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SMA is caused by the homozygous loss of the survival of motor 
neuron 1, telomeric (SMN1) gene; either by deletion or rarely by 
mutation. In its most severe form, it is the leading genetic cause 
of infant mortality, with children rarely living beyond two years 
of age. There are no approved therapies for SMA, with medical 
care focused mainly on supportive and palliative measures. It is 
this dire need that has motivated the authors to work collabora-
tively together to identify a potential therapy for these children. 
As we describe here, this has been a wonderful journey over the 
past 8 years that was built off of a strong scientific foundation in 
basic RNA biology, neuroscience and antisense technology.

SMA background
Spinal muscular atrophy (SMA) is an autosomal recessive 
neuromuscular disease characterized by degeneration of the 
motor neurons in the anterior horn of the spinal cord, resulting 
in atrophy of the voluntary muscles of the limbs and trunk 
(Lefebvre et al., 1995; Crawford and Pardo, 1996). It is the most 
common genetic cause of infant mortality, and a major cause of 
childhood morbidity due to weakness. SMA is caused by deletions 
or loss-of-function mutations in the SMN1 gene on chromosome 
5q13 (Lefebvre et al., 1995); how loss of the SMN protein 
causes disease is not well understood. The SMN1 premRNA  
undergoes alternative splicing, with greater than 90% of the 
mature transcripts derived from the SMN1 gene containing exon 7, 
which makes a full-length protein product. Humans have a 

paralogue gene called SMN2, also on chromosome 5, which 
differs from SMN1 by 11 nucleotides but has an identical 
coding sequence. One of the nucleotide changes between 
SMN1 and SMN2 genes is a C-to-T transition within exon 7, 
and although it is a synonymous change, it weakens the 3 
splice site, resulting in skipping of exon 7. Because of the less 
efficient splicing of exon 7, 80–90% of the transcripts derived 
from the SMN2 gene skip exon 7, which codes for a protein 
product that is rapidly degraded. The limited amount of full-
length protein made from the SMN2 gene does not fully com-
pensate for loss of the SMN1 gene. We reasoned that antisense 
oligonucleotides (ASOs) would be the most direct approach for 
increasing SMN2 exon 7 inclusion and restoring functional 
levels of the SMN protein.

Antisense oligonucleotides: Versatile tools 
to target RNA
ASOs bind to RNA through Watson-Crick base paring (Fig. 1). 
Once bound to the target RNA, there are multiple mechanisms 
by which antisense-based drugs alter its function, including 
promoting its degradation, interfering with pre-mRNA process-
ing, blocking access to the RNA of specific proteins such as 
RNA-binding proteins and ribosome subunits, and disrupting 
the secondary and tertiary structure of the RNA (Bennett and 
Swayze, 2010; Kole et al., 2012). The mechanism by which an 
ASO elicits these effects is dependent upon the class of RNA, 
where on the RNA the ASO binds, and the chemical composi-
tion of the ASO.

Various chemical modifications of individual nucleotide 
subunits of the oligonucleotide can enhance the pharmaceuti-
cal properties of antisense-based drugs (Fig. 1; Bennett and 
Swayze, 2010). One of the better characterized chemical modi-
fications, the 2-O-methoxyethyl (2-MOE) modification, has 
been used in 25 different antisense drugs in clinical develop-
ment, including the SMA antisense drug currently in clinical 
trials (ISIS-SMNRx). ASOs containing 2-MOE and other ribose 
modifications (Fig. 1) typically have phosphorothioate modifi-
cations (substitution of sulfur for one of the nonbridging oxygen 
atoms) to provide additional stability against nuclease degradation, 
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sequences have been identified, including one in SMN2 exon 7 
that has been reported to be strengthened as a result of the  
C-to-T transition.

An early approach first used by A.R. Krainer to enhance 
SMN2 exon 7 inclusion was to recruit factors that activate splic-
ing to the pre-mRNA through the use of bifunctional ASOs. 
The ESSENCE (exon-specific splicing enhancement by small 
chimeric effectors) includes a peptide nucleic acid (Fig. 1)  
as the antisense moiety to hybridize to exon 7 of the SMN2 
pre-mRNA, covalently linked to a small peptide that mimics  
the RS activation domain of SR proteins, effectively making  
a synthetic SR protein (Cartegni and Krainer, 2003). This publi-
cation caught the attention of C.F. Bennett and caused him to 
contact A.R. Krainer for a potential collaboration to further  
extend his findings.

To further optimize the ESSENCE strategy, we explored 
additional binding sites on the SMN2 pre-mRNA for targeting 
the antisense moiety. We screened 2-MOE–modified ASOs 
without the RS peptide and identified several ASOs that were 
effective at promoting exon 7 inclusion in patient fibroblasts, 
suggesting that appending the RS peptide was not essential for 
activity (Hua et al., 2007). Eliminating the protein recruitment 
appendage (peptide or nucleic acid) from the ASO greatly  
simplified the molecule and was an important step toward im-
proving its pharmacokinetic and toxicological properties and 
importantly also reducing the complexity of manufacturing. 
These studies were extended to identify additional sites in the 
SMN2 pre-mRNA sensitive to ASOs (Hua et al., 2008). In par-
ticular, a site in intron 7 adjacent to the 5 splice site, termed 
ISS-N1, was identified by us and others, and targeting this site 
with ASOs resulted in almost complete SMN2 exon 7 inclusion 
(Singh et al., 2006, 2009; Hua et al., 2008). The binding site 
comprises a bipartite hnRNP A1-dependent intronic splicing  
silencer, which represses exon 7 inclusion (Fig. 2; Hua et al., 
2008). Active ASOs targeting this region were found to compete 

increase protein binding and enhance cellular uptake. The 
phosphorothioate-modified oligonucleotides are readily taken 
up by cells in tissues and bind to target RNA, producing the desired 
antisense effects (Bennett and Swayze, 2010). The mechanism(s) 
by which ASOs enter cells include at least two endocytic uptake 
mechanisms (Fig. 2; Geary et al., 2009; Koller et al., 2011), 
but overall remains poorly understood.

A candidate drug for SMA has to be pharmacologically 
active in motor neurons and other cell types in the central 
nervous system (CNS). ASOs do not cross an intact blood–brain 
barrier, but there are several approved methods and devices 
available for delivery of drugs into the cerebrospinal fluid 
including direct injection into the intrathecal space (Penn, 
2003; Erdine and De Andrés, 2006). We have found that ASOs  
injected in this manner distribute broadly into CNS tissues  
with highest concentrations found in neurons, microglial cells, 
and astrocytes in spinal cord and cortical regions of the brain 
(Butler et al., 2005; Smith et al., 2006; Passini et al., 2011; 
Kordasiewicz et al., 2012).

Identification of ASOs that target SMN
The molecular mechanism for SMN1 and SMN2 exon 7 splicing 
had been previously characterized by A.R. Krainer and others 
(Hua et al., 2008; Lorson et al., 2010; Singh and Singh, 2011). 
In addition to the core splicing signals that flank exon 7—such 
as the 5 and 3 splice sites, polypyrimidine tract, and branch 
point sequence—positive and negative cis-regulatory sequences 
within exon 7 and in the flanking introns fine tune splicing. 
For the SMN1 and SMN2 pre-mRNAs, exonic enhancers bind 
splicing activators such as the SR protein SRSF1 and the  
SR-like protein Tra2-1 within exon 7 (Hofmann et al., 2000; 
Cartegni and Krainer, 2002). It is the SRSF1 binding site that 
is weakened by the C-to-T substitution at nucleotide 6 in 
SMN2 exon 7, resulting in the predominant skipping of this exon. 
In addition to splicing enhancer sequences, splicing silencer 

Figure 1.  Nucleotide analogues used in  
antisense oligonucleotide drugs. Antisense  
oligonucleotides (green) bind to the target 
RNA (purple) by Watson-Crick base pairing 
(left). Chemical structures of various nucleo-
tides or nucleotide analogues commonly used 
in antisense drugs are shown. The antisense 
oligonucleotide developed by our group to  
improve SMN2 splicing has the 2-MOE  
modification (red).
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expressed four copies of a human SMN2 transgene (Hsieh-Li  
et al., 2000). The homozygous Smn1-deleted mice have a normal 
lifespan and the most notable pathology is necrosis of the tail 
and ear pinnae, which occurs within 4 wk of birth. After systemic 
administration, the phosphorothioate and 2-MOE–modified 
ASOs targeting the ISS-N1 site increased SMN2 exon 7 inclusion 
in a dose- and time-dependent manner in liver, kidney, and skel-
etal muscle, but not CNS tissues (Hua et al., 2008), consistent 
with the biodistribution of the modified ASO (Geary et al., 
2001, 2003). Administration of the ASO into the lateral ventri-
cles of mice resulted in a dose-dependent increase in exon 7 
containing transcripts in motor neurons and other cells in the 
CNS (Hua et al., 2010). Administration of the ASO in utero  
significantly delayed tail and ear necrosis in the mice (Hua et al., 
2010). These studies demonstrated that treatment of mice ex-
pressing the human SMN2 transgene with a 2-MOE–modified 
ASO can increase exon 7 inclusion from 20% to greater than 
90% of the transcripts derived from the transgene in peripheral 
and CNS tissues. The ASO was well tolerated at doses that pro-
moted almost complete exon 7 inclusion (Hua et al., 2010).

These results were extended to models of severe SMA in 
which newborn mice were administered a single dose of 2-MOE 
ASO at d 0 or d 1 after birth (Hua et al., 2011; Passini et al., 
2011). In both severe mouse models the ASO delayed the loss 

with hnRNP A1 and A2 for binding to the RNA, thereby  
preventing the repressors from binding to the transcript (Fig. 2; 
Rigo et al., 2012). A variety of chemically modified ASOs,  
all targeting ISS-N1, promoted SMN2 exon 7 inclusion (Fig. 1). 
Surprisingly, we found that ASOs with the same sequence  
but different chemical modifications could produce opposite  
effects on exon 7 inclusion (Rigo et al., 2012), demonstrat-
ing that ASOs can be used to displace RNA-binding proteins 
from specific transcripts, but in some cases they can be used  
to recruit specific RNA binding proteins to RNA transcripts in  
a highly controlled manner. By choosing not to ignore an un
expected result, we discovered an important nuance of how 
RNA–oligonucleotide duplexes are recognized by RNA binding 
proteins that can be exploited by antisense drugs to modulate 
gene expression.

Pharmacology of antisense drugs that 
target SMN
Having identified several antisense drug candidates in cell  
culture, we next moved into mouse models. Because of the short 
lifespan of mice engineered to mimic the most severe form of 
SMA, proof-of-concept experiments were performed in mouse 
models of SMA in which the mice were either heterozygous for 
the mouse Smn1 gene or had the mouse Smn1 gene deleted and 

Figure 2.  Mechanism of action of an anti-
sense drug that modulates SMN2 splicing. 
Single-stranded antisense oligonucleotides 
(ASO) are taken up into cells by an endocytic 
process via interaction with proteins expressed 
on the surface of cells (Koller et al., 2011). 
The ASOs escape the endosome and enter 
the nucleus, where they bind to the SMN2 
pre-mRNA. Binding of the ASO to the RNA 
displaces an hnRNP protein that normally 
represses splicing of exon 7, resulting in the 
production of a mature mRNA that includes 
exon 7, which is translated into the full-length 
SMN protein (Rigo et al., 2012).

 on January 30, 2013
jcb.rupress.org

D
ow

nloaded from
 

Published October 1, 2012

http://jcb.rupress.org/


JCB • VOLUME 199 • NUMBER 1 • 2012� 24

upon these studies, we determined that tissue concentrations 
ranging from 1 to 5 µg/g tissue after bolus injection was suffi-
cient to achieve 50–90% exon 7 inclusion. Studies in non
human primates demonstrated that these concentrations could 
be achieved after a single intrathecal bolus injection, and tissue 
concentrations were maintained for several months after dos-
ing (unpublished data). The preclinical studies that support  
filing an Investigation New Drug (IND) application with the 
U.S. FDA for the SMN2 splicing ASO (ISIS SMNRx) have been 
completed, and a phase 1 trial of the drug has been initiated 
(ClinicalTrials.gov Identifier NCT01494701).

Conclusion
This project serves as an example of how scientists in both aca-
demia and industry can successfully collaborate to identify a drug 
candidate for a rare disease. The collaboration played to the 
strengths of the parties involved with A.R. Krainer, Y. Hua, and  
F. Rigo providing expertise in RNA splicing and cell biology of 
the SMN protein; C.F. Bennett and F. Rigo providing expertise in 
antisense technology and drug development; and all parties con-
tributing basic understanding of disease mechanisms. We would 
be remiss if we did not acknowledge the support we received 
from nonprofit patient advocacy groups, the SMA Foundation, 
Families of SMA, and Muscular Dystrophy Association. These 
groups not only provided financial support for the early and risky 
stages of the project, but also provided scientific and clinical ad-
vice for the project. Furthermore, they facilitated the presentation 
of the data to scientific and clinical peers at various venues, al-
lowing for important constructive critique of the project. The data 
generated from this collaborative SMA project provided us with 
the confidence needed to advance the drug into clinical develop-
ment and potentially benefit patients with a severe disease who, at 
present, have no other therapeutic options. Our sincere hope is 
that our efforts ultimately benefit these patients.

We would like to acknowledge The Muscular Dystrophy Association for 
funding studies in A.R. Krainer’s laboratory and Isis Pharmaceutical. In addition, 
A.R. Krainer was supported by grants from The SMA Foundation and National 
Institutes of Health grant R37 GM42699-22. Illustrations were provided by 
Neil Smith, www.neilsmithillustration.co.uk.
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