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ABSTRACT Recent development of in vivo microscopy tech-
niques, including green fluorescent proteins, has allowed the
visualization of a wide range of dynamic processes in living cells.
For quantitative and visual interpretation of such processes, new
concepts for time-resolved image analysis and continuous time–
space visualization are required. Here, we describe a versatile
and fully automated approach consisting of four techniques,
namely highly sensitive object detection, fuzzy logic-based dy-
namic object tracking, computer graphical visualization, and
measurement in time–space. Systematic model simulations were
performed to evaluate the reliability of the automated object
detection and tracking method. To demonstrate potential appli-
cations, the method was applied to the analysis of secretory
membrane traffic and the functional dynamics of nuclear com-
partments enriched in pre-mRNA splicing factors.

The development of in vivo microscopy techniques and fluores-
cent reagents has stimulated interest in studying the dynamics of
cellular processes (for review, see refs. 1 and 2). These types of
experiments generate large and complex data sets and require
tools for visual and quantitative analysis of the observed dynamic
processes in space and time.

Imaging fast moving vesicles in living cells at high speed and
high spatial resolution generally implies a low signal-to-noise
ratio, hampering accurate object detection. As a consequence of
the optical aperture problem, tracking of small objects based on
visual similarity criteria is difficult because many objects appear
very similar (3). Highly sensitive object detection and tracking has
been recognized as crucial for an accurate evaluation of such
data. However, a quantitative interpretation of trafficking vesicles
has been generally based on manual evaluation of a user-biased
selection of objects with apparently highest motility. Such an
evaluation is very time-consuming and also is limited by the
perception of the manual inspector.

Processes in the cell nucleus are much slower and need to be
observed over a longer period of time. To avoid disruptions of
nuclear processes, the total light exposure during in vivo obser-
vation must be minimized. Thus, the signal-to-noise ratio and,
more importantly, the number of time series taken in a particular
experiment is considerably reduced, leading to a loss in spatio-
temporal resolution. Displaying time series as movies is a widely
used method for visual interpretation. However, this approach
does not improve temporal resolution; that is, additional infor-
mation about the continuous development of the observed pro-
cesses between the imaged time steps (subpixel resolution in time)
is not obtained. Furthermore, quantitative information is not
revealed by such a visual approach. In a first approach to
quantitatively describe nuclear dynamics in vivo, single particle
tracking (4) has been used to estimate the diffusion of chromatin
in living cells of different species (5).

Here, we describe a novel technique for fully automated
analysis and time–space visualization of time series from living
cells, which involves segmentation and tracking of cellular struc-
tures as well as continuous visualization and measurement of
quantitative parameters with subpixel resolution in time and
space. It will be demonstrated that this approach can reconstruct
resolution both in time and space. Hence, quantitative and visual
information unachievable with traditional methods can be
accessed.

METHODS
Highly Sensitive Object Detection. Imaging structures in living

cells at high speed and high spatial resolution generally implies a
low signal-to-noise ratio (Fig. 1A), hampering accurate object
detection. We developed a two-step procedure for object detec-
tion. First, a constrained image smoothing by anisotropic diffu-
sion is performed that removes noise without disturbing essential
edge information (Fig. 1B). Anisotropic diffusion selectively
diffuses an image I in regions where the signal is
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of constant mean, in contrast to those regions where a rapid signal
change occurs. The smoothing process within the Perona-Malik
model is monitored by an abstract time-scale t; that is, higher
values imply stronger filtering (6). The diffusion process depends
solely on local image properties and is governed by the shape of
the so-called ‘‘edge-stopping’’ function g. Here, an object scale-
dependent edge-stopping function based on Tukey’s biweight
robust estimator r was applied because diffusion with the Tukey
norm produces sharper boundaries than the Lorentzian (Perona-
Malik) norm (7).
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For segmentation, an edge-oriented technique using a concept of
local orientation was applied. Based on the smoothed represen-
tation, candidate edge pixels are determined by a modified form
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of the standard non-maximum-suppression algorithm (8), includ-
ing a weak hysteresis formulation. A pixel is classified as an edge
pixel if it has a potential predecessor and successor (hysteresis)
and if the magnitude of the gradient is maximal compared with
the two neighbors in direction of the gradient (nonmaxima
suppression). The first condition assists in the formation of
unbroken contours whereas the second inhibits multiple re-
sponses to a single edge present in the data (Fig. 1C).

To obtain closed borderlines, edges were assumed to separate
two neighboring homogeneous regions. A region was considered
homogenous if its intensity values could be modeled by a Gauss-
ian distribution. Edges were traced based on two parameters,
namely local orientation and equal probability of belonging to
adjacent regions. For small scale structures, local orientation can
be approximated by the direction of gradient. This induces a local
coordinate system such that the orthogonal axis aligns with the
isophote (line of constant intensity) parallel to the borderline.
Because borderlines induce a partition of the image, the second
condition implies that edge pixels need to belong to adjacent
partitions with equal probability. As a result, closed borderlines
enclosing homogeneous regions are obtained. Based on the
image partition, a region neighborhood graph is built. Each node
of the graph is associated with one region and is assigned
morphological parameters such as mean intensity, shape, and size
of the respective region. Regions of interest are finally detected
as regions with locally maximal intensity (Fig. 1D).

Dynamic Object Tracking. For dynamic analysis, cellular ob-
jects need to be tracked in time–space. Based on object features
such as size, shape, total intensity, or texture, tracking an object
amounts to finding its best match in consecutive images. Accord-
ing to the continuity equation of optical flow, corresponding
objects in consecutive images should be similar. However, dis-
tortions in the imaging process, such as noise, bleaching, and
illumination differences, as well as changes in focal position might
considerably distort the time–space continuity assumption. Stan-
dard region-based matching techniques (9) do not give satisfying

results in general. Our methods use a fuzzy logic-based system for
image sequence analysis (10) based on the assumption that object
features are conserved in an indistinct (fuzzy) sense.

Fuzzy theory assumes that all things are matter of degree (11).
Fuzzy systems behave as associative memories mapping close
inputs to close outputs without requiring a mathematical descrip-
tion of how the output functionally depends on the input. A fuzzy
system relies on a linguistic ‘‘rule’’ encoded in a numerical fuzzy
associative memory mapping, the fuzzy associative memory rule.
According to a dynamic particle model, the velocity of an object
is assumed to remain relatively constant. To compare two objects
in consecutive images, differences in velocity and deviation of
expected extrapolated position from the potential new position
are measured. In addition, differences in total intensity and area
are computed and translated into fuzzy rules.

Each of these four parameters activates each fuzzy associative
memory rule to different degree mANT. The scalar activation
value actj of the fuzzy associative memory rules’ consequent
equals the minimum of the four antesequent conjuncts’ values.
With correlation-product, encoding the value of the consequent
is multiplied by the activation value. By computing the fuzzy
centroid, the output is defuzzified to a single numerical value, the
composite similarity measure csim. Objects in one image corre-
spond to the object with the highest ‘‘defuzzified’’ similarity
measure in the consecutive image.
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In case no corresponding object with a similarity value below a
certain threshold has been found, this object remains unmatched,
and the respective object track ends. A correspondence map
together with the binarized images are the output of the image
sequence analysis module and are used for continuous visualiza-
tion and quantification in time–space.

Continuous Time–Space Reconstruction. We developed two
different approaches for continuous time–space reconstruction.
The dynamics of objects with constant shape over time are well
described by the dynamic repositioning of their gravity centers.
According to the correspondence map provided by the particle,
tracking module discrete trajectories are formed in time–space.
By cubic b-spline interpolation between corresponding gravity
centers, they are subsequently transformed into continuous tra-
jectories (Fig. 2A). Cubic b-splines were chosen for interpolation
between corresponding points because they are stable in a
geometric sense: That is, they do not tend to oscillations even for
a large number of sample points. Furthermore, continuous
derivatives exist up to the order of two. Note that the first and
second derivative correspond to velocity and acceleration, re-
spectively, which are crucial for quantification of dynamics (see
below). The reconstruction procedure was embedded in a pow-
erful multidimensional viewer (Open Inventor Scene Viewer,
Silicon Graphics, Mountain View, CA; available for almost all
hardware platforms), providing a differentiated visualization of a
large number of trajectories in time–space (Fig. 2B).

The second approach was designed for visualization of objects
dynamically changing their shape over time. This problem ac-
counts for a continuous shape reconstruction from series of
two-dimensional images in time–space (12, 13). In a first step, the
binarized object representation is transformed into a parameter-
ized contour representation (Fig. 3 A–C). Thereafter, corre-
sponding boundary points in adjacent time sections are found by
a global optimization scheme. Under the assumption that the

FIG. 1. Detection of vesicles in human chromogranin B–GFP-
transfected Vero cells. After release of secretion, 40 images were re-
corded with a time-lapse of 0.5 sec. (A) Unprocessed image at initial time
step. (B) After diffusion filtering, the noise level is considerably reduced
without loosing significant object information. (C) After edge detection
within the filtered image, edges are connected to build regions. (D) Based
on the induced region, neighborhood graph vesicles are detected as
regions with locally maximal intensity. For comparison, the unprocessed
image (A) is overlaid with the detected vesicles false-colored in red. Of
note, even weak and noisy vesicle signals (denoted by arrow head) are
readily detected. (Bar 5 5 mm.)
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transformation of one contour k1(u) in its adjacent contour k2(v)
is sufficiently smooth and leaves the order of contour points,

u3 v 5 trans~u!

trans~u! strictly monotonous increasing

trans~u! [ C1

trans~u!

u
, k, k . 1

E
0

umax

duuk2
3

~trans~u!! 2 k1
3

~u!u3 minimum,

unchanged, the optimal transformation is found by minimizing
the integral over all Euclidean distances between correspond-
ing contour points.

For minimization of this energy term, a recursive contour
splitting approach was chosen. A continuous surface recon-
struction in time–space is obtained by b-spline interpolation of
corresponding boundary points (Fig. 3D) and is visualized
within the graphical scene viewer. Triangles are essential
primitives for computer graphical display. Hence, continuous
surfaces need to be approximated by triangular meshes. To

reduce the complexity of the triangle mesh while maintaining
a close approximation to the original b-spline interpolation, a
multiresolution strategy for visualization was developed. At
each level of resolution, triangles are formed according to the
correspondence map in time–space. To obtain a homogenous
triangulation in time–space, a triangle is further subdivided
only if its maximal displacement from the b-spline interpolated
surface exceeds a preset threshold (14).

Quantitative Measurements. Although multidimensional vi-
sualization is crucial for a qualitative evaluation of dynamic
processes, morphological and dynamic parameters are required
for quantitative measurements. Based on object outlines and the
time–space correspondence map, a quantification module was
developed. Within this module, morphological parameters such
as size and shape as well as dynamic parameters such as path
length, velocity, acceleration, mean squared distances, and dif-
fusion coefficients are computed in a fully automated way. An
interface to standard statistic software facilitates further evalu-
ation and display of parameters (see below).

RESULTS
Dynamics of Secretory Membrane Traffic. In a first study, we

examined the motility of secretory vesicles mediating biosynthetic
transport from the trans-Golgi network to the plasma membrane

FIG. 2. Time–space tracking of vesicles for the cell shown in Fig. 1. (A) Tracking and interpolation between consecutive time steps is demonstrated
for 4 of 40 sections at indicated time steps. The sequence of original images is embedded into the continuous time–space where time evolves along the
vertical axis. The highlighted rings on trajectories correspond to intersections of the image sequence with interpolated trajectories. (B) After time–space
interpolation, trajectories were categorized into three classes: stationary (Top), unidirectional (Middle), and bi-directional (Bottom). (C) Visualization of
selected trajectories within the Open Inventor Scene Viewer. Fast moving trajectories are color-encoded whereas stationary trajectories are visualized
in gray. For display reason, only 20% of the stationary trajectories are shown. (D) Within the scene viewer, the user may view the time–space from different
directions and may zoom and assign different colors and textures (not shown) to selected trajectories. A movie showing the multidimensional visualization
of trajectories is published as supplemental data on the PNAS web site (www.pnas.org).
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(15). Green fluorescent protein (GFP) was tagged to the secre-
tory protein human chromogranin B in Vero cells followed by in
vivo time-lapse microscopy. After adaptive smoothing and seg-
mentation (Fig. 1), the object information was passed to the
image sequence analysis tool for object tracking. Image analysis,
graphical preprocessing, and computation of dynamic parameters
involving .500 vesicles in 40 time sections was performed in a
fully automated way within 60 min on a standard Pentium PC or
Silicon Graphics workstation. In comparison, manual evaluation
consumed .4 hours of user interaction for a small subset of 40
user selected vesicles with highest motility.

Within the time–space reconstruction module, the resulting
391 trajectories were categorized as stationary, unidirectional, or
bi-directional according to their degree of motility (Fig. 2B). A

trajectory was considered as stationary if its mean velocity was
below the average velocity of all trajectories. The group of

FIG. 3. (A–C) A series of three images after induction of transcription
of BK-virus was taken at the indicated time steps. Detected speckles are
outlined in green. After in vivo imaging, the induced RNA was visualized
by fluorescence in situ hybridization. The outline of detected RNA (red)
is visualized within the time series for comparison. (D) Time–space
visualization of the dynamic evolution of speckles (green) in relation to
the induced RNA signal (red). The highlighted rings along the recon-
structed shapes correspond to intersections of the image sequence with
interpolated trajectories. (E) A close-up of the speckle intersecting the
induced RNA signal. (F) Time–space reconstruction of 20 images (time-
lapse: 1 min) from a speckle visualized after inhibition of RNA polymer-
ase II (see the supplemental data on the PNAS web site, www.pnas.org).
(Bar 5 1 mm.)

FIG. 4. (A) Time-dependent mean squared distances for the cell
shown in Figs. 1 and 2 and a nocodazole treated cell with disrupted
microtubules (not shown). The mean squared change in distances was
computed as ^Dd2& 5 ^[d(t) 2 d(t 1 Dt)]2&, where d(t) denotes the
trajectory length at time step t, and Dt denotes the time interval.
According to the classification of trajectories, a clear separation between
plots for stationary (l), bi-directional (Œ), and unidirectional (■) moving
vesicles is observed. Note that the mean squared distances for stationary
vesicles are very much similar to those for vesicles in nocodazole treated
cells (F). The diffusion constants (D 5 9.260 3 10211 cm2ysec for
stationary vesicles and D 5 8.223 3 10211 cm2ysec for vesicles in
nocodazole treated cells) show a time-independent correspondence to the
slope of the mean squared distance plots, indicating that those vesicles
undergo Brownian motion. In contrast, the mean squared distances for
unidirectional vesicles show an upwardly curving parabolic curve, indi-
cating a motor protein driven motility model. (B) Accuracy of the object
tracking module in dependence of different dynamic models. Each row
in the three-dimensional plot corresponds to one simulation (for dynamic
parameter settings, see Table 1). For small velocities and acceleration
(simulation 1), 95% of all simulated trajectories could be tracked (no. of
correspondent trajectories 5 1). Only 7% of trajectories were unmatched
(no. of correspondent trajectories 5 0); the remaining 7% of trajectories
were separated into two independent parts (no. of correspondent trajec-
tories 5 2). In simulations 2–6, the initial and maximal velocities were
increased in comparison to simulation 1. With increasing acceleration, the
accuracy of the object tracking module decreases. The majority of vesicles
can be accurately tracked in simulations 2–4, where a vesicle was allowed
to change its velocity by up to 670% in one time step. In simulation 5, the
object tracking module meets its limitations. When a vesicle was allowed
to change its velocity by 680%, 73% of all vesicles could not be tracked.
In simulation 6, dynamic parameter settings have been adapted to the
experimental findings for vesicular membrane traffic (see Results for more
details). Of note, under experimental conditions, the vast majority
(.80%) of vesicles could be accurately tracked.
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remaining vesicles was subdivided into two classes: vesicles per-
forming unidirectional motion and vesicles reversing their direc-
tion of motion. A vesicle was considered as reversing its direction
at a particular time step if the velocity vector averaged over three
time steps before it differed at least 130° in direction as compared
with three time steps afterward.

Trajectories were color-encoded for easy interpretation of
motility (Fig. 2C). Dynamic parameters such as mean squared
distances, diffusion coefficients, and velocities were computed
(Fig. 4A). The vast majority (64%) of vesicles were found to be
stationary whereas 31% showed periods of fast directed move-
ments interspersed by periods of slow random motion. The
average velocity of nonstationary vesicles was 0.587 mmysec as
compared with 0.252 mmysec for stationary vesicles. The maxi-
mum velocity measured for this cell was 1.23 mmysec (i.e., 6

pixelsytime frame; see Table 1). A smaller fraction (5%) showed
a reverse in direction, where half of these vesicles reverted their
direction by 176–180°.

The plots of mean squared distances and diffusion constants
show that stationary vesicles in normal cells as well as vesicles in
cells with disrupted microtubules after addition of nocodazole
undergo Brownian motion (Fig. 4A). These findings support a
trial-and-error model for transport of secretory vesicles. Accord-
ing to this model, vesicles are transported fast but on random
tracks simply trying any direction to find a target membrane. The
model further suggests that vesicles perform fast directed move-
ments if associated with microtubules and slow random search
movements toward the next microtubule after dissociation. Of
interest, we also observed small clusters of vesicles apparently
performing the same kind of random and directed movement

FIG. 5. Simulation and time–space tracking of vesicles under experimental dynamic conditions determined for vesicular membrane traffic (see
Fig. 4A and Table 1). (A) Three sections of a series of forty simulated sections at indicated time steps. (B) Visualization of trajectories within the
Open Inventor Scene Viewer. Accurately matched trajectories are color-encoded whereas unmatched trajectories are visualized in gray. Note that,
despite several intersections of vesicles trafficking at high speed (arrows), the vast majority of trajectories was accurately found by the automated
object tracking module (see also Fig. 4B). (See the supplemental data on the PNAS web site, www.pnas.org.)

Table 1. Simulation and time-space tracking of vesicles

Simulation
vstart,

pixelyframe
vmax,

pixelyframe
a,

pixelyframe2

uvauto
A2 vsimu
A u

vsimu
A

, %

1 1 2 1 2
2 5 10 1 9
3 5 10 6 2
4 5 10 7 15
5 5 10 8 28
6 5 10 0 # acc # 6 3

Six simulations were performed for different parameter settings of initial velocity (vstart), maximal
allowed velocity (vmax), and acceleration (a). The relative deviation between average velocities of
simulated trajectories (vsim) and automatically tracked trajectories (vauto) is given in the fourth row.
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bringing up the question whether those vesicles are associated
with larger transport intermediates. The described techniques
provide a fast and powerful tool to investigate how secretory
traffic is regulated: for example, to study the effect of cell motility
or cell–cell contact formation on the transport of secretory
vesicles.

Comparison with Model Simulations. In an attempt to quan-
titatively access the accuracy of the dynamic object tracking
module, we performed a systematic simulation of trafficking
vesicles under different dynamic parameter settings. Vesicles
were simulated as spots with a Gaussian gray value distribution.
In an initial configuration, a fixed number of vesicles was ran-
domly placed into the image. The localization of a vesicle in the
next time step depends on four parameters: its initial velocity
(vini), its acceleration (a), its direction of motion, and the maxi-
mally allowed velocity (vmax). Although settings for initial and
maximal velocity as well as acceleration differed among vesicles
and experiments, a vesicle was allowed to perform any form of
change in its directional motion in all simulations.

A sequence of 40 time steps was simulated under different
parameter settings (Table 1). After automated object detection,
vesicles were tracked by the object tracking module as described
above (see Methods). Automatically found trajectories were sys-
tematically compared with simulated trajectories (Fig. 4B). Sim-
ulation of vesicles with dynamic parameters set to the experi-
mentally determined maximal velocities and acceleration for
vesicles in membrane traffic (Table 1) showed that 72.5% of the
simulated vesicles could be exactly tracked by the dynamic object
tracking module. Considering the high dynamics of vesicles and
the frequent intersection of trajectories in time–space (Fig. 5),
only 17.5% of the simulated trajectories were unmatched; the
remaining 10% of trajectories were subdivided into two or three
independent trajectories:, that is, at one or two time steps, a
vesicle was lost. Notably, the overall dynamics as reflected by
mean velocities of vesicles was accurately estimated by the
automated tracking module (deviation to exact mean velocities
,3%; see Table 1).

Dynamics of Transcription and Pre-mRNA Splicing. In a
second study, the described technique was applied to study gene
expression events in vivo, in particular, the tempo-spatial and
functional relationship between transcription and pre-mRNA
splicing. In the mammalian cell nucleus, most splicing factors are
concentrated in 20–40 distinct domains called speckles. GFP was
fused in-frame to the amino terminus of the essential splicing
factor 2yalternative splicing factor (SF2yASF) and was visualized
by time-lapse microscopy. Time-lapse microscopy shows that
those speckles are highly dynamic structures (16). BKT-1B cells,
transfected with GFP–essential splicing fator 2yalternative splic-
ing factor cAMP-inducible early genes of BK virus, were trig-
gered in vivo, followed by time-lapse microscopy.

After automated image analysis, outlines of speckles and
BK-induced RNA were computed (Fig. 3 A–C), followed by a
continuous time–space reconstruction and computation of
surface dynamics for these speckles (Fig. 3D). The continuous
reconstruction shows that one of the speckles extends toward
the BK virus gene and intersects the gene signal (Fig. 3E).
Notably, the surface dynamics of all neighboring speckles
measured by the average acceleration of surface points (data
not shown) at each interpolated time step increases after
transcriptional activation and reaches its peak when the first
speckle hits the gene. Thereafter, the speckles show a rapid
slow-down in surface dynamics and a slight reduction in
surface area.

In a different cell, speckles were imaged after addition of
a-amanitin, a specific inhibitor of RNA polymerase II. Notably,
the speckles rounded up and showed only low surface dynamics
(Fig. 3F). These findings suggest that speckles supply pre-mRNA
splicing factors to nearby activated sites of transcription and that
the dynamics of speckles is directly related to nearby transcrip-
tional events. We are currently using these tools to quantitatively

characterize the surface dynamics and intranuclear positioning of
the splicing factor compartments.

CONCLUSIONS
We have developed a widely applicable technique for accurate
analysis of dynamic processes in living cells. In the first applica-
tion, we quantitatively characterized vesicular motility in secre-
tory membrane traffic. Here, the method proved particularly
useful because it allowed for a fully automated analysis of even
complex data involving .500 vesicles in a series of 20 images. In
a comparison with simulated data, we quantitatively accessed the
reliability of the dynamic object tracking module. Under exper-
imental conditions, the vast majority of vesicles could be accu-
rately tracked. Furthermore, the small population of unmatched
vesicles did not influence the overall dynamics, as reflected by the
velocity distribution of vesicles. For the study of nuclear processes,
the time–space interpolation technique proved particularly useful
for investigating the continuous assembly of functional compart-
ments in response to metabolic requirements.

Photon count limitations andyor limitations in total exposure
time during in vivo imaging implies restrictions both in spatial and
temporal resolution. Our results indicate that the developed
methods help to reconstruct tempo-spatial resolution. For fast-
moving vesicles, the highly sensitive object detection module
reveals vesicles that are difficult or even impossible to detect by
visual interactive inspection. For nuclear processes, the visual-
ization module provides a time–space interpolation of interme-
diate time steps, thus allowing the prediction of dynamic pro-
cesses between measured image steps.

The mechanisms and forces involved in the assembly and
dynamics of functional subcellular compartments in response to
metabolic requirements are not well understood at present and
need further investigations. The present method has been shown
to be highly suited for an accurate quantitative and qualitative
study of nuclear and cellular processes with improved tempo-
spatial resolution.
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