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Abstract
Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be
silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal
another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in
vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination
with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var)3-9. H1 physically
interacts with Su(var)3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We
propose that H1 plays a key role in silencing by tethering Su(var)3-9 to heterochromatin. The
tethering function of H1 adds to its established role as a regulator of chromatin compaction and
accessibility.

Eukaryotic genomes are packaged into chromatin, which is composed of highly conserved
repetitive units referred to as nucleosomes. The nucleosome consists of ~145 base pairs of
DNAwrapped around an octamer of core histones, H2A, H2B, H3, and H4. Chromatin also
contains the linker histone H1, which binds to the linker DNA between nucleosomes and
facilitates folding of nucleosome arrays into more compact structures (1). Chromatin is
organized into regions of euchromatin and more densely packed heterochromatin, which is
generally silenced. The mechanisms leading to heterochromatic silencing are not well
understood (2, 3).

Depleting H1 in Drosophila by RNA interference (RNAi) leads to marked disruption of
salivary gland (SG) polytene chromosome structure, including pericentric heterochromatin,
and a decrease in nucleosome spacing (4). We compared the RNA expression profiles of
SGs depleted of H1 and control Nautilus (Nau) RNAi SGs. We found only a modest
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difference in the mRNA profile, with only 2174 (11.5%) protein-coding genes showing a
change of twofold or more (P < 0.05) (Fig. 1A). However, H1 depletion caused significant
changes in the abundance of transcripts derived from transposable elements (TEs). Of the 79
annotated TE transcripts, the abundance of 42 (53.2%) changed by twofold or more (Fig. 1A
and table S1), with more than 98% of changes representing increased expression.
Quantitative reverse transcription polymerase chain reaction (QRT-PCR) of 11 different
RNAs representing various classes of Drosophila TEs confirmed that their expression is
activated from 15-fold to as much as 800-fold (Fig. 1B). Thus, the repressive function of H1
in vivo is directed particularly toward TEs.

Preferential repression of TEs is also observed in normal, mitotically dividing Drosophila
cells. RNA expression profiling of Kc cells depleted of H1 to ~30% of control levels (fig.
S1A) showed similar effects on derepression of TE transcripts and significant overlap with
those observed in SGs, as well as a similar limited effect on protein-coding genes (fig. S1B).
Furthermore, measurements of transposon transcript levels by QRT-PCR in four other tissue
sources (whole larvae, brains, ovaries, and testes) from H1-depleted animals showed that
expression of TEs is activated from 50- to more than 500-fold (fig. S2, A and B). Therefore,
H1 exerts a strong repressive effect on TE expression in a variety of cell types [see also (5)].

Repeat-associated small interfering RNA (rasiRNA) pathways are involved in the negative
regulation of TEs (6, 7). In Drosophila germ cells, 24- to 28-nucleotide (nt) PIWI-interacting
RNAs (piRNAs) are generated by the dicer activity of AGO3, whereas in ovarian soma
piRNA-dependent silencing relies on the activity of PIWI, and in other types of somatic
cells, TEs are repressed by 21-nt endo-siRNAs and AGO2 [reviewed in (8, 9)]. To test
whether TE up-regulation in H1-depleted cells is due to decreased small RNA expression,
we extracted total RNA from H1-depleted and control larvae and analyzed small RNAs
homologous to copia, invader 4, roo, and idefix transposable elements by Northern blotting.
In each case, we observed a marked increase in the abundance of the corresponding small
RNAs (Fig. 1C). We also used massive parallel sequencing to quantify small RNAs in SGs
and ovaries from H1-depleted and control larvae. In each tissue we found that the majority
of TE-specific small RNAs (both endo-siRNAs and piRNAs) are strongly up-regulated upon
H1 depletion (table S2). Thus, activation of TE expression is not due to a decrease in the
concentration of the repressive small RNAs.

TE insertions in Drosophila are thought to be mostly located in heterochromatin (10, 11) and
proximal heterochromatin-euchromatin transition zones (12). We hypothesized that H1 may
silence TEs through its ability to regulate the activity of heterochromatin, with TEs
responding differently to H1 depletion depending upon their insertion site. Stellate (Ste) (13)
exhibits several features similar to TEs, with multiple tandem copies at two distinct loci, one
euchromatic (Eu Ste) and the other in pericentric heterochromatin (Het Ste) (14). Ste
expression is regulated by Su(Ste) encoding piRNAs that silence Ste (14, 15).
Heterochromatic and euchromatic copies of Ste exhibit single-nucleotide polymorphisms
that allow discrimination between transcripts originating from either locus. Depletion of H1
strongly up-regulates only Het Ste transcripts, whereas Eu Ste transcripts are not
substantially affected (Fig. 1D). Although transcripts from both loci are negatively regulated
by Su(Ste)-derived small RNAs, H1 specifically silences Het Ste, presumably through its
role in regulation of heterochromatin function.

H1 depletion causes a reduction in dimethylation of histone H3 lysine 9 (H3K9Me2) (4).
Quantitative chromatin immunoprecipitation (QChIP) in H1-depleted and control larvae at
the regulatory regions of several TEs—including copia, gypsy, and ZAM—and at Het Ste,
revealed a marked decline in the presence of H3K9Me2 accompanying the loss of H1 (Fig.
2, A and B). Although H1 depletion also leads to reduced H3K9Me2 at Eu Ste and other
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euchromatic loci like yellow (Fig. 2B), only heterochromatic loci are derepressed (Fig. 1, B
and D), consistent with the existence of additional, H3 methylation–independent silencing
mechanisms outside of heterochromatin. H3K9Me2 modification is catalyzed primarily by
the histone methyltransferase (HMT) Su(var)3-9 (16). Su(var)3-9 null mutation also leads to
strong up-regulation of TEs and Het Ste but not Eu Ste (Fig. 2C), which suggests that H1
and Su(var)3-9 may function in concert. Although H3K9Me2 is severely reduced in
Su(var)3-9 mutant larvae, H1 occupancy at repetitive sequences and its distribution in
polytene chromosomes is not substantially affected (fig. S2, C to E). These results suggest
that H1 acts upstream of Su(var)3-9 to regulate hetero-chromatin identity. If H1 and
Su(var)3-9 cooperate to silence TEs, then overexpression of Su(var)3-9 might ameliorate the
effects of H1 depletion. Indeed, overexpression of Su(var)3-9 partially reverses the
activation of TE and Het Ste expression accompanying H1 depletion in SGs (Fig. 2D) and
larvae (fig. S2F). In addition, Su(var)3-9 overexpression partially restores the decreased
viability of flies caused by H1 depletion (table S3). Conversely, Su(var)3-9 mutation
strongly enhances the lethality caused by even moderate H1 depletion (table S3).
Furthermore, Su(var)3-9 overexpression in the H1-depleted SG reinstates the H3K9Me2
mark in pericentric heterochromatin (Fig. 2E). However, it does not rescue the global
defects in the morphology of polytene chromosomes, which suggests that the combined
regulation of chromatin structure by H1 and Su(var)3-9 is directed specifically toward
heterochromatin.

We next asked if H1 and Su(var)3-9 physically interact. A glutathione S-transferase (GST)
fusion of Su(var)3-9 was expressed in Drosophila S2 cells, and immunoprecipitation (IP) of
nuclear extracts with GST-specific antibody, followed by immunoblotting for H1, showed
that endogenous H1 and GST-Su(var)3-9 associate (Fig. 3A). Drosophila H1 also interacts
with heterochromatin protein 1 (HP1) (Fig. 3A), which parallels previous observations with
their mammalian counterparts (17–19). Reciprocal IP with H1 antiserum confirmed the
interaction of endogenous H1 with GST-Su(var)3-9 and GST-HP1 (Fig. 3B). Recombinant
GST-H1 purified from bacteria also directly interacts with 35S-labeled Su(var)3-9 translated
in vitro and with purified recombinant Su(var)3-9–His6 (Fig. 3C). The absence of binding
between Su(var)3-9 and another histone protein (GST-H2A) shows that interaction of
Su(var)3-9 with H1 is not due to the high net positive charge of H1 or to a bridging artifact
owing to contaminating nucleic acids.

To better understand the functional significance of this physical interaction, we studied
Su(var)3-9 binding and its HMT activity toward chromatin reconstituted in vitro with and
without H1. Recombinant Su(var)3-9–His6 (fig. S3A) was assayed for HMT activity on free
histones and oligonucleosomal templates (fig. S3, B and C). Su(var)3-9 can methylate
histone H3 both when H3 is in the context of nucleosomes and in its dissociated native form
(Fig. 3D). However, whereas the presence of H1 did not affect Su(var)3-9 activity toward
H3 in solution, it strongly stimulated methylation of H3 assembled in chromatin (Fig. 3D).
Thus, H1 does not stimulate the intrinsic enzymatic activity of Su(var)3-9, rather it promotes
H3 methylation within the chromatin substrate. Furthermore, in vitro ChIP demonstrated a
greater magnitude of Su(var)3-9 association with the H1-containing oligonucleosome
substrate versus that with the H1-free substrate (Fig. 3E). In control ChIP experiments, the
presence of H1 did not promote but, rather, strongly inhibited the occupancy of purified
recombinant fusion of yeast GAL4 and herpes simplex virus VP16 proteins (GAL4-VP16),
which can bind GAL4 sites present in the template, and MBP-TRR-His6, a fusion protein of
Trithorax-related, H3K4-specific HMT (Fig. 3E, fig. S3A). These results indicate that H1
can specifically recruit Su(var)3-9 to chromatin where it methylates histone H3 in
nucleosomes.
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Our results indicate that Drosophila H1 and Su(var)3-9 work together in repressing the
transcriptional activity of TEs and TE-like sequences in heterochromatin. Su(var)3-9
physically associates with H1 and is recruited to H1-containing chromatin, where it mediates
H3K9 methylation. Considering the previously observed interactions between Su(var)3-9,
HP1 and H3K9Me2/3 [re-viewed in (20)], H1 and HP1 (Fig. 3, A and B) (17–19, 21) and the
physical interaction and joint activities of H1 and Su(var)3-9 reported here, we propose that
these known heterochromatin effectors and components additionally require linker histone
H1 for the establishment of heterochromatin identity and for repression of its genetic
activity.

H1 is thought to be nearly ubiquitous in the genome, but several studies report its
consistently higher abundance in heterochromatin (22–24). We propose that higher
concentrations of H1, equal in stoichiometry to nucleosomes, along extended chromatin
domains may be essential to achieve its optimal function as a repressor, whereas
substoichiometric or local deposition may only allow for a limited ability to repress genetic
activity in euchromatin (Fig. 1A, left). In the future, it will be interesting to compare H1
abundance in various parts of the genome by physical fractionation of chromatin and to
study the effects of H1 on activity of other chromatin-modifying enzymes.
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Fig. 1. Drosophila H1 represses repetitive elements
(A) Transcript expression was examined by micro-array analyses in H1-depleted and control
(Nau RNAi) SGs (4). Signal intensities are shown for transcripts in control (x axis) versus
H1-depleted (y axis) samples. The diagonal lines indicate equal expression level or a
twofold change. Significantly affected transcripts above or below twofold threshold are
indicated by dots. (Left) Signals for protein-coding gene probes; (right) signals for probes
annotated as TEs. Numbers in the top left and bottom right corners represent percentages of
transcripts that are up- or down-regulated above threshold, relative to the total number of
probes (18,833 protein coding genes, 79 TEs). (B) TE transcripts in SGs were analyzed by
QRT-PCR. Fold changes were calculated as a ratio of signals for H1-depleted samples to
those for control samples and normalized to RP49. Standard deviations are from triplicate
PCR reactions for three independent experiments. (C) RNA was extracted from H1-depleted
(H1 KD) and control (CONT) larvae and (top) analyzed by Northern blot with TE-specific
probes. (Bottom) Hybridization with the 5S RNA probe (loading control). (D) QRT-PCR of
transcripts for euchromatic (Eu) and heterochromatic (Het) copies of Ste was analyzed as in
(B).
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Fig. 2. H1 represses repetitive elements in conjunction with Su(var)3-9
(A) The occupancy of H1 in larval chromatin was measured by qChIP. The ordinate
indicates the amounts of qChIP DNA samples relative to input DNA. All experiments were
performed in triplicate. Error bars, standard deviation. (B) The occupancy of the H3K9Me2
was measured by qChIP and presented as in (A). (C) QRT-PCR assays were performed in
homozygous Su(var)3-9[6] and wild-type SGs. The data were analyzed as in Fig. 1B. (D)
RNA was prepared from SGs from control, H1-depleted, and H1-depleted UAS:Su(var)3-9–
eGFP larvae. QRT-PCR assays were performed as in (C). Black bars, H1-depleted SGs;
gray bars, H1-depleted UAS:Su(var)3-9-eGFP SGs. (E) SGs from control (top), H1-depleted
(middle), and H1-depleted UAS:Su(var)3-9–eGFP (bottom) larvae were dissected, and
polytene spreads were stained with 4′,6′-diamidino-2-phenylindole (DAPI) and the
indicated antibodies.
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Fig. 3. H1 physically interacts with and recruits Su(var)3-9 to chromatin in vitro
(A) GST fusion proteins were ectopically expressed in S2 cells and immunoprecipitated.
The input and IP material was analyzed by immunoblotting with (top) GST- and (bottom)
H1-specific antibodies. PtC, the C-terminal tail of Hedgehog receptor Patched (25) (negative
control). (B) Reciprocal IP experiments with H1-specific antibody were performed as in (A).
(C) Su(var)3-9 was expressed and 35S-labeled by in vitro translation in reticulocyte lysates
or purified as a 6His-tagged protein from bacteria. GST fusion proteins were expressed in E.
coli and incubated with Su(var)3-9. The pulled-down material was examined by SDS–
polyacrylamide electrophoresis (SDS-PAGE) and Coomassie staining (top),
autoradiography (middle), or 6His-specific antibody immunoblotting (bottom). (D) Free
histones (left) or reconstituted chromatin (right) with and without H1 were incubated with
radioactive S-adenosylmethionine (SAM) in the presence or absence of recombinant
Su(var)3-9–His6. H3 methylation was examined by autoradiography (bottom) and corrected
for H3 loading (top, Coomassie). H3 methylation was quantified in two independent
experiments; the average and standard deviation are shown at the bottom. (E) In vitro
reconstituted chromatin with (H1+, black bars) or without H1 (H1–, gray bars) was
incubated with Su(var)3-9–His6, GAL4-VP16, or MBP-TRR–His6, crosslinked, and
analyzed by in vitro QChIP. The ordinate indicates the amounts of qChIP DNA samples
relative to input DNA. All experiments were performed in triplicate. Error bars, standard
deviation.
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