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Abstract

Next-generation sequencing (NGS) technologies have matured considerably since their introduction and a focus has been
placed on developing sophisticated analytical tools to deal with the amassing volumes of data. Chromatin
immunoprecipitation sequencing (ChIP-seq), a major application of NGS, is a widely adopted technique for examining
protein-DNA interactions and is commonly used to investigate epigenetic signatures of diffuse histone marks. These
datasets have notoriously high variance and subtle levels of enrichment across large expanses, making them exceedingly
difficult to define. Windows-based, heuristic models and finite-state hidden Markov models (HMMs) have been used with
some success in analyzing ChIP-seq data but with lingering limitations. To improve the ability to detect broad regions of
enrichment, we developed a stochastic Bayesian Change-Point (BCP) method, which addresses some of these unresolved
issues. BCP makes use of recent advances in infinite-state HMMs by obtaining explicit formulas for posterior means of read
densities. These posterior means can be used to categorize the genome into enriched and unenriched segments, as is
customarily done, or examined for more detailed relationships since the underlying subpeaks are preserved rather than
simplified into a binary classification. BCP performs a near exhaustive search of all possible change points between different
posterior means at high-resolution to minimize the subjectivity of window sizes and is computationally efficient, due to a
speed-up algorithm and the explicit formulas it employs. In the absence of a well-established ‘‘gold standard’’ for diffuse
histone mark enrichment, we corroborated BCP’s island detection accuracy and reproducibility using various forms of
empirical evidence. We show that BCP is especially suited for analysis of diffuse histone ChIP-seq data but also effective in
analyzing punctate transcription factor ChIP datasets, making it widely applicable for numerous experiment types.
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Introduction

Recent technological innovations have transformed the study of

DNA-binding proteins as higher throughput techniques have

come to the fore. In particular, the widely used procedure

involving in vivo immunoprecipitation of chromatin-bound

proteins (ChIP) has benefited from significant innovation, under-

going several reincarnations, from ChIP-qPCR to ChIP-chip [1]

and, most recently, to ChIP-seq [2,3]. Capitalizing on the

introduction of NGS technologies, ChIP-seq is being used to

generate massive caches of data at an unprecedented rate [4–6].

Consequently, a bottleneck has manifested in our capacity to

analyze this data. Developing practical tools for processing ChIP-

seq results that are fast, accurate, and uniformly adoptable, is vital

[7]. This is particularly apropos in light of the multi-institutional

efforts that are underway, utilizing ChIP-seq to generate genome-

wide profiles of chromatin-associated signals [8,9].

ChIP has been commonly used for illuminating transcription

factor binding sites (TFBS) [2,3], but has more recently seen

widespread adoption in studying epigenomic mechanisms—most

notably, the role of post-translational, covalent histone modifica-

tions [4,5,10]. As a case in point, the NIH Roadmap Epigenomics

Mapping Consortium has embarked on an effort to catalogue the

most comprehensive database of epigenomic data to date—

including data on over 25 histone marks, along with DNA

methylation, chromatin accessibility, and small RNA expression

[9]. Understanding the epigenome is crucial due to its purported

involvement in myriad roles from individual diversity to develop-

ment to cancer and other complex diseases [11–13]. At the

molecular level, histone modifications, in particular, have been

linked to regulation of transcription, gene silencing, and chromatin

reorganization [12,14,15]. These associations have given rise to

the ‘‘histone code’’ hypothesis that could perhaps be a major

mechanism for modulation of the epigenome [16].
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ChIP can be broadly applied to study many protein-DNA

interactions and on-going optimization is routinely introducing

novel transcription factors and histone modifications to the diverse

list of targeted proteins. From extremely sharp and punctate peaks

to large, broad, and diffuse islands of enrichment, read profile

signatures can span a wide range. Owing to this diversity, read

profiles vary markedly and each presents its own nuanced

challenges during downstream analysis. Algorithmically, punctate

and diffuse enrichment have ostensibly been addressed as two

mutually exclusive data types requiring distinct approaches. For

instance, many transcription factors and histone acetylation

modifications generate punctate profiles characterized by well-

formed, sharply enriched peaks interspersed by large stretches of

low signal. Several successful solutions have been introduced to

address this problem [17–19]. However, as punctate peaks

degenerate into more diffuse islands, read density enrichment

appears far less pronounced, with much higher variance, and span

much larger regions. In this scenario, peak-calling algorithms are

extended beyond their intended scope and lose effectiveness [20].

Such non-punctate profiles are commonly observed when studying

broad histone modifications, e.g. H3K27me3, H3K36me3, and

H3K9me3. Instead, heuristic, window-based derivations have

been developed to address this inadequacy [21,22]. However,

ambiguous, ad hoc parameters and compromised resolution have

hampered widespread adoption of this class of island-detection

tools. More recently, finite-state hidden Markov models (fHMMs),

implementing the Baum-Welch algorithm or Markov chain Monte

Carlo (MCMC) simulations, have been adopted to model diffuse

read density profiles by classifying genomic regions into basal and

enriched states [23]. The fHMMs usually focus on the broad

enrichment data type spectrum by conceding the mutual

exclusivity between detecting diffuse islands and punctate peaks

and are used in addition to existing peak-callers. Therefore,

consolidating the algorithmic landscape with a universal algorithm

would have practical benefits by relaxing model assumptions on

expected peak shape, size, frequency, or a mixture of these

attributes [24].

Here, we introduce a Bayesian change-point (BCP) model that

is based on recent advances in infinite-state hidden Markov

modeling, as discussed by Lai and Xing [25]. Our model provides

explicit formulas for the posterior means of ChIP-seq read density

profiles and introduces a fast and computationally efficient

approximation algorithm for estimating these posterior means.

An enhanced signal is generated that can then be used to identify

segments with a shared read density and the ‘‘change-points’’ that

separate them. BCP enables analysis of whole genome ChIP-seq

data with enhanced precision since read density estimates can

adopt any real number value, providing added flexibility over

HMMs assuming finite states. Furthermore, by virtue of the

explicitly determined posterior means, a more detailed analysis of

subpeaks within enriched regions can be interrogated. For

example, recent work has suggested an exon-specific bias for

H3K36me3 enrichment within gene bodies [26]. Therefore, BCP

can quickly identify islands of histone enrichment that correlate

well with known functional associations and are both reproducible

and robust at high resolution. Additionally, BCP characterizes the

diversity of ChIP-seq density profiles in toto and is easily adapted to

segmenting sharper, punctate peaks with performance on par with

a widely used peak-calling algorithm while maintaining proficiency

in diffuse data types.

Our aim was to improve on existing methods for identifying

diffuse histone modification enrichment by addressing some of the

outstanding difficulties. We developed BCP to be fast and simple

to use, minimizing subjectivity by requiring fewer user-defined

parameters, and generating consistent results. We show that BCP

advances diffuse, enriched-island detection and exhibits strong

performance identifying peaks associated with transcription factor

ChIP-seq data types.

Results

Algorithmic challenges of diffuse ChIP-seq data analysis
We sought to develop a method for reliably identifying large,

diffuse regions of histone enrichment, an area of focus we felt

could benefit from improved statistical models that more

accurately capture the true nature of the data. Peak-calling

algorithms often segment these broader domains into sub-peaks

but fail to capture the more extensive context. We aimed to

remedy this without undue reliance on ambiguous parameters

while at the same time maintaining island continuity across regions

of enrichment, independent of the input data type or usage

settings. BCP models the ChIP-seq read counts data (Methods,

‘‘Data transformation’’) using a Poisson distribution with a

Gamma conjugate prior, which accounts for the inherent over-

dispersion described in ChIP-seq data [27]. The parameters of the

Gamma prior and the change point probability are estimated

using an efficient method of moments search (Methods,

‘‘Hyperparameters estimation’’). Similar to other HMMs, BCP

takes into account the spatial structure of ChIP-seq data and

attempts to identify change-points, positions separating two

regions with different expected read depths (Methods, ‘‘Intro-

duction’’). In addition, we augmented computational speed with

our Bounded Complexity Mixture approximation (Text S1,

‘‘Bounded Complexity Mixture (BCMIX) approximation’’). BCP

can perform a near exhaustive search for change-points in

logarithmic time complexity, with only modest hardware require-

ments, making genome-wide analysis much more practically

feasible.

We used data from the Epigenomics Roadmap Consortium to

illustrate some of these advantages [9]. These datasets were

generated on the Illumina Genome Analyzer II platform at a

read length of 36bp and were representative of most sequencing

efforts. Our focus fell on the enrichment of the well character-

ized H3K27me3 and H3K36me3 modifications. H3K27me3

deposition confers gene silencing, often over large regions such

as the entire Hox gene cluster [28–30]. In contrast, H3K36me3

has widely been associated with actively transcribed genes, and

Author Summary

To unravel the mechanisms of gene regulation, under-
standing the complex interplay of protein-DNA interac-
tions is instrumental. Recently, chromatin immunoprecip-
itation, coupled with next-generation sequencing (ChIP-
seq), has risen as the go-to technique for examining these
interactions on a genome-wide scale. It has also given rise
to new computational issues. One such difficulty is the
large variation in read density profiles from different types
of NGS data, including variable peak ‘‘shapes’’ ranging
from punctate to diffuse enrichment segments. To address
this issue, we developed an infinite-state hidden Markov
model that resulted in explicit formulas for the estimation
of read density enrichment and can be used to find both
significant ‘‘peaks’’ and broad segments. We show the
versatility of BCP in analyzing various ChIP-seq data, which
can further our understanding of the role of transcription
factors in gene regulatory networks and histone modifica-
tion marks in epigenomic modulation.

A BCP Method for ChIP-seq Data Analysis
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perhaps specifically exonic structures [4,6,31,32]. These marks

have islands that can span many tens of thousands of kilobase

pairs (Figure 1). The propagation of H3K27me3 over large

genomic distances has been well-documented [33,34] and a

similar phenomenon has been postulated more recently for

H3K36me3 [35,36]. These mechanisms are consistent with the

notion of islands of enrichment present in each cell rather than

an aggregated view of some varied mixture of placement in the

population of cells. The broader islands resulting from the

spread of histone marks, personifies the more complicated

algorithmic task of identifying broad enrichment, thought to be

distinct from sharp peak calling, that we hoped to address with

BCP.

BCP identifies H3K36me3 islands closely aligned to gene
bodies

We tested BCP against SICER, which was in our consideration

the most well rounded alternative for specifically identifying diffuse

domains at the time of this study. Another viable method,

BayesPeak [27], for example, required dividing each chromosome

into smaller 6 Mb parallel jobs to run whole genome data

efficiently, which we viewed as less than optimal. Transcription

Figure 1. H3K27me3 and H3K36me3 diffuse histone marks. ChIP-seq was used to identify regions of enrichment based on read density
profiles, visualized here in the UCSC genome browser (http://genome.ucsc.edu/). The enriched islands identified by BCP (blue) and SICER (red) are
indicated. Additionally, posterior mean estimates used in BCP island detection are shown along with a line (orange) illustrating how thresholds are
used to segment the signal. The correlation between H3K36me3 and gene bodies (outlined in green) and the mutually exclusivity of H3K27me3 and
H3K36me3 were evident. The signal fluctuations caused by the highly variable read densities common to ChIP-seq data of diffuse marks is one of the
notable difficulties for standard peak-calling algorithms, causing them to fragment the broader regions of enrichment into smaller, discontiguous
peaks.
doi:10.1371/journal.pcbi.1002613.g001

A BCP Method for ChIP-seq Data Analysis
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factor binding site prediction tools like MACS were excluded from

this analysis since they were designed to address the punctate

scenario and did not extend well to diffuse enrichment detection

(‘‘Table S1 and’’Table S2 in Text S1). In order to objectively

compare our BCP model to SICER’s windows-based method, we

reintroduced a metric called island read count coverage, or just

island coverage, proposed by Zang, C., et al.(2009) [22], which, in

brief, was defined as the number of reads falling within the

boundaries of enriched islands divided by the total number of

reads. We varied the different parameter combinations and

compared both algorithms, keeping in mind the rationale that

runs with similar island coverage can be considered comparable

since this implies a similar extent of usage of the raw reads. We

found that BCP islands in the H3K27me3 and H3K36me3 data

sets routinely covered substantially more of the genome than

SICER, despite similar island coverage, by virtue of appreciably

larger island sizes, and more readily concatenated disjoined

regions that were separated by low-density fluctuations in the read

profiles. H3K27me3 islands were, on average, nearly 22.9 kb,

called by BCP at an island coverage of 0.56, but only 4.2 kb for

SICER, at a similar island coverage of 0.55 (‘‘Table S1’’in Text
S1). This discrepancy was also observed in H3K36me3 islands. At

an island coverage of 0.66, BCP’s H3K36me3 islands were more

than three times greater than SICER’s—28.5 kb and 8.7 kb,

respectively. Based on this, we concluded that BCP excelled at

identifying large domain sizes expected of diffuse marks associated

with clusters of repressed genes or actively transcribed gene bodies,

as has been intimated for H3K27me3 and H3K36me3 [4,28–32].

To address concerns we may have simply increased domain size

indiscriminately, we validated our island calls using genomic

features with known associations to the intensely studied mark,

H3K36me3. Again, this covalent modification has been linked to

gene bodies undergoing transcriptional elongation [26], so we

reasoned that its related islands should correlate tightly with the

boundaries of transcribed genes. We identified all RefSeq gene

annotations (UCSC Table Browser, http://genome.ucsc.edu/)

[37,38] that intersected an H3K36me3 island, and determined, for

each, how fully the gene was covered by an island. To accomplish

this, we defined a metric, gene coverage, as the number of bases in

a gene falling within an island call divided by the total number of

bases in that gene and averaged this value across all overlapped

genes. BCP showed reliably higher gene coverage versus SICER

for all parameter permutations (Table 1). Furthermore, the

fraction of genes covered, in BCP, over all parameters, was within

a narrow range from 0.492 to 0.497, while SICER gene coverage

ranged considerably more from 0.276 to 0.437. This suggested

that BCP more precisely captured the gene bodies associated with

H3K36me3 enrichment with less dependency on parameter

selection.

To examine the proximity of islands to genes in more detail, we

determined the distances from both upstream and downstream

island boundaries to the nearest gene boundary. For simplicity, we

only compared BCP using threshold 5 and SICER using a window

size of 400bp and a gap size of 800bp since, at these settings, their

island coverage rates were similar—0.120 and 0.119, respectively

(‘‘Table S1’’ in Text S1). The sum of both these distances served

as a measure of error, which we used to assess island detection

accuracy. BCP islands had slightly smaller distances than SICER

from the nearest gene boundaries, which is illustrated in the clear

shift in the peak to smaller distances in the histogram shown in

Figure 2 for BCP versus SICER.

Improved gene coverage does not come at the expense
of false positive rate

To certify the enhanced gene body coverage of BCP was the

result of improved segmentation, we determined the empirical

false positive rate by computing the fraction of identified islands

overlapping intergenic space (UCSC Table Browser [37], http://

genome.ucsc.edu/, Galaxy [39,40], http://galaxy.psu.edu). Spe-

cifically, intergenic coverage was calculated as the number of bases

in an H3K36me3 island, which overlapped any sequence defined

as intergenic, divided by the total number of bases in the island,

averaged across all islands. For the different run parameters, an

intergenic coverage ranging from 0.089 to 0.090 of BCP islands

was observed while a similar range from 0.085 to 0.098 of the

SICER islands was observed (Table 1).

In contrast to H3K36me3, H3K27me3 is often associated with

repression and commonly localizes to genes with little or no

Table 1. H3K36me3 islands and common associations.

parameter Avg. size1 gene coverage2 intergenic3 H3K27me34 Rep.1 by 25 Rep. 2 by 16

pv1e{5 25.8 0.497 0.089 0.019 0.851 0.805

BCP7 pv1e{4 25.3 0.496 0.089 0.019 0.852 0.804

pv1e{3 24.7 0.494 0.09 0.02 0.852 0.803

pv1e{2 23.9 0.492 0.09 0.021 0.853 0.802

W200-G200 2.7 0.323 0.085 0.021 0.689 0.805

W200-G400 4.5 0.37 0.088 0.025 0.736 0.814

SICER8 W200-G800 8.7 0.437 0.094 0.032 0.8 0.818

W400-G800 6.8 0.276 0.095 0.032 0.796 0.818

W400-G1200 10.7 0.295 0.098 0.036 0.835 0.816

1.the average island size in kb;
2. the fraction of genes overlapped by an island;
3. the fraction of islands covered by intergenic sequence;
4.the fraction of islands overlapping H3K27me3 islands;
5. the fraction of replicate 1 overlapped by replicate 2;
6. the fraction of replicate 2 overlapped by replicate 1;
7. island coverage: 0.66–0.67;
8. island coverage: 0.62–0.68.
doi:10.1371/journal.pcbi.1002613.t001

A BCP Method for ChIP-seq Data Analysis
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expression; in effect, it is anti-correlated with active transcription

as has been described in previous genome-wide studies [4,41,42].

Furthermore, detailed analysis of chromatin states in plants by

Hon, et al., demonstrated a nearly mutual exclusivity of these two

marks [43] and a visual inspection of read density profiles

suggested this was also the case in human data sets. Thus, we

supposed that the presence of one of these marks should preclude

the other and exploited this as a second false positive control for

quantifying island validity. We again determined a simple overlap

metric, H3K27me3 coverage, where we assessed the number of

H3K36me3 island bases overlapping an H3K27me3 island and

divided by the total bases in the H3K36me3 island. This was

averaged across all H3K36me3 islands and reported (Table 1).

Examining the H3K27me3 coverage, we found no glaring

distinction between the fractions of SICER and BCP

H3K36me3 islands overlapped by H3K27me3 islands; both fell

within a similar range, from 0.021 to 0.036 and 0.019 to 0.021,

respectively. Because of the similarity between the two methods in

this comparison, coupled with the similarity in intergenic

coverage, we concluded that the improvement in gene coverage

was not the result of large, nonspecific island calls; BCP’s

advantage came without detrimentally impacting the false positive

rate.

Reproducibility and robustness
To more definitively validate true positives, we obtained a

replicate dataset of H3K36me3 from the Human Epigenomics

Roadmap Consortium [9]. To supplement our analysis of genic/

intergenic coverage, and H3K36me3/H3K27me3 anticorrelation,

this added dataset was used to assess reproducibility. We defined

legitimately enriched regions as those present in both replicates,

and assessed the degree of overlap (again, the average, across all

islands of one replicate, of the number of base pairs covered by an

island from the opposing replicate divided by the total bases in the

island). BCP islands exhibited a higher fraction of replicate 1

overlap by replicate 2 than SICER—ranging from 0.851 to 0.853

versus 0.689 to 0.835, respectively (Table 1). On the other hand,

the overlap of replicate 2 by replicate 1 was surprisingly marginally

higher for SICER than BCP—0.802 to 0.805 versus 0.805 to

0.816, respectively. This discrepancy appeared to be related to the

respective read coverages of the replicates that led to an overall

difference in island size. Replicate 2 had fewer reads (*20:7
million uniquely mapped reads in replicate 1 versus *12:9 million

in replicate 2) and lower coverage than replicate 1. As a result,

SICER called replicate 2 islands that were subsets of the larger,

more deeply covered replicate 1 islands (Figure 3a). We

hypothesized that SICER was more sensitive to this coverage

discrepancy than BCP, which managed to effectively extrapolate

out the island boundaries, increasing average island size, despite

the reduced read coverage. Presumably, our BCP model improved

the ability to provide inference on true change-points across low-

density ‘‘valleys by adjoining highly enriched regions through

incorporation of spatial information. Such a feature would clearly

be beneficial in the face of low or highly variable coverage between

datasets. At first glance, the aforementioned incongruence of

larger islands in lower density data hinted at poor performance.

However, we suspected we might be observing a realization of

BCP’s theoretical advantage due to its more economical use of the

read count information. In other words, despite fewer reads,

successful island identification was still achieved and boundaries

were reliably reproduced by BCP.

To substantiate this assertion, we sampled 30% to 90% of the

full data set (replicate 1) by randomly selecting reads. Once more,

we calculated a simple basepair-level overlap fraction—the

average, across all islands in the full data set, of the number of

basepairs in each full data set island, overlapping a sampled data

set island, divided by the total bases in the full data set island. This

overlap fraction represented a quantitative assessment of how

reproducible the full data islands were at each of the sampling

depths (Figure 3a). Even up to 30% sampling, BCP produced

island calls consistent with an overlap fraction of at least 0.95

(Figure 3b, top left). In contrast, SICER dipped below 0.80 when

analyzing the low sampled 30% data set. Of course, reproducibil-

ity must also be coupled to accuracy, so, to ensure this observation

was not the result of indiscriminately large, non-specific islands, we

reversed the comparison and determined the number of bases in

each sampled data set island overlapping a full data set island,

divided by the total bases in the sampled data set island, and

averaged across all sampled data set islands (Figure 3b, top right).

We found both algorithms maintained an overlap fraction around

0.98, which suggested no significant increase in false positive rate

in BCP compared to SICER.

To demonstrate that BCP could achieve the same or better

reproducibility and robustness against an objective marker, we

compared islands to gene bodies, using the sampled data island

calls, and calculated the fraction of each island covered by a

gene. Even at the 30% sampling, we recapitulated—in fact

exceeded—the coverage (0.68) observed in the 90% sampling set

(0.61) (Figure 3b, bottom left). SICER coverage ranged from

Figure 2. The distance from H3K36me3 island boundaries to nearest gene boundary was used as a measure of accuracy. H3K36me3
islands have been shown to correspond to actively transcribed gene bodies so we expected the boundaries of island and genes to coincide. The sum
of the distances from both upstream and downstream island boundaries to the nearest gene boundaries were used as a per island error and
illustrated in the histogram for BCP (left) and SICER (right).
doi:10.1371/journal.pcbi.1002613.g002

A BCP Method for ChIP-seq Data Analysis
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0.29 to 0.40. We also calculated the intergenic coverage using

the sampled data sets and found low coverage in BCP (0.097 to

0.11) versus SICER (0.12 to 0.13) (Figure 3b, bottom right). So,

the improved gene coverage did not come at the expense of

reduced specificity. Given these observations, we concluded that

BCP provided a reproducible and robust determination of

enriched islands that was consistently accurate, even in low

coverage data.

Figure 3. BCP was robust, providing consistent results in replicate and at various coverage depths. Using a second H3K36me3 data set
and sub-samplings of the full replicate one dataset (30–90% randomly selected reads), we evaluated the reproducibility of BCP island calls. A)
Enriched regions coinciding with gene coordinates were captured by the large, contiguous BCP islands (blue), while SICER islands (red) were more
fractionated. B) We quantified the reproducible fraction of the full data set results versus the sub-samples (the number of full dataset island bases
covered by a replicate/sub-sample island divided by total bases in full dataset islands, averaged across all islands) and vice versa. Also, we computed
the fraction of island basepairs overlapping genic and intergenic regions (number of islands bases covered by genic/intergenic annotation divided by
total bases in island, average across all islands).
doi:10.1371/journal.pcbi.1002613.g003

A BCP Method for ChIP-seq Data Analysis
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BCP is versatile
One of our main concerns was avoiding tailoring BCP too

specifically for the diffuse case, detracting from its effectiveness in

punctate peak identification. For example, a generalized model for

identifying large islands could be achieved by simply using

arbitrarily large window sizes. Such a simplistic model might

prove effective for some diffuse scenarios but would encounter

difficulties in data comprised of smaller islands or sharp peaks.

Consequently, we sought to develop a more versatile algorithm

capable of handling various island sizes without precondition. To

this end, we surveyed a wider complement of histone marks in the

hopes of showing BCP was capable of analyzing each data set in

this diverse collection irrespective of its read profile characteristics

(Figure 4). We analyzed H3K27ac, H3K9ac, H3K9me3, and

H3K4me3 data sets, to contrast BCP and SICER under default

parameters, which highlighted BCP’s versatility without tedious

optimization. Qualitatively, BCP island calls captured the read

density at least as well as SICER, which had a noticeably difficult

time delineating broader islands. BCP was able to contract domain

calls to widths expected of H3K4me3 enriched regions, which

resemble punctate transcription factor binding sites. At the same

time, BCP still managed to extrapolate larger domains to meet the

broad diffuse size predicted of H3K27me3 domains. Default BCP

was even able to identify notoriously troublesome, large, low-

enrichment, H3K9me3 domains. This parameter-free perfor-

mance could, in practice, circumvent the need for time-consuming

parameter fine-tuning. Of note, even a single target protein dataset

can be comprised of a mixture of both punctate and diffuse regions

of enrichment, e.g., punctate H3K27me3 enrichment associated

with bivalent promoter domains colocalizing with H3K4me3

enrichment along with the more common repressive, diffuse

H3K27me3 domains. Both of these scenarios were successfully

identified by BCP at high resolution with a single run without

adjusting parameters.

Transcription factor binding site detection
To test whether BCP was capable of evaluating other punctate

ChIP targets, we analyzed NGS data previously generated on the

Illumina Genome Analyzer, read length of 36 bp, from immuno-

precipitation of the transcription factors CTCF [44] and STAT1

[3]. We applied the same general statistical model to calculate

posterior means, effectively a smoothed representation of the raw

reads. However, the nature of TF ChIP-seq data is significantly

more punctate than in histone marks, so, we did apply a few

modified preprocessing and post-processing steps (Methods,

‘‘Data Transformation’’).

Since algorithms for identifying peaks in the punctate case have

been thoroughly compared and contrasted [45], we chose one

representative as a measuring stick to illustrate BCP’s comparable

performance, to make the case for its use for all ChIP-seq

enrichment detection tasks. We chose MACS [17] as this

representative since it has been cited extensively in ChIP-seq

studies, is widely available as both source code and through the

Galaxy software platform [39,40], and has been shown to have

accurate and efficient performance.

The underlying biology of transcription factors is quite different

than that of histone modification enrichment, so the same functional

associations, like gene coverage, were not suitable. Instead, we chose

more traditional metrics for assessing peak-calling performance. We

evaluated the accuracy of peak calls, first, using an empirical false

discovery rate as defined by Zhang, et al. (2008) [17]. This process

entailed determining candidate peaks using the ChIP reads as the

sample and the input reads as the control and, then, identifying

‘‘negative peaks’’ by inverting the read sets, using input reads as the

sample and ChIP reads as the control. An empirical FDR was

computed from the number of negative peaks divided by the number

of candidate peaks. We also evaluated BCP and MACS using a

second metric, motif occurrence rate. Using the published consensus

position weight matrices for CTCF and STAT1 from the JASPAR

[46] or TRANSFAC [47] databases, respectively, we searched the

genome for significant matches (pv10{4) using STORM, part of

the CREAD software suite [48,49]. Sequences associated with each

peak summit, +150bp-flanking regions, were iteratively scored as

either with or without a motif match, in rank order according to the

peak enrichment score. The cumulative rate of motif occurrence, the

number of peaks with a match divided by the total number of

iterated ranked peaks, was then plotted (Figure 5).

CTCF peaks were characterized by high signal-to-noise with

little to no read density in between. Given such distinct peaks with

so little intervening background, both algorithms easily identified

peaks with a low FDR and high motif occurrence rate, perhaps

with BCP exhibiting a slight advantage. STAT1 peaks were, in

contrast, less refined and it is precisely in this scenario, where

peaks degenerate to islands, that BCP excels so its advantages were

highlighted; peak calls showed improved accuracy–with motif

occurrence rates higher than MACS. Additionally, the FDR rate

dropped more quickly to zero in the higher ranked peaks for BCP

versus MACS. We concluded that BCP performance in punctate

data was at least comparable, if not improved, over MACS,

suggesting it can be a suitable tool for analyzing punctate ChIP-seq

data.

Discussion

Our main goal was to provide a novel solution for identifying

islands of enrichment in diffuse data sets, principally diffuse

Figure 4. BCP dynamically adapted to many different types of
data. To demonstrate its versatility, we compiled a set of several
histone modifications and analyzed each under the default parameters
for BCP and SICER. Regardless of the histone mark characteristics,
whether more punctate as in acetylation marks and H3K4me3 or broad
as in H3K27me3, H3K36me3, and H3K9me3, BCP (black) was able to
make reasonable island calls that effectively described the underlying
read profiles. SICER (grey) seemed more primed to identify smaller,
sharper islands so often fragmented more general regions of
enrichment.
doi:10.1371/journal.pcbi.1002613.g004
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histone modification data. As the selection of ChIP-seq ‘‘peak-

callers’’ has become saturated, we hoped to introduce our offering

as not just a niche supplement to a punctate peak caller but as a

stand-alone solution to ChIP-seq data analysis, in general.

Accordingly, achieving high fidelity in enriched domain identifi-

cation in diffuse data without sacrificing performance in punctate

data, and while preserving simplicity and ease-of-use, was

paramount. Our BCP algorithm has several distinct advantages

that we feel help it achieve this goal.

HMMs provide a natural model for finding read density change

points using spatial information and have been applied widely with

great success in genome research. Our model builds on this success

by deriving explicit analytical formulas for infinitely possible states

by calculating posterior means directly from read counts

(Methods, ‘‘Data Transformation’’).

In addition to this advance, we have made every effort to limit

the number of user-defined parameters without affecting perfor-

mance and reliability. BCP requires nominal user-defined

parameters at runtime. The results are largely resistant to dramatic

shifts when adjusting these parameters—relegating them mostly to

fine-tuning—so, little time need be invested in parameter

optimization. Fewer parameter permutations make variations

between users, replicates, and experiments less problematic. In

real world terms, coupling this with the explicit formulas and the

BCMIX speedup algorithm presented an opportunity for consid-

erable time savings. We compared BCP’s runtime for whole

genome analysis with SICER and MACS under identical

hardware conditions on a high performance compute cluster at

Cold Spring Harbor Laboratory (dual core 64-bit processors

running at 2.0 GHz with 2GB of memory) using default

parameters for each method. When studying histone modifica-

tions, such as H3K27me3 and H3K36me3, other algorithms took

on the order of 4 to 5 hours, while BCP completion times

averaged around 1 hour but optimally as short as 20 minutes. It

took approximately 25 minutes for BCP to search for putative

TFBS for CTCF and 50 minutes for STAT1. In contrast, MACS

runtimes exceeded an hour when generating mappable wig/

bedGraph tracks for visualization, as BCP does.

In the absence of a true ‘‘gold standard’’ for validating histone

modification enrichment, we devised a cadre of simple metrics to

characterize island accuracy. Namely, we investigated island

coverage, correlation and anti-correlation with known associated

annotations, reproducibility and robustness, and versatility. Based

on existing literature, we operated on the assumption that ideal

island designations should support the relationship between gene

bodies and intergenic sequence compared to H3K36me3, the

Figure 5. BCP showed strong performance in punctate transcription factor ChIP-seq data. Compared to MACS, a representative peak-
calling algorithm designed for punctate peaks detection, BCP showed a comparable false-discovery rate (FDR) and rate of motif occurrence in both
CTCF and STAT1 datasets. We apply the empirical FDR described in the Methods and by [17], dividing the negative peaks (detected when the input
control sample was set as the test and the ChIP sample was set as the control) by the number of test peaks (the ChIP sample was set as the test and
the input control sample was set as the control). Peaks are ranked according to p-value. Additionally, BCP displayed a slightly improved motif
occurrence rate (the fraction of peaks containing a match to the TRANSFAC consensus motifs, as determined by STORM, pv10{4).
doi:10.1371/journal.pcbi.1002613.g005
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mutual exclusivity between H3K27me3 and H3K36me3, should

be highly reproducible and robust across replicates regardless of

coverage depth, and should be broadly applicable in light of the

heterogeneity of histone modification data. BCP performed well in

all of these indicators. While we do acknowledge their inherent

weaknesses as individual performance metrics, we believe that, in

aggregate, they represent a fair and comprehensive evaluation. So,

in lieu of any ‘‘gold standard’’, we believe our collective results

show BCP has favorable performance and represents a strong

candidate for analyzing diffuse histone modification data.

One noteworthy observation we have thus far left unaddressed

is the apparent relationship between posterior means within

regions of enrichment of H3K36me3 and exons, an association

that has been previously described [26,50]. Visual inspection of

BCP’s posterior mean estimates hints at a deeper relationship at a

level of specificity beyond just actively transcribed gene bodies.

The ability to interrogate this detail could represent a distinguish-

ing property of BCP because of its unique capacity to directly

calculate posterior mean estimates. Exploring this is part of our

ongoing work, which we hope can add insight into the role of

H3K36me3 in exon demarcation. In like manner, while we made

every effort to address the known biases endemic to ChIP-seq

experiments, e.g. amplification artifacts and ambiguous repetitive

sequence (Methods, ‘‘overview’’), some known, e.g. sequencing

preferences for GC-rich regions or mappability differences, and

perhaps some unknown biases still remain. Extensive research has

been done along these lines to identify any systemic bias and other

variability [51–53]. Furthermore, several bias corrections have

been proposed [54–56] that could be incorporated into our model

through an update to the empirical prior and further improve

BCP’s performance.

From a software perspective, we feel BCP’s advantages serve an

important purpose in improving usability without sacrificing

fidelity. In a scientific climate that is becoming increasingly

collaborative, an important precept was designing a method that

would be readily standardized and whose results would be simply

corroborated and easily applied over numerous experiments by

multiple research groups. In this scenario, variability might come

from several sources of experimental and technical noise, e.g.,

different end-users, technicians, or tissue culture and sample

preparation conditions, inconsistent read coverage, inefficient

sonication, inaccurate size-selection, etc [57]. Such fluctuations are

endemic to ChIP-seq. BCP’s Bayesian HMM underpinnings allow

it to make inferences about this noise, in the context of spatial

surroundings, leading to improved island continuity. In this

regard, our results underscore the benefits of our model; BCP

island calls remained robust, with reduced variability. Hence, the

output regions should be readily comparable, with less concern

over variability imposed by parameter choice, which we hope can

facilitate collaborative efforts. Furthermore, the dependable island

predictions should allow investigation of epigenomes in cell types

and tissue contexts, without being restricted to relative genome

coordinates, i.e., read densities gated on functional positions like

transcription start sites, promoter regions, or distal enhancers

[4,58,59]. We hope to leverage these advantages moving forward

in future attempts to make novel discoveries with regards to

epigenetic regulation.

Methods

Overview
BCP accepts the browser extensible data (BED) format (UCSC

genome browser, http://genome.ucsc.edu/), which we trans-

formed to read counts at every genomic location for each

chromosome. Only reads mapping to a unique genomic location

were considered and only a single read per start/end coordinate

was allowed to reduce spurious amplification and repetitive

sequence bias. In the case of transcription factor ChIP data,

adjacent positions with identical read counts were ‘‘blocked’’

together. For histone modification ChIP data, read counts at

200bp adjacent windows were calculated (Methods, ‘‘Data

Transformation’’). This window size is the default setting for

BCP and was chosen for two reasons. First, a single nucleosome is

the expected smallest unit size for histone modification data,

including wound and linker DNA, and is roughly this length.

Second, 200bp is approximately the size-selected length, following

DNA fragmentation, for most library preparation protocols. The

user can adjust the window size, but in our experience,

optimization away from the default value was rarely necessary.

We assumed that read counts or average read counts on within

‘‘blocks’’ or windows, respectively, follow a Poisson distribution

with mean ht, t~1, . . . ,n, where n is the number of ‘‘blocks’’ or

windows in the chromosome, and the true signal ht may undergo

occasional change with probability p at each location t. We also

assume that when h changes to a new value at tz1, the new value

follows a Gamma(a,b) distribution. Under this setup, the posterior

distribution of ht given all the data is a mixture of Gamma

distributions (Methods, ‘‘Model specification’’),

f (htDYn)~
X

1ƒiƒtƒjƒn

cijt Gamma(aij ,bij):

Hence ht can be estimated by a weighted average of posterior

means with different window sizes. In practical analysis, the model

parameters p,a,b can be replaced by their maximum likelihood

estimates, and the mixture above can be approximated by a

bounded complexity mixture (BCMIX) algorithm (Text S1
‘‘Bounded Complexity Mixture (BCMIX) Approximation’’).

BCP, as a change point model, has key differences with other

similarly minded methods. Its estimate of true signal requires no

prior knowledge of the number of different states of ht, nor the

positions or magnitude of the change points. The posterior mean,

as an estimator, plays an important role in peak calling (TFBS)

and/or segmentation (HM) and we implemented it directly to

finding putative TFBS and histone-mark enriched islands. Given

the posterior mean of each block or window represents a piecewise

constant signal, smoothed by incorporating upstream and

downstream information, ‘‘false’’ enrichment areas caused by

local noise were minimized and our ability to identify the most

likely enriched region was enhanced. Consequently, ‘‘gaps’’ in

large significant domains were marginalized and we performed

segmentation using a simple cut line across the posterior means

decided from the background signal (Methods, ‘‘Peak calling and

segmentation’’). After generating candidate segments, each was

substantiated as a peak or island of enrichment if the number of

ChIP reads within the region surpassed the 90th-quantile value

expected assuming read number follows a Poisson distribution

with a mean based on the number of input reads in the same

region.

Data transformation
Before applying our model, the small reads sequenced from the

DNA fragments were processed depending on the ChIP experi-

ment protein target, either TFBS or histone modification.

For TFBS studies, highly-enriched binding sites among

relatively low background were singled out. Given the bimodal

profile of raw read distribution between plus and minus strands,

A BCP Method for ChIP-seq Data Analysis
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true TFBS were more likely located centrally between a plus and

minus peak; so, we first paired highly enriched local maxima from

both strands to estimate the shift size. The small reads were then

shifted towards the center, which put the mode of the read density

at the center of each fragment. This represented the most probable

location of each TF binding. We then transfered the read

coordinate data (‘‘BED format’’) into read counts data, the

number of reads overlapping each position. Because such

aggregate read counts were intrinsically piecewise constant along

a chromosome, we considered each piecewise constant fragment as

a block and denote yt as the common read count of block, t.
Notably, the sizes of the blocks were often different and

represented data-driven window-size selection.(‘‘Figure S1’’ in

Text S1)

For histone modification analysis, since the purpose was to

distinguish enriched segments only a few fold greater than

background with highly variant signals, we extended the reads to

a user-specified fragment length, and then calculated the read

counts for each position as in the TF case. We then partitioned the

read count sequence sequentially as consecutive ‘‘blocks’’ with

block size W and let yt be the average read count in block t (we

round yt to the nearest integer). In our analysis, we choose

W~200bp, which is the approximate length of a single

nucleosome unit (‘‘Figure S2’’ in Text S1).

Model specification
Let yt be the read count in the tth block, where t~1, . . . ,n. The

way of obtaining yt depends on the experiment (Methods, ‘‘Data

Transformation’’). Our goal was to find either peaks of TF binding

or identify enrichment regions in histone marks. Assuming the

transformed data yt followed a Poisson distribution with param-

eter ht on each block, where ht represents the mean of yt in each

block (different from integer yt, ht can be fractions). Given fhtg, yt

are independent. ht is piecewise constant and the indicators

It~1fht=ht{1g are independent and identically distributed

Bernoulli random variables with success probability p. When

It~0, ht~ht{1; otherwise, the numerical value of ht move to

another level which follows a Gamma(a,b), which is the prior

conjugate distribution and accounts for the long-tailed over-

dispersion underlying the data. Note that in contrast to most

HMMs previously reported, which assume a finite number of

values (or discrete state space) for ht, we allow an infinite number

of values (or continuous state space) for ht.

Denote Yt~(y1,::,yt), Yi,j~(yi,:::,yj), and Kt~fsƒtDhs{1

=hs~ . . . ~htg the most recent change-point before or equal to

the tth block. Then given Kt~i, the posterior distribution of ht is

Gamma(ait,bit), in which ait~az
Pj~t

j~i yj and bit~(1=bz

t{iz1){1. Letting pit~P(Kt~iDYt) and denoting p00~b{a=

C(a) and pij~b
aij

ij =C(aij), one can show that the posterior

distribution of ht as

f (hDYt)~
Xt

i~1

pi,t Gamma(ait,bit), ð1Þ

in which pi,t~p�i,t=
Pt

s~i p�s,t and

p�i,t~
pp00=ptt i~t,

(1{p)pi,t{1pi,t{1=pi,t ivt:

�
ð2Þ

Similarly, the location-reversed counterpart is obtained as

follows:

f (htjYtz1,n)~pGamma(a,b)z(1{p)

Xn

j~tz1

qj,tz1 Gamma(aj,tz1,bj,tz1),
ð3Þ

where qj,t~q�j,t=
Pj

s~t q�s,t and

q�j,t~
pp0,0=pt,t j~t,

(1{p)qj,tz1ptz1,j=pt,j jwt:

�
ð4Þ

Applying Bayes’ theorem to combine (1) and (3) yields the

posterior distribution of ht given Yn.

f (htDYn)~
X

1ƒiƒtƒjƒn

cijt Gamma(aij ,bij): ð5Þ

where cijt~c�ijt=Pt, Pt~pz
P

1ƒiƒtvjƒn c�ijt and

c�ijt : ~
ppi,t i~t,

(1{p)pi,tqj,tz1(pi,tptz1,j)=(pi,jp00) ivt,

�
ð6Þ

The above distribution yields the estimate of ht

E(htDYn)~
X

1ƒiƒtƒjƒn

cijtaijbij : ð7Þ

The estimate (7) can be considered a dynamically-adjusted

‘‘scan statistic’’. However, it is distinct from classic scan statistics

for two reasons. First, no window size is specified in the estimation

procedure; all window sizes are considered with different weights,

cijt. Second, the possibility of a change-point in ht is incorporated

into the calculation of the weight, in conrast to classic (weighted)

scan statistics that are not constructed based on nonlinear features

of the data.

Hyperparameters estimation
The Bayes estimates E(htDYn) involve the hyperparameters p, a,

and b, which are replaced by their estimates in the empirical Bayes

approach. From the definition of p�it and (1), it follows that the

likelihood function of p, a, and b is

P
n

t~1
f (ytDYt{1)~ P

n

t~1
(
Xt

i~1

p�it), ð8Þ

in which p�it is a function of p, a and b given by (2). Since the yt are

exchangeable random variables in our model, we can estimate a
and b by the method of moments. The important hyperpara-

meters in the change-point model are the relative frequency p of

change-points. Putting the estimated a and b into (8), we can

estimate p by maximizing the log-likelihood function

l(p)~
Pn

t~1 log(
Pt

i~1 p�it), which can be conveniently computed

by grid search [25]. Notice the log-likelihood function above also

has an explicit formula and the a which we use to search for p,

which has the form f2j=n : j0ƒjƒj1g, where j0ƒ0ƒj1 are

integers. So the parameter estimation is very efficient despite the

large scale of the data. In practical analysis of ChIP-seq data, as

A BCP Method for ChIP-seq Data Analysis
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the number of change-points are much smaller compared to the

sample size, one can simply use values that are close to O(n{1).

Peak calling (TFBS) and segmentation (HM)
The above discussion on the estimation of ht (Methods, ‘‘

Model specification’’) indicates that our estimation procedure is

purely data driven and incorporates the spatial structure of data.

We now discuss the post-analysis of our model.

In searching for peaks in TFBS, we only consider areas on

which ĥht were larger than a certain threshold, d. Since most

genomic regions only contained background signal, we chose d to

be the 99% quantile of Poisson(l0), where l0 was the average of all

read counts fytg. We then found the block within each area in

which ĥhtwd, with biggest posterior mean and extended in both

directions if the difference of adjacent posterior means was less

than one. The extended areas were considered an approximation

of the true enrichment area. We called this a sub-area within the

enriched peak candidate and the position within the peak

candidate with largest posterior mean was called the summit.

(‘‘Figure S3’’ in Text S1) As there were many factors in a ChIP

experiment that can lead to false positives, input (control) data sets

were used to filter false candidates. For each candidate peak, we

used a window the size of the candidate peak and extended the

summit of each candidate peak by a distance ranging from the

length of one-window to five-windows. We also determined the

average number of input reads in these extended areas versus the

sub-area without extension in the input (control) data and chose

the larger of the two as l1. The average number of reads in the

ChIP-seq data was calculated for the peak candidate area as l2.

We then performed a simple hypothesis test for each peak

candidate with the null hypothesis that l1ƒl2 and rejected the H0

with some small p-value which indicated that l2 was significantly

enriched over input background.

A similar process for segmentation was applied to study HM

marks. Since HM data were more diffused, we used a more lenient

threshold d (we chose d to be the 90% quantile of Poisson(l0),
where l0 was the average of all read counts fytg). Since the

posterior mean was a smoothed read density forming an

approximately piecewise constant profile (‘‘Figure S4’’ in Text
S1), those segments with posterior mean greater than the threshold

gave us candidate segments, in which we then filtered out false

positives by using input (control) data. As the segments were

broader than in the TF ChIP-seq data, it was not necessary to

apply the window extension step to account for local background

variation flanking candidate regions. Hence, we simply screened

each candidate region using the average number of reads within

the enriched region for ChIP and input samples and applied a

hypothesis test, as before.

Quantifying performance
In general terms, the islands identified in this study were

compared to some other feature, whether it be gene bodies,

intergenic space, the replicate, or sub-samples, as follows. The

islands that did not intersect the feature of interest over at least one

base pair were first filtered out. For each remaining island, the

number of base pairs intersecting the feature of interest was

divided by the total base pair length of the island itself, giving its

overlap ratio. The ratios of all remaining islands were averaged to

give the final values reported in Table 1 and plotted in Figure 3b.

The empirical FDR used to evaluate performance in analysis of

transcription factor ChIP-seq data sets, CTCF and STAT1, was,

again, adopted from Zhang, Y. (2009) [17]. The number of peaks

detecting when running either MACS or BCP in its conventional

form, using the ChIP-seq sample as the test and the input sample

as the control was determined. Then the two samples were

inverted, using the input sample as the test and the ChIP-seq

sample as the control, to define the number of negative peaks. The

empirical FDR was computed as the negative peaks divided by the

test peaks.

Motif matches were identified using the STORM software

package available in the CREAD software suite [48,49]. Signif-

icant matches to the CTCF motif (accession no. MA0139) in the

JASPAR database [46] or either STAT1 motif (accession

nos. M00224 and M00492) in the TRANSFAC database [47]

had a p-value less than 10{4. Peaks were evaluated in rank order

(according to the enrichment score calculated by MACS or BCP)

one at a time, and the cumulative motif occurrence rate (the

number of peaks with at least one motif divided by the number of

peaks evaluated) was tracked.

Data description
We obtained publicly available datasets from the National Center

for Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/).

The following datasets were used: H3K36me3 (GSM521890),

H3K36me3, replicate 2 (GSM521892), H3K27me3 (GSM469968),

H3K27ac (GSM469966), H3K9ac (GSM469973), H3K4me3

(GSM469970), H3K9me3 (GSM469974), Input DNA for replicates

1 (GSM521926) and 2 (GSM521930), CTCF and input

(GSM586887 and GSM586890), and STAT1 and input

(GSM320736 and GSM320737). Functional annotations for genic

regions were obtained from the UCSC Table Browser (GRCh37/

hg19, February 2009, http://genome.ucsc.edu/) and intergenic

region regions were further derived using the Galaxy Project data

processing pipeline (http://galaxy.psu.edu).

Availability
BCP software package is available for download at http://rulai.

cshl.edu/BCP.

Supporting Information

Text S1 Supporting materials for BCP.

(PDF)
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