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Abstract

Annual meeting abstracts published by scientific societies often contain rich arrays of information that can be
computationally mined and distilled to elucidate the state and dynamics of the subject field. We extracted and processed
abstract data from the Society for Neuroscience (SFN) annual meeting abstracts during the period 2001–2006 in order to
gain an objective view of contemporary neuroscience. An important first step in the process was the application of data
cleaning and disambiguation methods to construct a unified database, since the data were too noisy to be of full utility in
the raw form initially available. Using natural language processing, text mining, and other data analysis techniques, we then
examined the demographics and structure of the scientific collaboration network, the dynamics of the field over time, major
research trends, and the structure of the sources of research funding. Some interesting findings include a high geographical
concentration of neuroscience research in the north eastern United States, a surprisingly large transient population (66% of
the authors appear in only one out of the six studied years), the central role played by the study of neurodegenerative
disorders in the neuroscience community, and an apparent growth of behavioral/systems neuroscience with a
corresponding shrinkage of cellular/molecular neuroscience over the six year period. The results from this work will
prove useful for scientists, policy makers, and funding agencies seeking to gain a complete and unbiased picture of the
community structure and body of knowledge encapsulated by a specific scientific domain.
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Introduction

Continuing exponential growth in the volume of science as

measured by number of scientists or by publications has made it

virtually impossible for individual researchers to keep track of the

totality of knowledge and major progress areas in a research field

using the traditional modes of scholarly research. This is

individually frustrating for researchers not satisfied with exploring

increasingly hyper-specialized niches, and also has negative

implications for broader questions relating to the efficiency of

the research enterprise and for science policy. Automated or

semi-automated methods using natural language processing,

applied to the scientific literature, provide a potential avenue to

address this problem. Indeed, such bibliometric analysis forms the

groundwork for search engines such as Google. However, most of

the scientific literature exists behind a series of online firewalls

which prevent efficient utilization of automated tools by the

average researcher. Meeting abstracts published by scientific

societies are often available freely in electronic form on the web

or in the form of media distributed at annual meetings, and these

form an attractive starting point for the construction and mining

of knowledge bases about specific scientific domains. In

particular, the annual meeting of the Society for Neuroscience

(SFN) is a large-scale, international event that is arguably the

most influential single meeting within the subject. The abstracts

of presentation at this meeting are not peer-reviewed publica-

tions, but nonetheless, due to their volume and diversity, provide

a unique global survey of the state of the subject of neuroscience

each year.

Much recent work has used textual data in the form of abstracts

or full-text publications in order to draw inferences about the

structure of a research domain. Many such efforts have been

focused on citation analysis [e.g. 1], including reputational indices

such as highly cited papers [2–4] or scientist and journal impact

factors [5–7]. An additional area of large concentration has been in

the extraction of graphs or networks representing scientific

collaborations or co-citations, and analysis of the overall statistical

properties of these networks [8–12]. To a lesser extent researchers

have worked on the problem of visualizing complex knowledge

spaces through the creation of visual maps [13–17] and literature

navigation tools [18,19]. In contrast, there has been relatively less

work on community demographics, the dynamics of fields over time

to examine major research trends, or the structure of the sources of

research funding. In this paper we examined each of these areas in

order to obtain a broad and objective overview of contemporary

neuroscience research. We believe that the volume and breadth of
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topics covered in SFN abstracts is likely to give a more complete and

objective view of the field than would abstracts or articles from a

single journal. Furthermore, no such survey of neuroscience is

currently available from previous efforts, which have focused either

on scientific research more generally or on other non-neuroscientific

domains. Although our analyses were applied to the neuroscience

community, the methodologies presented here are well suited for

constructing knowledge bases and mining information about any

scientific communities or social network.

We extracted and processed data from the annual SFN meeting

planners to build databases of SFN abstracts and their authors.

Maintaining an accurate count of the total number of authors was

a challenging task complicated by two types of ambiguities: (1)

different authors may share the same name and initials, and (2) the

same author may use a different number of initials in different

abstracts. In this study, we used a combination of string matching,

entity matching, and co-authorship patterns to disambiguate

unique authors (see Materials and Methods for details of these

processes). We created one database for each year between 2001

and 2006, as well as a consolidated database encompassing

authors and abstracts from all 6 years. The information contained

in these databases allowed us to perform a variety of analyses to

elucidate the structure and evolution of the neuroscience

landscape.

The remainder of this paper is organized as follows. First, we

present the geographical distribution of the SFN authors, followed

by basic statistics and demographics of the SFN annual meetings.

We constructed a graph of co-authors on abstracts and applied

graph theoretic algorithms to investigate patterns of connection

and communication between neuroscientists. Next, we used

computational techniques in natural language processing to cluster

the abstracts into neuroscience topics and studied their dynamics

and concordance of these discovered topic clusters with the

thematic organization provided by the SFN. Finally, we studied

the distribution of funding inferred from the abstract database

across these topics.

Results and Discussion

1. Geographical Distribution of SFN Abstract Authors
To explore the geographical distribution and dynamics of

neuroscience research, the city, state (for US and Canada), and

country of each author’s home institution were extracted. The

number of authors associated with each unique location was then

tabulated for each year between 2001 and 2006. Table 1 shows the

top 10 cities with the highest SFN representation during this time

frame. Based on these data, the global ‘‘hubs’’ for neuroscience

research seem to be concentrated in the northeast region of the

United States (Boston, New York, Philadelphia, Baltimore/DC

vicinity), Southern California, Tokyo, Montreal, and London.

These representations remained fairly static over the years,

indicating the stable presence of prominent and well-funded

neuroscience research centers in these regions. From Figure 1, it is

evident that New York City consistently ranks as the top producer

of neuroscience research as measured by the number of authors

who submitted abstracts. This finding signifies the number and

caliber of academic institutions, research centers, and hospitals in

the New York metropolitan area but is not surprising given the

city’s population.

To examine geographical areas that were disproportionately

represented at SFN meetings, we computed per capita participa-

tion for large cities using population census data from the United

Nations Statistics Division (see Materials and Methods). The per

Table 1. Top 10 cities for SFN representation in terms of raw number of abstract authors between 2001 and 2006.

2001 (San Diego) 2002 (Orlando) 2003 (New Orleans) 2004 (San Diego) 2005 (Wash. DC) 2006 (Atlanta)

New York (0.014) New York (0.013) New York (0.016) New York (0.016) New York (0.014) New York (0.014)

Boston (0.150) Baltimore (0.137) Bethesda (-) Los Angeles (0.024) Baltimore (0.139) Baltimore (0.133)

Baltimore (0.131) Bethesda (-) Baltimore (0.132) Boston (0.164) Bethesda (-) Boston (0.134)

Los Angeles (0.021) Boston (0.129) Boston (0.148) Bethesda (-) Boston (0.146) Bethesda (-)

Bethesda (-) Los Angeles (0.017) Los Angeles (0.020) La Jolla (-) Los Angeles (0.016) Los Angeles (0.017)

La Jolla (-) Tokyo (0.006) La Jolla (-) Baltimore (0.124) Philadelphia (0.039) Chicago (0.023)

Tokyo (0.007) Chicago (0.018) Chicago (0.021) Philadelphia (0.042) Chicago (0.019) Atlanta (0.138)

London (0.007) Philadelphia (0.034) Philadelphia (0.040) Chicago (0.020) La Jolla (-) Philadelphia (0.039)

Montreal (0.015) La Jolla (-) London (0.006) Tokyo (0.007) Atlanta (0.106) Tokyo (0.006)

Chicago (0.019) Montreal (0.012) Tokyo (0.006) Pittsburgh (0.159) Tokyo (0.006) La Jolla (-)

The meeting location for each year is highlighted in parenthesis in the first row. For each city in the table, the corresponding per capita participation (in percentage) is
also included in parenthesis, if available.
doi:10.1371/journal.pone.0002052.t001

Figure 1. Changes in the percentage of raw numbers of
abstract authors for several geographical locations between
the year 2001 and 2006.
doi:10.1371/journal.pone.0002052.g001
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capita attendance for the largest contributing cities is shown in

parentheses in Table 1. Furthermore, Table 2 shows the 10 cities

with the highest per capita participation between 2001 and 2006.

Again, the representations remained fairly static over the years we

analyzed. It should be noted here that, because population data

were not available on a yearly basis, we have assumed that each

city’s population was constant over the six-year period and equal

to the latest figure available. We believe that this assumption is

acceptable for the short time period analyzed here. Not

surprisingly, many of the cities with high per capita participation

are relatively small and home to prominent academic institutions.

In addition, Boston and Baltimore appear to be particularly

invested in neuroscience research as they rank high in both the

raw number of authors and per capita participation from the SFN

meetings.

To determine whether the location in which the SFN annual

meeting took place had any significant effect on the number of

participating authors from the nearby region, we calculated the

change in the fraction of all authors attending the meeting who

were from within 100, 300, and 500 mile radii of the event

location in the year of each meeting relative to the fraction of all

authors who came from the same areas in years in which the

meeting was held elsewhere (see Materials and Methods for

detailed methodology). Figure 2 shows that the meeting location

had a moderate effect on the fraction of participating authors from

the surrounding area, but this effect varied from year to year. The

increase in nearby contributors was minimal (less than 20%) for

the 2001, 2002, and 2005 meetings, which were held in San

Diego, Orlando, and Washington, D.C., respectively. This is in

contrast to a somewhat larger change for the 2004 meeting in San

Diego, and for the 2003 meeting in New Orleans and 2006

meeting in Atlanta, which resulted in a considerable surge of local

scientists who submitted their abstracts.

The top five countries represented in the SFN annual meetings

between 2001 and 2006 were: USA (56.6%), Japan (7.3%),

Canada (5.2%), Germany (5.05%), and the United Kingdom

(4.5%). It is interesting to compare the cities and countries with

large neuroscience communities with historical and modern

statistics about the geographical distribution of scientific research

in general. For example, the top ten cities in terms of scientific

publications in 1967 [Table 7.2 in 20] were, in descending order,

Moscow, London, New York, Paris, Tokyo, Washington, Boston,

Philadelphia, Chicago, and St Petersburg (Leningrad). At the

country level, the leading producers of worldwide science and

engineering articles in 2003 were EU-15 (31.5%), USA (30.3%)

and Japan (8.6%) [21]. For comparison, the EU-15 nations

together contributed 20.2% of SFN abstracts from 2001–2006.

The United States, thus, appears to play an exaggerated role in

neuroscience compared to all of science and engineering, at least

as measured by representation at the SFN meetings.

The advent of web mapping technologies such as Google Maps

(http://maps.google.com) and Yahoo Maps (http://maps.yahoo.

com) provides capabilities to generate, visualize, and navigate high

quality geographical maps on the World Wide Web. In order to

visualize the geographical distribution of the home institutions of

abstract authors on a map, the latitude and longitude of each

author’s location as extracted from the abstracts were fetched

using Yahoo’s GeoCode Web Service (http://developer.yahoo.

com/maps/rest/V1/geocode.html). The quantitative distribution

of these geographical data can then be plotted on different map

templates using the application programming interface (API)

provided by the mapping engine. For example, Figure 3 shows the

Table 2. Top 10 cities for per-capita SFN representation between 2001 and 2006.

2001 (San Diego) 2002 (Orlando) 2003 (New Orleans) 2004 (San Diego) 2005 (Wash. DC) 2006 (Atlanta)

Ann Arbor, MI, USA Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA Ann Arbor, MI, USA Cambridge, MA, USA

New Haven, CT, USA Ann Arbor, MI, USA New Haven, CT, USA Ann Arbor, MI, USA Cambridge, MA, USA Ann Arbor, MI, USA

Cambridge, MA, USA New Haven, CT, USA Ann Arbor, MI, USA New Haven, CT, USA New Haven, CT, USA New Haven, CT, USA

Gainesville, FL, USA Gainesville, FL, USA Gainesville, FL, USA Gainesville, FL, USA Gainesville, FL, USA Gainesville, FL, USA

Cambridge, UK Irvine, CA, USA Irvine, CA, USA Irvine, CA, USA Boston, MA, USA Irvine, CA, USA

Irvine, CA, USA Baltimore, MD, USA Pittsburgh, PA, USA Boston, MA, USA Irvine, CA, USA Pittsburgh, PA, USA

Boston, MA, USA Pittsburgh, PA, USA Boston, MA, USA Berkeley, CA, USA Berkeley, CA, USA Atlanta, GA, USA

Pittsburgh, PA, USA Durham, NC, USA Durham, NC, USA Pittsburgh, PA, USA Baltimore, MD, USA Durham, NC, USA

Baltimore, MD, USA Boston, MA, USA Berkeley, CA, USA Cambridge, UK Durham, NC, USA Boston, MA, USA

Oxford, UK Berkeley, CA, USA Baltimore, MD, USA Charleston, SC, USA Pittsburgh, PA, USA Baltimore, MD, USA

The meeting location for each year is highlighted in parenthesis in the first row.
doi:10.1371/journal.pone.0002052.t002

Figure 2. The effect of meeting location on nearby author
participation. Percentage change in proportion of overall author
contributions that were from the region surrounding the meeting
location (100, 300, or 500 mile radius) relative to years when the
meeting was elsewhere (for all meetings, 2001–2006).
doi:10.1371/journal.pone.0002052.g002
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geographical distribution of the raw number of SFN abstract

authors for 2006 on a Google Map (generated by www.

gpsvisualizer.com).

2. Basic Statistics and Demographics
A number of simple but informative measures that describe

authorship and meeting attendance patterns could be easily

calculated from the abstracts database. The accuracy of such

measures depends on the accuracy of the database itself, the

construction of which had to meet challenges such as the

disambiguation of individual authors. The upper bound for the

total number of authors in the six-year database is 197429; this

number was obtained by parsing the data from SFN abstracts

without applying any of the disambiguation or entity matching

schemes described in the Materials and Methods section. The

number of unique author names in the database was 99410, which

represents the lower bound for total author count. After applying

the disambiguation strategies to our database, the total number of

authors was reduced by approximately 35% to 128553. This final

tally falls between the upper and lower bounds and gives a

reasonable estimate of the true number of unique authors in the

database. The problem of author disambiguation could be avoided

if, for example, each author was assigned a unique identifier at the

time of submission of his or her first abstract; then future

submissions could be associated with this identifier, removing

ambiguity (see e.g. the ‘‘WikiAuthors’’ project at http://meta.

wikimedia.org/wiki/WikiAuthors).

Between 2001 and 2006, the average number of abstracts per

author was 2.93, and the average number of authors per abstract

was 4.31. Looking at the statistics on a year by year basis (Table 3),

it is apparent that the number of abstracts per author, number of

authors per abstract, and average number of collaborators in any

given year remained roughly constant during the six year span.

This suggests that the neuroscience community produces research

results at a relatively constant rate and that most research projects

in the field are conducted by a small to moderately sized team of

scientists. The average number of authors on Science and

Engineering articles worldwide in 2003 was reported to be 4.22

and the corresponding number for the United States was 4.42

[21], suggesting that the team sizes represented in SFN abstracts

are consistent with other areas of science.

To further elucidate the collaboration patterns of neuroscien-

tists, we plotted the histograms of the number of co-authors for

abstracts and the number of abstracts submitted by authors. As

highlighted in Figure 4A, most SFN meeting abstracts contain two

to five authors. Very few abstracts are associated with only one

author or more than 10 authors. This may again imply that most

research projects in neuroscience are carried out by a few scientists

instead of large teams of people.

Figure 4B shows the histograms of the number of abstracts

associated with each author. The majority of the authors (,60%)

had only one abstract over the span of six years. This number may

reflect a large group of ‘‘transients’’ comprising mostly under-

graduates, graduate students, and perhaps post-docs who entered

and exited the neuroscience field in a short period of time. The

Figure 3. Geographical distribution of the raw number of SFN abstract authors for 2006 displayed on a Google Map. The locations
with the most representation are indicated by dark blue, followed by green, yellow, and finally red, circles.
doi:10.1371/journal.pone.0002052.g003
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transient population was generally ‘‘mixed’’ with a more

permanent population because individual abstracts often con-

tained authors from both sub-populations. Given the increasingly

blurred boundaries between different disciplines of biomedical

sciences, it is possible that many of these scientists simply shifted

their focus to a different aspect of biomedical research, i.e. from

cellular neuroscience to genomics, or from cognitive neuroscience

to psychology. The histograms also highlight a few individuals who

are associated with very large numbers of abstracts (some have

over 100).

In Figure 5A, we plotted the histograms of the number of years

in which authors were represented between 2001 and 2006. As the

figure shows, approximately 60% of the authors made presence in

only one SFN meeting within the six-year period. Again, we

speculated that this high turnover rate is the direct manifestation of

many transients who entered and exited the field in a relatively

short time frame. The phenomena of a high transient rate,

reflecting a sort of ‘‘infant mortality rate’’ for first time authors was

first analyzed by Price [20], who estimated a 22% transient rate for

paper authorship from a database consisting of a statistical sample

of papers published between 1964 and 1970. Although we do not

pursue it in detail, it should be straightforward to extend or

implement Price’s model of transients and continuants to the SFN

abstracts database, particularly if data from a longer period of time

becomes available.

To correlate these data with the demographics of actual SFN

meeting attendance, we downloaded the annual meeting atten-

dance statistics from 1971 to 2006 from the SFN website (http://

www.sfn.org). These data are plotted in Figure 5B using a base 2

logarithm. The SFN meeting attendance has shown an overall

slowing growth rate in the past 3 decades. As evident from the

graph, the first doubling took approximately 5 years. The next two

doublings occurred at a steady exponential rate between 1975 and

1995, with a doubling period of about 8 years. The growth slowed

after 1995 and the current doubling rate is projected to be about

15 years.

What are the causes of the exponential growth, and what is

causing the rates to slow down? To put the numbers in

perspective, the number of life scientists employed in the Science

and Technology workforce in the US for the years 1970, 1980,

1990 and 2000 were 55, 102, 139 and 226 (in thousands). These

numbers also show an initial doubling period of 10 years and a

subsequent slowing. The exponential increase in the number of

scientists and scientific publication over the last three centuries has

been studied systematically [20]. Interestingly, Price’s estimate of

the doubling times of 10–15 years is consistent with the estimated

Table 3. Basic statistics of SFN data for the 6-year period between 2001 and 2006.

Year
Number of
Authors

Number of
Abstracts

Avg. Abstracts
Per Author

Avg. Authors
Per Abstract

Avg. Num. of
Collaborators

2001 42318 15340 1.55 4.28 5.82

2002 37129 13307 1.53 4.21 5.51

2003 41349 15261 1.58 4.29 5.90

2004 43853 15987 1.59 4.37 6.09

2005 39622 13669 1.50 4.35 5.88

2006 39645 13979 1.54 4.33 5.96

2001–2006 128553 87543 2.93 4.31 8.62

doi:10.1371/journal.pone.0002052.t003

Figure 4. (A) Histograms of the average number of authors per abstract between 2001 and 2006. (B) Histograms of the average number of abstracts
per author between 2001 and 2006.
doi:10.1371/journal.pone.0002052.g004
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growth of SFN meeting attendees over the last three decades.

However, this growth has also slowed down and may continue to

fall further. It is interesting to speculate about what is slowing the

growth in meeting attendance. A number of limitations come to

mind: a reflection of an overall slowdown in growth of the science

and technology workforce in general or of biomedical scientists in

particular, perhaps due to saturating funding rates; maturation of

the research field and a shift in scientific talent to other growth

areas such as information technology, or perhaps non-scientific

factors such as capacity of the convention center and the number

of hotel rooms in the cities where the meetings are held.

To determine if the participation level of the annual SFN

meetings might be linked to the amount of funding available to the

scientists, we plotted in Figure 5C the budgets for National

Institute of Health (NIH), one of the largest funding agencies for

biomedical sciences, from 1976 to 2006 (Source: Historical

Table 2: R&D by agency, AAAS website: http://www.aaas.org/

spp/rd/guihist.htm). Although the NIH budget has grown steadily

during this period, there does not seem to be a detailed correlation

between NIH funding and SFN meeting attendance. In fact, the

growth in meeting attendance slowed down precisely when the

NIH budget was doubled from 1995 to 2005.

Exponential growths do not continue forever, and the increase

in the number of SFN attendees is no exception. Price has pointed

out that a doubling time of 10–15 years is much faster than the

doubling time of the human population (which is currently around

50 years, and slowing), and has predicted a period of transition to a

steady state where the number of scientists per capita reaches a

stable value. In Price’s estimate, we are either at the inflection

point of the corresponding logistic curve, or have passed it already.

It is to be noted that the percentage of the gross national product

devoted to R&D in developed nations has remained steady

between 2–3% since the 1970’s [22], and other subject areas in

science such as physics or electrical engineering also showed sharp

growth followed by saturation within recent history. Unfortunate-

ly, despite such historical data and exhortations by Price and

others about the necessity to manage the transition from rapid

exponential growth to slower growth or a relatively steady state,

there is little evidence for forward planning by the biomedical

community in trying to manage the coming demographic

transition by practicing stricter scientific ‘‘birth control’’ [23].

Absent such planning, the danger is that Malthusian factors will

make the transition significantly more painful than necessary.

3. Analysis of Co-authorship Graphs
More detailed inferences about authorship patterns and the

structure of the neuroscience community as a whole can be

inferred from an analysis of a collaboration or co-authorship

network [e.g. 10]. A co-author graph, G: = (V, E), was constructed

from the preprocessed database by representing each author as a

vertex on a graph, vMV. Two authors were connected by an

undirected edge, eME, if they have co-authored at least one abstract

in the database. Matrix representations of the graph can then be

used to analyze the structure of the underlying community. In

Figure 5. (A) Histograms of the number of years in which authors are represented. (B) Growth of attendees at annual SFN meeting from 1971 to
2006 (in base 2 logarithm). (C) Growth of NIH funding from 1976 to 2006.
doi:10.1371/journal.pone.0002052.g005
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addition, by integrating the data with a graph visualization

package, such as Graphviz (www.graphviz.org) or JUNG (jung.-

sourceforge.net), one can visualize, explore, and navigate the

network interactively.

A fundamental measure used in graph theory is the shortest

path between a pair of connected vertices. In the context of the

network under study, this measures the number of steps it takes to

go from one author to another through intermediate collaborators.

From the multi-year SFN database, the lengths of shortest paths

between all pairs of authors for whom a connection exists were

calculated exhaustively using a breadth-first search algorithm.

These numbers were then averaged to yield the mean distance

between authors in the entire network. Table 4 shows that the

authors in the SFN community are separated from one another by

an average distance of 6.09. A similar observation of ‘‘six degree of

separation’’ has been reported previously for abstracts in the

MEDLINE database [10], suggesting that neuroscience and the

greater biomedical science community share similar connection

patterns. The diameter of the graph, or the maximum distance

between any two authors in the network for whom a connection

exists, is 20, which also closely matches the result from Newman’s

MEDLINE analysis.

We also computed the clustering coefficient, which provides a

measure of cliquishness [24]. Suppose that a vertex v in a graph

has kv neighbors; then at most kv(kv-1)/2 edges can exist between

them (this occurs when every neighbor of v is connected to every

other neighbor of v). Let Cv denote the fraction of possible edges for

the neighborhood around v that actually exist. The clustering

coefficient of a graph is the average of Cv for all v. The mean

clustering coefficient for the SFN network between 2001 and 2006

is 0.7724. In other words, two authors in the network have a

77.24% or greater probability of being collaborators if they have

both collaborated with a third author.

A large sparse graph such as the one created from the SFN

database may not be connected (i.e. there may not exist a path from

each vertex to every other vertex in the graph). Finding the set of

individual connected components in the graph may provide

another insight into community structure. The SFN co-author

graph for 2001–2006 was found to contain 2650 connected

components (Table 4). Most authors belong to a single large

connected component which comprises more than 90% of the

entire network. The remaining connected components in the

graph are significantly smaller, each accounting for less than 1% of

the vertices of the entire graph. Some of these small connected

components represent research groups from pharmaceutical

companies or other commercial entities, while some others belong

to laboratories from countries with a relatively low SFN presence.

Another interesting aspect of the graph is the relative

importance of each vertex as measured by the betweenness centrality

of the vertex [25,26]. The betweenness centrality for a given vertex

BC(v) is defined as:

BC vð Þ~
X

s=v=t[V

sst vð Þ
sst

where sst is the number of shortest paths between sMV and tMV,

and sst(v) is the number of shortest paths between s and t that pass

through v. In other words, betweenness centrality measures the

frequency with which a vertex falls on one of the shortest paths

between any other pair of vertices in the graph.

Vertices with large betweenness have more influence over the

information flow in the graph and can thus be considered to

represent authors playing central roles in the SFN co-author

network. Analysis of the multi-year SFN data revealed that only a

few individuals in the network have disproportionately large

betweenness centrality measures (Figure 6A). In addition,

Figure 6B shows that on average the distribution of the

betweenness centrality of an author and his/her number of

abstracts closely follow a power law. However, the authors

possessing the largest betweenness centrality, and thus the most

influence over the network, were not necessarily associated with

the largest number of abstracts. To better elucidate the roles of

these brokering members of the SFN network, the research profiles

of these individuals were located from the World Wide Web and

qualitatively assessed. Most of the authors with high betweenness

centrality conduct research in the field of neurodegenerative

diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease

(PD). Research related to AD, PD, and other neurodegenerative

diseases is highly multidisciplinary in nature, and scientists

engaging in this type of research will likely employ techniques

and methodologies spanning multiple different sub-disciplines of

neuroscience and other biomedical sciences, which might explain

the high values of betweenness centrality. Another possible reason

is the comparatively high funding rates for neurodegenerative

disorders (discussed in Section 5).

4. Topic Modeling
The sheer number and diversity of the annual SFN meeting

attendees indicate that the text corpora from the abstracts provide

an illustrative view of the current state and dynamics of the

neuroscience research landscape. One can perform a variety of

text mining and natural language processing (NLP) techniques to

exploit topic information from the syntaxes and semantics of the

text corpora. The information gained from topic modeling can be

used to classify abstracts into different categories, chart the rise and

fall of research topics over time, measure the popularity of specific

fields, and facilitate document retrieval.

We explored the utility of Latent Semantic Analysis (LSA) [27,28]

to describe the topic space spanned by the SFN abstract set.

Briefly, LSA is a dimensionality reduction technique that projects

terms and documents (abstracts) into a lower dimensional space.

The reduced dimensionality vector space captures most of the

important underlying structure in the association of terms and

documents, while at the same time removing the noise or

variability in word usage [29]. In the reduced vector space, terms

that occur in similar documents are located near one another even

if they never co-occur in the same document, and topically related

documents are grouped near one another based on their semantic

relatedness.

Figure 7 shows the projections of the terms used in SFN

abstracts in a reduced two-dimensional vector space. The terms

with the highest frequencies of occurrence are labeled. It can be

Table 4. Some graph analysis results for multi-year SFN data.

Average Distance 6.09

Graph Diameter 20

Mean Clustering Coefficient 0.7724

Number of Connected Components 2650

Size of Largest Connected Component 116716

As a percentage 90.79%

Size of Second Largest Connected Component 56

As a percentage 0.0436%

doi:10.1371/journal.pone.0002052.t004
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seen from the figure that some terms representing similar concepts

are located near one another in this reduced vector space. For

example, many terms on the left side of the figure are related to

sensory and motor systems (‘‘task’’, ‘‘stimulus’’, ‘‘movement’’,

‘‘visual’’), terms at the bottom of the figure are related to cellular

neuroscience (‘‘potential’’, ‘‘current’’, ‘‘axon’’, ‘‘channel’’, ‘‘synap-

tic’’, ‘‘neuron’’), and many terms on the right side of the figure are

related to molecular biology (‘‘protein’’, ‘‘gene’’, ‘‘regulatory’’,

‘‘bind’’, ‘‘express’’, ‘‘pathway’’). This representation provides a

map of the topic space in neuroscience, but does not reveal a

tremendous amount of apparent structure. To try to better

understand the structure of the topic space, we thus employed an

additional strategy to uncover topic clusters.

4.1 Topic Clusters. After LSA was performed using 100

dimensions, we constructed a new sparse graph defined across

abstracts, where the edges between abstracts were weighted by

abstracts’ cosine similarity (see Materials and Methods). We then

applied the Normalized Cuts (NCuts) algorithm [30] to automatically

partition this graph, and thus cluster the abstracts into different

topic groups. The number of topic clusters was chosen by

evaluating the concordance between the topic classification found

using NCuts to the eight SFN theme labels (Table 5) which were

available in the database for a subset of abstracts. Concordance

was measured using the Adjusted Rand Index [31], which quantifies

the agreement between two data partitions. The number of topic

clusters that maximized concordance was found to be 10 (Refer to

the Materials and Methods section for detailed descriptions of

these algorithms).

To understand the content of the resulting topic clusters, we

found the 20 most frequent words used in each cluster. The lists of

Figure 6. (A) Histograms of the betweenness centrality (bc) normalized by total number of possible edges, [N*(N-1)]/2, where N is the number of
authors, from all authors plotted in log scale. The majority of the authors have very small normalized bc (less than 0.005), and only a few authors have
disproportionately large bc. (B) The averaged normalized bc over all authors having the same number of abstracts as a function of the number of
abstracts. On average, the betweenness centrality of an author and the number of the abstracts follow a power law.
doi:10.1371/journal.pone.0002052.g006

Table 5. Themes used by SFN to categorize abstracts
submitted for the 2006 meeting.

Theme A Development

Theme B Neural Excitability, Synapses, and Glia: Cellular Mechanisms

Theme C Sensory and Motor Systems

Theme D Homeostatic and Neuroendocrine System

Theme E Cognition and Behavior

Theme F Disorders of the Nervous System

Theme G Techniques in Neuroscience

Theme H History and Teaching of Neuroscience

doi:10.1371/journal.pone.0002052.t005

Figure 7. Projections of the terms (represented by the blue
dots) on the reduced vector space formed by the 2nd and 3rd

singular vectors of the truncated Singular Value Decomposi-
tion (See Materials and Methods). Select terms with high
frequencies are labeled in the figure. Note that these terms were
stemmed.
doi:10.1371/journal.pone.0002052.g007
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frequent words, along with the complete collections of the

abstracts, were also distributed to laboratory members working

in neuroscience for subjective labeling. Among the 10 topic

clusters, half of them were readily identified for their distinct and

coherent themes. For example, all abstracts in Cluster 3 deal with

research in songbirds. Abstracts in Cluster 6 frequently contain

such words as ‘‘amyloid beta’’, ‘‘abeta’’, ‘‘tau protein’’, and other

terms relevant to Alzheimer’s disease. Cluster 7 is distinct from all

other clusters in that it contains mostly education and informatics

related work. Cluster 8 groups together abstracts related to

biological rhythms, which is evident from the abundance of the

following words: ‘‘circadian’’, ‘‘melatonin’’, ‘‘clock’’, ‘‘phase’’, and

‘‘suprachiasmatic nucleus’’ or ‘‘SCN’’. Finally, Cluster 10 contains

mostly abstracts dealing with the structures and mechanisms of

sleep. The remaining 5 clusters, which tend to be larger in size,

were not as readily identifiable and required more thorough

investigation of the abstracts themselves. Table 6 shows cluster

sizes, lists of frequent words, and the labels qualitatively assigned to

each cluster. For illustrative purpose, only the 7 most distinguish-

ing words taken from each cluster’s list of 20 most frequent words

are shown. Complete lists of the 20 most frequent words for each

cluster are available as supplementary materials in Table S1.

To visualize the 10 topic clusters on a high level ‘‘conceptual

map’’, the abstracts from all six years were plotted as points in a

2D space formed by the 2nd and 3rd smallest eigenvectors of the

graph Laplacian defined on the abstract similarity graph. The

projection of each abstract as a point in this space was color coded

based on the topic cluster to which it belongs. The resulting topic

map is presented in Figure 8. In this representation we are able to

see a large degree of separation of the topic clusters, while also

revealing the analog within-category variation in abstract

similarity. That is, abstracts that appear as points in close

proximity to one another are likely to be more similar than those

that are more distant.

4.2 Concordance with SFN Themes. While the Adjusted

Rand Index provides a global measure of similarity between

partitions, the individual abstract clusters derived from NCuts

partitioning can also be compared pairwise with the SFN theme

clusters. A concordance matrix, C, between the two classification

systems was constructed in which each element Cij indicates the

number of abstracts from 2006 that belonged to cluster i and

theme j (i = [1..10], j = [A..H]).

Figure 9A shows the relative distribution of abstracts in each

cluster across the SFN themes, after dividing each matrix element Cij

by the total number of abstracts in cluster i. Thus these matrix entries

represent the proportion of abstracts from cluster i that are classified

as theme j. Some observations of good concordance can be made:

N Most of the abstracts from Cluster 7 (‘‘Education and

Informatics’’) are labeled as Theme G (Techniques in

Neuroscience) or Theme H (History and Teaching of

Neuroscience), with a higher percentage in the latter.

N Cluster 6, which represents Alzheimer’s disease, is almost

wholly contained in Theme F (Disorders of the Nervous

System).

N Cluster 3, which corresponds to behavior of song birds, is

mostly captured by Theme E (Cognition and Behavior).

N There is fairly good concordance between Cluster 4, which

represents topics related to pain and trauma, and Theme C

(Sensory and Motor Systems).

N Good concordance is also observed between Cluster 8

(‘‘Biological Rhythms’’) and Theme D (Homeostatic and

Neuroendocrine Systems).

Similarly, by dividing each matrix element Cij by the total

number of abstracts in theme j, the resulting matrix (Figure 9B)

gives the proportion of abstracts from theme j that are classified as

cluster i. There are some interesting observations as well:

N Theme H (History and Teaching of Neuroscience) is almost

entirely contained in Cluster 7.

N Theme G (Techniques in Neuroscience) is spread between

Cluster 2 (‘‘Cellular Neuroscience’’) and Cluster 9 (‘‘Visual and

Motor Systems’’). This illustrates that while SFN groups

together techniques used in kinematics, imaging, and cellular

neuroscience, unsupervised clustering classified these abstracts

according to their target applications.

N There is very good concordance between Theme B (Neural

Excitability, Synapses, and Glia: Cellular Mechanisms) and

Cluster 2.

Table 6. The 10 clusters produced by the NCuts algorithm performed on the nearest-neighbor graph from year 2001–2006 (see
Materials and Methods).

Cluster ID Size of Cluster Topic Label Most Frequently Used Words

1 16729 Substance Abuse & Addiction BEHAVIOR, LEVEL, COCAINE, DOSE, DRUG, INJECT, TREATMENT

2 22647 Cellular Neuroscience SYNAPTIC, PROTEIN, CURRENT, CHANNEL, POTENTIAL, DENDRITIC, SUBUNIT

3 492 Behavior of Song Birds SONG, HVC, BIRD, VOCAL, AUDITORY, FINCH, SING

4 7210 Pain & Trauma SPINAL, PAIN, RECEPTOR, MUSCLE, INJURIES, DORSAL, MORPHINE

5 19988 Proteins, Gene Expression &
Molecular Biology

CELL, NEURON, EXPRESS, ACTIVE, BRAIN, GENE, RECEPTOR

6 3609 Alzheimer’s Disease AD, AMYLOID, TAU, ALZHEIMER, PEPTIDE, PLAQUE, ABETA

7 736 Education & Informatics STUDENT, DATA, LEARN, PROGRAM, MODEL, SCHOOL, INFORMATICS

8 794 Biological Rhythms CIRCADIAN, SCN, LIGHT, RHYTHM, PHASE, CLOCK, CYCLE

9 14192 Visual & Motor Systems RESPONSE, TASK, VISUAL, SUBJECT, CORTEX, MOVEMENT, STIMULUS

10 1146 Sleep SLEEP, WAKE, REM, EEG, DEPRIVATION, PERIOD, WAVE

Abbreviations: HVC = ‘‘High Vocal Center’’; AD = ‘‘Alzheimer’s Disease’’; REM = ‘‘Rapid Eye Movement’’; SCN = Suprachiasmatic Nucleus’’.
The third column of the table shows the subjective topic label assigned by domain experts to each cluster. The last column shows the 7 most distinguishing words
found in the 20 most frequently used words in each cluster.
doi:10.1371/journal.pone.0002052.t006
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N Many abstracts from Theme D (Homeostatic and Neuroen-

docrine Systems) belong to Cluster 1 (‘‘Substance Abuse and

Addiction’’), suggesting that mechanisms of addiction to

various psychoactive substances (i.e. alcohol, tobacco, drugs)

are important elements of homeostatic and neuroendocrine

research.

4.3 Dynamics of Topics. Analyzing the dynamics of

scientific topics provides interesting insights into the rise and fall

of different research subjects and methodologies. The amount of

scientific interest generated by different topics has both

sociological and economical implications, and tracking their

changes can potentially prove useful for policy making, research

planning, and funding allocation. Since the topic clustering

performed in the previous section was applied to a corpus of

abstracts spanning 6 years, it is straightforward to study short-term

trends in neuroscience research by examining how the distribution

of abstracts across the topic clusters changes from year to year.

Detailed descriptions of our methodology are outlined in Materials

and Methods. There have been several previous efforts to measure

Figure 8. (A) Visualization of topic map for all SFN meeting abstracts from 2001 to 2006. Abstracts assigned to different clusters appear in different
colors (see legend). (B) Zooming in at the center of the topic map reveals more detailed clusters
doi:10.1371/journal.pone.0002052.g008

Figure 9. (A) Concordance matrix between NCuts clusters and SFN themes, normalized by cluster size in each row. The matrix has been diagonalized
for clarity. (B) Concordance matrix between NCuts clusters and SFN themes, normalized by theme size in each column. The matrix has been
diagonalized for clarity.
doi:10.1371/journal.pone.0002052.g009
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topic dynamics using text corpora [32–36]. These have often been

limited to comparing the frequency of occurrence of particular

keywords in one time period to another (although see [32,34]). We

examined the time series of abstracts contributed by topic and of

word-frequency over the full six year period, giving a more

detailed view of temporal dynamics than is offered by a simple

comparison of pairs of temporal windows.

Among the 10 topic clusters, Cluster 9, which corresponds to

visual and motor systems, is shown to have consistently increased

in representation over the six year span (Figure 10A). On the other

hand, Cluster 2, which corresponds to cellular neuroscience,

exhibits the most significant decrease in representation over the

same period (Figure 10B). These results suggest that there is a shift

in general scientific interest from cellular-level work such as ion

channel, synapse, and membrane physiology, towards more

system level research incorporating such topics as vision,

kinematics, motor processing, and imaging. We speculated this

trend is reflective of the heavy reliance of neuroscience research on

animal models and invasive techniques. The use of animal model

systems continues to be the most prevalent way of studying the

pathophysiologic mechanisms of neurodegenerative diseases,

which is an area that is both well funded and well represented

in the SFN abstracts database. This may explain the rise of macro-

level study in favor of cell-based and molecular techniques. In

addition, neuroimaging technologies have in recent years become

indispensable tools in various aspects of neuroscience research. It is

therefore not surprising to observe a surge of activities related to

this subject matter.

In addition to charting the temporal changes in the distribution

of abstracts across topic clusters, we also performed analysis of

word frequency dynamics using principal components analysis (see

Materials and Methods). The results indicated that a large fraction

of the changes could be accounted for by a nearly linear

component in time, which intuitively corresponds simply to some

words becoming more frequent and some becoming less frequent.

The corresponding word-space vector was examined to see which

words contributed to the increase and which to the decrease.

Figure 11 (bottom) shows the 25 terms with the largest positive and

negative projections on this component. These terms seem to

roughly correspond to the domains of cellular neuroscience (decreas-

ing) and systems neuroscience (increasing). This finding is consistent

with the analysis of topic clustering dynamics (above), and appears

to indicate a significant shift in the topics being addressed at the

Society for Neuroscience conference between the years 2001 and

2006.

5. NIH Funding Analysis
The National Institutes of Health (NIH) is the largest funding

agency for biomedical research in the world, currently investing

over $28 billion each year for conducting and supporting medical

research in the United States and around the world (from NIH

website: http://www.nih.gov/about/budget.htm). The NIH is

made up of 27 different institutes and centers, each of which

manages research activities related to specific topics (see http://

grants.nih.gov/grants/glossary.htm). Much of the research show-

cased in SFN meetings is supported completely or partially by the

NIH institutes. The correspondence between research dollars

allocated from individual NIH institute and topic clusters provides

another interesting perspective of the current neuroscience

landscape. As a caveat to this section, it should be noted that

the derivation of the funding information from the abstracts is

inferential, since no dollar figures are provided in the abstracts,

and we did not make any attempt to fine tune our analysis to

individual funding mechanisms but counted each listed grant

equally. Nevertheless, no comparably comprehensive database of

neuroscience funding is publicly available, and we considered it

valuable to perform such inferential analysis.

We anticipated a correspondence between certain topic clusters

and specific NIH institutes. For example, Figure 12A shows the

NIH funding breakdown among the 8 themes created by SFN for

the 2006 meeting abstracts. The majority of the work categorized

as Theme A (‘‘Disorders of the Nervous System) was supported by

the National Institute of Neurological Disorders and Stroke

(NINDS) and National Institute of Drug Abuse (NIDA). If we

further explore the funding distributions among the subthemes of

Theme F (Figure 12B), it is clear that neurodegenerative disorders

and addiction and drugs of abuse indeed represent the majority of

the work classified as Theme F. Applying the same analysis to the

NCuts-derived topic clusters, one might expect to find many

abstracts from Cluster 1 (subjectively labeled ‘‘Substance abuse

Figure 10. (A) Dynamics of Cluster 9 (‘‘Visual and Motor Systems’’), which shows consistent and strong increase in representation from 2001 to 2006.
(B) Dynamics of Cluster 2 (‘‘Cellular Neuroscience’’), which shows steady decrease in representation from 2001 to 2006.
doi:10.1371/journal.pone.0002052.g010
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and addiction’’) to be supported by the National Institute of Drug

Abuse (NIDA), and most of the work supported by the National

Eye Institute (NEI) to be captured by Cluster 9 (‘‘Visual and Motor

Systems’’).

The funding information associated with each abstract between

2001 and 2006 was parsed from the original XML data file. If the

NIH was designated as one of the funding sources, the specific

institute was determined from the two-letter organization code

preceding the grant number. For abstracts supported by more

than one grant, an appropriate fraction was assigned to each

institute by dividing the number of grants from each institute by

the total number of grants listed. It should be pointed out that not

all abstracts provided support information, and not all of those that

did provided a grant number. However, considering the size of the

database, the result is likely to be representative of the overall

funding breakdown among the institutes. The breakdown of

funding across the topics derived from NCuts and the NIH

institutes is illustrated in Figure 12C.

As an example of an inference that may be drawn from these

visualizations, note that a large fraction of neuroscience research,

both at the cellular and system level, is supported by NINDS. This

observation is consistent with the expectation that, regardless of

techniques or methodologies, one of the ultimate goals of many

neuroscience investigations is to further the understanding of the

causes, prevention, diagnostics, and treatment of various disorders

of the nervous systems. If more detailed information can be

extracted from the specific grants referenced, one might further

break down NINDS funding among different types of neurological

disorders. These types of information can be useful for research

planning and analysis of the societal costs of neurological diseases.

Figure 11. Word-frequency dynamics. Top left: distribution of singular values. The first component accounts for 74.4% of variance. Top right: The
first right singular vector (temporal component). Bottom: The most negative and most positive projections of specific words onto the first
component. Most positive words are increasing in frequency; most negative words are decreasing.
doi:10.1371/journal.pone.0002052.g011
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Figure 12. (A) Distribution of NIH funding across institutes and themes for the 2006 meeting abstracts. (B) Distribution of NIH funding across
institutes and Theme F subthemes for the 2006 meeting abstracts. (C) Distribution of NIH funding across institutes and topic clusters for 2001–2006
meeting abstracts. The color of an individual entry in the ‘‘image grid’’ indicates the number of abstracts from a particular theme (for A), subtheme
(for B), or topic cluster (for C, as determined by NCuts graph partitioning) that were funded by a particular NIH institute. Colors are scaled non-linearly
for greater contrast. The ‘‘bar plots’’ on each axis indicate the total number of abstracts funded by a particular institute (top) or contained in a
particular topic group (left). Both rows and columns have been sorted by total number of abstracts.
doi:10.1371/journal.pone.0002052.g012
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There is good concordance between the funding distributions of

several NIH institutes and our topic clusters. For example, most

abstracts from Cluster 6, which corresponds to Alzheimer’s disease

(AD), are supported by the National Institute on Aging (NIA).

Similarly, a significant portion of the abstracts funded by the NIA

are from Cluster 6, suggesting that AD is probably the top

neurological health priority for the aging population. As

anticipated, another example of good concordance is the fact that

most of the work supported by NEI is associated with Cluster 9,

which encompasses visual and motor systems. Finally, it makes

intuitive sense that NIDA and National Institute on Alcohol Abuse

and Alcoholism (NIAAA) would apportion most resources to

support works related to substance abuse and addiction, which is

captured by Cluster 1.

6. Related Work – Computational Linguistics in Research
The application of several methods from the field of

computational linguistics (CL) to the body of neuroscience

abstracts described here has revealed a number of interesting

perspectives on contemporary neuroscience. Currently few

efforts have been undertaken to leverage such techniques to

help neuroscientists in their scholarly research [for examples of

such work, see 37,38], although the array of available methods

continues to grow. Several fields within computational linguistics

use topic modeling, clustering and large-scale visualization

efforts to analyze text corpora of varying degrees of size.

Typically these text collections are non-scientific (either using

sources such as Wikipedia with over 2 million pages, large-scale

crawls of the world-wide-web or newstext). The National Library

of Medicine’s MEDLINE corpus is the standard data of choice

for biomedical text mining [39]. MEDLINE contains roughly

16 million documents and requires large-scale supercomputing

methods to analyze using these methods [40, Personal Commu-

nication].

A number of techniques provide an alternative methodology to

LSA for the analysis of topics and topic signatures (the associations

between words within clusters) within text, these include the log-

likelihood ratio [41], a variety of clustering methods [See 42 for

one example], and Latent Dirichlet Allocation (LDA) [43]. One

refinement of LDA uses Gibbs sampling as an efficient

methodology to discover topics [40,44]. The complexity of the

data may be explored with advanced graph visualization

techniques to assist the analysis [45]. Recent studies include

analyses of the 20 years of abstracts from the Proceedings of the

National Academy of Sciences (PNSA) [15], and from publications

concerned with Melanoma research [46].

Unlike massive resources such as MEDLINE, the SFN annual

meeting abstract data provides an ideal ‘laboratory’ for the use of

these techniques on a small, focused document set in the service of

a relatively small specific community. As a well-established method

to investigate topics for our specific domain, we focused on the use

of LSA to provide a clear high-level overview of the whole subject

and to investigate detailed trends and issues concerning policy and

the informational needs of neuroscientists. We envisage that the

SFN abstracts can provide a valuable resource and application

domain for the CL community since neuroscientists need efficient

computational tools to assist them in their scholarly work.

Materials and Methods

Sources
The annual Society for Neuroscience (SFN) meeting abstracts

from the years 2001 through 2006 were available as XML files on

CD-ROMs during the annual meetings of the society. These XML

files were parsed to extract tagged attributes associated with each

abstract. Each of these attributes was further processed in order to

extract specific types of data. For example, the XML files provide

attributes corresponding to authors’ full names; these attributes

were tokenized in order to separate last name from first and

middle initials. Similar processing was applied to institution

affiliations in which department name, institution name, city,

state (for US and Canada), and country are identified. Further-

more, each author was linked to her respective institution based on

annotated superscript numbers supplied during abstract submis-

sion. The postprocessed data were added into persistent storage in

a MySQL database. The database contains three entity tables:

author, institution, and paper. Since each author can be affiliated

with multiple institutions and can produce one or more papers,

these entities are mapped using many-to-many relationships in the

database. For this study, we created one database for each year

between 2001 and 2006, as well as a consolidated database

encompassing data from all 6 years.

Author Disambiguation
As is the case in many bibliographical resources, each author in

an SFN abstract is identified by last name followed by one or more

initials. Such an identification system is inherently ambiguous and

can impact the quality zof the database as more abstracts are

pooled from multiple years. Two types of name ambiguities were

observed during the parsing process. The first type results from the

same author using a different number of initials in different

abstracts. For example, Partha Mitra from Cold Spring Harbor

Laboratory has been identified as ‘‘Mitra, P.’’ and ‘‘Mitra, P. P.’’

in different abstracts. Because such inconsistencies could lead to

falsely identifying the same author as two unique individuals, only

the last name and first initial were compared by default. Middle

initials were used if and only if the two author names being

compared both contained a middle initial. The second type of

ambiguity arises when different authors actually share the same

name and initials (e.g. ‘‘Brown, S.’’ from the University of

Tennessee in Memphis and ‘‘Brown, S.’’ from Columbia

University). To resolve this scenario, authors were identified as

different individuals if their affiliations were different, regardless of

name identities. This heuristic, of course, assumes that no two

authors sharing the same name work in the same department of an

institution, which is reasonable given the nature and size of the

SFN data.

The method employed to distinguish authors by straightforward

comparison of institution strings inevitably results in a large

number of duplicates. This is because institution entities usually

have many name variants. Syntactic differences (‘‘Memorial Sloan

Kettering Cancer Center’’ and ‘‘Sloan Kettering Institute for

Cancer Research’’), the use of abbreviations or acronyms (‘‘New

York State Psychiatric Institute’’ and ‘‘NYS Psychiatric Institute’’),

and even misspellings (‘‘University of Pittsburg’’ instead of

‘‘University of Pittsburgh’’, and ‘‘Wilfred Laurier University’’ in

Ontario, Canada instead of ‘‘Wilfrid Laurier University’’) were

present due to the lack of a controlled vocabulary in abstract

submission. Given this situation, a strategy that relies on exact

string matching might suffer from low recall [47]. This problem of

determining whether different names refer to the same entity, or

entity matching, has been addressed extensively in the field of

information integration, and numerous solutions have been

developed [48]. Here, the following procedure was used to resolve

semantic ambiguities for institution entities:

1. Break all institution affiliations, which consist of department

name, institution name, city, state (for US and Canada), and
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country, into ‘‘bags of words’’ (or tokens). Convert all words to

upper case.

2. Remove ‘‘stop words’’ from the token sets. Stop words are

words that do not carry any weight in distinguishing different

named entities. The initial stop list was downloaded from the

Cornell SMART project (ftp://ftp.cs.cornell.edu/pub/smart/

english.stop), and was supplemented by institution specific stop

words such as ‘‘college’’, ‘‘clinic’’, ‘‘center’’, ‘‘laboratory’’,

‘‘program’’, ‘‘campus’’, etc.

3. Perform token based name matching using Jaccard similarity,

which is defined as:

J~
S\Tj j
S|Tj j

where S and T are token sets of two arbitrary strings s and t,

respectively. Two institutions are considered identical if their

Jaccard similarity is 1. This step resolves institution names with

different word orders such as ‘‘Weill Medical College of

Cornell University’’ and ‘‘Cornell University Weill Medical

College’’.

4. Edit distance is used as a metric to resolve syntactic variations

in institution names (e.g. ‘‘UC Berkeley’’ versus ‘‘University

California Berkeley’’, or ‘‘Mount Sinai’’ versus ‘‘Mt. Sinai’’).

The edit distance between strings s and t is the cost of the best

sequence of edit operations that convert s to t [49]. If the

distance between two names is less than a certain threshold, the

two are considered aliases of the same entity and are thus

merged into one representation.

In addition to institution entities, co-authorship patterns were also

used to detect authors who moved between affiliations, further

reducing duplicate author instances. For simplicity, authors who

share the same name and have at least one common co-author

were considered to be the same individual. The workflow for

disambiguating and matching author entities is summarized in

Figure 13.

Geographical Distribution of SFN Abstract Authors
For each annual meeting between 2001 and 2006, the city, state

(for US and Canada), and country of each author’s first institution

were extracted, and the total number of authors from each city in

each year was calculated. The longitude and latitude coordi-

nates of each of these locations were then obtained from the

Yahoo GeoCode Web Service (http://developer.yahoo.com/

maps/rest/V1/geocode.html). Per capita participation for each

major city was computed using population data from the United

Nations (UN) Statistics Division (http://unstats.un.org/unsd/

demographic/sconcerns/densurb/urban.aspx). The raw number

of authors associated with each major city was normalized by its

total population to obtain the per capita rate. The UN data

include the latest available population census for capital cities and

cities of 100,000 or more inhabitants, and thus the reference years

vary for different countries. These populations were assumed to

be approximately correct for each city over the entire six-year

period.

To estimate the effect of the location of the annual meeting

(available on http://www.sfn.org) on the number of contributing

authors from nearby regions, we tabulated the number of

participating authors whose address was within 100, 300, and

500 mile radii of the meeting location for each year between 2001

and 2006. The distance, d, in miles between two locations was

calculated using the Great Circle Distance Formula:

d~r � arccos sinw1sinw2zcosw1cosw2cos m1{m2ð Þ½ �

where w1, m1 and w2, m2 are the latitude and longitude pairs (in

radians) of the two geographical locations, and r<3963 is the

equatorial radius of the earth in miles. Let dm
n ið Þ equal to the

fraction of all contributing authors for year i who came from

within an n mile radius of meeting location m. Then, the effect

of meeting location m (in year i) on contributions by nearby

authors, controlling for overall meeting attendance, was

calculated as:

Ddm
n ið Þ~ dm

n ið Þ{Sdm
n Tk

Sdm
n Tk

where Sdm
n Tk indicates the average fraction of authors from the

same n-mile radius around location m in all years k in which the

meeting was not held at location m. Thus, this quantity gives the

percent change in relative attendance from the area surrounding

the meeting compared to the same area’s relative attendance

when the meeting was held elsewhere. Multiple n values are

used to examine how the effect of proximity falls off as a

function of distance from the meeting.

Graph Analysis
The breadth-first search algorithm used to calculate lengths of

shortest paths between all pairs of authors for whom a connection

exists was implemented in Perl. Refer to Introduction to Algorithms

[50] for detailed descriptions of the algorithm.

All other graph analyses (connected component, betweenness

centrality, and clustering coefficient) were performed in MATLAB

7.3.0 (R2006b) using the MATLAB Boost Graph Library

(MatlabBGL) written by David Gleich (http://www.stanford.

edu/̃dgleich/programs/matlab_bgl).

Topic Modeling
Latent Semantic Analysis. The first step of latent semantic

analysis (LSA) was to construct a term-by-document matrix, A, in

which each row corresponds to a unique term and each column to

a unique document (abstract). Entry Aij contains the number of

times term i appeared in abstract j. The full text from the 87543

SFN meeting abstracts from years 2001 to 2006 were first parsed

into tokens. All punctuations, numbers, and other special

characters were discarded. In addition, common English words

that do not carry semantic value were eliminated based on a ‘‘stop

word’’ list from the Cornell SMART project (ftp://ftp.cs.cornell.

edu/pub/smart/english.stop). To further reduce the size of the

resulting ‘‘bag of words’’, all terms that appeared in only one

abstract were eliminated. Word stemming algorithms from

Snowball (http://snowball.tartarus.org) were also applied to all

tokens so that morphologically similar words sharing the same root

(e.g. ‘‘neuron’’, ‘‘neurons’’, ‘‘neuronal’’) were collapsed into one

(‘‘neuron’’). Previous studies have indicated that the use of

stemming can result in some improvement of the precision and

recall of information retrieval [51].

The preprocessing steps resulted in 87543 documents and

35943 terms. The term-by-document matrix A was constructed by

counting the number of occurrences of each term in each

document. In LSA, it is customary to transform this frequency

matrix by some weight function to give better interrelations

between term and document. In this work, the matrix A was

weighted using the log entropy function [52]. The log entropy
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weight of each term i is the product of its local weight lij and global

weight gi computed as

li j~log2 1zAijÞ
�

gi~1z

P
j

pi j log2 pij

� �� �

log2n

0
B@

1
CA

pij~
AijP

j

Aij

where Aij is the frequency of the ith term in the jth document, pij is

the probability of the ith term occurring in the jth document, and n

is the total number of documents in the corpus. The weight-

ed frequency of each element from A is then calculated by

multiplying its local component by its global component. In oth-

er words, the weighted m6n term-by-document matrix, F, is defined

as

Figure 13. Work flow of determining whether two authors are the same individual.
doi:10.1371/journal.pone.0002052.g013
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F~ fij

� �
, where fij~lij|gi

The goal of using a weighting scheme is to assign less weight to

terms that appear in many documents while awarding more

weight to less frequent terms because the latter presumably have

more differentiating power.

The weighted m6n term-by-document matrix, F, was factored

into the product of 3 matrices using the singular value

decomposition (SVD):

F~USW T

where U is the m6r orthogonal matrix containing the left (term)

singular vectors, WT is the r6n orthogonal matrix containing the

right (document) singular vectors, and S is the r6r diagonal marix of

singular values of A [53]. The number of singular values computed

for the matrix F, denoted by r, was set to 100 in this work.

In the reduced dimensionality vector space created by

truncating the SVD, terms that occur in similar documents are

located near one another even if they never co-occur in the same

document. Topically related documents are also grouped near one

another in the reduced vector spaces. The similarity between any

pair of documents x and y can be measured by their cosine similarity,

which is computed as:

cos x,yð Þ~ x.y

xj j yj j

where x and y are the r-dimensional projections of the two

documents in the reduced space.

Topic Clustering. After LSA was completed, topic clustering

of the documents proceeded as follows. First, cosine similarities

were computed exhaustively for all pairs of documents. For each

document, a sorted list of nearest neighbors was identified as those

having the highest cosine similarity scores. To reduce

computational complexity, we identified only the top 100

nearest neighbors. Next, these data were represented as an

undirected, weighted graph G = (V, E) where each vertex, vMV,

denotes a document and each edge, e(i, j)ME, connects a document

i with one of its nearest neighbors j, i?j. The weight associated

with each edge e(i, j) was simply set to cos(i, j). Given the resulting

sparse, connected graph, clustering could be performed using

graph partitioning algorithms that segment the vertices of a graph

into n disjoint sets, V1, V2,…,Vn, such that document similarity is

high within a set Vi and lower across different sets Vi and Vj.

In this study, we applied the Normalized Cuts (NCuts) algorithm

originally proposed by Shi and Malik (2000) to partition the full

nearest neighbors graph. Unlike many other graph partitioning

methods, the NCuts algorithm avoids the bias of separating out

small sets of isolated points by considering the global properties of

the graph instead of focusing on local features [30]. The algorithm

attempts to partition G into n set of disjoint clusters by minimizing

the normalized cut cost between any two partitions Vi, Vj,

Vi<Vj = V, Vi\Vj~1:

Ncut Vi,Vj

� �
~

cut Vi ,Vjð Þ
assoc Vi ,Vð Þz

cut Vi ,Vjð Þ
assoc Vj ,Vð Þ

where cut Vi,Vj

� �
~

P
u[Vi,v[Vj

w u,vð Þ is the sum of the weights of the

edges that are removed between Vi and Vj, assoc Vi,Vð Þ~P
u[Vi,t[V w u,tð Þ is the sum of the weights of edges connecting

vertices in Vi to all vertices in the graph, and assoc(Vj,V) is similarly

defined. Therefore, the NCuts algorithm not only evaluates the

total edge weight connecting two partitions, but also computes the

cut cost as a fraction of the total edge connections to all vertices in

the graph [30] in order to produce globally optimal partitions.

NCuts was applied to cut the full graph into n connected

components; the number of components or ‘‘clusters’’ is a

parameter that required specification by some objective means.

Estimate Number of Clusters. Since the SFN theme labels

and assignments were produced by scientists with domain

expertise, we used this categorization as an evaluation

benchmark to estimate the optimal number of clusters, n. The

goal was to find the clustering of abstracts based on the NCuts

algorithm that best matched globally the clustering based on SFN

theme labels for the year 2006; this value n could then be assumed

to be an appropriate number of clusters across the full 6-year data

set. By varying the number of clusters, n, different degrees of

cluster agreement were obtained. We used the Adjusted Rand

Index to quantify the agreement between NCuts clustering and the

SFN theme labels. The Adjusted Rand Index is defined as follows

[54]: Given two partitions X and Y of a common set of data points,

the quantities a, b, c, and d are computed for all possible pairs of

data points i and j, and their respective cluster assignments, CX(i),

CX(j), CY(i), CY(j), where

a~ i, j cX ið Þ~cX jð Þ
^cY ið Þ~cY jð Þ

��� ��� ��
b~ i, j cX ið Þ~cX jð Þ

^cY ið Þ=cY jð Þ
��� ��� ��

c~ i, j cX ið Þ=cX jð Þ
^cY ið Þ~cY jð Þ

��� ��� ��
d~ i, j cX ið Þ=cX jð Þ

^cY ið Þ=cY jð Þ
��� ��� ��

In the present context, X represents SFN theme labels and Y

represents the NCuts cluster assignment. The quantity a is the

number of document pairs from the same SFN theme that are

assigned to the same cluster in Y, d is the number of document

pairs from different themes that are assigned to different clusters, b is

the number of document pairs from the same theme that are

assigned to different clusters, and c is the number of document

pairs from different themes that are assigned to the same cluster.

The Rand Index [55] is then the fraction of all document pairs

for which the clusterings agree:

R X ,Yð Þ~ azd

azbzczd

The Rand Index lies between 0 and 1. When the partitions X and

Y agree perfectly, the Rand Index is 1. The Adjusted Rand Index

was devised by Hubert and Arabie [31] to correct for the fact that

the expected value of R for random partitions is not constant. The

Adjusted Rand Index linearly transforms the Rand Index such

that its expected value is 0, and maximum value is 1. The Adjusted

Rand Index comparing NCuts clusters with SFN themes was

calculated for n = [5..20], a range intentionally chosen to be similar

to the number of distinct SFN themes.

The Adjusted Rand Index versus the numbers of NCuts clusters

is shown in Figure 14. The plot suggests that NCuts produces the

clustering that is most similar to the SFN theme categorization

whenthe number of clusters is 10, which was used throughout this

work.

Dynamics of Topics. A 1066 matrix, D, was constructed,

where each element Dij denotes the number of abstracts from

cluster i and year j. The matrix columns were normalized by the

total number of abstracts in each year. To find topic clusters that
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demonstrate consistent and noteworthy rise or decline in

popularity, we applied linear regression fit to the normalized

frequency of each cluster by year.

An additional analysis of dynamics was performed using a term-

frequency by year matrix, H. Entries of H count the occurrences of

each term in abstracts, normalized by the total number of words in

all abstracts for each year. Only those terms that appeared in more

than one abstract were included in H. The row-wise mean, which

indicates the average frequency of a given term across years, was

removed. The singular value decomposition of this matrix was

performed to reveal the principal temporal components and

associated term-space components of change in the six year data

set.

Supporting Information

Table S1 Top 20 most frequently used words in each NCuts

topic cluster. The words in each topic cluster are sorted in

descending order of frequencies of usage, which are denoted in

parenthesis. The size (or number of abstracts) of each cluster is also

denoted in parenthesis.

Found at: doi:10.1371/journal.pone.0002052.s001 (0.05 MB

DOC)
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