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We investigated a model for the neural integrator based on hysteretic
units connected by positive feedback. Hysteresis is assumed to emerge
from the intrinsic properties of the cells. We consider the recurrent net-
works containing either bistable or multistable neurons. We apply our
analysis to the oculomotor velocity-to-position neural integrator that cal-
culates eye positions using the inputs that carry information about eye
angular velocity. By analyzing this system in the parameter space, we
show the following. The direction of hysteresis in the neuronal response
may be reversed for the system with recurrent connections compared to
the case of unconnected neurons. Thus, for the NMDA receptor-based
bistability, the firing rates after ON saccades may be higher than after
OFF saccades for the same eye position. The reversal of hysteresis occurs
in this model only when the size of hysteresis differs from neuron to
neuron. We also relate the macroscopic leak time constant of the integra-
tor to the rate of microscopic spontaneous noise-driven transitions in the
hysteretic units. Finally, we investigate the conditions under which the
hysteretic integrator may have no threshold for integration.

1 Introduction

Persistent neuronal firing is a likely correlate of short-term memory (Fuster,
1995; Goldman-Rakic, 1995). In some cases, the variables stored in memory
are continuous in nature (Romo, Brody, Hernandez, & Lemus, 1999).
Examples of such quantities include continuous sensory inputs (Romo et al.,
1999; Miller, Brody, Romo, & Wang, 2003; Machens, Romo, & Brody, 2005),
tension of a muscle, or variables representing accumulated sensory evi-
dence (Shadlen & Newsome, 2001; Mazurek, Roitman, Ditterich, & Shadlen,
2003). The continuously varying parameters are encoded in neuronal firing,
which has a graded set of values. The components of the nervous system
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that encode the graded values of parameters are called parametric memory
systems (Romo et al., 1999; Miller et al., 2003; Machens et al., 2005).

Perhaps the best-studied system of this type is the oculomotor neural in-
tegrator (Robinson, 1974, 1989; Fukushima & Kaneko, 1995; Major & Tank,
2004). Graded persistent activity in this system represents continuously
varying eye position, which depends on the prior inputs carrying informa-
tion about eye angular velocity. Since the transformation from velocity to
position involves temporal integration, this system is also sometimes called
a velocity-to-position neural integrator (VPNI). The graded persistent
activity in VPNI is likely to be maintained by positive feedback (Rosen,
1972; Robinson, 1989; Seung, Lee, Reis, & Tank, 2000a; Major & Tank, 2004).
The presence of positive feedback poses a problem of robustness (Robinson,
1989; Aksay, Gamkrelidze, Seung, Baker, & Tank, 2001). This is because
mistuning of the feedback leads to instabilities, which are hard to avoid
in realistic systems. Previous researchers proposed that robustness with
respect to parameter mistuning could stem from hysteresis in the neuronal
responses (Koulakov, Raghavachari, Kepecs, & Lisman, 2002; Goldman,
Levine, Major, Tank, & Seung, 2003). In this approach, the robustness is sim-
ilar to the stability of digital electronic systems to mistuning of parameters
and noise. A similar argument has been made for robustness of persistent
activity with respect to distracters and noise (Camperi & Wang, 1998).

A recent study in the goldfish oculomotor integrator (Aksay et al., 2003)
has tested the history dependence in the responses of VPNI neurons. This
study makes the following observations. First, the firing rate of a single
neuron as a function of eye position exhibits hysteresis (see Figure 1B).
Second, the firing rates during fixations are typically higher after the ON
saccades than after the OFF saccades (see Figure 1B, by ON or OFF sac-
cades, it is customary to understand the eye movements in the direction
of increasing or decreasing firing rates of neurons). This finding implies
that the hysteresis has an inverted direction compared to a typical pos-
itive feedback system, such as that due to nonlinear conductance of the
NMDA receptor current shown in Figure 1C (Wang, 1999; Koulakov et al.,
2002). Third, the firing rate of one cell versus the other also displays his-
tory dependence. Fourth, the hysteresis width varies from cell to cell, with
some cells showing no statistically substantial history dependence (see
Figure 1A).

Our study addresses these experimental observations. We developed a
simple model for VPNI that can be solved exactly without the use of a
computer. We considered two related versions of this model involv-
ing bistable and multistable neurons. The bistability is attributed to the
bistable compartments within a single neuron (Lisman, Fellous, & Wang,
1998; Koulakov et al., 2002), while the multistability is formed by many
bistable dendritic compartments. Although the specific mechanism is pro-
posed, the properties of neurons in this model could be understood
phenomenologically and could be generated by many intracellular or
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Figure 1: Although responses of some goldfish medulla area I neurons display
little or no hysteresis (A), other neurons are clearly hysteretic (B) (Aksay et al.,
2003). For the hysteretic responses, the firing rates after ON saccades are above
those after the OFF saccades. Here and throughout the rest of the article, the
ON/OFF saccades are defined as abrupt eye movements in the direction of
increasing or decreasing the firing rate of the neuron. (C) Firing rate as a function
of input current for a model neuron. The hysteretic response in the neuron
has origins in the nonlinearity of NMDA receptor conductance (adopted from
Koulakov et al., 2002). The ON response is below the OFF response in contrast
to experiments in B. The discrepancy between B and C will be explained below
in this article.

network mechanisms. We also present the results for a more biologically
plausible computational model, which are consistent with the simpler
model.

The main results of our study are as follows. First, we show that if the
neurons in the absence of recurrent connections have hysteresis of regular
sign (counterclockwise) (Lisman et al., 1998; Koulakov et al., 2002), adding
global recurrent feedback produces the reversed hysteresis (clockwise)
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that is consistent with the higher firing rates seen after the ON saccades as
described above. Thus, the direction of hysteresis observed experimentally
could be attributed to the global recurrent connections between cells.
Second, the phenomenon of the reversal of the sign of hysteresis occurs
only if different neurons have different widths of hysteresis. Thus, the
experimental observation number two, that the firing rates are higher
after the ON saccades, may follow from observation number four, that the
hysteresis width varies from cell to cell. Finally, we studied the temporal
properties of VPNI using a kinetic equation formulated in the parameter
space of the system. We show that the rate of integration is controlled by
the synaptic time constant τs , which, in the case of the NMDA receptor, is
about 0.1 sec. The integrator leak time constant τleak is determined by the
rate of spontaneous transitions in the bistable neurons denoted here τh .
The expression for the integrator leak is of the form

τleak = τh/ε. (1.1)

The parameter ε � 1 defines the precision with which the integrator is
tuned. This expression is valid for small values of tuning parameter ε as
discussed in section 5. For the VPNI without hysteresis, the leak is given
by the same expression with τh replaced by τs (Robinson, 1989; Seung
et al., 2000a). Because the time constant of spontaneous transitions τh is
usually much larger than the synaptic time constant τs ∼ 0.1 sec (Bialek,
2000; Koulakov, 2001), the use of hysteretic neurons allows stabilization
of the integrator at a much larger value of the precision of tuning ε,
which provides another argument for the robustness of the hysteretic
system.

2 Computational Model

The network model that we used in the computational part of this study
is similar to the previously described NMDA-based models (Lisman et al.,
1998; Koulakov et al., 2002). The network included 40 two-compartmental
neurons. Each neuron contained the somatic and dendritic compartments.
The somatic compartment included sodium and potassium currents, mak-
ing it capable of generating action potentials. The dendritic compartments
received feedforward NMDA current, feedback NMDA current, and an off-
set current needed to distribute the thresholds for activation. The NMDA-
based bistability was produced by the feedforward NMDA currents into the
dendritic compartments. This current was due to feedforward inputs from
100 neurons discharging at 30 Hz. The NMDA conductance for feedforward
inputs was equal to 0.7, 1, 1.1, and 1.2 mS/cm2 for neurons from groups 1
through 4 in Figure 11A. Different values of NMDA conductance in these
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neurons resulted in differing hysteresis. These four groups of neurons also
received feedforward input currents of 1.98, 1.20, 0.93, and 0.68 µA/cm2

to equate their mean thresholds for activation (parameter θ ) as shown in
Figure 11A. To produce a difference in the mean thresholds, another off-
set current was added to the quadruples of neurons. Each quadruple was
separated by 0.05 µA/cm2 (see Figure 11A) in θ -space from its nearest
neighbor. The offset feedforward current needed to satisfy these assump-
tions could be of AMPA origin. However, no specific implementation for
the synaptic current was introduced into the model to simplify the nu-
meric algorithm. The feedback connections between neurons contained
NMDA conductance of 4 µS/cm2. For the surface area of the dendrite
of about 1.2 · 105µm2 estimated from images obtained in Aksay, Baker,
Seung, and Tank (2000) and the single-channel NMDA conductance of
50 pS (Lin, Skeberdis, Francesconi, Bennett, & Zukin, 2004), the value of
NMDA conductance given above yields about 100 NMDA channels per
recurrent connection. Since there are 40 recurrent connections per cell, we
estimate about 4 · 103 NMDA channels per neuron localized in the recur-
rent synapses. For simplicity, our model did not include AMPA current in
the recurrent synapses. The effects of the possible presence of AMPA cur-
rents in the recurrent synapses are discussed in the online supplement 1.1

The somatic, dendritic capacitances and leak current (both somatic and
dendritic) were taken to be 1 µF/cm2, 0.5 µF/cm2, and 0.1 mS/cm2, respec-
tively (Lisman et al., 1998; Koulakov et al., 2002). The details of the nu-
merical implementation of our model are described in the supplementary
material 3.

3 Results

Our model for the neural integrator is based on recurrent positive feedback
(Rosen, 1972; Robinson, 1989; Seung et al., 2000a; Koulakov et al., 2002;
Goldman et al., 2003). First, we present the results obtained for a simplified
model, which can be solved exactly without the use of a computer. To make
the exact solution possible, some assumptions have to be made about the
recurrent network connectivity. One of the assumptions that we will make
throughout this study is that the neurons are connected in the all-to-all
fashion with equal weights (see Figure 2). In this case, all neurons receive the
same input current, which greatly simplifies the analysis. This assumption
about network connectivity is in contrast to the one made by Goldman et al.
(2003), who considered feedback connectivity targeting specific dendritic
compartments.

1Supplemental materials available online at http://www.mitpressjournals.org/doi/
suppl/10.1162/neco.2008.12-06-416.



2384 M. Nikitchenko and A. Koulakov

extI I

r extI I I= +

rI

Figure 2: The recurrent feedback model, which is thought to underlie the neural
integrator. Synapses and somata are shown by full and empty circles, respec-
tively. In the fully connected network considered here, all the neurons receive
the same input (I). The input is a sum of external and recurrent currents (Iext

and Ir , respectively).

3.1 Bistable Neurons.

3.1.1 The Case of No Recurrent Feedback. In this section, we consider the
properties of integrator neurons without recurrent connections. The recur-
rent connections are included in section 3.2.

Figure 3A shows the response of the neuron that is used in this simplified
model. The dark gray and light gray curves show the firing rate dependen-
cies for increasing and decreasing inputs, respectively. If the input is in the
range marked by the tailed arrow (region II in Figure 3A), the firing rate
of the neuron may have two values depending on the prior history. The
neuron is therefore bistable for this range of inputs.

The response of a neuron as a function of input current exhibits three
regimes shown in Figure 3A. For the values of input current below the
bistable regime (region I in Figure 3A), the neuron is deactivated (OFF)
unconditionally. For the inputs above the bistable range (region III), the
neuron is always active (ON). If the inputs are in region II, the neuron can
be either ON or OFF depending on prior inputs.

We consider an ensemble of units that differ in two respects: hysteresis
width and position. The former parameter is described by the half-width
of hysteresis � = (θ↑ − θ↓)/2, where θ↑ and θ↓ are thresholds for activation
and deactivation, respectively. The position of hysteresis is described by the
average of the two thresholds: θ = (θ↑ + θ↓)/2, as illustrated in Figure 3A.
The ensemble of many of such neurons is distributed in the 2D parameter
space (�, θ ) as shown in Figure 3B. The density of neurons in the parameter
plane is assumed to be

ρ(�, θ ) = C exp(−�/�). (3.1)
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Figure 3: Ensemble of bistable neurons with differential parameters. (A) Exam-
ple of the input to firing rate relationship for a bistable neuron. The activation
(dark gray) and deactivation curves (light gray) do not coincide in the bistable
range (tailed arrow). If the input current (I) to the neuron is in the bistable
range, the firing rate can have two values depending on the previous history.
The bistable range is shown by the arrow with a tail, with the threshold for acti-
vation denoted by the arrowhead. The threshold for deactivation coincides with
the arrow’s tail. Such neurons can be described by two parameters, θ and �,
representing the mean position of the threshold (black dot) and the half-width of
hysteresis. The unconditionally OFF, bistable, and unconditionally ON ranges
of input are labeled by I, II, and III, respectively. (B) We considered an ensemble
of many bistable neurons. Each neuron is represented by a point in the param-
eter space (�, θ ). The density of neurons is uniform along the vertical θ -axis,
while the density decays for larger values of the hysteresis half-width. (C) For a
given value of the synaptic current on the inputs of all neurons (I, dotted line),
the parameter space is divided into three regions. In the top region, the neurons
are unconditionally OFF. This region corresponds to the range of inputs labeled
by I in A. Thus for one of such neurons, whose bistable range is shown by the
tailed arrow, the input level (dotted line) is below both thresholds for activation
and deactivation, which implies that the neuron is unconditionally OFF. In the
bottom region, labeled by III, all the neurons are unconditionally ON, since, as
shown for another example neuron, the input is above the threshold for activa-
tion. In the middle region (labeled II), the input current is in the bistable range,
as shown for one of the neurons. The firing state of these neurons is therefore
history dependent, which implies that they can be either ON or OFF.
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Here, C and � are the maximal 2D density of neurons and the average half-
width of hysteresis. We assume that � ≥ 0 throughout the study. Thus, only
neurons with regular hysteresis are included in our model. The number of
neurons in the square of parameter space with dimensions d� and dθ along
the �- and the θ -axes, respectively, is given by ρ(�, θ )d�dθ for a sufficiently
small square. Thus, although ρ depends on only one coordinate, it is a 2D
density of neurons. The 1D density along the θ -axis is constant ρ(θ ) = C�̄ =
const. Although we adopted distribution (3.1) for concreteness, the analysis
described below could be performed for an arbitrary distribution.

We now recall that in case of all-to-all connectivity, all neurons receive
the same value of synaptic input current (see Figure 2). It is interesting
therefore to consider properties of the neuronal ensemble when the same
input is supplied to all of the neurons. In particular, it is of interest to
determine what neurons are ON or OFF for a given value of input current.
Clearly, an unambiguous answer to this question cannot be given. This is
because for the given value of input current I , there are neurons that are in
the bistable regime, that is, their state depends on their history.

For a given value of input current, all neurons can be divided into
three groups: neurons that are unconditionally OFF, ON, and the history-
dependent units. In Figure 3C, the areas occupied by these groups are
marked by I, III, and II, respectively. For neurons in these areas, the input
currents are in the ranges I, III, and II indicated in Figure 3A. For the neurons
that are unconditionally ON (group III), the value of input current is above
their threshold for activation, as follows from Figure 3A: I ≥ θ↑ = θ + �.
Therefore, such units are located in the region of the parameter space de-
fined by the following condition:

Group I : θ ≤ I − �. (3.2)

The units that are unconditionally OFF (group I) receive input current,
which is below their threshold for activation: I ≤ θ↓ = θ − �. These units
are therefore defined by another condition:

Group II : θ ≥ I + �. (3.3)

Finally, the neurons that are neither unconditionally ON nor OFF have a
state that depends on history (group II). Their positions are defined by an
alternative to conditions 3.2 and 3.3:

Group III : I − � ≤ θ ≤ I + �. (3.4)

Note that the positions of areas I to III depend on the value of input
current I and therefore may change with time. By manipulating external
current, one can form various patterns of activation and deactivation
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Figure 4: Possible configurations of active units (activation function h(�, θ ))
in the absence of global recurrent feedback connections. The active areas
are shaded. (A) If initially all neurons are OFF and the external current was
increased from zero, only the units that are unconditionally ON (group I) are
active. (B) If initially all units are ON and the external current sweeps the
parameters space downward, there is a deactivation wave propagating with
the boundary between regions II and III. The active region extends indefinitely
in the direction of a large � and is truncated in this and following figures. (C) A
more complex pattern of activation in the history-dependent region (III) can be
produced by a complex pattern of inputs. For the profile shown, current was
going up, down, up, and down.

in the parameter space, some of which are shown in Figure 4. These
patterns do not depend on the distribution of units in the parameter
space—function ρ in equation 3.2. The latter function defined the density
of neurons independent of whether they are ON or OFF. It is therefore not
history dependent. Another distribution has to be used to describe history
dependence in the activation of hysteretic neurons.

We next define the activation function h(�, θ ). This function specifies
whether a neuron at a point with coordinates (�, θ ) is ON or OFF. It is
equal to one in the areas occupied by active units and to zero in other areas.
The total number of active neurons in the ensemble is determined by the
sum of the product of the densities over the parameter space:

n(t) =
∫

h(�, θ, t)ρ(�, θ )d�dθ. (3.5)

In this equation, the activation function h acts as a marker, which allows
inclusion of only the areas occupied by the active neurons into the sum.
This expression will allow us to calculate the recurrent current in section
3.1.2.

3.1.2 Recurrent Feedback and the Stability Condition. In the section 3.1.1,
we studied the properties of a simplified model of hysteretic neurons with
only feedforward connections present. Here we include the recurrent con-
nections the model. To this end, we assume that the recurrent current Ir is
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proportional to the total number of active neurons n given by equation 3.5.
We therefore neglect the variations in the recurrent current due to changes
in the neuronal firing rates assuming synaptic saturation (Seung, Lee, Reis,
& Tank, 2000b; Koulakov et al., 2002). This approximation is valid if a recep-
tor with a large time constant, such as an NMDA receptor, is responsible for
neurotransmission in the recurrent synapses (Seung et al., 2000b; Koulakov
et al., 2002). The long time constant of NMDA receptors leads to saturation
of synaptic currents even at small firing rates (10–20 Hz), implying little
dependence of the recurrent current on the firing rates. The saturation at
low firing rates may also be of a presynaptic nature, arising from synaptic
depression.

We now address the dynamics of our model in the case of recurrent
connections that are present. We will assume here that each active neuron
contributes I0 to the recurrent current. Therefore, the total recurrent current
into each neuron can be found as a product of the number of active neurons
and parameter I0:

Ir (t) = I0n(t − τs). (3.6)

Note that the recurrent current is related to the number of active neurons
n with a synaptic delay τs . This statement is justified in appendix A. If the
NMDA receptor is a primary neurotransmitter in the recurrent synapses,
one should expect synaptic delay to be τs � 100 msec.

To complete the description of the simplified model, we introduce the
total value of the input current for each neuron (see Figure 2):

I (t) = Ir (t) + Iext(t). (3.7)

Here Iext is the external “command” input. The new value of input cur-
rent I (t) determines the neuronal activation function for the new time step
h(�, θ, t) through the set of inequalities 3.2 to 3.4. The activation function
through equation 3.6 leads to a new value of recurrent current at the next
time step t + τs . Thus, the system of equations 3.2 to 3.7 allows account-
ing for iterative dynamics of the system of hysteretic neurons connected
by recurrent synapses. This dynamic is illustrated below with a series of
examples.

We first discuss the response to a tonic external input [Iext(t) = const].
Let us assume that the current is positive (Iext > 0). It is expected, then,
that under certain conditions, which become evident below, the input is
integrated temporarily, implying that the total current in the system in-
creases with time. We then expect a wave of activation, similar to shown in
Figure 4A, to propagate upward in the parameter space. We now discuss the
equations governing the propagation of this wave and the conditions of its
existence.
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Figure 5: Response to tonic input. (A) For nonzero external input that is constant
in time (inset), the current in the system (I ) may increase as a function of time
(see B for the condition of this). In this case, the number of active neurons (full
circles) is given by equation 3.8. The inactive units are shown by open circles.
(B) For stationary external input, the system’s response increases with time if the
value of input exceeds a threshold equal to �. The rate of increase ( İ ≡ d I/dt)
is proportional to the external current above threshold.

Given the value of total current I , the number of active units is approx-
imately given by the product of the area occupied by neurons under the
dotted line in Figure 5A, I�, and the concentration of neurons in the param-
eter space C (see equation 3.1): n = C I�. This is assuming that the value
of current I exceeds substantially the average hysteresis width �. A small
correction has to be made to subtract the neurons, represented by open
circles in Figure 5A. The corrected expression for the number of neurons in
the ON state is

n(t) = C
[
I (t) − �

]
�. (3.8)

This equation can also be obtained directly from equation 3.5. As mentioned
before, in deriving equation 3.8, we assumed that I (t) >> �, which allowed
us to neglect contributions to equation 3.8 proportional to exp(−I (t)/�). We
use this approximation in all subsequent derivations.

The new value of current at the next time step is, according to
equations 3.6 to 3.8,

I (t + τs) = α I (t) + Iext − α�, (3.9)

where we introduced the tuning parameter α = I0C�. The “perfect
integrator” condition corresponds to the value of parameter α = 1. In this
case, the current is accumulated according to equation 3.9 without a loss:

I (t) = (
Iext − �

)
t/τs + I (t = 0). (3.10)
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The quantity being accumulated is actually Iext − �. The system is therefore
capable of acting as a temporal integrator. Note that equations described
above are valid only on the temporal scales exceeding τs . To describe the
behavior of the system on shorter timescales requires a more precise model
of synaptic dynamics.

The sustained integration is possible only if external current exceeds the
average value of hysteresis: Iext > � for α = 1. For Iext < �, the current
would have to decrease according to equation 3.9, which is not valid in this
case. Indeed, in deriving equation 3.10, we assumed that there is a wave of
activation propagating up in the parameter space (see Figure 5A). Because
we found that the current would have to decrease for the case Iext < �,
the wave that persistently propagates in the positive direction is not self-
consistent in this regime. Therefore, sustained increase in the input synaptic
current I is not possible if Iext < �. Consequently, the value of external in-
put current of � represents a threshold for integration. Similarly, only the
negative inputs below −� can be integrated in a sustained manner, which
results in a negative threshold for integration. The rate of change in the
synaptic current İ ≡ d I/dt as a function of external input is summarized
in Figure 5B. This figure shows that if the external input is between −�

and �, it is not integrated in a sustained manner. This statement is valid for
an arbitrary distribution of active units in the parameter space ρ. That is,
if, instead of an exponential distribution given by equation 3.1, any other
distribution of hysteresis widths is found, the threshold for sustained inte-
gration is equal to the average value of hysteresis �. The issue of threshold
for integration is discussed in sections 3.4 and 3.5.

We now discuss the case of zero external input, which for the oculomotor
VPNI corresponds to eye fixations. It turns out that our model displays
more sophisticated behaviors in this stationary condition rather than in the
nonstationary one. The possible distributions of active units are shown in
Figure 6. We start from the simplest case of the activation function shown
in Figure 6A. In this case, all the neurons that have the medial threshold θ

below the present value of input current I are active. The interface between
the ON and OFF neurons is a straight line parallel to the �-axis. It is not
so difficult to see that this distribution function cannot be realized using
just the network architecture, with all-to-all recurrent connections and the
same synaptic input to all neurons. This is because in this architecture,
the boundaries separating ON and OFF neurons form 45 degree angles
with the parameter axes (see Figures 4 and 5). Nevertheless, we consider
the activation function in Figure 6A because it gives insights into more
complex cases (see Figures 6B and 6C). Assume that by manipulating
each neuron individually we set up the activation function in Figure 6A.
What is the condition needed for it to remain stable as a function of
time?

To answer this question we need to repeat the calculations, which led us
to equation 3.9. The number of active units as a function of total synaptic
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Figure 6: The case of zero external input (inset). (A–C) Possible stationary
configurations of the activation function. The areas shaded by dark(light) gray
lead to an increase(decrease) in the number of active neurons with respect to A.
Stable configurations are achieved when the dark and light gray areas have the
same number of neurons. (D–F) The boundary functions b(�) corresponding to
the activation profiles in A–C .

current is n(t) = C I (t)� (see the text preceding equation 3.8). The value of
the total synaptic current I at the next time step t + τs is equal to the total
recurrent current since Iext = 0:

I (t + τs) = α I (t). (3.11)

For the configuration in Figure 6A to remain stable, one has to satisfy the
condition of stationarity of the synaptic current: I (t + τs) = I (t). In view of
equation 3.11, this is equivalent to setting α = 1, that is, having a perfectly
tuned integrator. We conclude that the activation function in Figure 6A
is stable for a perfectly tuned integrator (α = 1). We assume the perfect
integration for the remainder of this section. Some solutions for a nonperfect
integrator will be given in the next section.

What other stable activation functions are possible? One can generate
stable activation functions from the previous example (see Figure 6A) using
the following prescription. First, one modifies the activation function in
Figure 6A in such a way that the number of active units is unchanged. Thus,
Figure 6B shows the activation function for which the number of newly
recruited neurons (dark gray) is compensated by the deactivated ones (light
gray), so that the total number of active neurons is the same as in Figure 6A.
Second, one ensures that the intersection of the boundary between ON
and OFF neurons with the vertical axis θ should be the same. Near this
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intersection, neurons have very small hysteresis (� = 0), and therefore the
position of this intersection corresponds to the total synaptic current I . The
total current is not perturbed according to the first requirement because the
number of active neurons is unchanged. The first requirement (the change in
the number of ON neurons with respect to Figure 6A�n is zero) amounts to

�n =
∫ ∞

0
b(�)ρ(�)d� = 0. (3.12)

The boundary function b(�) is the shape of the interface between the
active and inactive neurons, which is set to be zero at � = 0 (see Figures 6D–
6F). This function describes the deviation of the shape of the interface from
the case shown in Figure 6A. The boundary function is positive in the dark
gray areas in Figure 6 and is negative in the light gray areas. Equation 3.12
implies that an increase in the number of active units in the dark gray areas
in Figures 6B and 6C, where b(�) > 0, is compensated by the decrease in
the light gray areas (b(�) < 0), thus leading to no overall change in the total
number of active units. If �n = 0, the recurrent current is the same as in
Figure 6A, leading to the stable configuration. We refer to condition 3.12 as
the stability condition. We will show how this condition leads to the reversal
of the sign of hysteresis in the firing rate as a function of eye-position
dependence.

The parameter �0 introduced in Figure 6B determines the position of
the maximum of the function in Figure 6B (the wedge in the activation
function). This parameter can be found from equation 3.12. In appendix B
we calculate �0 for the exponential distribution of cellular hystereses,
equation 3.1:

�0 = � ln 2. (3.13)

This relationship is valid only for the exponential distribution of the hys-
teresis widths. For a distribution different from exponential, a different
coefficient of proportionality between �0 and � is expected. Thus, pre-
viously we considered the ensemble of neurons with the same values of
hysteresis width (Koulakov et al., 2002). This ensemble is defined by the
distribution that replaces equation 3.1:

ρ(�, θ ) = C�δ
(
� − �

)
, (3.14)

where δ is the Dirac delta function. The stability condition 3.12 can also be
used to calculate the parameter �0 for this distribution (see appendix B):

�0 = �/2. (3.15)
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Figure 7: Response to input current that suddenly drops to zero (insets). The
black arrows in the insets indicate the moment of time when this activation
function is expected.

Thus, although the numerical coefficients for exponential and delta function
distributions differ between equations 3.13 and 3.15, the value of parameter
�0 is determined by the average hysteresis width, �.

Finally, stability condition 3.12 allows finding stable parameters of more
complex configurations, such as the one shown in Figure 6C.

We will now describe the transitional regime between integration (Iext >

�0, eye movement) and the stable configuration described in the previous
paragraph (Iext = 0, eye fixation). With the external current present and
larger than the integration threshold �, the activation function is described
by the wave of activation propagating in the parameter space (see Figure 7A,
which replicates Figure 5A), which means that the eye position is increasing.
Assume that the external current is suddenly removed (see Figure 7A, inset).
The activation function in Figure 7A is formed during eye movements and
does not satisfy the stability condition. As such, it cannot exist during
eye fixations. The activation function has to evolve to one of the stable
configurations, such as that shown in Figure 6. In the simplest case, the
activation function evolves to the configuration in Figure 6B, also shown
in Figure 7B. As a result, the recurrent current Ir drops after the removal
of external current in the direction opposite to the previous eye movement.
The amount of such a recurrent current drop �I is

�I = 2�0 = 2� ln 2. (3.16)

This drop is given here with a positive sign despite the fact that the current
was decreasing after the disappearance of the external input.

To calculate the firing rate as a function of eye position during eye
fixations, we will assume here that the eye position is proportional to
the recurrent current. During eye fixations, the external input is absent:
Iext = 0. The eye position is therefore equal to the total synaptic current I
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(see equation 3.8). Ignoring the proportionality constant, we assume that
during fixations, the eye position is equal to the input synaptic current:

E = I. (3.17)

The problem of finding the firing rate as a function of eye position is
therefore seemingly simple: it is to determine the response of a neuron
as a function of input current. It may appear that this problem is already
solved in Figure 3A, which postulates neuronal response to the input
current as one of the assumptions of our model. Indeed, in regions I and III
(unconditionally OFF/ON), nothing can change the response postulated
in Figure 3A. However, in the bistable region II, the firing rate can follow
one of the dependencies—either ON or OFF. The problem is therefore to
determine what branch of the firing rate dependence is followed after ON
and OFF saccades.

Figure 8 demonstrates qualitatively the reversal of the hysteresis sign in
the case of neurons connected by recurrent feedback. Figures 8A and 8C
show the activation function for a neuron whose location in the parameter
space is illustrated by the black dot. For the same value of the input current
and, consequently, the same eye position (see equation 3.17), this neuron
will be in the active state after the ON saccade (see Figure 8A). After the
OFF saccade, the same neuron is expected to be OFF (see Figure 8C). The
firing rate of this neuron is therefore expected to be higher after the ON
saccade, as illustrated in Figures 8B and 8D. This behavior is due to the
drop of the recurrent current after the eye movement in the ON direction
(increase after the OFF saccade), as discussed in the previous paragraph.
The presence of the global positive feedback therefore leads to the reversal
of the sign of hysteresis for some neurons in the network in agreement with
experimental findings.

We next examined, quantitatively, the dependence of the firing rate as
a function of eye position in our model. We used the following method.
Suppose that one has to calculate the firing rate after an ON saccade fON(E).
We evaluate the state of the neuron with the total input E + �I in the ON
state (dark gray dependence in Figure 3A) and subsequently follow the
OFF firing rate dependence (light gray in Figure 3A) from input E + �I to
E . This latter operation reproduces the drop in the total recurrent current
after the end of a saccade. A similar procedure is followed for the OFF
saccades. This method is illustrated in Figures 8B and 8D. The results of
systematically applying this method are presented in Figure 9.

Neurons can be separated into four groups with qualitatively different
behaviors of the firing rates as functions of eye position. Figures 9A and
9B show the regions in the parameter space occupied by these groups
with the corresponding dependencies of the firing rates on the eye position
displayed in Figure 9C. For neurons with a large value of endogenous



Neural Integrator 2395

B D

∆0 ∆0

After ON saccade After OFF saccade

I∆

1

I∆

2

CA

on
off

I

f

E

1

I

f

E

2
I∆

Figure 8: The reversed direction of hysteresis in the model with differential
parameters. The response of the neuron indicated by the black dot after the ON
saccade (A) is higher than after the OFF saccade (B). This is because this neuron
is ON/OFF in these states as indicated. (B, D) Calculation of the firing rate as a
function of eye position during fixations used to generate Figure 9. For the same
eye position E after ON saccade (A and B), the firing rate is larger than after the
OFF saccade (C and D). This is in agreement with experimental findings (see
Figure 1).

hysteresis (see group G4), a regular direction of hysteresis is observed—the
same as the endogenous one. This is not surprising, because the endogenous
hysteresis is so strong for these neurons that no drop in the recurrent current
can reverse it. The neurons with smaller values of endogenous hysteresis
(parameter �), which belong to groups G1 and G2 in Figure 9A, display
a reversed hysteresis as follows from the qualitative argument illustrated
in Figure 8. Finally, a small group of neurons, G3, shows no hysteresis at
all. We call these neurons marginal. The marginal neurons are important in
establishing a relationship with our previous results (Koulakov et al., 2002),
as explained below.

It is of interest to calculate the relative numbers of neurons belonging
to different groups. This can be accomplished by using the conditions for
areas occupied by different groups of neurons summarized in Figure 9A
and equation 3.1. Thus, for the exponential distribution of neurons in the
parameter space, G1 contains 1/2 of all neurons, while G2 and G4 contain
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Figure 9: The firing rate as a function of eye position during fixations for dif-
ferent groups of neurons (G1–G4). (A, B) The activation functions after the ON
and OFF saccades, respectively. (C) Firing rate as a function of eye position
for neurons from four groups (G1–G4) indicated in A. The dark and light gray
curves correspond to the preceding ON and OFF saccades, respectively.

a 1/4 fraction each. Therefore, 3/4 of the neurons (G1 and G2) should
demonstrate a reversed hysteresis, while for 1/4 of the neurons (G4),
the sign of the hysteresis should remain unchanged. These fractions are
specific to the exponential distribution of the endogenous hysteresis ρ(�)
given by equation 3.1. For a different-from-exponential ρ(�), a different
set of relative abundances of neurons in the groups is expected. Although
the relative fractions of different groups of neurons (G1 versus G2) depend
on the distribution of hysteresis widths, equation 3.1, the firing rate depen-
dences shown in Figure 9C do not. For a different distribution, the neural
responses as a function of eye position are exactly the same in this model.

Group G3 contains neurons with no hysteresis, despite the fact that
without global feedback, they should display a bistable response as in
Figure 3A. This group is defined by the condition that their hysteresis
half-width � is equal to 2�0. Since this group resides on the interface
between G2 and G4, the number of neurons in this group is vanishingly
small for the exponential distribution of �. This, however is not true for
the case when all neurons have the same value of �, such as in the case
of delta function distribution 3.14. In this case, all the neurons belong to
the marginal group. This is because the position of these neurons in the
parameter space � = 2�0 determined by equation 3.15 coincides with the
definition of the marginal neurons G3 in Figure 9A. Therefore in this case,
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one should expect no hysteresis in the firing rate as a function of eye position
displayed by all neurons. This conclusion applies to neurons in our previous
study (Koulakov et al., 2002).

3.1.3 A More Realistic Implementation. We then investigated if our sim-
plified theory can apply to a more realistic model for a neural integrator
involving a biophysically plausible implementation of neurons and synap-
tic conductances. We implemented our model with 40 two-compartmental
neurons. Each neuron is represented by two compartments: somatic and
dendritic (see Figure 10A). The somatic compartment contains sodium and
potassium conductances for the generation of action potentials. The firing
frequency depends on the overall input into the dendritic compartment.
The dendritic compartment is capable of generating membrane voltage-
based bistability due to the nonlinearity of NMDA conductances. Since the
amount of NMDA conductance is different for different cells (see section 2)
the cells display a hysteretic input-output relationship, with the width
of hysteresis varying from cell to cell, similar to the simple model (see
Figure 11A).

We then connected the cells by the recurrent feedback. The strength of all
recurrent synapses is the same, which corresponds to the all-to-all connec-
tivity with roughly the same recurrent current on the input to all neurons
(see Figure 10B). When these cells are connected by recurrent feedback, the
network can integrate a transient input current (see Figures 10C–10E) as a
function of time.

As predicted by the simple model, the neurons fall into four categories:
with little or no hysteresis (see Figure 11B), inverted hysteresis (see Fig-
ure 11C), marginal neurons (see Figure 11D), and regular direction of hys-
teresis (see Figure 11E). These classes correspond to the dependences de-
rived in the simplified model and illustrated in Figure 9C. We have therefore
shown that the conclusions of the simplified model sustain the test by a more
realistic implementation.

3.2 Multistable Neurons. We next examined the behavior of the
recurrent system of neurons that themselves exhibit multistability. Cel-
lular multistability is assumed to emerge from the bistable properties of
several dendritic compartments of the same neuron (see Figure 12A). We
demonstrate here that under certain conditions, the recurrent network
of multistable neurons may be mapped mathematically onto the system
of bistable neurons considered above. The properties of the multistable
neurons in the network are therefore similar to the behaviors of bistable
neurons, including the history-dependent profiles of the activation function
(see Figure 9) and the reversal of the sign of hysteresis.

We first consider the properties of multistable neurons in isolation, with-
out recurrent connections present. Each neuron includes several dendritic
compartments (see Figure 12A). The dendritic compartments are assumed
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Figure 10: Model with Hodgkin-Huxley neurons. (A) Each neuron has a den-
dritic compartment that is bistable and a soma that generates action potentials.
To generate bistability, the dendrite receives tonic NMDA current. (B) Neurons
are connected into the network by all-to-all global feedback that generates ad-
ditional NMDA current into each dendrite. The network contains 40 neurons,
only 3 of which are shown. (C) An example of external input supplied to every
dendritic compartment. (D) Resulting changes in the average feedback current
reflect the integral of input. This variable could therefore be associated with the
eye position. (E) The membrane voltage for three example neurons.
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Figure 11: Reversal of hysteresis in the network of Hodgkin-Huxley neurons.
(A) The arrangement of 40 neurons in the parameter space of hysteresis po-
sitions and half-widths. (B–E) The firing rate traces for four example neurons
indicated in A. The black/gray markers display values obtained after ON/OFF
saccades. (B) For some neurons, the observed hysteresis is small, similar to some
experimental observations (see Figure 1A). (C, D) For neurons 2 and 3, the black
dependence is above the gray one. These neurons belong to groups G1 or G2
defined in Figure 9 and display reversed hysteresis (compare to Figure 1B).
(E) Neuron 4 belongs to G4. (F) Firing rate of one neuron versus the other
(C versus B) displays hysteresis, as observed experimentally (Aksay et al.,
2003).

to be electrotonically isolated from each other. This implies that the response
of each dendritic compartment is independent of the state of other compart-
ments in the same dendritic tree and on the firing activity of the cell’s soma.
Each of the compartments is assumed to be bistable. The bistable ranges of
the compartments are assumed to be distributed over a large range of values
with no substantial difference in the hysteresis width. These assumptions
lead to the dependence of the firing rate on the input current in the form of
a staircase (Koulakov et al., 2002; Goldman et al., 2003), as discussed below.
This dependence is illustrated in Figure 12B.

When the cell receives input current that increases, the dendritic com-
partments are sequentially switched on, and the firing rate of the cell
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Figure 12: Model with multistable neurons. (A) Neuron with multiple bistable
dendritic compartments. Synapses are shown by full circles. (B) Firing rate as a
function of input current for such a neuron is multistable: each stable firing state
corresponds to the fixed number of active dendritic compartments. Introducing
the parameters θ and � allows us to map the problem mathematically to the
previous model with bistable neurons. (C) The recurrent network of multistable
neurons with all-to-all connections that can be solved using this method.

increases following the light gray line in Figure 12B. When the current de-
creases, the dendritic compartments are switched off, leading to a decrease
in the firing rate (dark gray line in Figure 12B). The space between the light
gray, and dark gray lines corresponds to the bistable range of the dendritic
compartments. This implies that none of them will change their state, and
therefore the firing rate is preserved in the region between the dark gray
and the light gray lines. This is signified by the horizontal segments in
Figure 12B. The bistability in the behavior of dendritic compartments re-
sults in the hysteretic loop in the response of the cell (Lisman et al., 1998;
Koulakov et al., 2002). Note that the activation line (light gray) is below
the deactivation line (dark gray), which means that for an isolated cell, the
hysteresis has a regular sign (cf. Figure 3). An additional twist is provided
by the states that are accessible inside the hysteretic loop. We will argue
that the multistable neurons with these response properties connected into
a recurrent network (see Figure 12C) display reversed hysteresis through
the mechanism similar to that previously discussed.

We now consider the multistable neurons connected into an all-to-all
network (see Figure 12C). As in our previous model, we assume that all
neurons receive the same value of input current composed of the external
and recurrent currents. The latter component is determined by the number
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of neurons that are currently active. We assume, similar to the model with
bistable neurons, that the neuron is active if the firing rate of this neuron
is above zero. This assumption leads to the similarity between the model
with multistable and bistable neurons (see section 3.1). Indeed, due to the
saturation of slow NMDA conductance or synaptic depression, the recur-
rent NMDA current varies weakly as a function of the firing rates of the
presynaptic neurons. Therefore, the exact form of the firing rate depen-
dence is not important for the network current. Thus, the neurons shown
in Figures 3A and 12B are not distinguishable from the viewpoint of other
neurons in the network. In particular, we can describe each multistable neu-
ron by two parameters: the median hysteresis position θ and half-width �

(see Figure 12B). The neurons then can be arranged on the 2D parameter
plane similar to the bistable case. Our conclusions about the dynamics of ac-
tivation function can be transferred from the bistable case to the multistable
case without any modification. Therefore, as far as the properties of the
entire network are concerned, two networks based on bistable and multi-
stable neurons are indistinguishable. The differences between the networks
emerge when the firing rate of individual neurons is determined from the
history dependence of the recurrent current. We illustrate this point next.

Consider a multistable neuron in the network. During the saccade in
the ON direction, the firing rate of this neuron was increasing according
to the light gray dependence (see Figure 13B). When the eye movement
comes to conclusion, the external input driving it terminates. The moment
of termination of the external input is shown in Figures 13A and 13B by
point 1. Establishment of the eye position during fixations leads to a recoil in
the recurrent current in this model by the amount equal to 2�0, similar to the
case of bistable neurons. From the point of view of the single neuron in the
network, the input current is decreased by 2�0 leading to the transition from
point 1 illustrated in Figure 13B by the dotted arrow. The newly established
firing rate during eye fixation is shown by the tip of the arrow. After the OFF
saccade, the removal of external driving input leads to a symmetric increase
in the recurrent current given by 2�0 (see Figure 13C). The corresponding
firing rate for this neuron after the OFF saccade is represented by the tip
of the dotted arrow in Figure 13D. Notice that for the same eye position
in Figures 13B and 13D, the firing rate is higher after an ON saccade than
after the OFF saccade. This is in contrast to the response of the neuron that
is not connected by the feedback (see Figure 12B). Thus, the hysteresis is
expected to be reversed for this neuron due to the presence of network
feedback.

Through systematic application of the geometric procedure illustrated
in Figures 13B and 13D to all possible groups of neurons in the parameter
plane of the system, we obtained the dependence of the firing rate on the
eye position illustrated in Figure 14. This figure shows that the neurons
with substantially small hysteresis, that is, from groups G1 and G2, display
inverted hysteresis as suggested by the qualitative analysis in Figure 13. For
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Figure 13: Illustration of the calculation of the firing rate as a function of eye
position during fixations. For the same eye position E after ON saccade (A,
B) the firing rate is larger than after the OFF saccade (C, D). This is similar to
experimental findings (see Figure 1).

an inverted hysteresis, the native hysteresis width � has to be smaller than
twice the recoil in the recurrent current 2�0. For neurons with strong native
hysteresis from group G4, a regular sign of hysteresis is expected. These
conclusions are similar to the results of the model with bistable neurons
(see Figure 9).

The important feature displayed in Figure 14C is that the values of re-
sponse inside the hysteretic loop are not accessible during fixations. This
observation is an artifact of considering the saccades of large amplitude,
which are independent of each other. If the actual eye movement included
many smaller saccades, the values inside the hysteretic loop in Figure 14
would be possible. Thus, one could make an experimental prediction that
in the experimental data in Figure 1, smaller-amplitude saccades result in
the responses near the center of the hysteretic loop.

3.3 Mistuned Integrator. In the previous sections, we discussed the
properties of the perfectly tuned integrator. In this case, the current needed
to recruit an additional neuron was exactly equal to the increase in the
recurrent current resulting from recruiting this neuron. This condition is
sufficient for many states of the system to be equally stable—that is, for
the system to be multistable. The condition was quantitatively described



Neural Integrator 2403

∆0

I

G1 G2 G4

G3

A

02∆0∆

02∆ ∆02∆ ∆

∆0

I

G1 G2 G4

G3

B

02∆0∆

C

After ON saccade After OFF saccade

∆
E

f
G1

E

f
G2

E

f
G3

E

f
G4

Figure 14: The firing rate as a function of eye position during fixations. The
separation of the parameter space into areas (A, B) is similar to the bistable case
(see Figure 9). (C) The response is given by the inverted hysteretic loop. These
dependencies are obtained for the case of large saccades. For smaller saccades,
the values of the firing rate inside hysteretic loops are accessible, which is one
of the experimental predictions of this model.

by setting the parameter α = I0C� to 1. Here I0 describes the contribution
to the recurrent current from a single neuron and C� is the inverse spacing
between neuronal thresholds for activation, representing the increase in the
recurrent current needed to activate an extra neuron. What if the recurrent
feedback strength is weaker (α < 1) or stronger (α > 1)? We find that for
substantial deviations from the perfectly tuned condition (α = 1), stable
eye fixations are also possible. Our model displays the same degree of
robustness as simpler hysteretic systems (Koulakov et al., 2002; Goldman
et al., 2003). The activation function during fixations is displayed for the
case of weak feedback in Figure 15. Although the fixation is stable, the recoil
in the recurrent current after the ON saccade is larger than the increase
after the OFF saccade (see Figure 15A versus Figure 15B). The activation
function therefore loses its symmetry between the ON and OFF saccade
cases pertinent to the perfectly tuned integrators (see Figures 9 and 13).

3.4 Subthreshold Inputs. Our model includes some neurons that have
no hysteresis (� = 0). At the same time, we have concluded that sustained
integration requires the external input exceeding a certain threshold equal
to the average value of hysteresis for the ensemble (see Figure 5). The natural
question is whether the neurons with no hysteresis can somehow integrate
even a subthreshold input (Iext < �).
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Figure 15: Robustness of a mistuned integrator. Mistuning α = I0C� �= 1 (de-
fined in equation 3.9) leads to the asymmetric activation function after the ON
and OFF saccades. The activation functions shown correspond to α < 1, the
weak feedback.

In the model described above, the subthreshold inputs can indeed induce
persistent changes in the activation function and the firing rates of integrator
neurons. It is true, however, that these changes will not depend on the
duration of the stimulus. They depend only on the stimulus amplitude.
Thus, persistent integration is indeed not possible, which means that the
longer stimulus will not induce larger changes in the number of active
neurons. This statement is valid for the model with no noise, that is, with
no spontaneous switching of the bistable units. We demonstrate below that
the presence of a finite switching time will lead to the leaky integrator and
will make sustained integration possible even for subthreshold inputs.

Consider the state of the activation function during fixation after an
ON saccade (see Figure 16A). A small positive input (0 < Iext < �; see
Figure 16B) leads to no sustained changes in the activation function. This
implies that when the input is extinguished (see Figure 16C), the activation
function is the same as before the stimulus (see Figure 16A). This is because
the stability equation, 3.12, has only one solution in this case, as shown
in Figures 16A and 16C. However, the negative inputs (Iext > 0) do lead
to a sustained decrease in the eye position (see Figures 16D to 16F). This
partially justifies the intuition that the units with small hysteresis can react
to stimuli of small amplitude. Of course, this intuition fails for positive
inputs (see Figures 16A to 16C) since they do not lead to sustained changes
in the integrator state.

3.5 Integration Time Constants. In this section we study the effect of
spontaneous transitions in the bistable neurons on the stability of the inte-
grator as a whole. So far we have assumed that the bistable or multistable
neurons possess the property of perfect memory; there are no transitions
between different states for these neurons. Thus, in the case of bistable neu-
rons, we assumed that the neuron will remain in the ON or OFF state for a
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Figure 16: Response of the integrator to the subthreshold inputs Iext < � is
asymmetric. After the ON saccade, the inputs in the same direction lead to no
sustained changes in the activation function (A–C). The inputs in the opposite
direction result in a sustained decrease in the eye position (D–F) shown by the
gray arrow. The initial eye position and the moment of time are indicated by
the full circle and the arrow in the inset.

very long time, even though a transition to the other state is possible. In the
case of multistable neurons, we assumed that the state of bistable dendritic
compartments is preserved, which leads to the infinite in time retention of
the value of the firing rate in the absence of external inputs. In this section,
we examine the effects of noise-driven transitions between different mem-
ory states. We address the behavior of bistable neurons for definiteness. We
will derive the connection between the decay time constant of the bistable
units and the integrator leak time.

In the case of perfect memory, the activation function h(�, θ ) can take
two values, 1 and 0, corresponding to the ON and OFF states, respectively.
When the spontaneous noise-driven transitions are possible, the activation
function may take values between 0 and 1. This is because the activation
function defines the average state of neurons in the small neighborhood
of a point in the parameter space. If spontaneous transitions are allowed,
the average value can deviate from pure values of 0 and 1. The activation
function h(�, θ ) then describes the fraction of neurons in the ON state near
point (�, θ ). It is also equal to the conditional probability of finding a unit
in the active state. The evolution of this function can be described by the
relaxation equation:

∂h(�, θ )
∂t

= h0(�, θ ) − h(�, θ )
τ (�, θ )

. (3.18)
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Here h0(�, θ ) is the activation function in the equilibrium, while τ (�, θ ) is
the relaxation time constant describing how fast this equilibrium is reached.
The important feature of this equation is that both the equilibrium relaxation
function and the time constant depend on the position in the parameter
space. Indeed, in an area of unconditional stability (I and III in Figure 3C),
the equilibrium function equals 0 and 1, respectively. No other values are
permitted because there is no bistability in these regions. In the area of
bistability (II in Figure 3C), the equilibrium function takes intermediate
values that are determined by the fraction of units in the ON state in the
equilibrium. Also, in areas I and III, the equilibrium values are reached
with a very fast time constant. We assume that the bistable units can be
flipped essentially instantaneously. In the area of bistability (area II), the
equilibrium is reached over much longer timescales determined by the time
of spontaneous transitions between two stable states of the neuron. Thus,
if one assumes that the transition from the ON state to OFF state (decay)
is characterized by the time constant τ1→0 while the opposite transition
(spontaneous activation) occurs with time constant τ0→1, the equilibrium
activation function and the time constant of relaxation to the equilibrium
value in area II are

h0 = τ1→0/(τ1→0 + τ0→1) (3.19)

τh = τ0→1τ1→0/(τ1→0 + τ0→1). (3.20)

To simplify subsequent equations, we will make an assumption that
τ0→1 = τ1→0, so that in area II, h0 = 1/2 and τh = τ1→0/2. The important
feature of the biological system is that the decay timescale τh is substan-
tially larger than synaptic time constant τs . The ratio between τh and τs is
usually exponential (Bialek, 2000; Koulakov, 2001).

To demonstrate that the seemingly simple equation 3.18 can lead to
interesting results, we solved the equation for the case when τ (�, θ ) = τh

is constant everywhere in area II. (A more complex case is considered in
supplementary materials 2.) Our goal is to understand how the decay of
bistable neuronal units translates into the decay of integrator memory or,
in other words, how the integrator becomes leaky. That the integrator is
leaky implies that the recurrent current changes with time. For example,
if the recurrent connections are weak (α < 1), the current decays that is,
d I/dt = İ is negative. The equilibrium activation function in this case is
sliding down in the parameter space at a rate equal to İ , as illustrated
in Figure 17A. Note that the equilibrium activation function is the limit
toward which the real activation function is moving at each moment in time,
according to equation 3.18. The equilibrium activation function therefore
can be nonstationary, in which case the final target for the activation function
is dynamically changing. Thus, for İ < 0, the real activation function lags
behind the equilibrium values by the time constant τh (see Figure 17). To
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Figure 17: The activation function in the case of nonstationary recurrent current
that decreases as a function of time. (A) The equilibrium activation function for
the case τ0→1 = τ1→0. (B) The actual activation function is lagging behind the
equilibrium values.

solve equation 3.18, we notice that once a neuron enters area II, its activation
function will relax to the equilibrium value independent of other neurons
with the time constant τh . As a result, the solution for the activation function
in area II becomes

h = 1/2 + e−�t/τh /2. (3.21)

Here �t is the time spent by the neurons in area II. This time is given by the
distance traveled in area II divided by the speed of the movement of the
area II border | İ |:

�t = (θ − I + �)/| İ |. (3.22)

This equation assumes that the speed is uniform and does not depend on
time. This approximation is valid if the acceleration of the eye movement is
negligible. A more precise condition for the validity of this approximation
is derived in appendix C.

The number of active neurons can be easily calculated from equation
3.21 using equation 3.5. We obtain

n = C�I + C
2

∫ ∞

0
d�

∫ I+�

I−�

dθe−(�+θ−I )/τh | İ |−�/� =

= C�I − C�τh İ
�

2� + τh | İ |
. (3.23)
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In formulating this equation we again assumed, similar to the remainder
of the study, that I >> �, which allowed extending integration over � to
infinity. Equation 3.23 is valid for an arbitrary sign of the time derivative of
the current İ : both positive and negative. Note that for İ < 0, the correction
to the number of active neurons (second term in equation 3.23) is positive.
This is because the activation function extends into area II due to a finite
delay time introduced by hysteresis (the gray plume in area II in Figure 17B).

To simplify the analysis further, we assume that the rate of change of the
current is actually small. This is possible if the integrator is close to being
perfectly tuned. The more exact condition for this assumption to be valid
becomes clear in the following equations. Assume that τh | İ | is much smaller
than � in the denominator in equation 3.23. Under this condition, we can
write that

n(t) = C� · I (t) − C� · τh İ/2. (3.24)

Since the recurrent current is proportional to the number of active neurons
in this model,

I (t + τs) = I0n(t), (3.25)

we then arrive at the equation describing the dynamics of input current to
all units:

(α − 1)I = ατh

2
d I
dt

. (3.26)

Here the tuning parameter α = I0C� is the same as defined above. It is
clear from this equation that the mistuning of the integrator should be
small, (1 − α)I << �, for us to neglect the second term in the denominator
of equation 3.23. Thus, the leaky integrator equation is valid if the mistuning
is not too large.

Equation 3.26 describes the decay of the integrator current in the absence
of the external inputs. Assuming α ≈ 1, the integrator time constant that
follows from this equation is

τleak = τh

2|1 − α| . (3.27)

We conclude that the integrator leak time constant is determined by the
rate of decay of bistability in this model. This is in contrast to the models
without substantial hysteresis in which the timescale for the integrator leak
is provided by the synaptic time constant τs (Robinson, 1989; Seung et al.,
2000a). This point suggests another interpretation for the robustness of this
model. Indeed, since the observed τleak is about 30 sec, with the timescale of
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the decay of hysteresis τh of a few seconds (Bialek, 2000; Koulakov, 2001),
the parameter α has to be tuned to unity with the precision of about 10%.
Thus, the presence of hysteretic neurons allows putting a much weaker
constraint on the integrator tuning to reach the same value of leak.

With the help of equation 3.23, one can derive a more general equation
for the dynamics of the integrator:

(1 − α) I +
(

α�τh

2� + τh |d I/dt| + τs

)
d I
dt

= Iext. (3.28)

This equation is valid for a constant external current. Equation 3.28 can be
solved for d I/dt. The result for α = 1 is

τs
d I
dt

= Iext − s�
2

+

√√√√(
Iext − s�

2

)2

+ 2� |Iext| τs

τh
, (3.29)

where s = sign (Iext). This equation has the following limits for small and
large values of the external current:

τs
d I
dt

≈ 2Iext
τs

τh
, |Iext| << � (3.30)

and

τs
d I
dt

= Iext − � · sign
(

d I
dt

)
, |Iext| >> �. (3.31)

In the limit when transitions between two states of bistable neurons can be
neglected, τh → ∞, equation 3.29 yields solution 3.10, previously obtained.

Another point evident from the solutions of kinetic equation is that the
rate of integration is determined by the synaptic timescale τs (see equation
3.31), while the decay of delayed activity is proportional to the average time
of spontaneous decay of the bistability τh (see equation 3.27). The latter is
an exponential function of the former (Bialek, 2000; Koulakov, 2001) and
may significantly exceed the synaptic timescale. Thus, the neural integrator
described here is capable of integrating large external stimuli effectively
due to a small time constant τs while remaining robust due to the larger
memory timescale τh .

Finally, we note that according to equation 3.30, in the perfectly tuned
case (α = 1), the current in the integrator is changing (dI/dt �= 0) even for
infinitely small external current. This implies that the integrator with spon-
taneous transitions does not have the threshold for integration. The rate
of integration of weak inputs is determined, however, by the hysteresis
time constant τh , which is a remnant of the threshold existing for perfectly
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bistable units without spontaneous transitions between the ON and OFF
states (see Figure 5).

3.6 Experimental Predictions. The main experimental prediction that
follows from this model concerns the comparison between the firing rates
during fixations and slow eye movements. The latter include both smooth
pursuit and vestibulo-ocular reflex (VOR) responses. We have shown that
the model yields an inverted sign of hysteresis for some neurons in the
ensemble, similar to experiential observations. Thus, ON responses are
above OFF responses in Figures 9 and 14 for G1 and G2. We argue here
that the responses of the same neurons are different during smooth eye
movements, sometimes in a qualitative manner. For the purposes of this
section, we will use the multistable model with no decays (see section 3.2
and Figure 14).

We first notice that the activation function is the same for the smooth eye
movements as for the case when the neurons are not connected by global
recurrent connections (compare Figures 4A and 5A). Thus, the firing rate
as a function of eye position can be derived from the dependence with no
recurrent connections by choosing the appropriate value of input current.
The total value of input current is composed of the recurrent and external
current. We have associated the former with the eye position (see equation
3.17). The external current has a minimum value that allows sustained
integration |Iext| = �. We thus obtain for the smooth eye movements

I = E + � · sign(Iext). (3.32)

Here we assume that external input is equal to the threshold value for
sustained integration: |Iext| = �. The firing rate as a function of eye position
is obtained from the dependencies with no feedback by shifting the ON
dependence to the left by � and the OFF dependence to the right by �. The
dependence is shown in Figure 18B for the multistable neurons.

As clear from Figure 18, the hysteresis during smooth eye movements
is related to that during fixations. By plotting the width of hysteresis for
individual cells, one could map out the dependence experimentally. In
particular, the neurons with small hysteresis during fixations will acquire
history dependence in the response during smooth eye movements. This
feature could be detected experimentally.

4 Discussion

We studied the recurrent networks built out of hysteretic units. We con-
sidered the case when neurons belonging to the same integrator network
have different values of hysteresis. The properties of the integrators
with differential hysteresis were first analyzed by Goldman et al. (2003).
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Figure 18: The differences in responses between the case of eye fixations (A) and
smooth movements (B) predicted by this model. Note that response depicted in
B is predicted for all groups of cells G1 through G4. (C) The distance between
OFF and ON thresholds for fixations versus small velocity eye movements that
follows from A and B.

We analyzed the properties of such networks assuming a large number of
neurons, which allowed treating the behavior of the system statistically,
using distribution functions. To simplify our analysis, we assumed that
neurons are connected in the all-to-all fashion; each neuron makes synapses
with the dendrites of all other neurons in the network. This assumption
allowed us to study the properties of this network analytically, without the
use of a computer. We expect, however, that many properties derived here
will be valid in networks with sparse random connectivity. Because at the
basis of our model lies the neuronal activation function that resembles sand
dunes in shape (see Figure 6C), we call our model the “sandpile” integrator.

One of the important properties derived here is that the hysteresis of
the integrator neurons is strongly affected by the recurrent connections.
Assume that before neurons are connected, their firing rate exhibited history
dependence of a particular sign. For example, assume that the firing rate was
always higher after the decrease in the external input into the neuron than
after an increase. Such history dependence is often displayed by neurons
with intracellular mechanisms of positive feedback or in local strongly
connected clusters of neurons (Koulakov et al., 2002). We called, somewhat
arbitrarily, this type of history dependence a regular native hysteresis or a
hysteresis of positive sign. As follows from our consideration, the history
dependence after these neurons are connected in the network is different.
Many neurons actually change the sign or direction of hysteresis from
positive (regular) to negative (anomalous). This implies that the firing rates
after an increase in the external current (ON saccades) are higher than after
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a decrease in the current. This feature is acquired by the neurons when they
are connected into the network, which is needed to maintain the memory
about the eye position. Similarly, it is quite easy to show that the neurons
with negative native hysteresis may reverse their sign to positive when
connected into networks.

This phenomenon of the reversal of the direction of history dependence
in the recurrent networks of hysteretic neurons could reconcile the ob-
served direction with the possible mechanisms of generating hysteresis in
the VPNI. Indeed, the observed sign of hysteresis is almost always neg-
ative (Pastor, Torres, Delgado-Garcia, & Baker, 1991; Aksay et al., 2003).
Simplistically, this may imply that the mechanisms other than those in-
volving positive feedback are responsible for this sign of hysteresis, such
as the mechanisms based on negative feedback. Our findings indicate that
the neurons could have a positive feedback active inside the cells generat-
ing the regular direction of history dependence, which, after the neurons
are connected into the network, becomes reversed. In a sense, two posi-
tive feedbacks, intracellular and extracellular, may manifest themselves in
reversed hysteresis mimicking the negative feedback systems.

A similar phenomenon of the reversal of the hysteresis sign was ob-
tained in the model of Goldman et al. (2003). This study examined more
complex network connectivity in which neurons targeted specific dendritic
compartments. The number of bistable dendritic compartments was equal
to the number of neurons in the network. In the simplest case, when the den-
dritic compartments targeted by a single neuron have the same properties
(network connectivity has an outer product form), their model was solved
exactly without the use of computer. Their findings in this case indicate that
the cells do not display hysteresis in the firing rate to eye position depen-
dence. When the outer product form assumption was relaxed, the neurons
displayed the hysteresis in the firing rate similar to the one observed ex-
perimentally, including the sign. In the latter case, the model of Goldman
et al. (2003) could not be solved exactly. Goldman et al. demonstrated their
findings computationally and using a qualitative argument. Here we pre-
sented a different view on a simpler system than Goldman et al., discussed.
Due to the simplicity of our networks (all-to-all connectivity) it was pos-
sible to demonstrate the hysteresis in the firing rate and provide an exact
solution to our system without the use of computer. Perhaps our method
with the extended dimensionality of the parameter space could yield the
exact solution to the model of Goldman et al. in the non-outer-product case.

Previous studies of the goldfish VPNI have failed to find substantial
bistability at the level of the individual neuron when these neurons were
stimulated intracellularly (Aksay et al., 2001). These findings could be rec-
onciled with our model if one assumes that the stimulations were applied to
nonbistable neuronal compartments. This could occur if only a fraction of
dendritic tree were actually bistable or if the bistability on the single-neuron
level were conditional, that is, existed only for a small range of eye positions
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near the activation threshold. This possibility is discussed in our previous
study (Koulakov et al., 2002). In particular it is possible that the bistability is
created in part due to NMDA current in the recurrent synapses, which is de-
pendent substantially on the eye position (Koulakov et al., 2002). The model
with conditional bistability is beyond the scope of the study presented here,
in which we considered the simplest possible models. The models consid-
ered here are therefore not suitable for addressing the issue of single-neuron
bistability in the intracellular stimulation experiments (Aksay et al., 2001).
At the same time, experimental studies have clearly shown hysteresis in the
response of integrator neurons when they are stimulated endogenously as
an ensemble (Aksay et al., 2003). These experiments are addressed in our
study. These points indicate that further investigation, both theoretical and
experimental, of the response of individual neurons to external intracellular
stimulation is warranted.

We studied the effect of spontaneous transitions in the bistable units
on the dynamics of the integrator. We found that in the presence of such
transitions, the integrator becomes leaky. The leak time constant is deter-
mined by the rate of spontaneous transitions, at least when the mistuning
of the integrator is small. For the case of constant rate of spontaneous tran-
sitions, we have derived the simple formula relating two time constants:
those of integrator leak and of spontaneous transitions (see equations 2.1
and 3.27). The relationship is similar to the formula earlier derived for the
connection between the fast synaptic time constant and integrator leak for
integrators with no hysteresis. A more complex case of nonconstant rate
of spontaneous transitions is considered in supplementary material 2. Our
findings also indicate that the integration rate for the hysteretic integrator
is determined by the faster synaptic time constant. This statement is valid
for large inputs. Thus, hysteretic integrators are both robust and capable of
responding quickly to the external stimuli.

The effects of noise on integrator networks were also addressed by
Goldman et al. (2003). They show that adding noise allowed small inputs
to be integrated and caused slow decay. These conclusions are similar
to our result. In our study, the transitions caused by noise are treated
quantitatively and are described by an analytical equation for the rates
of decay (see equations 3.28 and 1.1). Similarly to Goldman et al., our
equations show that the decay is fast for larger perturbations, while
integration of very small smooth inputs will be governed by the slower
time constant of spontaneous transitions in the bistable units.

Our consideration of the dynamics of transitions in the hysteretic neu-
rons was limited for two reasons. First, we assumed that the transition time
constant is the same for all units, independent of the width of hysteresis.
Second, we assumed that the spontaneous transition rate is the same at all
positions in the region of bistability. Our approach allows relaxing these
assumptions at the expense of simplicity (as done in supplementary ma-
terial 2). We also expect that making small hysteresis units less robust to
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noise-driven transitions, as predicted by prior theoretical studies (Bialek,
2000; Koulakov et al., 2002), will allow integrating small amplitude inputs.

Our consideration of network dynamics was limited to the evolution
of the distribution function in the two-dimensional parameter space (hys-
teresis width and position). Additional parameters could be included by
making the coordinate space for the distribution function three-, or more
than three-, dimensional. Such variables would allow a study of network
topologies more complex than all-to-all.

5 Conclusion

We studied an exactly solvable model for recurrent networks of hysteretic
neurons. This model displays the reversal of the direction of hysteresis
when the recurrent connections are included. The leak time constant of
the integrator with hysteretic neurons is determined by the rate of spon-
taneous noise-driven transitions in the individual neurons. We argue that
experimental data are consistent with the positive feedback existing on both
intracellular and network levels.

Appendix A: Derivation of Equation 3.6

In this appendix we show that slow dynamics of the integrator can be
described by equations with synaptic delay. Similar to the remainder of our
study, we assume here that recurrent synaptic current is a linear function
of the number of active neurons n(t):

I (t) =
∫ t

−∞
K (t − t′)n(t′)dt′ + Iext. (A.1)

Here K (t) is the function that describes time-dependent synaptic trans-
mission. This function can be associated with the postsynaptic current in
response to a pulse of input, such as action potential. If the variations of
the presynaptic variable n(t) are slow, one can approximate them by the
first-order Taylor series expansion,

n(t′) ≈ n(t) + (t′ − t)
dn(t)

dt
, (A.2)

in equation A.1 to obtain the following approximation:

I (t) ≈ I0n(t) − I1
dn(t)

dt
+ Iext. (A.3)
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This expression describes approximately the variation of the current if the
number of active neurons n(t) is changing slowly. In this expression, we
introduced the moments of the postsynaptic current defined as follows:

I0 =
∫ ∞

0
K (t)dt, I1 =

∫ ∞

0
K (t)|t|dt. (A.4)

Equation A.3 can be transformed using the first-order Taylor expansion:

I (t) ≈ I0

[
n(t) − τs

dn(t)
dt

]
+ Iext ≈

≈ I0 [n(t − τs)] + Iext. (A.5)

where we have introduced the following time constant:

τs = I1

I0
=

∫ 0
−∞ K (t)|t|dt∫ 0

−∞ K (t)dt
. (A.6)

Thus, the slow dynamics of current is described by the delayed equation
A.5 that is similar to equation 3.6. According to equation A.6, synaptic delay
τs is determined by the average period over which synaptic current arrives
in response to a pulsed input. The synaptic delay time is therefore weakly
dependent on the onset of synaptic current.

Appendix B: Parameters of the Stable State of the Integrator

Here we apply the stability condition 3.12 to some distributions of hystere-
sis widths ρ(�) and obtain the parameter of stable configuration �0 (see
Figure 6B). The boundary function in Figure 6B is

b(�) =
{

�, � < �0

2�0 − �, � ≥ �0
. (B.1)

The goal is to find �0 using equation 3.12. Equation 3.12 can be rewritten,
using equation B.1, as follows:

∫ �0

0
ρ(�)�d� +

∫ ∞

�0

ρ(�)(2�0 − �)d� = 0. (B.2)
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We assumed here that the integral over � can be extended to infinity, which
is valid for large values of I . For the exponential distribution ρ(�) given by
equation 3.1 from equation B.2, we obtain

�0 = � ln 2. (B.3)

For the delta function distribution of hystereses 3.14, �0 = �/2, which can
be verified by direct substitution to equation B.2. This leads directly to
equation 3.15.

Appendix C: Conditions for Neglecting Acceleration of the Recurrent
Current

Here we derive the condition at which the acceleration in the recurrent
current can be neglected in the kinetic equation. The effects of acceleration
are negligible if the variation of the current’s velocity is small within the
time constant of the decay of bistability � İ ∼ τh Ï � İ , so that the integral in
equation 2.23 is not strongly affected. This results in the condition τh � τleak,
that is, |α − 1| � 1, in view of equation 3.27.
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