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Mental retardation—known more commonly nowadays as intel-
lectual disability—is a severe neurological condition affecting up to 
3% of the general population. As a result of the analysis of familial 
cases and recent advances in clinical genetic testing, great strides 
have been made in our understanding of the genetic etiologies of 
mental retardation. Nonetheless, no treatment is currently clinically 
available to patients suffering from intellectual disability. Several 
animal models have been used in the study of memory and cogni-
tion. Established paradigms in Drosophila have recently captured 
cognitive defects in fly mutants for orthologs of genes involved 
in human intellectual disability. We review here three protocols 
designed to understand the molecular genetic basis of learning and 
memory in Drosophila and the genes identified so far with relation 
to mental retardation. In addition, we explore the mental retarda-
tion genes for which evidence of neuronal dysfunction other than 
memory has been established in Drosophila. Finally, we summarize 
the findings in Drosophila for mental retardation genes for which 
no neuronal information is yet available. All in all, this review illus-
trates the impressive overlap between genes identified in human 
mental retardation and genes involved in physiological learning 
and memory. 

Introduction

Mental retardation: A clinical description. Attempts at studying 
the genetic basis of mental retardation date back from the beginning 
of the 19th century,1 but it is only recently that a massive amount 
of clinical data has informed us about the molecular basis of mental 
retardation (MR also referred to as intellectual disabilities in the 
clinical literature).2 This enormous amount of information was 
compiled by Dr. Victor A. McKusick and is now available freely 
online in the Online Mendelian Inheritance of Man (OMIM). We 
have indicated the OMIM reference when available. The World 
Wide Web address at the moment of this review is: http://www.
ncbi.nlm.nih.gov/sites/entrez?db=omim. Mental retardation affects 

1–3% of the population3-7 and consists of significantly sub-average 
general intellectual functioning accompanied by limitations in 
adaptive functioning in at least two of the following areas: commu-
nication, self care, home living, social/interpersonal skills, use of 
community resources, self-direction, functional academic skills, 
work, leisure, health and safety. The onset must be before the age 
of 18.8,9 Mental retardation is described as an intellectual quotient 
(IQ) of less than 70. The IQ represents the relative performance of 
an individual (composite verbal, non-verbal) compared with the age 
equivalent general population performance (deviation IQ). Based on 
the IQ score Mental retardation can be classified as mild (50–70), 
moderate (35–50) or severe (less than 35). Mild mental retarda-
tion is the most common form. Males are overrepresented with a 
ratio of 1:1.3 to 1:1.9 due to many X-linked cases.10 Most cases are 
diagnosed between the ages of 3 and 9. Various classifications have 
been used in mental retardation.11 In general mental retardation is 
divided between syndromic and non-syndromic. Another classifica-
tion relates to the inheritance pattern in multiple multiplex families: 
autosomal versus X-linked. X-linked mental retardation, also known 
as MRX, is further divided into syndromic, neuromuscular and non-
specific.10,12 

Syndromic mental retardation is diagnosed in a patient when 
mental retardation is associated with dysmorphic or other neuro-
logical features.13 On the other hand, non-syndromic mental 
retardation is diagnosed when no hallmark features are observed in 
association with mental retardation. 

Mental retardation’s associated diseases (co-morbidity) include: 
cerebral palsy, epilepsy, severe hearing impairment or deafness, 
severe vision impairment or blindness, hydrocephalus, autism and 
 psychiatric disorders.5

For many years, research on mental retardation consisted of 
clinical descriptions of the recurrent association of clinical signs and 
symptoms lumped into syndromes. Development of karyotyping 
through microscopic visualization of the chromosomes- allowed the 
linkage of mental retardation and abnormal facial or body appear-
ance (dysmorphic features) in patients to chromosomal defects. 
For example, the trisomy of chromosome 21 in Down syndrome 
patients14,15 represents one of many chromosomal abnormalities 
that can be identified on a routine karyotype analysis. In addition 
to variation in chromosome number, deletions, duplications, trans-
locations and ring chromosomes can be identified by karyotyping. 
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Drosophila is an important tool in understanding the molecular-
genetic basis of mental retardation. First, Drosophila offers the 
possibility of studying the genetic network of a given gene. Second, 
it is well suited for dissection of the differential function of a gene 
during development and adulthood. Third, given the economy of 
scale, Drosophila is the perfect in vivo system in which to study 
pharmacological rescue. Finally, flies can be submitted to various 
learning paradigms (classical, operant conditioning) that can reveal 
task specific requirements for the gene of interest. We will now 
review three paradigms developed in Drosophila to study associative 
learning and memory: olfactory classical conditioning, operant visual 
conditioning and courtship memory. 

Pavlovian olfactory conditioning. Initial observations and concep-
tualizations by psychologists such as Ribot44 and Ebbinghaus45 were 
formalized in the early 20th century with the systematic study of 
animal learning and memory. Learning has traditionally been iden-
tified as the early phase of new information storage. In addition, 
learning will sometimes be used to refer to a very early post acquisi-
tion time point for testing the new acquisition. Information stored 
for longer time or a later time point for testing performance related 
to the acquisition will be referred to as memory.46 Memory can be 
then subdivided between short-term, medium term and long-term 
memory depending on the timing relative to the acquisition. Ivan 
Pavlov,47 in particular, established experimental paradigms to study 
“associative” learning, a change in a behavioral response caused by 
the temporal association of two stimuli. Pavlov’s associative learning 
can be considered an elemental building block of more complex 
forms of “contingency” learning.48,49 In the canonical form of asso-
ciative learning, an animal is presented with a neutral “conditioned 
stimulus” (CS), which itself does not normally elicit a behavioral 
response. When presentation of the CS is paired for several trials with 
an “unconditioned stimulus” (US), which has an inherent reward 
or punishment value and accordingly elicits an “unconditioned 
response” (UR), the CS comes to elicit a response similar to the UR. 
From this basic observation, Pavlov derived the general principle of 
stimulus substitution, which we can now think of as a basic compo-
nent of more complex forms of learning. Another major behavioral 
psychology model for learning was defined as operant conditioning. 
In the operant conditioning model described by Skinner,50 the 
stimulus (S) is followed by a response that is then rewarded or not 
(R), depending on its correspondence to the response desired by the 
observer. This experimental paradigm derives from the Thorndike 
law of effect,51 which attributes the maintenance of a response to the 
effect of that response. 

In Drosophila, Seymour Benzer pioneered the behavioral genetics 
of cognition in Drosophila.52-54 In Benzer’s laboratory at CalTech, 
Quinn et al.55 were the first to show data illustrating that the 
Dipteran, Drosophila melanogaster, was capable of associating odors 
with footshock punishment. They used a pair of odors and subse-
quent reinforcement following one of the odors selectively. Using a 
set of tubes to which the flies had first to walk [they were attracted 
by a light (S)], flies were successively exposed to two odors in two 
different tubes (2 and 3) with footshock associated with one of the 
odors (R) (tube 2). Odor avoidance was then quantified by exposing 
the trained flies to each odor successively in the absence of footshock 
(tubes 4 and 5). Later, this operant odor-shock avoidance task was 
modified into a classical conditioning task by (i) trapping flies into 

Increasing G-Banding resolution allowed identification of smaller 
deletions or duplications (the resolution being approximately 5 to 
10 Mb). Interestingly, karyotype analysis of cells grown in growth 
media deficient in folate revealed the chromosomal “fragility” of the 
X chromosome in patients with Martin-Bell syndrome.16 This is why 
Martin Bell syndrome is now known as Fragile X syndrome.

The next advance was made using fluorescent in situ hybridization 
(FISH). FISH surpassed the resolution of light microscopy and led to 
the identification of microdeletions in several syndromes. This was 
followed by the identification of additional microdeletions in subte-
lomeric regions in several patients with mental retardation.17,18 

More recently, array-based comparative genomic hybridization 
(aCGH) has created a boom in the number of chromosomal aber-
rations discovered.19 Multiple probes consisting of bacterial artificial 
chromosomes (BAC) clones of the human genome spaced by 1–1.4 
megabase (Mb) are used in arrays to compare the relative number 
of copies for each probe in a patient compared to control genomic 
DNA. Targeted aCGH using more probes in regions known for 
human diseases have replaced the randomly distributed probes for 
clinical testing.20,21 Although similar to FISH in resolution, aCGH 
allows for screening of more regions at once by having probes 
covering the entire genome. Variations in gene copy number (loss 
or gain) have been identified in complex cognitive disorders such as 
autism,22-24 schizophrenia25,26 and cases of mental retardation27-32 
where sporadic cases did not allow for traditional linkage-analysis 
based genetics.33,34 In addition to leading to diagnosis in cases in 
which karyotype analysis did not pick up defects, aCGH, with its 
higher resolution, allows better genotype-phenotype correlation 
than the karyotype. Nevertheless, in clinical practice, aCGH will 
frequently identify deletions or duplications that involve more that 
one gene, making causality judgment difficult at first. 

Thus far, mutations identified at the molecular level in human 
patients can be grouped by function: cytoskeleton modification 
(RhoGTPases such as GDI, PAK3, ARHGEF6, OPHN1), protein 
synthesis modulation (TSC1, TSC2, FMR1), chromatin remodeling 
(RPS6KA3, ATRX, CBP), synaptic vesicle formation and dynamics 
(SYN, SLC6A8, NLGN4) and transcription factors (ZNF41, 
ZNF81, ZNF674).2 Importantly, these molecular functions are also 
key pathways in memory formation.

Several etiologies have been identified in mental retardation.5,35,36 
Despite variability in the causative lesion, however, mental retar-
dation is associated with deficits in (i) learning new information, 
(ii) understanding complex information, (iii) memorizing informa-
tion, (iv) transferring information from one context to another, and 
(v) elaborate thinking based on multiple pieces of information. This 
probably explains why several mutations in Drosophila genes related 
to human MR have been reported to cause memory defects37-39 
(Fig. 1).

Drosophila as an animal model of cognitive disorders. Despite 
the neuro-anatomical divergence between flies and humans, the 
molecular mechanisms underlying learning and memory seem to be 
conserved.40,41 An emerging concept is that memory can be used as 
an endophenotype of cognition and its pathological counterpart, MR. 
More to the point, about 87% of the genes known to be involved in 
human mental retardation have orthologs in Drosophila.62 As noted 
by Restifo,41 this correspondence is higher than for other classes of 
genes.42,43
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cAMP pathway. Thus, cAMP signaling clearly appeared to underlie 
 associative60 learning in Drosophila. 

In a subsequent study of these cAMP mutants, Tully and Quinn76 
obtained data that would raise an important therapeutic question: is 
the absolute level of a factor such as cAMP important for learning 
or is the critical factor its variation in relation to activity? They 
observed that despite near normal basal levels of cAMP in dnc ,rut 
double-mutants, the learning deficit of these flies was in fact worse 
than that of single-gene mutants for either dnc or rut.56 This obser-
vation suggested that learning depends on more than the restoration 
of normal levels of cAMP. This finding raises challenging therapeutic 
concerns, as drugs that restore normal levels of a given factor may not 
rescue the activity-dependent variation. 

Production of cAMP depends on G protein signaling.61,62 In 
Drosophila, recent studies have shown learning in response to 
footshock (punishment) and sucrose (reward) stimuli during clas-
sical conditioning to be mediated by dopamine and octopamine, 
respectively.63 Both neurotransmitters bind to G-protein coupled 
receptors. When ligand binds the receptor, GTP-bound Gα protein 
is free to interact with AC. This interaction is then terminated when 
the intrinsic GTPase activity of the Gα protein hydrolyzes GTP to 
GDP. G proteins are made of three subunits (α, β, γ), and the α 

the training chamber and (ii) presenting both odors simultaneously 
to trained flies in a T-maze.56 Learning retention measured imme-
diately after one of these Pavlovian training sessions is robust. With 
repetitive training, flies show memory retention lasting more than a 
week (Fig. 2).

The development of a learning/memory task in Drosophila 
brought to bear the power of fly genetics to the discovery of genes 
involved in cognitive plasticity. It also showed that as psychologists 
could divide new acquisition storage into successive learning and 
memory phases, geneticists of memory could identify genes required 
for each of these phases from learning to long-term memory. The 
first two genes discovered as single-gene mutants, dunce57 and 
rutabaga, both participate in the cyclic adenosine monophosphate 
(cAMP) intracellular signaling pathway (Fig. 3) and were required 
for learning. dunce (dnc) encodes cAMP-specific phosphodiesterase 
(PDE), an enzyme that is responsible for the degradation of cAMP,58 
while rutabaga (rut) encodes Ca2+-Calmodulin sensitive adenylyl 
cyclase (AC), an enzyme that is responsible for the synthesis of 
cAMP.59,60 Because these single-gene mutants were randomly gener-
ated and independently screened for defects in the same behavioral 
task (olfactory learning), these two “hits” in the same biochem-
ical pathway most certainly underlined the importance of the 

Figure 1. Memory genes identified in model systems overlap with genes identified in human mental retardation. Protein synthesis dysregulation, abnormal 
gene regulation and spine structure anomalies are commonly found in mental retardation. Interestingly, several of the genes involved in the signaling pathway 
affecting these phenotypes are responsible for learning or memory defects.
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Further dissection of the genetics of learning and memory in 
Drosophila uncovered even more conservation with Kandel’s work 
in Aplysia (Fig. 3). In addition, behavioral genetics in Drosophila 
illustrated that moving downstream in the cAMP pathway correlated 
with performance defects downstream of learning: memory. The 
cAMP-dependent protein kinase (PKA) was shown to be involved 
in Drosophila olfactory medium-term memory. PKA is a tetramer, 
composed of two regulatory subunits and two catalytic subunits. In 
the absence of cAMP, the regulatory dimer binds the catalytic dimer 
and inhibits its kinase activity. In the presence of cAMP, the regula-
tory subunits fail to bind the catalytic dimer and thus, activate the 
kinase. Drain et al.72 overexpressed an inducible transgenic construct 
encoding a mutant form of the regulatory subunit, which no longer 
was able to bind cAMP. Consequently, this transgene had a domi-
nant-negative effect on PKA activity. When expression was induced 
in adult flies, a defect in memory resulted. 

An important question remained, is there a link between the 
cAMP pathway and the gene transcription known to be required 
for the formation of long-term memory? Transcription inhibitors 
had been shown to disrupt memory in Aplysia73 and mammals.74 
Since transcription factors (TFs) are key regulators of this process, 
Yin et al.90 embarked on identifying TFs required for long-term 
memory. Drosophila could be trained in a single training session 
or could receive multiple training sessions. Tully et al.75 showed 
that ten training sessions separated by 15 minutes rest intervals 
(spaced training) led to a non-decaying long-term memory. In the 
other hand, the same amount of training but without rest intervals 
(massed training) would lead to a memory that decayed completely 
after four days. Guided by early studies in Drosophila, which used 
mutant screens to identify the learning mutants dunce (PDE) and 
rutabaga (AC), by subsequent reverse-genetics methods used to 
dissect other components of the cAMP signaling pathway, and by 
the behavior paradigm for spaced and massed training, Yin et al.76 
disrupted the cAMP response element binding gene (creb) and 
confirmed the hypothesis that long-term memory formation would 
specifically be blocked. CREB is a transcription factor that binds as a 
dimer to a specific DNA sequence (TGACGTCA) known as a cAMP 
response element (CRE) that is present in the promoter or enhancer 
regions of CREB-regulated genes. Several genes with CRE sites are 
involved in neuronal plasticity. CREB has also been shown to be 
required in mammals. Indeed, CREB inhibition impairs memory in 
mice,77-79 and injection of antisense oligonucleotides to CREB into 
the hippocampus or amygdala of normal rats also produces memory 
deficits.78 More recently, Wagatsuma et al.80 showed that CREB was 
required presynaptically for synaptic enhancement. 

Impey et al.81 showed that CREB-dependent gene transcription 
(as reported by a CRE-β-galactosidase transgene) was induced after 
protocols that yielded late long term potentiation (LTP) but not 
early LTP. LTP (Fig. 4) is a cellular model of learning and memory. 
Bliss and Lomo82 initially described facilitation of synaptic trans-
mission in the perforant pathway of the dendate gyrus (a region of 
the hippocampus) after a high frequency tetanic stimulation. LTP 
protocols have now been established in neurons of multiple regions 
of the brain. LTP is divided by N-methyl-D-aspartic acid (NMDA) 
receptor dependence. In the CA1 region of the hippocampus, long-
term potentiation was discovered to require NMDA receptors.83 
Recently Xia et al.84 demonstrated a role for NDMA receptors 

subunit can either be stimulatory (Gs) or inhibitory (Gi). Connolly 
et al.64 showed that constitutively active Gs disrupted Drosophila 
olfactory learning.

The importance of the cAMP pathway in learning was reaf-
firmed by the conservation of its key molecules across different 
species. Indeed, using a sensitization procedure in Aplysia for the 
gill withdrawal reflex in which an electric shock to the tail provokes 
a withdrawal of the gill, Kandel and coworkers65,66 had uncovered 
the role of the cAMP pathway in learning and memory. Castellucci 
et al.67,68 and Kupfermann et al.85 established a minimal monosyn-
aptic neural circuitry involved in sensitization of the gill withdrawal 
reflex. This allowed Brunelli et al.69 to show that this simple form 
of learning produced an increase of the second messenger cAMP, 
which then led to a cAMP-dependent protein kinase A (PKA)-
dependent presynaptic enhancement of neurotransmitter release at 
this synapse. The mechanism of increased neurotransmitter release 
was later shown to depend on the serotonin sensitive (S-type) K+ 
channel.70 After changes in such potassium channel currents, a 
given stimulus produced a stronger calcium influx in the presynaptic 
(sensory) neuron, thereby increasing the release probabilities of the 
neurotransmitter.71 

Figure 2. Classical olfactory conditioning leads to long-term memory in 
Drosophila. (A) Drosophila can be trained to remember the association 
between an odor (CS) and a footshock (US). (B) Repeated training (10 
training sessions) can be performed without rest intervals (massed training) 
or with 15-minute rest intervals between training sessions (spaced training). 
(C) Performance index curve after a single training session () spaced 
training () or massed training (). Single training leads to a memory that 
decays rapidly but persists at low levels for up to four days. Repeated train-
ing without rest intervals leads to a higher level of performance, but also lasts 
approximately four days. In contrast, the same amount of repeated training 
separated by rest intervals leads to a memory lasting for at least one week 
at a higher performance level (Modified after Tully et al.75).
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Moreover, LTP-like changes in CA1 neurons of 
the hippocampus were observed following one-trial 
avoidance learning in rats.90 Further studies will 
be required to localize LTP or LTD like process to 
learning and memory in Drosophila.

Operant visual conditioning. Operant condi-
tioning is another prominent model for human 
learning and intelligence. Skinner50 conceptualized 
this learning paradigm where an action (CS) is 
followed by a consequence (US), which itself serves 
as a positive or negative reinforcement. In flies, visual 
operant learning was established by Gotz91 and 
then optimized by Heisenberg.92,93 Tethered flies 
are placed in the center of a cylindrical arena where 
visual information is displayed.94 Flies are trained 
to respond to the visual cues that are displayed. The 
fly wing movement reflects the response (CS) and is 
transmitted via the motor control unit that, in turn, 
leads to the rotation of the arena. Reinforcement 
(US) is produced by exposing the fly to the noxious 
heat generated by a light beam directed to them. 

Development of multiple behavior paradigms 
revealed that, as in humans, not all learning/memory 
genes are required for all forms of leaning/memory. 
First, Gong et al.95 showed that the olfactory learning 
mutant dnc has normal operant visual learning. 
Second, task specialization is also reflected at the 
neurotransmitter level using another operant condi-
tioning paradigm. Operant conditioning has also 
been developing with reference to spatial localization 
utilizing a hot chamber and is known as operant place 
learning. Sitaraman et al.96 showed that serotonin is 
required for operant place learning whereas dopamine 
is not. On the other hand Schwaerzel et al.63 docu-
mented that aversive olfactory conditioning depends 
on dopamine. Third, this task specificity extends 

beyond molecules to anatomical circuits. Indeed, it was shown early on 
that the Drosophila central complex, a circular structure located in the 
middle of the fly brain, is required for visual learning.97,98 In olfactory 
classical conditioning, most reports have identified another structure 
called the mushroom body as the site for memory.99-101 An exception 
is the recent report by Wu et al,99 that showed that NMDA signaling 
in the central complex is involved in olfactory learning. Overall, these 
data illustrate that in the fly as well as in humans, different forms of 
memory may require different genes and neuroanatomical structures. 

Courtship memory. Finally, some researchers have aimed to 
train flies to modify an innate behavior: for example, courtship. 
Drosophila displays a stereotyped behavior during courtship.102-104 
Siegel and Hall105 took advantage of this tractable behavior to study 
courtship conditioning. They showed that a male exposed to a female 
will pursue her to engage in a mating song behavior. Once mated, a 
female will reject the male. Typically, the male will be exposed to a 
mated female for 1 hour (training). During this time, he will progres-
sively decrease the amount of time spent in courtship, resulting 
in suppression of courtship behavior in the last 10 minutes of the 
training compared to the first 10 minutes (identified as learning). 
Retention of this suppression can be tested when, after a given rest 

in Drosophila memory, again emphasizing the evolutionarily 
conservation in molecular mechanisms of associative learning. 
NMDA receptors are composed of an obligatory NR1 subunit and 
a variable NR2 subunit (NR2A-D).85 Variation in NR2 subunits 
and subsequently the α-amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate (AMPA) receptor is associated with potentiation.86,87 
An NMDA receptor-independent form of LTP can be induced in 
the mossy fiber-CA3 region by glutamatergic activation of kainate 
receptors. This form of LTP is cAMP-dependent and appears to be 
 presynaptic.

The converse phenomenon is known as long-term depression 
(LTD) (Fig. 4). LTD can be triggered by low frequency stimulation or 
chemically by metabotropic glutamate receptor agonists.103 All forms 
of LTD seem to involve decreased postsynaptic AMPA signaling.88,89 
Long-term synaptic depression (LTD) has been associated with loss 
of AMPA receptors via endocytosis. The process is associated with 
clathrin-coated vesicles and is dependent on dynamin.

The relationship between LTP, LTD and the changes in the brains 
of animals involved in behavior paradigms such as conditioning in 
Drosophila remains incomplete. Several molecules, as well as tran-
scription and protein synthesis, seem to be required in both models. 

Figure 3. Learning and short-term memory depend on the cAMP pathway. After the activation 
of a G protein coupled receptor by a ligand (L), adenylyl cyclase (AC) synthesizes cAMP, 
which in turn is hydrolyzed by phosphodiesterase (PDE). The Drosophila mutants rutabaga 
(AC) and dunce (PDE) were among the first mutants isolated with heritable defects in learn-
ing/memory. Increased levels of cAMP lead to the activation of Protein Kinase A (PKA). After 
dissociation from its regulatory subunit, the catalytic subunit phosphorylates many targets: 
(1) potassium channels, which regulate neural activity during short-term memory phases; and 
(2) the cyclic AMP responsive element binding protein (CREB) transcription factor, which regu-
lates the expression of other genes during long-term memory formation.
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Genes Identified in Human Mental Retardation and Shown  
to have a Drosophila Learning or Memory Phenotype

Albright hereditary osteodystrophy (Gs protein). Connolly et 
al.64 used Drosophila genetics to test whether G protein-mediated 
signaling is involved in Pavlovian olfactory learning. They generated 
transgenic flies carrying a mutant Gs subunit that could no longer 
hydrolyze GTP to GDP. Thus, this mutant G protein would irre-
versibly bind to adenylate cyclase (AC), rendering it constitutively 
active. Associative learning was completely abolished in these trans-
genic flies. In humans, interestingly, an imprinting defect for a gene 
encoding Gs is known to cause Albright hereditary osteodystrophy 
(OMIM #103580).114 This syndrome is characterized by short 
stature, obesity, round faces, subcutaneous ossifications, brachydac-
tyly, other skeletal anomalies and mental retardation.115

Mental retardation autosomal recessive-MRT1 (Neurotrypsin). 
Mutations in the human PRSS12 gene, which encodes the protéase 
Neurotrypsin, lead to non-syndromic autosomal recessive mental 
retardation (OMIM #606709).116 Didelot et al.37 identified long-
term memory defects in flies with reduced expression of tequila, 
the Drosophila ortholog of Neurotrypsin. Importantly, this was the 

interval, the same male is exposed to another female (memory). The 
degree of courtship suppression is then measured.105-107 There are 
multiple mechanisms involved in courtship conditioning.106,108-110

As for operant conditioning, courtship conditioning widens our 
understanding of the neuronal basis of learning and memory. Kane 
et al.111 showed that males mutant for pkc did not decrease their 
courtship during the training period with a mated female, but did 
perform similarly to controls 10 minutes and 2 hours after training. 
In other words, they presented evidence of a courtship-learning 
deficit, but appeared to have normal memory, a phenomenon rarely 
seen in olfactory conditioning. Also, important plasticity molecules 
involved in LTP such as CAMKII and ORB, have been identified 
thus far as involved in courtship memory only. The inhibition of 
calcium/calmodulin-dependent protein kinase II (CamKII) using 
heat-shock induction of a peptide inhibitor leads to the disruption of 
courtship conditioning.112 More recently Keleman et al.113 showed 
a defect in courtship memory in orb2 mutants, the Drosophila cyto-
plasmic polyadenylation element binding protein (CPEB) homolog. 
In summary, even in a single animal, utilization of multiple behavior 
paradigms is likely to help form a more comprehensive view of the 
ensemble of genes responsible for learning and memory.

Figure 4. Long-term potentiation and depression are caused by differential signaling in response to different levels of elevated calcium. (A) Long-term depres-
sion is induced after a mild intracellular rise in Calcium in response to NMDA receptor activation. This minimal entry of calcium usually results from low-
frequency stimulation of the synapse. A reduction in the number of AMPA receptors containing the subunits 1 and 3 is then observed, causing a decrease 
in synaptic strength. (B) In contrast, a high-frequency stimulation will lead to massive calcium entry through NMDA receptors leading to de novo AMPA 
receptor insertion at the synapse. The addition of these new receptors will cause a net increase in synaptic strength.
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reinforces the link between physiological memory genes and mental 
retardation genes. It also established for the first time a role at the 
cognitive level for the interaction between staufen and dFmr1. This 
observation was also supported by the previous co-localization of 
Staufen and dFmr1 observed in subcellular structures involved in 
mRNA modulation known as processing bodies (p-bodies).154 

Consistent with the idea that RNA processing, and RNA inter-
ference in particular, is involved in memory, FMRP was shown 
biochemically to be part of the RNA-induced silencing complex 
(RISC)155 and we found that dFMRP was acutely required in long-
term memory.38 In addition, Drosophila armitage mutants were 
shown to be defective in one-day memory after olfactory spaced 
training.156 Armitage codes for a silencing defective 3 (SDE-3) class 
RNA helicase responsible for the unwinding of double stranded 
RNA (dsRNA) and its subsequent loading onto RISC.157 

RNA interference can be further divided in several pathways. We 
sought to identify modifiers of dFmr1 among known RNA interfer-
ence molecules. Jin et al.158 had demonstrated a genetic interaction 
between dFmr1 and argonaute 1 (AGO1), an important molecule for 
RNA interference. Indeed, flies heterozygous mutant for dFmr1 and 
AGO1 displayed abnormal morphology of neuro-muscular junctions. 
We identified an interaction between ago1 and dFmr1 in long-term 
memory specifically.38 In addition, we rescued the memory deficit 
observed in ago1/+, dFmr1/+ double heterozygous mutants using 
protein synthesis inhibitors such as cycloheximide and puromycin.38 
Taken together, these results suggest that dFmr1 mutants may be 
defective in ago1-dependent translational control. These mutants 
would have excessive baseline general protein synthesis that could be 
occluding the normal activity-dependent protein synthesis required for 
memory. A similar rescue of memory using another protein synthesis 
inhibitor, rapamycin, was obtained in a mouse model of tuberous 
sclerosis of Bourneville, in which there is also an excess of protein 
synthesis.159 Since both Fragile X and Tuberous sclerosis syndrome 
also cause autism, these findings suggests that social  cognition and 
autism may be related to protein synthesis control.160

Kelley et al.161 expanded on previous reports of altered cAMP 
levels in Fragile X patient cells162,163 by showing that the induction 
of cAMP is reduced in humans, mice and flies defective in Fragile 
X. Another connection with early research on learning and memory 
was the observation that the circadian rhythm disruption may be 
linked to abnormal CREB level fluctuations in Fragile X Drosophila 
mutants.138 

Neurofibromatosis type 1 (NF1). Neurofibromatosis type 1 
(OMIM #162200) is clinically characterized by multiple tumors 
(optic neuroma, schanomas, plexiform neurofibroma), skin anoma-
lies (café au lait spots, axilary freckling), increased head size 
(macrocephaly) and learning disability.164 At the molecular level, the 
Neurofibromin protein contains a Ras-specific guanosine triphos-
phatase-activating (Ras-GAP) domain. GAP proteins enhance the 
intrinsic hydrolytic activity of Ras proteins, enhancing the GTP 
(active) to GDP (inactive) transition. Persistent activation of Ras has 
been suggested as an explanation for multiple tumors observed in 
NF1 patients. 

nf1 mutant flies have decreased body size and deficits in Pavlovian 
olfactory learning.165 Interaction between NF1 and the cAMP 
pathway165 is suggested by rescue of nf1 mutant body size and 
learning defects with PKA overexpression. In addition, mutation 

first demonstration that a gene involved in human mental retarda-
tion has an acute role in memory formation. Furthermore, Didelot 
et al. were able to localize the requirement for tequila expression to 
the mushroom bodies. The role of proteases in neuronal migration, 
axon outgrowth117,118 and synapse elimination has been reviewed by 
Molinari et al.119 

Fragile X mental retardation syndrome (Fmr1). Several mental 
retardation conditions due to single gene defects have been identified 
to date. Fragile X mental retardation syndrome (OMIM # 309550) 
is the most common cause of single gene mental retardation in 
males (1/4000) and is a leading cause in females (1/8000). Mental 
retardation (MR) is moderate to severe.120,121 Fragile X syndrome is 
associated with autism and epilepsy. Initially localized to the X chro-
mosome based on karyotype defects,122 the precise molecular lesion 
was later linked to a trinucleotide (CGG) repeat expansion above 
200.123,124 Expansion in the 5' untranslated region (UTR) of Fmr1 
leads to DNA methylation and lack of FMR protein (FMRP) expres-
sion.125 In some cases, however, deletions126,127 and even point 
mutation128 are responsible for Fragile X syndrome. Age-dependent 
changes in the FMR phenotype and developmental effects have also 
been observed.129,130 Although caused by a single-gene mutation, 
understanding the cognitive phenotype in Fragile X syndrome is 
complicated because of the multiple protein-protein and protein-
mRNA interactions of FMRP.131-133 Biochemically, FMRP has been 
shown to be involved in translational control.134,135 

Drosophila has a homolog of Fmr1 known as dFmr1.136 At the 
protein level, conservation of important domains varies between 
25 and 75%.137 Initial studies of Fragile X mutant flies identified 
a defect in circadian rhythm, a debilitating symptom commonly 
found in patients with Fragile X.138,139 The overlap in neuronal 
dendritic spine abnormalities is yet another example of simi-
larities between flies132,140 and humans in the Fragile X mutant 
phenotype.141-143 Fragile X patients144,145 and FMR1 knock-out 
(KO) mice display spatial learning deficits.146-148 Also, enhanced 
hippocampal long-term depression (LTD)149 and defective cortical 
long-term potentiation (LTP)150,151 are found in FMR KO mice.

In Drosophila McBride et al.152 have shown that the Drosophila 
3-hour courtship conditioning memory is impaired in dFmr1 
mutants. Moreover, they demonstrated a pharmacological rescue 
of the phenotype using the metabotropic glutamate receptor 5 
(mGluR5)-specific antagonist 2-methyl-6-phenylethynyl-pyridine 
(MPEP) and Lithium. We have shown that the defect in long-
term memory (assessed at one day) is specific to memory formed 
after spaced training.38 Indeed, 1-day memory performance after 
massed training was normal in dFmr1 mutants. Spaced training 
induces protein synthesis-dependent memory in addition to a 
protein synthesis-independent memory, whereas massed training 
involves only protein synthesis-independent memory.75 We there-
fore reasoned that a disruption in the control of protein synthesis 
in dFmr1 mutants was causing a negative impact on memory and 
rescued it with use of protein synthesis inhibitors such as cyclo-
heximide and puromycin.38 We also demonstrated an interaction 
between FMRP and staufen in long-term memory measured at 1 
day. Staufen was initially identified in translational control in the 
fly oocyte. As staufen was previously identified in our laboratory in 
a screen for genes required for long-term memory formation,153 the 
genetic interaction between dFmr1 and staufen in LTM behavior 
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among these are PKA, CaMKIV and MAPK-activated ribosomal 
S6 kinase (Rsk). In humans, the mutation of Rsk 2 is known to 
cause Coffin-Lowry syndrome (OMIM#303600). This syndrome 
is characterized by mental retardation, a peculiar pugilistic nose, 
large ears, tapered fingers, drumstick terminal phalanges on x-ray 
and pectus carinatum. Four RSK isoforms are present in humans, 
whereas Drosophila has only one. Putz et al.182 used visual operant 
and classical olfactory conditioning to identify the requirement for 
Rsk in each paradigm. They showed that Drosophila null for rsk were 
deficient in olfactory learning, whereas rsk P-element derived hypo-
morphic mutants were defective in visual learning. The N-terminal 
region of the protein was required in both paradigms. 

C.A.D.A.S.I.L. (Notch). Mutations in Notch 3 have been identi-
fied in cerebral arteriopathy, autosomal dominant with subcortical 
infarct and leukodystrophy (C.A.D.A.S.I.L.) (OMIM #125310). 
CADASIL is clinically characterized by recurrent migraine and 
strokes, progressive focal neurological signs (pseudobulbar signs), 
seizures and dementia. Notch is another “developmental gene” 
previously known to be involved in cellular differentiation during 
neuronal development that serves both as a transmembrane receptor 
and a transcription factor. It has been documented that Notch in 
Drosophila has a role in long-term memory formation.183 Presente 
et al.183 used a temperature-sensitive allele to limit the possible 
contribution of developmental defects to the phenotype observed. 
Similarly, Costa et al.184 showed that Notch mutant mice display 
memory defects in a water maze task. Mice expressing a Notch anti-
sense transgene exhibit normal development but have a decreased 
level of LTP.185 

Notch is also connected with dementia by its interaction with its 
ligands Delta, Serrate or Lag-2 (DSL). Notch is known to be cleaved 
by a furin-like convertase and to insert in the cellular membrane. 
Binding with DSL then triggers a gamma secretase-dependent 
cleavage, thereby releasing an intracellular fragment that then trans-
locates to the nucleus. Presenilin, for which mutations have been 
identified in some patients with Alzheimer’s disease, is a component 
of gamma-secretase.186 Furthermore, mutations in presenilin were 
shown to abolish Notch signaling by blocking its access to the 
nucleus.187

MRX58 (Integrin). Mutations in transmembrane 4 superfamily 
2 (TM4SF2) have been linked to X-linked mental retardation 58 
(MRX58) (OMIM # 300096), which was initially reported in 
an Austrian family.188 A behavioral screen for long-term memory 
mutants in our laboratory identified an allele of a tetraspanin gene 
(TSp42Ef).153 TM4SF2 is a member of the Tetraspanin family of 
genes, which is involved in the β-1-integrin pathway. β-1-integrins 
are usually localized presynatically and join α-integrin that are 
localized post-synaptically. Alpha-integrin mutants have impaired 
short-term memory in Drosophila.189 

CRASH syndrome (L1-CAM). L1 cell adhesion molecule 
(L1-CAM) is involved in mammalian memory formation.190,191 L1 
was originally identified in patients with X-linked hydrocephalus. 
Further investigation of these patients has revealed a more complex 
affliction known as CRASH syndrome (OMIM #308840). CRASH 
disease stands for corpus callosum hypoplasia, mental retardation, 
adducted thumbs, spastic paraplegia, and hydrocephalus.164

Neuroglian is the Drosophila homolog of L1-CAM. Mutations 
in neuroglian (nrg) were identified in a screen for learning and 

of nf1 blocks the mammalian pituitary adenylate cyclase activating 
peptide (PACAP)-induced enhancement of potassium current at the 
larval NMJ.166 PACAP stimulates cAMP synthesis via two different 
pathways: the rutabaga AC and the Ras-Raf pathway. Moreover, 
Quinn et al.167 identified a PACAP homolog mutant, amnesiac, 
with normal learning but defective medium-term memory.168,169 
Further biochemical dissection of the NF1 protein showed that a 
region outside of the Ras-GAP domain is responsible for the growth 
defect present in NF1 mutants.170 Recently, Ho showed that the 
one-day memory defect is associated with the altered NF1-regulated 
Ras activity and not cAMP levels.171 In summary, NF1 defects in 
learning and memory seem to be linked to dysfunction in different 
signaling pathway by different domains within the NF1 protein.

Angelman syndrome (UBE3A). Angelman syndrome (OMIM 
#105830) was described in 1965 in children with severe mental 
retardation, fits of laughter, epilepsy, ataxia and specific dysmorphic 
features. A special behavioral characteristic was the appearance of 
a happy demeanor, which led to them being described as “happy 
puppet”. The patient also presents microcephaly, especially when 
the disease is related to a deletion in the 15q11.2-q13 region. 
Patients lack the maternal active copy of the ubiquitin ligase E3A. 
UBE3A is a type of E3 ubiquitin-protein ligase characterized by 
a HECT (homologous E6-AP carboxyl terminus) domain. The 
HECT domain is required to transfer ubiquitin to proteins targeted 
for degradation via the ubiquitin-proteosome pathway.172 Mice with 
maternal inactivation of the Ube3a genes present impaired long-term 
potentiation and a deficit in context-dependent fear conditioning 
one day after training.173 In addition to UBE3A, the ubiquitin 
proteosome pathway has been linked to memory in the case of 
proteosome-dependent degradation of Armitage (a protein required 
for olfactory memory).156 

We observed that the Drosophila dube3a mutants showed a 
significant defect in one-day performance after spaced training when 
compared with appropriate genetic controls.39 One-day memory after 
massed training was similar to controls. In addition to supporting a 
role in long-term memory as shown previously in mice,173 the specific 
impairment of memory after spaced training (which is transcription 
and translation-dependent75) in dube3a mutant flies suggests that 
the role of UbeE3A in cognition could be related to transcriptional 
regulation174 and/or protein degradation.175

Periventricular nodular heterotopia (Filamin A). Filamin A 
mutations have been found in patients with periventricular nodular 
heterotopia (OMIM #300017), and these patients suffer from cogni-
tive dysfunction and epilepsy.176,177 The Filamin A gene is involved 
in actin cytoskeleton remodeling.178,179 Filamin A is expressed in 
neurites of embryonic rat hippocampal neurons.176 Disruption of 
Filamin A impairs neuronal migration, probably because ligand 
binding no longer induces actin reorganization.176,180 Drosophila’s 
ortholog of Filamin A is cheerio. A behavioral screen in our labora-
tory identified joy, a mutant which carries a P-element insertion 
within cheerio.153 Joy has normal immediate learning but is defective 
in one-day memory after spaced training. It remains unclear to which 
extent this phenotype is developmentally regulated. 

Coffin-Lowry syndrome (RSKII). CREB is thought to be 
constitutively bound to DNA but inactive until phosphorylated. 
Phosphorylation at serine 133 promotes transcription.181 Several 
kinases are known to target serine 133 of CREB for phosphorylation, 
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(OMIM #236670) and limb girdle muscular dystrophy type 2K 
(OMIM #609308).209 Walker-Warburg is characterized by mental 
retardation in addition to cobblestone lissencephaly, congenital 
muscular dystrophy, cataracts and other anomalies.210 Limb-girdle 
muscular dystrophy 2K is associated with mild proximal weakness 
starting at an early age, mild calves or thigh pseudohypertrophy, 
elevated CK, microcephaly, and mental retardation.211 The location 
of the mutation within the gene influences the phenotype.212

The Drosophila ortholog of POMT1 is encoded by rotated 
abdomen (rt). Drosophila mutants are viable but present a clockwise 
rotation of the abdomen, which causes mating defects.213 Recently, 
the Drosophila rt mutation was identified in a screen for synaptic 
mutants in Drosophila.224 The mutants displayed decreased neuro-
muscular synaptic release probability and changes in glutamate 
receptor subunit composition. Indeed, DGluRIIA is absent and the 
levels of DGluRIIB are decreased in flies containing a P-element 
insertion within rt. The decreased probability of release seems to be 
due to a defect in the glycosylation of Dystroglycan.

Down syndrome (SIM2). As noted above, trisomy of chromo-
some 21 leads to Down syndrome (OMIM #190685), which is 
characterized by mental retardation and dysmorphic features. SIM2 
is one of the genes in a critical region of chromosome 21 for Down 
syndrome.210 The ortholog of SIM2 is named Single-minded (Sim) 
in Drosophila. Sim is involved in neurogenesis and midline cell fate 
determination.215 Sim is a transcription factor that is part of a family 
that contains a domain similar to the basic helix-loop-helix (bHLH) 
motif. Another member of this family is the circadian rhythm protein 
Period.216 Sim activates midline gene transcription 217 while repressing 
the lateral gene expression.218,219 After heterodimerization with Tango, 
Sim migrates to the nucleus where it binds the CNS-Midline Element 
sequence, which leads to hedgehog transcription.220 The role of Sim 
is not limited to the brain, it is also required in eye development.221 
Locomotor deficits have been observed in sim mutants. Interestingly, 
the mutants can only walk in circles.222 This behavioral shortcoming 
is attributed to a defect in the central complex.223,224

Down syndrome (Dscam). Another gene previously identified as 
present in three copies in Down syndrome patients with congenital 
heart disease is Dscam.225 Dscam is a member of the immunoglobulin 
superfamily and constitutes a new class of neural cell adhesion mole-
cules.226 The fly ortholog was identified227 and shown to be able to 
generate multiple isoforms by alternative splicing. Hattori et al.228 
engineered a Dscam gene that could not be alternatively spliced and 
therefore produced a single isoform. They observed that the embry-
onic ventral cord wiring was severely disrupted. Also, they showed 
abnormal crossing of the B-lobe of the mushroom body across the 
brain midline. 

α-thalassemia/mental retardation syndrome (XNP/ATRX). 
A mutation in the XNP/ATRX gene causes mental retardation 
syndromes associated with facial dysmophic features, urogenital 
defects and α-thalassemia (OMIM #301040).239 XNP/ATRX encodes 
an SNF2 family zinc-finger ATPase/helicase protein.240 It has been 
shown to be involved in DNA methylation,240 chromatin remod-
eling,241 transcription,242 the cell cycle and apoptosis. 

dATR-X is the Drosophila homolog of the disease gene causing 
α-thalassemia/mental retardation X-linked.232-238 Sun et al.249 
 identified dATRX as an enhancer of jing in axon scaffolding forma-
tion by glia cells. Lee et al.240 isolated another Drosophila homolog 

locomotor activity.192,193 De Belle and Heisenberg showed that nrg 
mutants, referred to as central brain deranged, had neuroanatomical 
defects in the central complex. Liu et al. showed that short-term 
visual memory was defective in nrg mutants.194 Mutants for nrg849 
have decreased microtubules at the active zone of giant neurons, 
resulting in an abnormal synaptic terminal morphology. In addition 
to these structural defects, these mutants also display functional 
defects in synaptic responses. 

Down syndrome (DYRK1A). Trisomy of chromosome 21 leads 
to Down syndrome (OMIM #190685), which is characterized by 
mental retardation and dysmorphic features. Down syndrome is 
the most common cause of mental retardation.195 Most patients 
(90–95%) become fully trisomic because of a non-disjunction in 
meiosis of chromosome 21. Some patients (2–4%) will have mosa-
icism for trisomy 21. Since chromosome 21 contains an estimated 
225 genes, it is complicated to draw genotype-phenotype correla-
tions.196 Nonetheless, some patients presenting with Down syndrome 
have partial chromosome 21 trisomy by inheriting translocations 
(2–4%).197 This partial trisomy has allowed the definition of a “critical 
region”. The dual-specificity tyrosine-phosphorylated and regulated 
kinase 1A (DYRK1A) is encoded by a gene located in the critical 
region of chromosome 21 for Down syndrome (OMIM #190685).198 
DYRK1A phosphorylates multiple targets: signal transducer and 
activator of transcription 3 (STAT3), the ε subunit of eukaryotic 
initiation factor 2B (eIF2Bε), Tau, forkhead family transcription 
factor (FKHR), dynamin, glycogen synthase and cyclin L2.199

The Drosophila ortholog of DYRK1A is known as minibrain gene 
(mnb).200 Heisenberg has shown that defects in mnb lead to olfactory 
learning defects but preservation of learning of color discrimination 
or visual based operant learning.201 mnb is involved in postembryonic 
neurogenesis and mutations are associated with an abnormal spacing 
of neuroblasts.202 This results in reduced optic lobe and central brain 
hemisphere size. These results suggest a role for minibrain in cogni-
tion but more work is required to link an increase in DYRK1A copy 
number to the cognitive symptoms in Down syndrome. 

Epilepsy, X-linked, with variable learning disabilities  
and behavior disorders (Synapsin). A mutation in Synapsin was 
identified in a family with epilepsy and learning disabilities (OMIM* 
313440).203 Synapsin enhances the GTPase activity of Rab3a and 
Rab3a recruitment to the synaptic vesicle membrane.204,205 In 
Drosophila synapsin mutants, Godenschwege et al.206 showed defects 
in learning and memory and faster habituation in the olfactory jump 
response. 

Mice mutant for Synapsin 1 have delayed synapse formation.207 
Chin et al.208 also demonstrated abnormal synaptic vesicle clustering 
in these mice. In addition to these developmental abnormalities, 
they identified abnormal recovery after high frequency stimulation 
in synapsin adult mice.

Genes Identified in Human Mental Retardation and Shown  
to have Neuronal Phenotype Other than Memory  
in Drosophila

In this section, we review genes involved in human mental 
retardation but for which we could not identify in the literature a 
cognitive phenotype.

Walker-Warburg syndrome (POMT1). Protein-O-mannosyl 
transferase 1 (POMT1) is involved in Walker-Warburg syndrome 
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pathway, phosphodiesterase inhibitors ameliorated this long-term 
memory defect, presumably by increasing cAMP levels and CREB 
phosphorylation after training. Importantly, this outcome in the 
mouse model of RTS suggests that (i) some forms of mental retar-
dation result from functional (biochemical) rather than structural 
(developmental) deficits in brain function, and (ii) the former will 
respond to traditional drug therapy.253 The role of CBP has not 
been studied for memory in Drosophila, but Jung et al.254 recently 
showed that CBP mutant flies experience an increase in CAG repeat 
instability. In addition, CBP has been shown to regulate the hedgehog 
pathway.255 Mutations in Sonic hedgehog have been identified in 
patients with holoprosencephaly,256,257 a cerebral malformation 
causing severe mental retardation. It remains unclear if the cognitive 
defect is solely due to the developmental cerebral malformation.

Conclusion

We have reviewed several single gene human mental retardation 
disorders for which mutations in the Drosophila ortholog result 
in deficient learning and long-term memory. We have also shown 
that synaptic dysfunction is present in Drosophila mutants for 
genes involved in human mental retardation. This reinforces the 
notion that, although divergent from a neuroanatomic perspective, 
flies and humans have conserved molecular pathways for plasticity, 
memory and cognition. It also supports the idea of using Drosophila 
as a screening tool for studying genetic interactions, determining 
spatio-temporal requirements for a given gene and identifying 
pharmacological agents to treat intellectual disabilities. The next 
challenge will be to understand the genetic network in which a given 
gene is operating in vivo for cognitive processes and to treat intel-
lectual disabilities using a multi-target approach that minimizes the 
risk of side effects or paradoxical responses. 
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