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Correctly locating the gene transcription start site and the core-promoter is important for understanding transcriptional
regulation mechanism. Here we have integrated specific genome-wide histone modification and DNA sequence features
together to predict RNA polymerase II core-promoters in the human genome. Our new predictor CoreBoost_HM out-
performs existing promoter prediction algorithms by providing significantly higher sensitivity and specificity at high
resolution. We demonstrated that even though the histone modification data used in this study are from a specific cell
type (CD4+ T-cell), our method can be used to identify both active and repressed promoters. We have applied it to search
the upstream regions of microRNA genes, and show that CoreBoost_HM can accurately identify the known promoters of
the intergenic microRNAs. We also identified a few intronic microRNAs that may have their own promoters. This result
suggests that our new method can help to identify and characterize the core-promoters of both coding and noncoding genes.

[Supplemental material is available online at www.genome.org.]

Transcription initiation is a key step in the regulation of gene

expression. During this process, transcription factors bind pro-

moter region of a gene in a sequence-specific manner and recruit

the RNA polymerase to form an active initiation complex around

the transcription start site (TSS). The promoter region is typically

divided into three parts: (1) a core-promoter that is ;100 bp long

around the TSS containing binding sites for RNA polymerase II

(Pol II) and general transcription factors; (2) a proximal promoter

of several hundred base pairs long containing primary specific

regulatory elements located immediately upstream of the core-

promoter; and (3) a distal promoter up to thousands of base pairs

long providing additional regulatory information. As it contains

primary information to control gene transcription, it is a funda-

mental step to identify the core-promoter in study of gene ex-

pression patterns and constructing gene transcription networks.

It has been noticed that promoter regions contain charac-

teristic features that can be used to distinguish them from other

parts of the genome. These features may be grouped into two

types: one is on small-scale, e.g., TATA-box, GC-box, CAAT-box,

and Inr; the other is on larger-scale, such as CpG island, kmer

frequency, density of transcription factor binding sites, nucleo-

some binding, and chromatin modifications (Bajic et al. 2004;

Zhang 2007). Recently, the large-scale DNA structural features

have successfully been used to improve the promoter predictions

(Abeel et al. 2008). Accordingly, a two-step approach has been

proposed for TSS identification (Zhang 1998): First, use the large-

scale features to roughly locate a promoter in a 1- to 2-kb region

(low resolution), then use the small-scale features to refine the

prediction into a 100-bp core-promoter region (high resolution).

In the past 10 yr, dozens of computational methods have been

developed to predict core-promoters (for review, see Bajic et al.

2004, 2006; Zhang 2007). However, it is still a challenging prob-

lem to identify functional TSS accurately at high resolution, es-

pecially for the non-CpG-related promoters. In our previous study,

we developed a program called CoreBoost (Zhao et al. 2007),

which applied a boosting technique with stumps to predict core-

promoters, using both the small-scale and large-scale DNA se-

quence features. This program shows significant advantage for

high-resolution prediction than other popular promoter pre-

dictors (Zhao et al. 2007).

Up to now, almost all of the existing core-promoter pre-

diction methods are based on DNA sequence features, few of them

has incorporated the epigenetic information. Eukaryotic DNA is

packaged into chromatin structure. The basic unit of chromatin is

the nucleosome that is composed of an octamer of four core his-

tones (H2A, H2B, H3, and H4) wrapped by 147-bp-long DNA. The

modifications of the histones are found to be associated with

transcription initiation and elongation (for review, see Kouzarides

2007). For example, nucleosomes with H3 lysine 4 tri-methylation

(H3K4me3) are enriched in the promoter regions, and H3 lysine

36 tri-methylation (H3K36me3) occurs at nucleosomes covering

primary transcripts of actively expressed genes (Mikkelsen et al.

2007). Recently, taking advantage of next-generation sequencing

technology, researchers developed the chromatin immunopre-

cipitation followed by sequencing (ChIP-seq) technology and

obtained high-throughput genome-wide profiles of histone

modification patterns in mammalian cells (Barski et al. 2007;

Mikkelsen et al. 2007). These high-resolution histone modifica-

tion profiling data shed new light on studying regulation mech-

anism of gene transcription.

In this work, we systematically analyzed different chromatin

features for promoter prediction and integrated the specific histone

modification profiles and the DNA sequence features together to

predict human Pol II core-promoters. Our new predictor Cor-

eBoost_HM (CoreBoost with histone modification features) sig-

nificantly outperforms the best existing methods by providing

much higher sensitivity and specificity for high-resolution TSS

predictions. Though the histone modification data used in this
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study are from a specific cell type (CD4+ T-cell), surprisingly Cor-

eBoost_HM can nevertheless identify both active and repressed

promoters accurately. As a novel application, we also used Cor-

eBoost_HM to search the upstream regions of microRNA (miRNA)

genes, a class of short endogenous noncoding RNAs that play im-

portant regulatory roles (Bartel 2004). CoreBoost_HM gives a good

prediction on the known intergenic miRNA promoters. And in-

terestingly, we also found that some of intronic miRNAs appear to

have their own promoters that are different from the promoters of

their host genes. This result suggests that CoreBoost_HM can help

to identify and characterize the core-promoters of both coding and

non-coding genes.

Results and Discussion

Histone modification signal around CpG- and
non-CpG-related promoters

Previous studies suggest that CpG- and non-CpG-related pro-

moters have distinct sequence features and should be treated

separately (Davuluri et al. 2001; Bajic et al. 2002; Saxonov et al.

2006). Recent results in human T cells (Roh et al. 2006) and

mouse ES cells (Mikkelsen et al. 2007) also suggest that the his-

tone modification profiles around these two types of promoters

are different. As shown in Figure 1A, for the CpG-related pro-

moters, H3K4me3 signal has two major peaks located upstream

and downstream of the TSS (where the trough presumably

reflects the nucleosome depletion at the core-promoter)

(Schones et al. 2008), respectively. But for the non-CpG-related

promoters, not only is the upstream peak of H3K4me3 signifi-

cantly lower but also the overall modification signal intensity is

much weaker than that of CpG-related promoters. Because the

CpG-related promoters compose the majority of the known

promoters (;72%) (Saxonov et al. 2006) and have stronger signal

intensity, if these two types of promoters are mixed together, the

overall patterns will be dominated by the CpG-related promoters

(Barski et al. 2007). The differences between CpG- and non-CpG-

related promoters were also observed for some other histone

markers (Fig. 1B; Supplemental Fig. 1). Thus, similarly as with the

strategy of CoreBoost, we analyzed CpG and non-CpG promoters

separately.

Use histone markers for promoter prediction

Though it is widely believed that epigenomic features (like histone

modifications) can provide an extra layer of information beyond

DNA sequence features for correctly locating gene promoters, up

to now, few computational methods have been developed to ex-

tract such information systematically. Recently, Heintzman et al.

(2007) analyzed the ChIP with microarray hybridization (ChIP-

chip) data of several histone acetylation and methylation markers

within the ENCODE region and found that H3K4me3 profile can

be used to identify active promoters. However, they only tested

five histone markers and just used two of them for low-resolution

predictions in the ENCODE region. In this study, we explored the

contribution of different histone modification features for pro-

moter prediction. The whole-genome histone modification pro-

files of 20 histone methylations, 18 acetylations, and one histone

variant H2A.Z in human CD4+ T-cells were extracted from recent

ChIP-seq experiment data sets (Barski et al. 2007; Wang et al.

2008b). A training set of 4263 CpG-related and 1683 non-CpG-

related human Pol II core-promoters are used in this analysis. This

set is constructed based on the known TSS in the Eukaryotic Pro-

moter Database (EPD) (Cavin Perier et al. 1998) and DBTSS

(Wakaguri et al. 2008) databases, with expression profiles of re-

lated genes in human CD4+ T-cell from the GNF gene expression

atlas (Su et al. 2004). Our preliminary analysis suggested that for

each histone modification signal, both their shape and absolute

intensity around the TSS may contribute positively to the pre-

diction. So we encoded each type of histone modification signal

with two features: One is the Pearson correlation coefficient be-

tween the vector of local modification profile and the vector of

empirical average pattern of this modification around all pro-

moters in the training set, which is used to capture the similarity

of the ‘‘shape’’ signal; the other is the dot product of these two

vectors, which reflects the weighted intensity of this modification

around a TSS. Finally, LogitBoost with stumps (Friedman et al.

2000) was used for the classification, which can select informative

features and use an assembly of weak classifiers to build a strong

classifier. To understand the contribution of each type of mod-

ifications, we conducted separate computational experiments using

the information from (1) the 20 histone methylations, (2) the 18

histone acetylations, and(3) all the39 histone markers, respectively.

A 10-fold cross-validation was performed,

and the performance was evaluated by

searching the 2.4-kb region centered at the

TSS of each promoter in the training set.

As shown in Figure 2, A and C, acet-

ylation and methylation markers do con-

tribute to promoter prediction, especially

for the CpG-related promoters. Table 1

lists the top histone markers contribute to

boosting classifiers. Most of these top fea-

tures are consistently selected during the

cross-validation (Supplemental Table S1).

As expected, H3K4me3 appears to be the

most important histone feature for pro-

moter prediction. But somewhat surpris-

ingly, acetylations only provide subtle

additional contribution when we put all

the available histone markers together.

Besides, we also noticed that though the

well-known promoter associated markers

like H3K4me3 and H2A.Z contribute

Figure 1. Histone modification profiles of H3K4me3 and H2A.Z around gene transcription start sites
H3K4me3 (A) and H2A.Z (B) are two of the top histone markers that contribute to core-promoter
prediction. CpG-related and non-CpG-related promoters have significantly different histone modifi-
cation profiles around the TSS. Normalized counts are reads counts normalized by the total number of
reads in the data set.
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greatly to both the CpG-related and non-CpG-related promoter

predictors, these two predictors may be combined with different

histone features separately to achieve optimal performance. For

example, the H3K4me2 is an important complement to H3K4me3

for the prediction of CpG-related promoters, but it seems to be re-

dundant for the prediction of non-CpG-

related promoters. This observation sup-

ports the notion that the CpG-related

and non-CpG-related promoters may be

subject to distinct mode of regulation

(Mikkelsen et al. 2007). To further study

the contribution from the top features, we

also investigated the prediction power

when only the top one, three, five, and 10

histone markers were used in each group.

We found that using the features from

a top few chromatin markers are sufficient

for lower-resolution (i.e., large-scale,

;500-bp) prediction (Supplemental Tables

S2, S3), but adding additional features can

further improve the accuracy at high res-

olution (i.e., fine scale, ;50 bp), especially

for CpG-related promoters. However, not

all histone markers are informative for

the classification, using about the top 20

markers is sufficient for the prediction,

and adding further features do not show

significant improvement.

Many histone markers associates

with gene expression, and their profiling

signals are very different between active

and silent promoters (Barski et al. 2007).

In order to study the correlation between

gene expression and promoter prediction

power of chromatin signatures, we fur-

ther split the CpG-related and non-CpG-

related promoters in the training set into

two equal size groups, respectively, ac-

cording to the gene expression level—(1)

top one half of genes with the highest

expression level (active genes) and (2)

bottom one half of genes with the lowest

expression level (low express/silenced

genes)—and used these subsets for the

boosting analysis. Surprisingly, we noticed that although the in-

tensities of many histone markers are very different between ac-

tive and silenced promoters, the top features selected by boosting

classifier are quite similar (Supplemental Table S4), which suggests

that, in general, the difference of histone modification patterns

Table 1. Top histone markers contribute to promoter prediction

Methylations Acetylations All histone markers

CpGa Non-CpGa CpGa Non-CpGa CpGa Non-CpGa

H3K4me3 H3K4me3 H3K18ac H3K27ac H3K4me3 H3K4me3
H3K4me1 H3K79me3 H2AK5ac H4K91ac H3K4me1 H2A.Z
H3K4me2 H3K79me1 H4K91ac H3K18ac H3K4me2 H3K79me3
H3K79me3 H4R3me2 H3K23ac H4K16ac H3K79me3 H3K27ac
H4K20me1 H4K20me3 H4K5ac H3K9ac H4K20me1 H3K79me1
H3K27me1 H3K27me2 H3K14ac H2BK5ac H2AK5ac H4R3me2
H3K9me2 H3K36me3 H3K9ac H4K8ac H2A.Z H3K27me3
H4K20me3 H3K27me3 H2BK12ac H2BK20ac H4K91ac H3K18ac
H3K36me1 H3K4me1 H2AK9ac H2BK12ac H3K23ac H4K91ac
H3K9me1 H3K9me2 H3K36ac H3K36ac H3K27me1 H3K27me2

These markers were sorted according to the order they were selected by the boosting classifier.
aFor CpG-related and non-CpG-related promoters, respectively.

Figure 2. Density plot of the relative distance from the positions with maximal prediction scores to the
annotated TSS. Chromatin features contribute to the prediction of both CpG-related (A) and non-CpG-
related (C) promoters. (B,D) Further combining chromatin signatures with sequence features can greatly
improve the prediction accuracy.
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between active and repressed promoter is smaller than that be-

tween different types of promoters (CpG and non-CpG). What’s

more, prediction results suggest that although these histone

markers contribute more for the prediction of active promoters,

they can also be used to predict inactive ones with remarkable

accuracy (Supplemental Table S5). This result is supported by the

recent notion that some of the histone markers like H3K4me3 and

H2A.Z associate with both active and silenced promoters (for re-

view, see Schones and Zhao 2008), and it also indicates that these

histone features can be used to design general promoter predictors

rather than specific ones (restrict only to active promoters).

CoreBoost with histone modification features

Next, we integrated chromatin signatures with DNA sequence

features together to design a high-resolution human Pol II core-

promoter prediction algorithm. We followed the framework of

CoreBoost, and the inputs to our new predictor CoreBoost_HM

include both genomic sequences and the histone modification

profiles. The sequence features were calculated according to our

previous work (Zhao et al. 2007). These features were mainly

extracted from a 300-bp region (�250 to 50) around the TSS, in-

cluding the core-promoter elements score, transcription factor

binding site (TFBS) density, Markovian log-likelihood ratio scores,

and kmer frequencies. In addition, we also considered some long

range DNA energy and flexibility properties (Packer et al. 2000) in

a larger region expanding from upstream �1300 to downstream

+1300 bp relative to the TSS. These long-range features (calculated

based on tetra nucleotide properties) were found to be very useful

for the prediction of non-CpG-related promoters (Zhao et al.

2007). Most of the top features used in CoreBoost_HM (Supple-

mental Table S6) were also selected by the predictors trained by

sequence or histone modification features alone, which partially

indicates that histone modification features can provide addi-

tional information beyond currently used sequence features. The

top contributors for CpG-related predictor are log-likelihood ratios

from third-order Markov chain, Profile correlation score of

H3K4me3 and H3K4me2, GC box score, etc.; and the top con-

tributors for the non-CpG model are the correlation score of DNA

energy profile, the profile correlation score of H3K4me3, log-

likelihood ratios from third-order Markov

chain, TATA score, and Inr score, etc. In

total, 18 and 17 histone markers are used

in the CpG-related and non-CpG-related

classifiers, respectively, but some of them

only contribute marginally to the classi-

fication (Supplemental Table S6). The

detailed description of these features can

be found in the Methods section on fea-

ture extraction and also in Zhao et al.

(2007).

Comparison with other methods

We compared the performance of Core-

Boost_HM with the Boosting predictor

using only the histone modification fea-

tures (BHMF), original CoreBoost, and

other two free and publicly available

high-performance promoter predictors,

McPromoter (Ohler et al. 2001) and EP3

(Abeel et al. 2008). McPromoter is

a probabilistic promoter predictor that uses a neural network

to combine the sequence features and structural profiles in

prediction. EP3 is one of the latest core-promoter prediction

algorithms based on large-scale DNA structural features. Abeel

et al. (2008) compared EP3 with a number of promoter prediction

programs and demonstrated that it outperforms most of the other

state-of-the-art algorithms.

We first evaluated the performance of each predictor by

searching the 2.4-kb region centered at the TSS of each promoter in

the training set, and the prediction power of CoreBoost_HM and

BHMF was estimated by a 10-fold cross-validation. Figure 2 shows

the density plots of the relative distance from the positions with the

maximal prediction score to the true TSS. About 58.6% and 35.9%

CoreBoost_HM maximal-score predictions locate within 50 bp of

the annotated TSS for CpG-related and non-CpG-related promoters,

respectively, which are significantly higher than that only using

sequence (original CoreBoost, 38.9% and 32.0%) or histone features

(BHMF, 47.8% and 20.0%) and much better than that of McPro-

moter (27.5% and 23.8%) and EP3 (22.9% and 14.5%). Figure 3

shows the plots of positive prediction values (PPVs) versus sensi-

tivity for these prediction programs at the precision request of

50 bp, which further confirm the power of CoreBoost_HM for high-

resolution predictions. Supplemental Table S7 shows the perfor-

mance evaluated at different resolution on the training set.

To further evaluate the performance on larger genomic

regions, we tested these programs on an independent test set,

which is composed of the upstream 5-kb to downstream 5-kb re-

gion of 1642 nonoverlap gene promoters, each containing one or

multiple TSS. We adopted the F-score (Abeel et al. 2008) to mea-

sure the performance at precision requisition of 50, 200, and 500

bp. We varied different thresholds of prediction score for each

program and chose the threshold with maximum F-score. As

shown in Table 2, CoreBoost_HM significantly outperforms BHMF

and other three sequence based programs at high resolution.

When allowing maximum distance from true TSS as 50 bp, Core-

Boost_HM achieved an F-score of 0.32, which is about or more

than 1.5 times larger than that of BHMF (0.23), CoreBoost (0.20),

McPromoter (0.18), and EP3 (0.11). For low-resolution prediction

(>500 bp), as CoreBoost_HM (and its ancestor CoreBoost) is spe-

cially designed and optimized for high-resolution predictions, its

Figure 3. Positive predictive values (PPV) versus sensitivity for CpG-related and non-CpG-related pro-
moters. The prediction results within 500 bp are clustered for each program. Only a prediction locating
within 50 bp of the annotated TSS is regarded as a true-positive hit. The blue dashed and blue dotted lines
indicate CoreBoost_HM performance on the promoters of highly expressed genes and low express genes,
respectively.
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advantage becomes less pronounced, although it still slightly

outperforms the state-of-the-art predictors such as EP3. We no-

ticed that about one-quarter of CoreBoost_HM predictions on

the test set are more than 500 bp away from the DBTSS or EPD

annotations. Our further analysis revealed that ;22% and 44% of

these ‘‘false-positive’’ predictions according to DBTSS or EPD an-

notation are supported by CAGE (Carninci et al. 2006) tag clusters

at the 50-bp and 500-bp resolution, respectively. This result sug-

gests that a considerable portion of CoreBoost_HM false-positive

predictions are probably true alternative TSS. Performance evalu-

ation using the combined annotation of DBTSS, EPD, and CAGE

tag clusters is shown in Supplemental Table S8. In addition, Sup-

plemental Table S9 shows the false-positive rate of CoreBoost_HM

at different parameter settings estimated by searching randomly

selected intronic regions that do not overlap with any DBTSS an-

notation, CAGE tag clusters, or Pol II peaks.

Gene expression level versus prediction accuracy

As the histone modification data in this study are from one cell

type (CD4+ T-cell), it is essential to know whether our new pre-

dictor can be used for general promoter prediction or only the

active promoters in this specific cell type. We further analyzed the

CoreBoost_HM prediction results on both training set (based on

cross validation) and test set regarding to downstream gene ex-

pression level. The TSS in each set were split into two equally sized

subsets according to downstream gene expression level in CD4+ T-

cell, with (1) top one half of genes with the highest expression

level (active genes) and (2) bottom one half of genes with the

lowest expression level (low express/silenced genes). As shown in

both the training (Fig. 3; Supplemental Table S5) and the test set

(Table 2), gene expression level does influence CoreBoost_HM

prediction accuracy. However, comparing with the original

CoreBoost, we found that the histone modification signals could

still help to improve the performance for the prediction of less-

active or repressed promoters, especially for the CpG-related ones.

Identification of miRNA gene core-promoters
miRNAs are short endogenous small RNA molecules that play es-

sential regulatory roles in diverse organisms (for review, see Bartel

2004). Similar as pre-mRNAs, primary transcripts of intergenic

miRNAs (called pri-miRNAs) also have 59 cap structure and 39 polyA

tail (Cai et al. 2004; Lee et al. 2004). Though some of the pri-miR-

NAs are reported as Pol III–mediated transcription products

(Borchert et al. 2006), the majority of them are believed to be

transcribed by Pol II (Cai et al. 2004; Lee et al. 2004; Zhou et al.

2007). Up to now, only a few miRNA promoters have been exper-

imentally characterized. In this study, we analyzed the upstream

region of miRNAs using CoreBoost_HM. Figure 4, A through F,

shows the predictions on the six intergenic miRNA promoters that

are the only known ones in human. mir-23a cluster is the first

intergenic pri-miRNA transcript experimentally characterized in

human cells. Lee et al. (2004) demonstrated that these miRNAs

share a common promoter within ;600 bp upstream of the cluster.

CoreBoost_HM correctly predicts such a TSS at ;400 bp upstream

of this miRNA cluster, which is also supported by an independent

Pol II signal according to Pol II ChIP-seq data (Fig. 4A). The exper-

imentally located promoter of mir-21 in HeLa cells is located at

;2.45 kb upstream of the pre-miRNA (Cai et al. 2004). Core-

Boost_HM predicts a promoter at the upstream ;2.94-kb position,

which is again supported by the Pol II signal (Fig. 4B). Additionally

we also noticed that there are two weak predictions located at the

upstream ;2-kb and ;3.4-kb position, respectively, both of them

supported by either CAGE (Carninci et al. 2006) tags or the Pol II

signal. We suspected that there may exist multiple alternative TSS

for this miRNA gene. mir-17 cluster and mir-34a have been in-

tensively studied for their potential important role in tumorigene-

sis, and both their core-promoters have been determined by RACE

experiments recently (Chang et al. 2007; Woods et al. 2007). As

shown in Figure 4C, CoreBoost_HM gives a strong CpG-related

prediction at the upstream ;2.95-kb position relative to mir-17

precursor, less than 50 bp apart from the experimentally identified

TSS. In the case of mir-34a, though the promoter is located at more

than 30 kb away from the pre-miRNA, CoreBoost_HM precisely

identify this CpG-related promoter. In addition, it predicted a pu-

tative alternative TSS which is also supported by CAGE tag clusters

at the 600 bp further upstream of the known one (Fig. 4D). As an-

other example, mir-223 has been characterized to have a core-pro-

moter highly conserved between human and mouse (Fukao et al.

2007). CoreBoost_HM correctly gives a prediction located at the

upstream ;3.4-kb position, which is only a few bases apart from the

true TSS (Fig. 4E). The mir-371 cluster, which is specially expressed

in embryonic stem cells and evolves fast, has been annotated to

have a promoter located at the upstream ;700-bp position by

a comparative genomic analysis (Houbaviy et al. 2005). Core-

Boost_HM prediction score profile has two peaks: One is between

mir-371 and mir-372, and the other is at the upstream ;2.1-kb

Table 2. Performance evaluation on test set

Program

Maximum allowed distance from true TSS

50 bp 200 bp 500 bp

Sensitivity PPV F Sensitivity PPV F Sensitivity PPV F

CoreBoost_HM 0.26 0.43 0.32 0.45 0.56 0.50 0.57 0.72 0.64
CoreBoost_HM-higha 0.34 0.37 0.36 0.50 0.54 0.52 0.66 0.65 0.66
CoreBoost_HM-lowb 0.26 0.29 0.27 0.42 0.48 0.45 0.59 0.62 0.60
BHMF 0.20 0.28 0.23 0.38 0.53 0.44 0.52 0.72 0.60
CoreBoost 0.19 0.20 0.20 0.38 0.39 0.38 0.55 0.56 0.55
McPromoter 0.17 0.19 0.18 0.43 0.32 0.37 0.67 0.54 0.60
EP3 0.12 0.11 0.11 0.40 0.37 0.38 0.62 0.61 0.62

aCoreBoost_HM performance on the promoters of highly expressed genes.
bCoreBoost_HM performance on the promoters of low expressed genes.
PPV, positive predictive value; F, harmonic average of sensitivity and PPV.
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position (Fig. 4F). No other support (like CAGE or Pol II signal) is

available for either the CoreBoost_HM predictions or the TSS

inferred from its mouse orthologs. In total, CoreBoost_HM identi-

fied three of the six known miRNA promoters within 50 bp and the

other two within 500 bp. Hence, although the majority of these

known miRNA promoters are non-CpG-related and are not highly

active in T cells according to the miRNA expression atlas (Landgraf

et al. 2007), CoreBoost_HM is still able to make a reasonable pre-

diction. For comparison, EP3 and the recently published miRNA

promoter predictor CoVote (Zhou et al. 2007) can identify four and

two of these six known promoters at 500-bp resolution, respectively

(Supplemental Table S10).

Encouraged by these results, we used CoreBoost_HM to an-

alyze the upstream 10 kb of the other intergenic miRNAs. Using

a stringent threshold of 0.7 and 1.1 for CpG and non-CpG pre-

dictors, respectively, CoreBoost_HM predicted 145 putative TSS

for 82 intergenic miRNAs or miRNA clusters, covering 156 pre-

miRNAs. This parameter setting corresponds to an estimated

sensitivity of 28% and 57% at 50-bp and 500-bp resolution, re-

spectively and a false-positive number of ;42 (Supplemental Table

S12). About 45% of these predictions are supported by either Pol II

signal or CAGE tag clusters within 500 bp (summarized in Sup-

plemental Table S11), and many of them show significantly higher

average PhastCons conservation scores (Siepel et al. 2005) than

the randomly selected control regions (Supplemental Fig. S2).

Supplemental Table S12 lists CoreBoost_HM predictions on

intergenic miRNAs with varying thresholds.

Experimental studies on several intronic miRNAs have sug-

gested that such miRNAs are typically transcribed together with

their host genes (Rodriguez et al. 2004). However, CoreBoost_HM

predicts that a few intronic miRNAs may have their own pro-

moters (Supplemental Table S13). As shown in Figure 4G, mir-9-1

is located in the second intron of its host gene C1orf61. Core-

Boost_HM predicts a CpG-related promoter at 1.4 kb upstream of

this miRNA. This predicted promoter is supported by both Pol II

ChIP-seq and spliced expressed sequence tag (EST) data. Figure 4H

shows another example, the mir-339, which is located in a long

intron of the host gene C7orf50. A non-CpG-related and a CpG-

related promoter were predicted at upstream 2.9 kb and 5.4 kb of

mir-339, respectively, with the latter one supported by CAGE tags,

spliced ESTs, and Pol II ChIP-seq data. These results suggest that

some of the intergenic miRNAs are likely to be transcribed in-

dependently from their host genes.

During the revision of this manuscript, Marson et al. (2008)

published their predicted human and mouse miRNA promoters.

They analyzed the upstream 250 kb of each miRNA by in-

corporating H3K4me3 signature, conservation between human

and murine, CpG islands, and ESTs among other features and

provided low-resolution (;1 kb) predictions for 80% of the hu-

man miRNAs. We compared their predictions located within up-

stream 10 kb of the intergenic miRNAs with CoreBoost_HM

predictions. In total, they predicted 77 putative promoters in these

regions, 46 (60%) of them fall within 500 bp of 63 (43%) Core-

Boost_HM high-confident predictions. Focusing on the known

examples, as shown in Figure 4, A through F, their predictions

covered four known promoters but missed the promoters of mir-

21 and mir-223, which were predicted correctly by Core-

Boost_HM. Interestingly, we also noticed that CoreBoost_HM

predictions on the two intronic miRNAs shown in Figure 4, G and

H, are also supported by their predictions. Although results only

on the few examples may not be generalized, both methods un-

ambiguously demonstrate that incorporating chromatin sig-

natures can greatly facilitate the identification of miRNA

promoters. Further analysis combining the advantage of both

methods can produce a more accurate TSS map for the annotation

of human miRNA genes.

Conclusion

In this work, we have shown that incorporating the genome-wide

histone modification profiling data with DNA sequence features

can greatly improve the accuracy of the Pol II core-promoter pre-

diction in the human genome. We have systematically analyzed

the prediction power of different chromatin signatures and de-

veloped a state-of-the-art core-promoter predictor called Core-

Boost_HM, which outperforms several existing algorithms. We

demonstrated that although the histone modification features are

more informative for the active promoters, they can also help to

find the less-active or even silenced promoters. Taking advan-

tage of next-generation sequencing technology, we expect more

and more histone modification ChIP-seq data sets to be produced

from different cell types in the near future. These data will help

to further improve the prediction accuracy and annotate

the tissue-specific promoters. Another interesting observation

in this study is that although many histone markers show char-

acteristic patterns in the promoter region, some of them are

redundant for promoter prediction. This work can be used as

a guide for the design of ChIP experiments aiming to identify gene

promoters.

Similar to CoreBoost, CoreBoost_HM is designed for fine-scale

core-promoter localization problem but is not intended for ge-

nome-wide searching. And it should be noticed that, the non-CpG

predictor contribute very little to the overall performance measured

by F-score when searching large genomic regions. Though this

separate classifier does provide more accurate predictions for non-

CpG-related promoters, it would introduce more false positives as

non-CpG-related promoters typically have weaker signals and only

represent a minority in the genome. In practice, we recommend

using some prior information to first identify a reasonable search

region of ;2–5 kb and then applying CoreBoost_HM, especially for

the prediction of non-CpG-related promoters. A great deal of prior

information is available to focus the search, including the Pol II

ChIP-chip or ChIP-seq data, EST or mRNA alignment, and the

predicted regions from gene-finding programs. Recent studies sug-

gest that the accuracy of core-promoter prediction can be greatly

improved if it is combined with gene prediction (Bajic et al. 2006) or

Pol II ChIP signals (Zhao et al. 2007).

We applied CoreBoost_HM to predict the core-promoters of

miRNA genes and found that CoreBoost_HM performs well on the

six human intergenic miRNA core-promoters which (to the best of

our knowledge) are the only known ones. This indicates that Core-

Boost_HM can be also used to analyze the promoters of noncoding

genes. Many of our predicted miRNA gene promoters show higher

PhastCons scores than expected by chance (Supplemental Fig. S2).

Further analysis of these putative promoters, e.g., by using com-

parative genomic approaches, can help to better characterize regu-

latory regions of miRNA genes (Wang et al. 2008a). Additionally,

some intronic miRNA genes appear to have their own promoters;

this suggests that the transcriptional regulation of intronic miRNA

genes may be more complicated than expected. Further integration

of such promoter predictions with other information, such as Pol II

binding signal, CAGE tags, ESTs, and genome conservation (Saini

et al. 2007), will undoubtedly help to better annotate all miRNA

primary transcripts in the genome.
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Methods

Genomic sequences and gene annotation
The human genomic sequences (hg18, NCBI build 36) and
KnownGene annotation were downloaded from UCSC Genome
Browser (http://genome.ucsc.edu/). miRNA sequences and their
genomics coordinates were downloaded from miRBase (release 10)
(Griffiths-Jones et al. 2006). The CAGE tags were extracted from
RIKEN (Carninci et al. 2006). Adjacent CAGE tags within 25 bp on
the same DNA strand are clustered, and only CAGE tag clusters
with at least three tags were considered. With this criterion, we
obtained 89,124 CAGE tag clusters in total. The promoters of the
12,000 genes analyzed by Barski et al. (2007) with known ex-
pression information in CD4+ T-cell were used in this analysis. For
each of these genes, we collected its TSS from EPD (Cavin Perier
et al. 1998) and DBTSS (Wakaguri et al. 2008) database. We defined
a promoter to be CpG-related if there is a CpG island locates
within its upstream 2 kb to downstream 500-bp region (Xuan et al.
2005) according to UCSC Genome Browser’s CpG island annota-
tions. To construct a high-quality training set, we excluded the
promoters that contain multiple TSS within 1.5 kb or the anno-
tated TSS are more than 500 bp apart from the 59-end the anno-
tated genes. After removing redundancy, we got 4263 CpG-related
and 1683 non-CpG-related promoters, respectively, which com-
posed our training set. For each promoter in the training set, we
chose the annotated TSS as the positive sample and randomly
selected one sample from the upstream [�1200, �300] and one
from the downstream [300, 1200] regions as negative samples to
train the boosting classifier. To further test the performance of the
program, we also collected all the 1642 nonoverlapping promoters
regions (from �5 kb to 5 kb relative to the gene 59-end) with at
least one TSS annotation from the rest of the genes as our test set.
After combining the TSS less than 100 bp apart, this test set con-
tains 2619 independent core-promoters according to EPD and
DBTSS annotation. It should be clear that, both the training and
test sets are constructed without considering gene expression
level, so both active and repressed promoters for a given cell type
are included.

Histone modification ChIP-seq data

The histone modification data set was published by Barski et al.
(2007) and Wang et al. (2008b). It includes the genome-wide high-
resolution profiling of 20 histone methylations, 18 acetylations,
one histone variant H2A.Z, and also Pol II binding in human
CD4+ T-cells. They detected the number of reads for each histone
marker by directly sequencing ChIP pull-down DNA samples us-
ing the Illumina 1G Genome Analyzer (ChIP-seq). For data set of
each histone marker, we calculated the intensity profile along the
genome at a 25-bp resolution. For each position, we counted the
number of uniquely aligned reads that are oriented toward it
within 100 bp flanking, which is half of the length of DNA frag-
ments in each library (;200 bp). The Pol II signal in CD4+ T-cell
was derived from the same ChIP-seq data set. For each position, we
counted the number of uniquely aligned reads that are oriented
toward it within 35 bp flanking, which is about half of the length
of DNA fragments in the library. The positions with more than
four reads counts were regarded as Pol II–positive regions (P-value
< 1 310�6 according to background Poisson distribution), and any
two Pol II–positive positions closer than 100 bp were clustered. In
total, we got 35,772 Pol II–positive regions.

Feature extraction

The features used by CoreBoost_HM can be grouped in two major
categories: histone modification profiles and DNA sequence fea-

tures. The DNA sequence features were extracted using the same
method described in CoreBoost (Zhao et al. 2007), including motif
features of core-promoter elements and TFBSs, teranucleotide
flexibility and energy properties of promoter DNA, sequence fea-
tures from Markovian modeling of promoter sequences, and kmer
frequencies (for more details, see Zhao et al. 2007). For each his-
tone modification signal, the 25-bp-resolution intensity profile in
a 1.2-kb window was used to construct the vector of local profile
of the middle position in this window, and a vector of empirical
average pattern was calculated by averaging the profile of this
modification marker on all training promoter regions centered by
TSS. Larger window sizes were also tested in our experiments, but
no significant improvement was observed in prediction accuracy.
We then encoded each histone modification signal with two fea-
tures: one is the Pearson correlation coefficient between the vector
of local profile and the vector of empirical average pattern of this
modification signal around the TSS, which is used to capture the
shape similarity; the other is the dot product of these two vectors,
which reflects the weighted intensity of this modification signal.
The raw histone feature table includes 78 features for the 20
methylations, 18 acetylations, and one histone variant H2A.Z.

LogitBoost with stumps

Boosting is a supervised machine learning algorithm combining
many weak classifiers to create a single strong classifier (Hastie
et al. 2001). In this work, we chose stumps as the weak classifiers,
which are single-split decision trees with only two terminal nodes
(Breiman et al. 1984). Denote the training data as (x1, y1), . . ., (xN,
yN), where xi is the feature vector and yi is the class label {�1, 1}. We
defined fm(x) as the mth weak binary classifier producing value
of +1 or �1, and FðxÞ= +M

m=1 cm f mðxÞ as the ensemble of a series of
M weak classifiers, where cm are constants and M is determined
by cross-validation. Let y* = (y + 1)/2, taking values from {0, 1}.
We implemented LogitBoost algorithm (Friedman et al. 2000) to
directly estimate the posterior class probability:

PðY = 1jX = xÞ =
expðFðxÞÞ

expðFðxÞÞ+ expð�FðxÞÞ

(for more details, see Zhao et al. 2007).
The output prediction score of CoreBoost_HM is not identical

as CoreBoost. In CoreBoost, we combined the output of two bi-
nary classifiers that were designed to classify the promoter against
the upstream sequence and downstream sequence, respectively. In
CoreBoost_HM, we used negative samples selected from random
positions in upstream and downstream of TSS and only imple-
mented one classifier against both the upstream and downstream
sequence. Additionally, we noticed that the true promoters and
their proximal adjacent regions generally have higher average
score than the non-promoter regions, and the false-positive pre-
dictions typically only have a single narrow peak, so we smoothed
the output score to filter the noises and improve the performance.
We defined the raw CoreBoost_HM score as

CoreBoost HM Score =�lnð1�PðY = 1jX = xÞÞ
= lnð1 + expð2*FðxÞÞÞ;

which is then smoothed with an optimized window of size 100 bp
(Supplemental Fig. S3).

Performance evaluation

We ran the McPromoter and CoreBoost with default settings and
got the raw prediction score profiles for every 10 bp. As EP3 gives
the best performance when setting the window size to 400 bp (at
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this window size, EP3 gives a prediction value for every 400 bp)
(Abeel et al. 2008) to get higher resolution predictions, according
to the recommendation of the investigators of EP3, we included
10 bp each time at the beginning of the sequence and ran the
program 40 times to get the prediction values for every 10 bp. All
the comparisons among predictors were based on these raw score
profiles.

Sensitivity, positive predictive value (PPV) (Bajic et al. 2004)
and F-score (Abeel et al. 2008) were used to evaluate the perfor-
mance of the different predictors, which are defined as

Sensitivity =
TP

TP + FN
;

PPV =
TP

TP + FP
;

F =
2

ð1=SensitivityÞ + ð1=PPVÞ =
2*Sensitivity*PPV

Sensitivity + PPV
;

where TP is the true positives, TN is the true negatives, FP is the
false positives, and FN is the false negatives. F-score is the har-
monic average of sensitivity and PPV. For each program, we di-
rectly counted these numbers from their raw prediction score
profile. If any two predictions above a certain threshold were less
than 500 bp apart, these two predictions were clustered and only
the position with a better score was kept as the representative. We
did this clustering iteratively, and only the peak of each cluster was
counted as predicted TSS. When we evaluated the performance of
each program, we compared the relative distance of the peak po-
sition to the annotated TSS. A prediction was counted as a true
positive only if the relative distance is smaller than a given dis-
tance resolution (50, 200, and 500 bp, respectively).

Availability

The CoreBoost_HM web interface is available at http://rulai.cshl.
edu/tools/CoreBoost_HM. The training and testing data sets used
in this analysis and the CoreBoost_HM predictions on miRNAs
can be downloaded from this website.
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