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How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural
responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized
preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of
these different subpopulations in the awake preparation, we have estimated the representation of sounds across the
neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass
electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of
neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli) in
the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli
typically eliciting high firing rates (.20 spikes/second) in less than 5% of neurons at any instant. Some neurons had
very low spontaneous firing rates (,0.01 spikes/second). At the other extreme, some neurons had driven rates in
excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal
distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge,
the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results
are compatible with a model in which most neurons are silent much of the time, and in which representations are
composed of small dynamic subsets of highly active neurons.
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Introduction

How does a population of cortical neurons encode a
sensory stimulus such as a sound? At one extreme, the neural
representation could be dense, engaging a large fraction of
neurons, each with a broad receptive field. At the other
extreme, the neural representation could be sparse, at any
moment of time engaging only a small fraction of neurons,
each highly selective with a narrow receptive field. Although a
dense code under some conditions makes the most efficient
use of the ‘‘representational bandwidth’’ [1] available in a
neuronal population—why should a large fraction of neurons
remain silent most of the time?—sparse models have recently
gained support on both theoretical [2–4] and experimental
[5–11] grounds. However, it is not at present clear which of
these is a better model of sensory representations in the
auditory cortex. In order to distinguish between these
alternatives experimentally, we must know what fraction of
neurons responds to a given stimulus.

The direct experimental approach to measuring the
density of a cortical code would begin by simultaneously
recording sound-evoked responses of all the neurons in the
auditory cortex to an ensemble of stimuli; one could then
simply count the number of spikes elicited by each stimulus.
Unfortunately, currently available recording techniques do
not permit such a direct approach. An alternative approach is
to record the activity of a representative subset of neurons
serially, and infer the population response from this sample.
In this way, the population code could in principle be
inferred by sequentially sampling a large population of single
unit responses.

We have used cell-attached recording in the primary
auditory cortex of unanesthetized rats to sample the
population response to brief tones and other stimuli. Because
we were interested in the population response, we presented
a restricted ensemble of stimuli to each neuron, rather than
optimizing the stimulus to drive each neuron to fire
maximally [12,13]. Thus we could assess the fraction of
neurons that responded for each stimulus we presented. The
stimuli ranged from simple (tones, sweeps, white-noise bursts)
to complex (natural sounds). Our data therefore address the
question: What is the typical response across the entire
neuronal population to a particular stimulus? Rather than:
What is the optimal stimulus for a particular neuron? (see
also [14]).
We find that the typical population response in unan-

esthetized auditory cortex is sparse. Consistent with previous
findings in barrel cortex [10,15,16], some neurons had very
low spontaneous firing rates (,0.01 spikes/second); at the
other extreme, some neurons had driven rates in excess of 50
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spikes/second. However, a given stimulus typically elicited a
high firing rate (.20 spikes/second) in less than 5% of the
population. Note that sparseness as used here refers only to
the fraction of neurons active at a given instant; it is quite
possible that each neuron might, under the appropriate
conditions (e.g., when presented with an optimal stimulus),
participate in a representation by firing at a high rate. Our
results represent, to our knowledge, the first quantitative
experimental support for the hypothesis that the representa-
tion of sounds in the auditory cortex of unanesthetized
animals is sparse.

Results

We recorded responses of neurons in the auditory cortex
of head-fixed unanesthetized rats. Because our approach was
to construct the population response one neuron at a time,
we did not optimize the stimulus ensemble to conform to the
response properties of each neuron, but instead probed many
neurons with the same ensemble. In this way, we could
reconstruct the overall population response.

We probed neurons with four different ensembles: tones
(at three different intensities), sweeps, white-noise bursts, and
natural sounds. These ensembles were selected because they
span the range from spectrotemporally simple to complex.

Our goal was to record the responses to stimuli generated
by a representative sampling of neurons in the auditory
cortex. We therefore chose to record with a glass patch
pipette in cell-attached mode, a method which is not
explicitly biased toward active and responsive neurons, or
neurons with large action potentials, and which provides
excellent single unit isolation [10,17] (Figure 1). With cell-
attached recording, single unit isolation depends on the
physical contact between the glass electrode tip and the
neuron. The selection bias of cell-attached recording is thus
based on the neuron’s ‘‘patchability,’’ rather than on the
firing rate or responsiveness of the target neuron; only to the
extent that patchability is correlated with functional charac-

teristics such as firing rate or responsiveness would cell-
attached recording (indirectly) bias the sampled population.
In contrast, good single unit isolation with conventional
extracellular (e.g., tungsten; [18]) electrodes requires a
sufficient number of spikes; skilled practitioners typically
search for neurons with sufficiently high firing rates and large
spikes. Although it would be possible for a committed
investigator to isolate neurons with a low spontaneous firing
rate, for the purposes of this study cell-attached recording
seemed a particularly suitable choice.

Neuronal Responses Are Heterogeneous
Consistent with the earliest studies of unanesthetized

auditory cortex [19–21], tones evoked a wide range of
response patterns. Tones could elicit either an increase or a
decrease in a neuron’s firing rate over the background firing
rate, or both; the change could be transient, delayed, or
sustained; and the response pattern could be different for
different tone frequencies in a single neuron.
Figure 2 shows some examples of the range of response

types we observed. In one neuron (Figure 2A), tones elicited a
transient, short latency response of the sort commonly
observed in the barbiturate-anesthetized auditory cortex. In
a second neuron (Figure 2B), tones elicited a suppression of
background activity. In a third neuron (Figure 2C), higher
frequency tones (;8–40 kilohertz [kHz]) elicited vigorous
sustained firing; interestingly, lower-frequency tones elicited
transient responses in the same neuron, emphasizing that the
distinction between ‘‘transient’’ and ‘‘sustained’’ applies to

Figure 1. Cell-Attached Recordings in the Unanesthetized Auditory

Cortex

(A) Cell-attached recording allows for high-quality single-unit isolation.
High-pass filtered voltage trace recorded in cell-attached mode in the
auditory cortex of an unanesthetized rat. Spikes are easy to identify in
the trace after thresholding (gray line). Spike times (dots) are assigned to
peaks of suprathreshold segments. Gray squares indicate the positions of
stimuli (pseudorandom sequence of 100-ms-long tones of different
frequencies and attenuations). Note long time scale compared with
other figures. The trace segment on the right shows the last 60 ms of the
response to the 7th stimulus (asterisk).
(B) Spike shape can change significantly in a single neuron. Spike times
(dots) are assigned to peaks of suprathreshold segments. The burst in
the right panel preceded the single spike shown in the left panel by
approximately 5 s. Both examples were tone-evoked, and occurred about
40 ms after stimulus termination. Although such dramatic changes are
unusual, cell-attached recording minimizes the probability of both false
positives and false negatives in spike detection.
doi:10.1371/journal.pbio.0060016.g001
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Author Summary

How do neuronal populations in the auditory cortex represent
sounds? Although sound-evoked neural responses in the anesthe-
tized auditory cortex are mainly transient, recent experiments in the
unanesthetized preparation have emphasized subpopulations with
other response properties. We quantified the relative contributions
of these different subpopulations in the auditory cortex of awake
head-fixed rats. We recorded neuronal activity using cell-attached
recordings with a glass electrode—a method for which isolation of
individual neurons does not depend on neuronal activity—while
probing neurons with a representative ensemble of sounds. Our
data therefore address the question: What is the typical response to
a particular stimulus? We find that the population response is
sparse, with sounds typically eliciting high activity in less than 5% of
neurons at any instant. The overall population response was well
described by a lognormal distribution, rather than the exponential
distribution that is often reported. Our results represent, to our
knowledge, the first quantitative evidence for sparse representa-
tions of sounds in the unanesthetized auditory cortex. These results
are compatible with a model in which most neurons are silent much
of the time, and in which representations are composed of small
dynamic subsets of highly active neurons.



Figure 2. Sound-Evoked Responses in the Unanesthetized Auditory Cortex Are Heterogeneous

(A–H) Tone-evoked responses in the auditory cortex of unanesthetized rats are heterogeneous. The panels show response dynamics of eight
representative neurons to 60-dB tones. In each panel, dots represent individual spikes, the gray shaded region indicates the tone duration (100 ms). (A)
transient onset response; (B) suppressive response; (C) transient onset response followed by sustained excitatory response followed by off response; (D)
late onset response followed by strong off response; (E) late onset response; (F) off response; (G) sustained response combined with suppressive
response; (H) non-responsive cell. See also Figures S4–S8 for more examples.
(I) Example of single neuron responses to 54-dB sweeps. Dots represent individual spikes, the gray shaded regions indicate the stimulus duration.
(J) Example of single neuron responses to natural sound (Knudsen’s frog). Spectrogram of stimulus is shown at top (red indicated highest intensities and
blue indicates lowest intensities), and individual trials are plotted in the middle (ticks represent spikes). Firing rate curve in the bottom of the panel was
computed by first summing the spikes in 20-ms bins and then convolving the resulting peristimulus time histogram (PSTH) with a Gaussian (r¼20 ms).
Note the long time scale compared to the other panels.
doi:10.1371/journal.pbio.0060016.g002
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responses, not neurons. Other more complex response
patterns were also observed (Figure 2D–2G.) Finally, half of
the neurons tested (50%, see below) showed no change in
firing rate for any stimulus presented (Figure 2H). Because a
given neuron could show very different response patterns to
stimuli of different frequencies (e.g., Figure 2C), we could not
find a simple and objective scheme for organizing neurons
into a small number of distinct classes, such as ‘‘transient,’’
‘‘sustained,’’ ‘‘off,’’ etc. The neurons shown in Figure 2 are a
subset; the complete set of responses from the entire dataset
is shown in the Figures S4–S8.

Population Response Is Lognormally Distributed
We first analyzed the basic population response elicited by

tones, beginning with the response to tones presented at 50
or 60 decibels (dB SPL). We divided the tone-evoked response
into four 50-millisecond (ms) long ‘‘epochs’’: spontaneous, early,
late, and off (Figure 3A, also see Materials and Methods). To
ensure a sufficient number of trials for assessing the statistical
significance of putative changes in firing rate over back-
ground, we grouped responses across nearby frequencies
(one-octave-wide bins; four- or five-octave bins for each
response epoch). Control analyses using narrower (half-
octave) bins gave similar results (see Materials and Methods),
as expected from the relatively broad frequency tuning of
neurons in the rat primary auditory cortex [22,23]; see also
[24].

Both spontaneous and evoked firing rates were typically
low (see Figure 3 and Table 1). The median spontaneous firing
rate across the population was 2.8 spikes/second (sp/s). The
mean was somewhat higher (4.9 sp/s) because it was
dominated by a relatively small set of neurons—possibly
interneurons (see Very Responsive Neurons May Be Narrow-
Spiking Interneurons, below)—with high spontaneous rates.

Evoked firing rates showed the same pattern: a low median
(2.0–2.7 sp/s) and a somewhat higher mean (5.4–7.0 sp/s). The
higher mean rates reflect the fact that in some neurons, some
frequencies evoked vigorous firing (see Figure 2C for an
example). However, such well-driven responses were the
exception rather than the rule; as quantified below, most
neurons did not respond vigorously to any of the tones
presented. Note that for a neuron to contribute on average at
least one spike to the population representation of a sound in
a 50-ms window, its evoked firing rate must exceed 20 sp/s.

To assess whether the low firing rates resulted from some
intrinsic defect of the spike-generating mechanism, perhaps
introduced by the cell-attached recording method, we
extracted the shortest interspike interval (ISI) for each
neuron. In most neurons, the shortest ISI was less than 10
ms (median shortest ISI ¼ 4 ms, n ¼ 145 cells). Thus, the low
firing rates do not appear to arise from an intrinsic inability
of neurons to fire rapidly, but instead presumably arise from
differences in the synaptic drive received by different
neurons.

The distribution of spontaneous firing rates across the
population was remarkably well fit with a lognormal
distribution—that is, the logarithm of the firing rates was
well fit with a Gaussian distribution (Figure 3B and 3C).
Because the lognormal distribution has a ‘‘heavy tail,’’ most
spikes were generated by just a few neurons: About 16% of
neurons—the subset of 23 neurons firing at higher than 9.5
sp/s—accounted for 50% of all spikes. The lognormal

distribution fit better than the exponential distribution,
particularly at low firing rates (Figure 4); because we were
using cell-attached recording, we were confident that we were
not undersampling the low-firing end of the distribution and
that therefore this improved fit was real. Although lognormal
distributions have widely been used to describe the ISI
distributions from a single neuron, population responses are
usually reported to be exponentially distributed [6,25,26]; this
is, to our knowledge, the first report that firing rates across a
population of neurons are lognormally distributed.

The Population Response Is Sparse
What is the typical response across the entire neuronal

population to a particular stimulus? Figure 5 shows the
cumulative distribution of firing rate changes (with respect to
baseline) for each of the stimuli tested. To simplify the
interpretation of these cumulative distributions, we defined
an arbitrary threshold of 20 sp/s, beyond which we labeled the
response as ‘‘well-driven;’’ Figure 5B shows the fraction of
neuronal population exceeding this threshold for each
ensemble. The choice of 20 sp/s, which corresponds to only
a single extra spike in the 50-ms response bin, we consider
was quite conservative; for example, other authors have
chosen a higher (arbitrary) value of 50 sp/s as the threshold
for the ‘‘high-firing’’ regime [27].
The typical stimulus-evoked population response was

sparse for all stimulus ensembles tested: tones, sweeps,
white-noise bursts, and natural sounds. Only a small
fraction—less than 5%—of the population showed a well
driven (.20 sp/s) response. That is, only a few percent of the
neuronal population was likely to fire one or more ‘‘extra’’
action potentials (above baseline-firing rate) within any 50-ms
window, regardless of the stimulus (see also Figure S3).
Such a sparse response might seem incompatible with

evidence from other recording technologies, such as multi-
unit recordings (or fMRI), indicating that tones and other
stimuli can indeed elicit substantial increases in population
activity. However, these lines of evidence can be reconciled:
even though only a small fraction of neurons was highly active
at any instant, the activity in this small fraction could lead to
as much as a 50% increase in the mean (as opposed to the
median) firing rate (e.g., 4.9 versus 7.0 sp/s during the early
tone epoch; see Table 1). Thus the presentation of a stimulus
caused only a barely discernible change in the activity of most
of the population; but an appreciable number of extra spikes
were concentrated in a small fraction of neurons.
Although the distributions of firing rate changes were

similar across stimulus ensembles, we did observe minor
differences in the mean driven rate among ensembles. As
expected, louder tones elicited a greater population response
than quiet tones. Perhaps surprisingly, simple spectrotempor-
ally rich stimuli (sweeps) elicited a somewhat greater response
than did complex stimuli (natural sounds). Nevertheless, these
differences were relatively small, and qualitatively the
ensembles elicited similarly sparse population responses.
The analysis so far has focused on the fraction of well-

driven neurons. What fraction of neurons showed any
detectable stimulus-locked change at all, beyond those
predicted by chance fluctuations around the baseline? Note
that the definition we use here for responsiveness is quite
inclusive: Even if a tone elicited only a 1 sp/s increase over the
baseline-firing rate, this response might still be deemed
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responsive if the spontaneous rate was sufficiently low for us
to detect a change.

The majority of neurons showed no discernible response to
any stimulus during any given response epoch. Figure 6 shows
the evoked population response to each stimulus ensemble
(with the exception of natural stimuli and white-noise bursts,
for which not enough repetitions were presented; see
Materials and Methods). During each 50-ms response epoch
only about 10% of neurons showed any significant stimulus-
locked increase in firing rate (Figure 6 top, Inc), and a smaller
fraction showed a significant stimulus-locked decrease (Figure

6 top, Dec). Thus, not only was the fraction of well-driven
neurons low, the fraction of neurons driven at all was also low.
Half of the cells (50%) did not show any significant change

(increase or decrease) in firing rate during any response
epoch, to any stimulus; an example of such an unresponsive
neuron was shown in Figure 2H. At the other extreme, a few
broadly tuned cells showed significant changes in firing rate in
all (four or five) octave bins (i.e., across the whole frequency
space tested) for at least one of the response periods.
It might appear that the sparseness we report is incompat-

ible with the broad frequency tuning of rat auditory cortical

Figure 3. The Distribution of Firing Rates Follows a Lognormal Distribution

(A) Cells were characterized by their activity during each of the response epochs: spontaneous, early, late, and off, each 50 ms long. Spontaneous epochs
cover spontaneous activity before the stimulus, early and late epochs cover first and second half of the stimulus duration (100 ms), respectively, and off
epochs cover 50-ms period after stimulus termination. In frequency space, individual trials were grouped into one-octave-wide bins, and averaged to
provide a firing rate value for each octave bin. This figure shows a spike raster plot for an example neuron (with a sustained excitatory response), where
each row represents a single trial, and each dot marks the occurrence of a spike. Shown are responses to 1–40 kHz tones (60 dB SPL, left ordinate.)
Individual trials were grouped into five spontaneous, and 15 evoked response bins (right ordinate.) Note that the top quarter of an octave is not
included in any of the bins.
(B and C) Firing rates of most neurons were low and followed a lognormal distribution.
(B) Frequency histogram of nonzero spontaneous firing rates in individual octave bins (n¼567 octave bins, from 145 neurons). Each neuron contributed
a maximum of four or five data points (because each neuron had four or five octave bins per epoch). The filled arrow shows the position of the median
spontaneous firing rate, and the open arrow shows the position of the mean spontaneous firing rate.
(C) The distribution of spontaneous firing rates (dots) was fit with a lognormal distribution (gray line), the mean and variance of which were given by
the mean and variance of the original firing rate distribution (see Materials and Methods). The lognormal distribution appears as a normal distribution
on a (semi-) logarithmic scale. The error bars show 95% confidence intervals determined by bootstrapping.
doi:10.1371/journal.pbio.0060016.g003
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neurons. However, we found that sparseness was not achieved
through narrow frequency tuning. Instead, it arose through a
combination of factors. First, 50% of the neural population
failed to respond to any of the simple stimuli we presented.
Second, responses were often brief; in many neurons, the

change in firing rate was limited to just one of the three
response epochs. Thus, sparseness of the response in time
contributed to the overall sparseness of the population
response. Finally, even when changes occurred they were
typically small; the increase in firing rate exceeded 20 sp/s in
only about a quarter of the statistically significant responses.
As a result, only a small fraction of neurons responded
vigorously to any tone even though frequency tuning was
broad.
The form of sparseness we report has sometimes been

termed ‘‘population sparseness,’’ to distinguish it from
‘‘lifetime sparseness’’ [2,28]. Lifetime sparseness refers to
the selectivity of a single neuron probed with different
stimuli and can be assessed for a single neuron during a single
unit experiment. Population sparseness refers to the response
of the population to a given stimulus. Responses in visual
cortex have been reported to show population sparseness
[29], but population sparseness has not previously been
assessed in auditory cortex.

Neither Spatial nor Laminar Position Predicts Response
Pattern
The heterogeneity of response patterns to simple tones led

us to wonder whether neurons with similar properties might
be clustered into nearby regions of the cortex; for example,
neurons with predominantly transient responses might be
found in one region, and sustained neurons might be found

Table 1. Firing Rates for Different Response Epochs Were
Typically Low.

Response Epoch Firing Rate

(Spikes/Second)

Median Mean 6 S.E.M.

Spontaneous 2.8 4.9 6 0.5

Early 2.7 7.0 6 0.4

Late 2.0 5.4 6 0.4

Off 2.3 6.0 6 0.4

EarlyþLate 2.4 6.2 6 0.3

All evoked epochs 2.4 6.2 6 0.2

Each value was computed across all octave bins from all 145 cells for the corresponding
epoch(s) (n ¼ 693 octave bins for each epoch). Firing rate for a given octave bin was
defined as mean firing rate of all trials grouped inside that octave bin. The table shows
firing rates of responses to 50 or 60 dB SPL tones (n¼ 145 neurons).
‘‘EarlyþLate’’ values were computed across all octave bins from early and late response
epochs, which cover the entire stimulus duration (100 ms). For each cell, firing rates across
all response bins were pooled to give an estimate of evoked firing rate.
doi:10.1371/journal.pbio.0060016.t001

Figure 4. A Lognormal Distribution Provides a Better Fit to the Data than an Exponential Distribution

(A) The cumulative density (top) and probability density (bottom) functions of the data (black points) are better fit by a lognormal distribution (dark
gray line) than an exponential distribution (light gray line) for spontaneous firing rates. The mean and standard deviation of the lognormal fit were given
by the mean and standard deviation of the distribution of (natural) logarithms of the firing rates. The mean of the exponential fit was given by the mean
of the firing rate distribution.
(B, C, and D) Same format as in (A) for early, late, and off epochs, respectively.
doi:10.1371/journal.pbio.0060016.g004
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in another. In some cases, therefore, we recorded from
multiple cells in a single electrode penetration. Since the
recording electrodes were aligned approximately perpendic-
ular to the cortical surface, the cells recorded in a single
electrode penetration likely belonged to the same or
neighboring cortical column.

We did not detect any clustering of response patterns;
highly responsive cells were often very near unresponsive
cells. Figure 7A shows an example with five neurons recorded
over two penetrations (three in one penetration, and two
more in a penetration approximately 50–100 lm ventro-
caudal from the first penetration). In the first penetration,
one neuron was unresponsive, one showed suppression over a
wide range of frequencies, and the third showed enhanced
firing over an even wider range of frequencies. In the second
penetration, both neurons were unresponsive. The fact that

unresponsive neurons were often mixed closely with respon-
sive neurons indicates that unresponsiveness need not
indicate gross cortical damage (see also [21]) or recording
from a region of cortex that was unresponsive to the stimuli
we were presenting, but that instead neurons with different
selectivity are commingled.
We also wondered whether firing rate was correlated with

cortical layer. We segregated neurons (n ¼ 141) recorded at
different cortical depths (Figure 7B, depths were estimated
using the micromanipulator readings and as such were only
approximate; see Materials and Methods) into six groups
corresponding to the cortical layers [30] (Figure 7C). We
compared the firing rates using multiple comparisons based
on Kruskal-Wallis test and found that the spontaneous and
mean evoked firing rates were not significantly different, with
the exception of layer II, which displayed firing rates
significantly lower (p , 0.01) than the other cortical layers
(layer I contained only one neuron and was not included in
the comparisons). Thus, cortical layer does not seem to
account for the diversity of response properties we observed.

Very Responsive Neurons May Be Narrow-Spiking
Interneurons
Because we could record from only a relatively small

number of neurons in a single penetration, we cannot rule
out the possibility that more thorough sampling of all the
nearby neurons in a region might reveal subtler forms of
spatial or laminar organization that escaped our detection.
Alternatively or additionally, responsiveness might be corre-
lated with single neuron properties such as type, morphology,
and molecular expression pattern. Although in this study we
did not recover neurons for histological analysis and so could
not assess whether there was a correlation with morphology
or molecular expression pattern, we did attempt to correlate
responsiveness with cell type.
Cortical neurons can be grouped into two broad classes:

excitatory neurons that release glutamate at their synapses;
and inhibitory interneurons, which release gamma-amino-
butyric acid (GABA). Most cortical neurons are excitatory.
GABAergic neurons can have diverse morphological, physio-
logical, or molecular characteristics [31]. Excitatory and
inhibitory neurons can also be distinguished based on a
variety of physiological parameters [32,33]. In particular, the
firing rate of some inhibitory interneurons—the so-called
fast-spiking subtype—is higher when stimulated by current
injection. Spike width and shape have been used in previous
studies to assign spikes recorded extracellularly in vivo to
putative excitatory and inhibitory neurons in hippocampus
[34], and cortex [35]. We therefore asked whether spike shape
might predict response patterns in our sample.
Based on previous studies (for example, [32,33]), we

expected that fast-spiking interneurons would likely have
narrow and symmetric spikes. For each cell we therefore
computed the spike width, and also the ‘‘spike amplitude
index’’ as a measure of spike symmetry (see Materials and
Methods). For our population of cells the spike widths ranged
from 0.4 ms to 1.9 ms, with a median value of 0.9 ms. We
defined the spike amplitude index as the absolute value of the
spike peak-to-valley-ratio. A spike amplitude index of unity
indicates a perfectly symmetrical spike, whereas a value
greater than unity indicates a tall spike, and a smaller value
indicates a spike with a deep valley; a fast-spiking interneuron

Figure 5. Only a Small Fraction of the Population Showed a Well-Driven

Stimulus-Evoked Response at Any Instant

(A) Cumulative fraction of stimulus-evoked changes in firing rate for
various stimuli. Different colors correspond to different stimuli: black: 30
or 40 dB tones (n¼ 91 neurons, 1,365 response bins); blue: 50 or 60 dB
tones (n ¼145 neurons, 2,079 response bins); red: 80 dB tones (n ¼ 22
neurons, 330 bins); orange: FM sweeps (n¼22 neurons, 704 bins); purple:
80 dB white-noise bursts (n ¼ 23 neurons, 69 bins); and green: natural
sounds (n¼ 27 neurons, 18,900 bins).
(B) Fractions of response bins showing well driven (.20 sp/s) stimulus-
evoked change in firing rate were low for all stimulus ensembles used.
Error bars show standard error determined by bootstrapping.
doi:10.1371/journal.pbio.0060016.g005
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would be expected to have a low spike amplitude index. Spike
amplitude indices ranged from 0.8 to 34.3, with a median
value of 2.0.

Neurons with higher evoked firing rates tended to have
narrower spikes (Figure 8A), suggesting that interneurons
were overrepresented among the most responsive neurons.
Indeed, the seven most responsive neurons—those with a
mean evoked firing rate (computed across all octave bins and
response epochs) higher than 20 sp/s—had narrow spikes with
spike widths less than or equal to 0.9 ms. Neurons with high
firing rates also tended to have symmetrical spikes (Figure 8B).
Although spike width and shape are only at best crude
surrogates for cell type, the striking correlation between these
quantities and tone responsiveness suggest that a substantial
fraction of the most responsive neurons may be interneurons.

Discussion

We used cell-attached recording techniques in the auditory
cortex of unanesthetized rats to measure the responses of
individual neurons to a variety of acoustic stimuli; we then
used this dataset to infer the stimulus-evoked activity across
the population. The distribution of firing rates across the
population was lognormal rather than exponential, and
stimuli typically elicited a high firing rate in only about 5%
of the population. Such sparse representations may offer

computational advantages, including faster and more com-
plete learning of auditory patterns.

Low Firing Rates in Unanesthetized Auditory Cortex
Cell-attached recording differs from conventional extrac-

ellular recording methods—especially from tungsten record-
ings with single electrode—in its selection bias (see also [10]).
In conventional recording, single-unit isolation requires
neural activity and neurons with low firing rates—sponta-
neous or evoked—tend to be undersampled. During patch
clamp recording, by contrast, the formation of an electrical
seal does not require neuronal activity and the tip of a glass
patch pipette is in physical contact with the neuron, so even
neurons with very low firing rates are as likely to be included
in the sample as those with high firing rates.
Although lognormal distributions have been used widely to

describe the interspike interval distributions from a single
neuron, population responses have usually reported to be
exponentially distributed [6,12,25,26]. The exponential and
lognormal distributions differ most dramatically at the low
end: a lognormally distributed population has fewer nearly
silent neurons (e.g., neurons with a firing rate lower than 0.1
sp/s) than an exponential population. However, because the
cell-attached recording method that we used is not biased
away from such nearly silent neurons, we could be confident
that their underrepresentation in the population was not due
to experimental undersampling. It would be of interest to see

Figure 6. Only a Small Fraction of the Neuronal Population Participated in the Response to an Acoustic Stimulus at Any Instant

(A) The top panel shows the fractions of response bins per octave displaying no change (No), a significant (p,0.01) increase (Inc), or a significant
decrease (Dec) in the firing rate evoked by 30–40 dB tones (see Materials and Methods for details). Error bars show standard errors of the fractions of
response bins. The bottom panel shows frequency histograms of firing rate changes in the response bins from the top panel. The gray histogram shows
firing rate changes for response bins from the ‘‘No’’ bar from the top panel, and the black histogram shows firing rate changes for response bins from
the ‘‘Inc’’ and ‘‘Dec’’ bars from the top panel. Both panels in (A) include data from 930 response bins (n¼ 62 neurons).
(B, C, and D) Same format as in (A) for 50–60 dB tones (B), 80 dB tones (C), and FM sweeps (D). Panel (B) includes data from 1,404 response bins (n¼100
neurons), panel (C) includes data from 90 response bins (n¼ 6 neurons), and panel (D) includes data from 544 response bins (n ¼ 17 neurons).
doi:10.1371/journal.pbio.0060016.g006
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Figure 7. Neither Spatial nor Laminar Position Predicts Response Pattern

(A) Neurons recorded in a single penetration can show very different tone-evoked responses. Response rasters are shown from neurons recorded in two
penetrations (left and right columns); the penetration depicted in the right column was about 50–100 lm ventrocaudal from the penetration depicted
on the left. Dots represent individual spikes and gray shaded regions indicate the tone duration (60 dB, 100 ms). Depths of recordings were measured
perpendicular to the cortical surface, as given by micromanipulator readings and as such are approximate. The cell shown in the lower left corner is the
same as that in Figure 2B.
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whether a lognormal distribution of firing rates is seen in
neuronal datasets obtained using different recording techni-
ques with similar recording biases, such as optical [36],
tetrodes [37], or silicone probes [35].

Interestingly, lognormal distributions have recently been
reported in another neurobiological context. The distribu-
tion of synaptic weights also follows lognormal distribution

[38]. It is, however, unclear how these two observations are
related and what mechanisms might give rise to such
distributions of synaptic weights and firing rates.

Lack of Columnar Organization of Response Dynamics
The rodent auditory cortex is highly organized, consisting

of several auditory fields [39,40]. In several areas, including
the area in which the present experiments were conducted
(area A1, the primary auditory cortex), responses are
organized tonotopically, meaning that neurons in a particular
region tend to be tuned to similar frequencies [22]. Tonotopy
represents the coarsest level of organization within an area,
analogous to retinotopy in the primary visual cortex [41].
However, in the visual cortex of cats and primates, as well as
some other cortical areas, neurons are further organized into
columns, implying that neurons recorded in a single
electrode penetration have similar response properties [42].
In our experiments, however, we failed to detect any

organization beyond tonotopy. For example, nearly silent
neurons could be situated very nearby responsive neurons.
Thus we did not find a columnar organization of response
dynamics.
Although our failure to find columnar organization is not

definitive evidence that no such organization exists—absence
of evidence is not evidence of absence—it is consistent with
several indirect lines of evidence suggesting that columnar
organization in the rodent auditory cortex may be weak.
First, recent studies suggest that neurons in the visual cortex
of rodents, unlike those in cats and primates, may not be
organized into columns [36,43]; by analogy, it may be the
auditory cortex of the rodent also lacks columnar organ-
ization. Second, in vitro experiments with acute rodent
cortical slices suggest that local columnar connections may be
weaker in auditory cortex than in the barrel cortex [44]. Thus
it may be the functional microcircuitry of rodent auditory
cortex is organized in a more subtle fashion [45].

Highly Responsive Narrow-Spiking Neurons
We correlated neuronal responsiveness with cell type based

on electrophysiological criteria. We computed spike width
and spike amplitude index (as a measure of symmetry of spike
waveform amplitude), expecting fast-spiking cells (likely
GABAergic interneurons [33,46]) to have narrow and sym-
metrical spikes due to the fast repolarization [33,46,47].
Multiple features of spike waveforms seem to be required to
classify a given cell as a pyramidal cell or an interneuron
[35,48], with narrow-spiking cells usually considered to be
interneurons. However, the presence of pyramidal cells with
narrow spikes [49], and the overall complexity of various
physiological and morphological features of interneurons
[31,32,50], further complicate electrophysiological identifica-
tion of interneurons.
Although definitive identification of interneurons requires

other techniques such as morphological reconstruction, it is
likely that majority of highly responsive cells in our sample
were not excitatory pyramidal neurons. We speculate that the

Figure 8. Very Responsive Neurons Might Be Narrow-Spiking Interneur-

ons

Neurons with higher evoked firing rates tended to have narrow,
symmetrical spikes.
(A) Spike width decreased with increasing evoked firing rate (n ¼ 144
neurons).
(B) Neurons with higher mean evoked firing rates displayed more
symmetrical spikes. Perfectly symmetrical spikes would fall on the gray
horizontal line. The large dots in both panels denote cells with mean
evoked firing rates .20 sp/s. The black lines in both panels indicate
average values in 5 sp/s bins. The mean evoked firing rate for each cell
was computed as the mean firing rate across all response bins. In (A) all
points were jittered slightly so that overlying points could be seen. One
cell had a very large spike amplitude index of 34.3 (spike width 1.9 ms,
mean evoked firing rate 1.3 sp/s) and was excluded from both panels.
Note that due to lowpass filtering of the traces recorded with glass
electrodes, spike widths may appear wider than when recorded using
conventional metal extracellular electrodes.
doi:10.1371/journal.pbio.0060016.g008

(B) Frequency histogram of recording depths shows that all depths were represented in our sample. All depths (n ¼ 141 cells) were given by the
micromanipulator reading, and as such are only approximate. For four cells the depth information was not available, and they are not included in the figure.
(C) Firing rates were similar across cortical layers. Neurons (n ¼ 141) were segregated into six groups corresponding to cortical layers (see text for
details). Spontaneous firing rates were computed for each response bin. Evoked firing rates were computed in all evoked response bins. Circles show
the positions of medians, error bars extend from the lower quartile (25th percentile) to the upper quartile (75th percentile).
doi:10.1371/journal.pbio.0060016.g007
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high responsiveness of inhibitory interneurons might con-
tribute to population sparseness of stimulus-evoked re-
sponses by simply inhibiting responses of pyramidal
neurons in the auditory cortex. Such inhibition could then
lead to sparse communication between the primary auditory
cortex and higher sensory cortical areas in awake animals.

Sparse Representations and Optimal Stimuli
The sparse and heterogeneous responses we report are

consistent with many previous single-unit studies of auditory
cortex in unanesthetized animals, including the classical
studies [21]; see also [51–55].

In many anesthetized preparations (e.g., barbiturate and
ketamine), sound-evoked responses are typically transient
[17,39,56,57]. With the resurgence of work in the awake
preparation in the last decade, many researchers have
emphasized the much richer repertoire of responses in the
auditory cortex of awake animals, including especially
sustained responses to sounds [25,58–60]. We propose that
response heterogeneity is a hallmark of awake auditory
cortex.

Our study complements recent work aimed at identifying
‘‘optimal’’ stimuli—stimuli that elicit high sustained firing rate
[12,13,61]. The fact that a stimulus can be optimized to drive a
particular neuron well tells us little about how this stimulus is
represented across the population. Our data suggest that only
a minority of neurons are engaged in the representation of
many stimuli; indeed, the fact that most stimuli drive most
neurons only weakly explains why finding the optimal
stimulus for any given neuron can be such a challenge. Thus,
although there may be an optimal stimulus for any given
neuron, most stimuli are not optimal for most neurons, and so
are represented sparsely across the population.

Sparse Representations in the Cortex
The population sparseness in the awake auditory cortex we

described arose through a combination of three factors. First,
half of neurons failed to respond to any tone we presented.
Second, responses were often brief. Third, the amplitude of
responses was usually low. Thus, even though the frequency
tuning of single neurons is usually broad [24], only a small
fraction of neurons responded vigorously and most neurons
were silent.

Experimental evidence for sparse coding has been found in
a range of experimental preparations, including the visual
[5,6], motor [11], barrel [10], and olfactory systems [7,62,63],
the zebra finch auditory system [8], and cat lateral geniculate
nucleus [9]. However, the sparseness of representations in the
auditory cortex has not been explicitly addressed in previous
work. Our results constitute the first direct evidence that the
representation of sounds in the auditory cortex of unan-
esthetized animals is sparse.

Our data support the ‘‘efficient coding hypothesis,’’ [64]
according to which the goal of sensory processing is to
construct an efficient representation of the sensory environ-
ment. Sparse codes can provide efficient representations for
natural scenes [2,65]. Sparse representations may also offer
energy efficient coding, where fewer spikes are required
compared to dense representations [66–68].

A growing body of theoretical work on sparse representa-
tions suggest they may be useful for computation [2–
4,65,69,70]. Sparse representations have become increasingly

important in statistical machine learning [71]. One intuition
underlying this approach is that it can be easier to recognize
a sparse pattern in a high-dimensional space than a dense
pattern in a low dimensional space. This is illustrated in Text
S1 and Figure S1, where spike trains drawn from a sparse
distribution could more easily be discriminated than those
drawn from a dense distribution. This discriminability in turn
can make the patterns easier to learn rapidly (see Text S2 and
Figure S2). Thus, an advantage of sparse cortical representa-
tions may be to facilitate rapid learning of arbitrary auditory
patterns.

Materials and Methods

Surgery. Sprague Dawley rats (21–30 days old) were anesthetized in
strict accordance with the National Institutes of Health guidelines, as
approved by the Cold Spring Harbor Laboratory Animal Care and
Use Committee. A small craniotomy (maximum size of 1.5 3 1.5 mm)
and durotomy were performed over the left (primary) auditory
cortex. The position of the craniotomy was determined by its
distance from bregma (4.5 mm posterior and 4 mm lateral), and its
relationship to other bone sutures. The presence of clear auditory
single-unit responses and/or local field potentials was further used as
physiological criteria to confirm the location of the auditory cortex.
Based on the anatomical landmarks and physiological criteria we
expect that the neurons recorded in this study were in the primary
auditory cortex [39].

The whole area was protected by a plastic well with removable cap.
The brain surface was covered with Kwik-Cast (World Precision
Instruments) between the recording sessions. An aluminum headpost
was attached to the skull with Relyx Luting Cement (3M ESPE). A
silver chloride ground wire was implanted subcutaneously on the
back of the animal.

The animals were allowed at least 24 h of recovery before the first
recording session. During the recording session, the head of the
animal was fixed in the headpost holder and the animal was
positioned inside a plastic tube, which provided a loose restraint
for body movements. The plastic cap and Kwik-Cast were removed
and the cortex covered with physiological buffer (in mM: NaCl, 127;
Na2CO3, 25; NaH2PO4, 1.25; KCl, 2.5; MgCl2, 1; and glucose, 25) mixed
with 1.5% agar. The animals sat quietly, occasionally moved their
limbs, groomed, whisked, etc. The behavioral state of the animal was
monitored by a closed video circuit. Excessive movement, signs of
stress, or discomfort of the animal were used to indicate the end of
the experiment. We recorded from each animal during several
recording sessions (usually two or three sessions per rat). The number
of recording sessions was limited by the total number of electrode
penetrations. Any appearance of brain edema, or a change in cortex
appearance, vasculature, etc. was a sign to discontinue recordings
from the animal.

Electrophysiology. Cell-attached recordings were obtained using
standard blind patch-clamp recording techniques; for details on this
technique see also [17,72,73]. Electrodes were pulled from filamented,
thin-walled, borosilicate glass (outer diameter, 1.5 mm; inner
diameter, 1.17 mm; World Precision Instruments) on a vertical two-
stage puller (Narishige). Internal solution contained (in mM): KCl, 10;
KGluconate, 140; HEPES, 10; MgCl2, 2; CaCl2, 0.05; Mg-ATP, 4; Na2-
GTP, 0.4; Na2-Phosphocreatine, 10; BAPTA, 10; and biocytin, 1 %,
(pH 7.25); diluted to 290 mOsm. Resistance to bath was 3.5–5.0 MX
before seal formation. Recordings were obtained using Axopatch
200B (Axon Instruments) with 2 kHz lowpass filter and a custom data
acquisition system written in MATLAB (Mathworks), with a sampling
rate of either 4 kHz or 10 kHz. Because cell-attached recording
requires a minimum seal of only about 10–20 MX (compared with the
.1 GX for whole cell recording), almost every neuron encountered
can be patched.

We recorded from 166 neurons (in 25 animals), out of which we
identified 145 neurons (in 24 animals) with at least eight trials per
octave bin (see also section titled Cell counts, below). The search for
neurons was conducted solely based on pipette’s resistance and not
on spiking activity. For inclusion in our sample, each cell had to
generate at least one action potential (to guarantee that it was not,
e.g., a glial cell). A great care was taken to exclude neurons that might
have been damaged by direct contact between the pipette tip and
cellular membrane. Recordings during which we observed gradual
increase in spontaneous firing rate were excluded. In the rare cases,
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in which the spontaneous rate increased suddenly, or the electrode
‘‘broke in’’ after a sudden movement of the animal, we analyzed only
the first stationary epoch of the recording.

Neurons were recorded from all depths (Figure 7B). The neuron
appearing in Figure 2A appeared previously in a review article (Figure
2B of [1]), as did the neuron presented in Figure 2C (Figure 3 of [1]).

Stimuli. All experiments were conducted in a double-walled sound
booth (Industrial Acoustics Company). Free-field stimuli were
presented at 97.656 kHz using TDT System 3 (Tucker-Davis
Technologies) connected to an amplifier (Stax SRM 313, STAX
Limited), which drove a calibrated electrostatic speaker (taken from
the left side of a pair of Stax SR303 headphones) located 8 cm lateral
to, and facing, the contralateral (right) ear.

The main sets of stimuli consisted of 100-ms long pure-tone pips of
16, 20, or 64 different frequencies logarithmically spaced between 1–
40 kHz (81% of recordings, 134 out of 166) presented at either 20, 50,
80 dB SPL (n¼43), or at 0, 30, 60 dB SPL (n¼15), or at 0, 20, 40, 60 dB
SPL (n ¼ 76). For the rest of recordings (19%, 32 out of 166) the
stimulus protocol contained 100-ms long pure-tone pips of 28
frequencies logarithmically spaced between 2–48 kHz presented at 60
dB SPL. All tones were repeatedly presented in a fixed pseudo-
random order at a rate of two tones per second. A full tuning curve
was obtained for each neuron.

In 22 neurons (13% of recordings, 22 out of 166) we also presented
frequency-modulated sweep stimuli. Sweeps covered the frequency
range from 1 to 40 kHz, and both upward (from 1 to 40 kHz) and
downward (from 40 to 1 kHz) going sweeps were presented at six
different rates (25, 50, 75, 100, 125, 150 octaves/second) for each
neuron (see Figure 2I for an example).

In 43 neurons (26% of recordings, 23 out of 166) we presented 100-
ms long white-noise bursts at 80 dB SPL.

Natural sound stimuli were presented for 28 neurons. Of those, 23
neurons were also presented with pure tones (14% of recordings, 23
out of 166), and five neurons were presented only with natural
sounds. The natural sound stimuli were taken from a commercially
available audio compact disc, ‘‘The Diversity of Animal Sounds’’
(Cornell Laboratory of Ornithology), originally sampled at 44.1 kHz
and resampled at 97.656 kHz for stimulus presentation [72]. The
sounds chosen had no special relevance to the rats (unlike, e.g., rat
pup calls), and therefore are less likely to engage specialized
processing mechanisms; to the extent that these sounds are
representative of the acoustic environment of humans, they are also
representative for rats, which often share the same habitat as humans.
Altogether, four natural sound segments were presented for each
neuron, with at least four repeats of each segment per neuron. The
segments included Jaguar call (track 3, seconds 2 to 11 for total
duration of 10 s), Bowhead Whale (track 9, seconds 1 to 10, 10-s
duration), Knudsen’s Frog (track 11, seconds 1 to 10, 10-s duration,
Figure 2J), and Bearded Manakin (track 19, seconds 0.1 to 5.1, 5-s
duration). The peak amplitude of each segment was normalized to the
610 V range of the TDT system, which corresponded to 80 dB SPL.

Spike extraction and analysis. Spikes recorded in cell-attached
mode were extracted from raw voltage traces by applying a high-pass
filter and thresholding (Figure 1A). Spike times were then assigned to
the peaks of suprathreshold segments, and rounded to the nearest
millisecond.

Individual spikes can assume very different shapes even in a single
cell (Figure 1B). In some cases we observed bursts of spikes, during
which spike amplitude sometimes decreased several-fold. For the cell
shown in Figure 1B, both single spikes and bursts were sometimes
evoked approximately 40 ms following tone termination. Such large
changes in spike characteristics can result in a failure of spike
detection in conventional extracellular tungsten recordings.

Spikes were recorded at a sampling rate of 4 kHz for 88 neurons in
our sample (n ¼ 166 neurons), and 10 kHz for the remainder of the
population. For the analysis of spike shape (Figure 8), the spike
waveforms recorded at 4 kHz were resampled to 10 kHz (using
MATLAB resample function). We then computed the mean spike
waveform, and defined spike width as the time difference between the
peak (maximum amplitude) and valley (minimum amplitude follow-
ing the peak) of the waveform. Because the spike waveforms are
(re)sampled at 10 kHz, the spike widths are rounded to the nearest
tenth of a millisecond. For each cell we also computed the amplitude
index, the absolute value of peak-to-valley-ratio, of the mean spike
waveform.

Evoked response analysis. Responses to stimuli were divided into
50-ms-duration time bins. In addition, tone-evoked responses were
also binned in frequency space. We use the term response bin to refer
to subdivision of a response in general, as defined below for various

stimuli. When we explicitly refer to binning in time, or frequency, we
use the terms response epoch, or octave bin, respectively.

Tones. Tone-evoked responses were divided into four 50-ms- long
response epochs (Figure 3A). The spontaneous epoch was defined as the
50-ms-long period preceding stimulus onset. The early epoch was
defined as the first 50 ms of stimulus duration, the late epoch as the
last 50 ms of stimulus duration, and the off epoch as the first 50 ms
after stimulus termination. In frequency space the responses were
grouped into one-octave-wide bins, which resulted in four or five
frequency bins (octave bins) per cell (depending on the stimulus
protocol used, see Stimuli above).

The spontaneous firing rate for each cell was computed as a mean of
firing rates across all trials in the spontaneous epoch for the given
cell. Evoked firing rates were computed for each combination of
response epoch and octave bin as a mean of firing rates of all trials in
the specific octave-epoch combination (Figure 3A).

The distribution of firing rates across octave bins for each response
epoch was fit with a lognormal distribution (Figure 3). To fit each
distribution, the octave bins with zero firing rate were removed, and
the mean and variance of the distribution of log-transformed firing
rates were computed. The mean and variance obtained directly from
data were then used as parameters for the normal distribution fit to
log-transformed firing rates. The goodness-of-fit for each distribution
was assessed using the Kolmogorov-Smirnov test.

The significance of stimulus-evoked changes in firing rates was
evaluated with the Wilcoxon signed-rank test, i.e., a non-parametric
paired, two-sided test of the hypothesis that the difference in firing
rates between the matched trials in two different epochs comes from
a distribution whose median is zero. For each octave and early, late,
and off response epochs we tested on a trial-by-trial basis whether the
stimulus-evoked firing rate increased or decreased significantly
compared to the corresponding spontaneous epoch. For this test we
also only considered cells with at least 20 trials per octave bin (69%,
100 cells out of 145).

For the analysis of responsiveness of single neurons (in Results see
Population Response Is Sparse) the evaluation of significance
involved 15 comparisons for most of the cells, because responses of
most cells were binned to 15 response bins (five octave bins times
three response epochs). Therefore, we used a significance criterion of
either p , 0.0033 (for 15 comparisons, 0.05/15), or p , 0.0042 (for 12
comparisons, 0.05/12) to keep the overall significance criterion for
each cell at p , 0.05. To be considered tone-responsive, a cell had to
show a significant change in firing rate (increase or decrease) in at
least one response bin.

For the population response analysis (in Results see Population
Response Is Sparse and Figure 6) the response bins from all neurons
were considered independent and their responsiveness was evaluated
with the Wilcoxon signed-rank test using a significance criterion of p
, 0.01. To evaluate the population response in the early response
epoch (Figure 6A), the fraction of bins showing a significant increase,
a significant decrease, or no change in the firing rate was computed
for each octave bin in the early response epoch. The fraction of
responsive bins in the early response epoch was then defined as the
mean of the octave-bin fractions in the epoch. Analogous computa-
tions were carried out for the late and off response epochs. To
compute the population response across all epochs the fractions of
responsive bins were computed from all response bins (from all
neurons) pooled together.

Careful inspection revealed no clear examples of frequency tuning
sharper than about one octave, suggesting that it would be appropriate
to pool together responses to tones within an octave. To confirm
systematically that our results were robust to this choice we repeated
this analysis with half-octave wide (i.e., narrower) frequency bins, two,
and four octaves wide (i.e., wider) frequency bins, and 50-ms-long
response epochs. To control for neurons with more transient or
sustained responses we performed the population response analysis
with 25, 75, and 100ms duration response epochs and one-octave-wide
frequency bins. The results of these analyses, however, were the same
as for the basic analysis with one-octave-wide frequency bins and 50-
ms-duration response epochs (unpublished analysis).

Frequency-modulated sweeps. Responses to frequency-modulated
(FM) sweeps were subdivided to 50-ms-duration response epochs.
Slower sweeps, with 25 or 50 octaves/second, contained four or two
50-ms epochs, respectively, during the stimulus presentation. Faster
sweeps (75, 100, 125, 150 octaves/second) contained one 50-ms epoch.
For all sweep rates we also added an off epoch starting either at the
sweep termination (for 25, 50, 75, 100 octaves/second), or immediately
after the response epoch (for 125, 150 octaves/second). Each response
was thus divided into 32 response bins (including upward and
downward moving sweeps). For the analysis of significance of sweep-
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evoked responses in individual neurons, we therefore used a
significance criterion of p , 0.0016 (0.05/32). To compute the
population response to FM-sweeps all response bins were considered
statistically independent, and their responsiveness was computed
using a significance criterion of p , 0.01.

White-noise bursts. Responses to 80-dB white-noise bursts were
divided into four 50-ms-long response epochs (spontaneous, early,
late, and off) analogous to the tone response epochs described above.

Natural sounds. Responses to natural sounds were also divided to
50-ms- duration response epochs. 10-s-long segments thus contained
200 response bins each, and 5-s-long segments contained 100
response bins. Natural sound-evoked responses were used only for
the analysis of stimulus-evoked changes in firing rate, because none of
the recordings met our criterion for the test of evoked response
significance (i.e., at least 20 trials per response bin).

Cell counts. For the analysis of stimulus-evoked changes in firing rate
(Table 1, Figures 4, 5, and 7C), we identified neurons with at least
eight trials per response bin (five trials for natural sounds, three trials
for white-noise bursts). For the analysis of significance of stimulus-evoked
responses (Figure 6), we identified neurons with at least 20 trials per
response bin.

We recorded from 166 neurons (100%), while presenting pure-
tone pips. For further analysis of firing rates evoked by 50- or 60-dB
tones we identified 145 neurons (87%) with at least eight trials per
response bin. For the analysis of evoked response significance we
further identified a subset of 100 neurons (60%) with at least 20 trials
per response bin.

For 91 neurons (55%) we also presented 30- or 40-dB tones. All of
these neurons were used for the firing rate analysis, and 62 neurons
(37%) from this subset—those with at least 20 trials per response
bin—were used for the analysis of evoked response significance.
Accordingly, out of 43 neurons (26%) presented with 80-dB tones we
selected 22 (13%) for firing rates analysis, and six (4%) with at least 20
trials per octave bin for the analysis of evoked response significance.

FM sweeps were presented for 22 neurons, all of which were used
for the firing rates analysis. Seventeen neurons with at least 20 trials
for each sweep rate and direction were further selected for the
analysis of significance of sweep-evoked responses.

White-noise bursts (80 dB) were presented for 43 neurons. For the
analysis of evoked firing rates we identified 23 neurons (55%) with at
least three trials per response bin.

Natural sounds were presented for 28 neurons. Twenty-seven
neurons with at least five trials for each natural sound segment were
identified for the analysis of stimulus-evoked firing rates. Bootstrap
resampling showed that the smaller sample size did not influence our
estimates of fraction of well-driven response bins (see Results.)
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