. 189, 1747-56.

Shamir, R. and Sharan, R. (in press). Algorithmic Approaches to Clustering Gene Expression

Data. Current Topics in Computational Molecular Biology, MIT Press, Boston, MA.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. and

Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps:

Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA

96, 2907-12.

Tanaka, T. S., Jaradat, S. A., Lim, M. K., Kargul, G. J., Wang, X., Grahovac, M. J., Pantano,

S., Sano, Y., Piao, Y., Nagaraja, R., Doi, H., Wood, W. H., 3rd, Becker, K. G. and Ko, M.

S. (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a

15, 000 mouse developmental cDNA microarray. Proc. Natl. Acad. Sci. USA 97, 9127-32.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. and Church, G. M. (1999). Systematic

determination of genetic network architecture. Nat. Genet 22, 281-5.

Vilo, J., Brazma, A., Jonassen, I., Robinson, A. and Ukkonen, E. (2000). Mining for putative

regulatory elements in the yeast genome using gene expression data. Ismb 8, 384-394.

Yeung, K. Y., Haynor, D. R. and Ruzzo, W. L. (2000). Validating clustering for gene expression

data. Bioinformatics 17, 309-318.

Cold Spring Harbor Laboratory 1 Bungtown Rood Hershey Building, Cold Spring Harbor, NY

11724, U.S.A.

E-mail: cheng@cshl.org

Laboratories of Genetics, National Instituteon Aging, National Institutes of Health, Baltimore,

MD 21224, U.S.A.

E-mail: jaradats@grc.nia.nih.gov

Cold Spring Harbor Laboratory 1 Bungtown Rood Hershey Building, Cold Spring Harbor, NY

11724, U.S.A.

E-mail: banerjee@cshl.org

Laboratories of Genetics, National Instituteon Aging, National Institutes of Health, Baltimore,

MD 21224, U.S.A.

E-mail: tanakat@grc.nia.nih.gov

Laboratories of Genetics, National Instituteon Aging, National Institutes of Health, Baltimore,

MD 21224, U.S.A.

E-mail: kom@grc.nia.nih.gov

Cold Spring Harbor Laboratory 1 Bungtown Rood Hershey Building, Cold Spring Harbor, NY

11724, U.S.A.

E-mail: mzhang@cshl.org

(Received March 2001; accepted November 2001)


