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Rapidly inducible, genetically targeted inactivation of neural

and synaptic activity in vivo
Dougal Tervo' and Alla Y Karpova?

Inducible and reversible perturbation of the activity of selected
neurons in vivo is critical to understanding the dynamics of
brain circuits. Several genetically encoded systems for rapid
inducible neuronal silencing have been developed in the past
few years offering an arsenal of tools for in vivo experiments.
Some systems are based on ion-channels or pumps, others on
G protein coupled receptors, and yet others on modified
presynaptic proteins. Inducers range from light to small
molecules to peptides. This diversity results in differences in
the various parameters that may determine the applicability of
each tool to a particular biological question. Although further
development would be beneficial, the current silencing tool kit
already provides the ability to make specific perturbations of
circuit function in behaving animals.
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Introduction

Underlying the function and dysfunction of the brain are
complex neuronal circuits, consisting of diverse classes of
specific neuronal populations. A major goal in systems
neuroscience is to relate the activity in specific neuronal
circuits to physiological processes, behavioral responses,
and disease states. This is a challenging task especially in
the case of the highly complex mammalian brain and
requires tools that allow rapidly inducible and reversible
modulation of specific parts of neural circuits iz vitro
and 7z vive; a need that has been widely recognized for
some time [1-4]. The past decade has seen an upsurge in
the development and optimization of genetically encod-
able tools for perturbing neuronal activity and several
systems have been described [5°,6,7,8°°,9°,10,11°°]. More
importantly, initial 7z vivo applications of these tools
have been described in the past two years opening the
exciting new field of highly specific perturbation of circuit

function in behaving animals [8°%,12°%,13°°,19%°]. As
these systems differ in the approach to neuronal silencing,
mechanism of triggering, and kinetics of induction and
reversal, each may be best applied in different exper-
imental contexts. In this review, we discuss the most
promising rapidly inducible silencing systems with the
focus on how the different properties of each system
make it particularly suitable for certain types of biological
questions while highlighting the need for further charac-
terization and optimization of their various features.

Approaches to rapid silencing

Allatostatin receptor-allatostatin system

Callaway and colleagues pioneered the use of the Dro-
sophila allatostatin receptor (AlstR) [14] for inducible
inactivation of neuronal activity (Figure 1A) [6]. This
system is based upon the expression of a G protein
coupled receptor that is selectively activated by the
insect peptide hormone allatostatin (AL) but is insensi-
tive to endogenous mammalian peptides [14]. Following
application of allatostatin, AlstR indirectly causes open-
ing of G protein inward rectifier K+ (GIRK) channels
leading to a hyperpolarizing potassium current, which in
turn suppresses action potential generation. In disso-
ciated cultures, a decrease in excitability is observed
within 10-20 min of allatostatin application. Similarly,
in slices of the spinal cord from mice expressing AlstR
in a subpopulation of spinal cord inhibitory neurons,
reversible suppression of excitability was observed in
the presence of allatostatin (10 nM) with a time course
of approximately 20 min for both induction and reversal
[15°]. Tan er al. used this system successfully in rats,
ferrets, and monkeys to selectively suppress neuronal
activity in genetically defined visual cortical and thalamic
neurons [12°°]. Local application of allatostatin (100 nM)
to the relevant neuronal tissue (within ~1 mm) was
necessary because of restricted diffusion of the peptide,
and its effect on neuronal excitability was inducible and
reversible with the similar time course of 10-20 min.

The ivermectin-sensitive chloride channel

A second system that reduces neuronal activity upon
ligand application is the ivermectin (IVM)-sensitive
chloride channel consisting of Caenorhabditis elegans GluCl
a and B subunits (Figure 1B) [7,13°%,16-18]. Expression
of GluCla/B using Sindbis virus in dissociated hippo-
campal neurons allowed inducible and potent inactivation
of neuronal activity within seconds of ivermectin (5 nM)
application. The unbinding of ivermectin from the chan-
nel appeared to be very slow as reversal iz vitro required
8 h. Although the wild type GluCla/B channel was also
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Schematics of five rapidly inducible and reversible, genetically encoded neuronal inactivation systems described here. (A) Allatostatin receptor
(AlstR; green) couples the binding of allatostatin (red spheres) to the activation of a G protein (white). This then leads to the opening of a G
protein coupled inward rectifier K+ channel (blue). (B) The two subunit GluCla/B receptor (blue, purple) is opened by ivermectin (black circle).
The resulting Cl-current suppresses neuronal activity. (C) Chloride current through the five subunit GABAA channel is enhanced by binding of
zolpidem (black circle) to the interface between y2 and a1 subunits leading to suppression of excitability. (D) Two Molecular Systems for the
Inactivation of Synaptic Transmission (MISTs). The one-component system is based on crosslinking of modified VAMP (light blue). The two-
component system is based on mislocalization of modified Synaptophysin (Sph; purple) non-specifically along the plasma membrane using the
transmembrane domain of Syntaxin (StxTM). (E) Halorhodopsin (NpHR) pumps chloride into the cell when opened by yellow light.

sensitive to glutamate, this side-effect was subsequently
reduced [18]. Lerchner ez 4/. demonstrated that this
system can work 7z vive by using it to perturb the function
of striatal circuits in rats [13°°]. By expressing GluCla/B
unilaterally in the striatum through co-infection with two
adeno-associated viruses encoding the individual subu-
nits, they demonstrated that intraperitoneal adminis-
tration of 5-10 mg of ivermectin per kilogram of body
weight led to a perturbation of amphetamine-induced
rotational behavior. The observed effect was maximal at
12-24 h post injection and reversed by 4 days post injec-
tion. It is important to emphasize that unlike in the 7 vivo
study with the AlstR/AL system, the readout of the
inactivation in this case was not a direct measure of the
electrical activity of the targeted neuronal population, but
rather behavioral output, making it difficult to compare
the time course of silencing between the two systems. [t is
not unlikely that the change in behavioral output occurs
on a slower time scale than the change in the activity of
targeted neurons.

The zolpidem-sensitive GABA, channel

The most recently developed system takes advantage of
the specificity of the GABA channel binding to a positive
allosteric modulator, zolpidem [19°°]. Single amino acid
substitution in one of the subunits of the GABA 4 channel
(y2) leads to abolition of zolpidem sensitivity. Wulff ez 4/.
used this result to create a strategy for cell type specific
enhancement of GABA-ergic currents by first creating
zolpidem-insensitive mice using a mutant y2 subunit and
then reintroducing the wild type subunit to genetically

defined neuronal populations to restore the sensitivity to
the drug to select neuronal populations [19°°]. In acute
cerebellar slices from mice expressing the zolpidem-sen-
sitive version of the GABA, receptor selectively in Pur-
kinje cells, enhancement of miniature inhibitory post-
synaptic currents (mIPSC) in Purkinje cells was observed
within minutes of zolpidem (1 pM) delivery. Further-
more, intraperitoneal administration of the inducer in
these transgenic mice led to impairment of rotarod per-
formance within 5 min. Neither the extent of block of the
excitatory input onto Purkinje cells by zolpidem admin-
istration nor the time course of reversal was addressed.

MISTs

A completely different approach to silencing is based on
blocking neurotransmission by perturbing the function of
synaptic proteins; an approach originally exemplified by
shibire, a temperature-sensitive mutant of Drosophila
dynamin [20]. A different embodiment of this strategy
that has proven effective in the mammalian system is
Molecular Systems for the Inactivation of Synaptic Trans-
mission (MISTs) [8°°]. MIST's interfere with the synaptic
transmission by inducing the mislocalization or immobil-
ization of modified presynaptic proteins using chemically
inducible dimerization (CID) with small cell-permeable
chemicals, which are analogs of rapamycin [21]. Two
systems have been introduced: VAMP/Syb MIST is
based on oligomerization of synaptic vesicle protein
VAMP/Synaptobrevin, whereas Sph-StxITM MIST is
based on inducible crosslinking of synaptic vesicle
protein Synaptophysin to the plasma membrane through
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the transmembrane domain of Syntaxin (Figure 1C). It
was demonstrated that in the presence of the relevant
dimerizers (100 nM homodimerizer and 250 nM hetero-
dimerizer) the two MIST's induced a reversible block of
synaptic transmission in cultured neurons and brain slices
within 20-30 min. It was further shown that the VAMP/
Syb MIST system can work 7z vive. In transgenic mice
expressing VAMP/Syb MIST selectively in Purkinje
neurons, intraventricular administration of 0.5 nmol of
the homodimerizer impaired learning of and performance
in the rotarod behavioural task. A decrease in behavioral
performance was observed on the first session following
dimerizer administration (~12-18 h post administration);
the performance recovered 2 days later. The time course
of the actual silencing of the targeted neurons /7 vivo was
not determined.

Rhodopsin/halorhodopsin

All four of the abovementioned approaches depend upon
the application of an exogenous chemical ligand. An
alternative approach is controlling neuronal activity by
manipulating neuronal excitability using light-gated
membrane channels or pumps (Figure 1D). One example
of this is rhodopsin 4 (RO4) that partially suppresses
action potential generation by hyperpolarizing neurons
in a light-dependent manner within milliseconds [9°].
Another potent system is based on the light-activated
chloride pump halorhodopsin (NpHR), which, in combi-
nation with the cation permeable light-sensitive chan-
nelrhodopsin 2 (ChR2), permits bi-directional control of
action potential firing with millisecond resolution
[10,11°°]. The applicability of halorhodopsin to iz vive
manipulation of circuit activity has been verified by
demonstration of the control of movement in (. elegans
[11°°]. The rhodopsin and NpHR systems hold a great
promise for rapid 7z vivo manipulation of neural activity.

What to consider when choosing the silencing
approach

The relevant biological question and experimental para-
digm will define several criteria that will guide the choice
of the silencing method. A non-exhaustive list of the
important issues to consider includes the relevant time
frame for the induction and reversal of silencing; the
nature of the neuronal population to be targeted for

inactivation; the desired expression strategy and the
constraints on inducer administration.

Time course of inactivation and its reversal

Different experimental paradigms will impose distinct
constraints on the time course of induction, maintenance,
and reversal of silencing (Figure 2). For instance, some
experiments in sensory physiology rely on 2z vivo whole-
cellrecording of subthreshold membrane activity [22,23].
The limited recording time available in such exper-
iments requires that the circuit perturbation be induced
and reversed within minutes. Thus, of the existing
methods halorhodopsin might be best suited in this
context if silencing needs to be reversible, whereas
GABA, or GluCla/B can also be used when reversal is
not important. Experiments examining the functional
structure and dynamics of cortical circuits might employ
imaging of neuronal activity using functional indicators
[24,25]. Although a number of genetically encodable
indicators have been described [26,27], their inability
to follow single action potentials has limited their appli-
cability up to now [28]. Thus, indicator dyes that are
bulk-loaded into tissue are still employed by most studies
[25,29,30]. The time course of such experiments is lim-
ited by the retention half-life for these synthetic dyes and
usually ends up being on the orders of several hours. In
such cases, circuit perturbation needs to be achieved
within tens of minutes for longitudinal experiments;
thus, all of the abovementioned systems should be
applicable. In contrast to network dynamics questions,
studies exploring the contribution of particular circuit
components to animal behavior will often tolerate a
longer induction time course for activity perturbation.
All of the systems described in this review should be
useful in such studies. In cases when long-term silencing
is required, however, the exogenous conductances in
channel-based approaches may perturb the energy bud-
get of neurons possibly making MIST's a better choice.

The nature of circuit components to be silenced

It is also important to consider which circuit components
are to be targeted. One issue is whether the neuronal
population is widely distributed or localized to a small
region of the brain. As the allatostatin receptor and
halorhodopsin require localized delivery of the inducer

Figure 2
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Time course of the induction and reversal of inactivation for the four neuronal silencing systems.

www.sciencedirect.com

Current Opinion in Neurobiology 2007, 17:581-586



584 New technologies

(allatostatin or light), they may be best suited for the latter
case. By contrast, the GABA,, GluCla/B, and the MIST
systems should be applicable in both. In some cases the
limited spread of the induction by AlstR and light will be
a great advantage if the required degree of cell type
specificity cannot be achieved by genetic means. Another
issue is how large the cells are physically and/or electro-
nically. When a high level of expression for exogenous
channels is difficult to achieve genetically, channel
density might decrease with the size of the targeted cell.
Thus, small cells, for example, interneurons, could be
easily silenced by channel-based methods whereas large
cells, for example, Purkinje cells, might prove difficult to
hyperpolarize and may be better targeted for inactivation
using MIST's. On the contrary, if neurons in the circuit are
electrically coupled, channel-based methods would be
advantageous as MISTs selectively perturb communi-
cation through chemical synapses. Suppression of excit-
ability through the zolpidem/GABA, system depends on
the interaction of the drug with the a-y subunit interface
of the channel. Zolpidem is most effective at the al-y2
subunit containing complexes with a significantly lower
affinity for the a2 and a3 containing channels and no
affinity for the a4-a6 subunits [31,32]. As the zolpidem/
GABA, systems rely on the endogenous alpha subunit
expression, silencing of neurons in regions with little or no
al subunit expression (like amygdala, ventral striatum,
and others [33]) may prove challenging. Finally, at pre-
sent, MIST's represent the only approach for perturbing
individual projections within a circuit. Since MIST-de-
pendent inactivation of neuronal activity relies on the
perturbation of synapses, localized delivery of the dimer-
izer should allow targeting of individual projections. By
contrast, channel-based interference with action potential
generation will lead to inactivation of the entire set of
projections from the targeted neuronal population. It is
important to mention, however, that if good axonal tar-
geting of channel-based systems can be achieved, loca-
lized inhibition of action potential propagation leading to
silencing of specific projections may become possible for
these systems as well.

Expression strategy

Two strategies for introducing silencing systems into
animals have been pursued: viral expression with stereo-
tactic delivery [12°°,13°°] and transgenesis [8°°]. For both
strategies the choice between one and two-component
systems is important. Whereas two-component systems
(GluClo/B and Sph-StxTM MIST) will give a greater
combinatorial control over the population of neurons to
be silenced, the accompanying requirement for co-
expression of both components can be technically diffi-
cult in viral and genetic systems. One-component sys-
tems are easier to express and allow for much simpler
breeding schemes when used in transgenic mice, which is
an important issue when many animals are needed for
experiments.

Delivery of the inducer

Another factor to consider is the possible restriction on
the way in which the inducer is delivered. For AlstR and
halorhodopsin, the delivery has to be rather localized.
Allatostatin needs to be applied within ~1 mm of the
targeted neurons. If cells in the cortex are being silenced,
the peptide can be applied to the surface of the brain;
however, it needs to be injected with a glass pipette if
deeper brain areas are targeted [12°°]. The light source for
the activation of halorhodopsin may need to be close to
the targeted neurons as well given the power required for
stimulation and the light-scattering and absorption prop-
erties of the brain tissue and is often done with an optical
fiber for stimulating deep in the brain. Although both
glass pipettes for ALL delivery and optical fibers can be
quite small in diameter (~30 um for the pipette [12°°]
and ~100 wm for the fiber [34]) and thus may not cause
much damage, care may need to be taken in some cases to
ensure that an important fiber tract has not been dis-
rupted. Dimerizers that are used for the induction of
MIST-dependent silencing do not impose such strict
restrictions on delivery. Karpova ¢f a/. administered the
homodimerizer used with VAMP/Syb MIST into the
lateral ventricle, far removed from the terminals of the
Purkinje cells [8°°]. Further studies will be needed to
determine if this homodimerizer penetrates the blood-
brain barrier (BBB) sufficiently well that it can be admi-
nistered peripherally. Ivermectin and zolpidem are so far
the only inducers discussed here that have been shown to
work in the brain following peripheral delivery [13°°].
The heterodimerizer used with the Sph-StxTM MIST is
known to cross the blood—brain barrier (Dr Victor Rivera,
personal communication), and thus should be able to
work when administered systemically as well.

For many experiments, the stress to animals following
surgical delivery of the inducer may prove to be a non-
issue. In others, a single surgery implanting the optical
fiber or a miniature osmotic pump days in advance of the
actual behavioral testing will circumvent the problem of
stress. Yet in some cases, the behavioral studies may be
exquisitely sensitive to any stress the animal experiences.
Under those circumstances, the less invasive the route of
the inducer delivery is, the more advantageous is the
silencing system. In the ideal case, the chemical inducer
would be delivered with food or water and the inducer
would not only need to cross the blood-brain barrier but
also be sufficiently water soluble. This can be accom-
plished for the tetracycline-inducible gene expression,
which has been useful for the slower induction of
neuronal silencing using tetanus toxin light chain [35]
and could be used to make the elegant system based on
tethered toxins [5°] inducible as well. However, none of
the inducers discussed here are sufficiently water soluble
for this route of delivery. Short of that, intraperitoneal
injection would be the best drug delivery method when
stress is a factor.

Current Opinion in Neurobiology 2007, 17:581-586
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Current challenges

Although great progress has been made developing
genetically encoded systems for rapidly inducible and
reversible silencing, none of the systems described here is
ideal. The limitations of the existing systems can be
partly overcome by a careful choice of the silencing
system (or systems) given the biological question and
experimental context. However, further characterization
of (1) the pharmacokinetics of the inducers, (2) the time
course of the actual neuronal silencing rather than of
behavioral perturbation, and (3) the dynamic range of
the effect at different expression levels of each system
would help in making a proper choice. In addition, it is
already clear that some optimization of the existing
systems would be beneficial. For instance, it is known
that ivermectin can cause toxicity at high concentrations
[36]. Although no toxicity was observed in the study by
Lerchner ez al., the concentration of ivermectin necessary
to achieve behavioral perturbation was only twofold to
fourfold smaller than what has been reported to cause
side-effects [6]. Furthermore, ivermectin affects other
endogenous murine channels including GABA channels
[37] and P2X4 purinergic receptors [38]. It will be import-
ant to address these potentially negative side-effects in
the future. Similarly, the heterodimerizer used with the
Sph-StxTM MIST system binds to the endogenous
FKBP protein and is thus likely to have side-effects at
some concentrations. Finding ways to modify these
chemicals to alleviate these non-specific effects while
retaining their functionality would be a major advance.
Improving their blood-brain barrier permeability may be
helpful as well.

Conclusions

With the recent developments in the field of molecular
tools for perturbing neural activity, highly specific manip-
ulations of circuit function 7z vive are becoming possible.
Although some challenges remain, we are finally well
under way to go beyond classical lesion studies in un-
derstanding the neural basis of behavior.

Acknowledgements

The authors thank Winfried Denk, Thomas Siidhof, and Karel Svoboda for
helpful comments on the manuscript. DGR'T was supported, partly, by the
Howard Hughes Medical Institute predoctoral fellowship and George A and
Majorie H Anderson Fellowship. AYK was supported, partly, by the
Burroughs Wellcome Foundation and Howard Hughes Medical Institute
(HHMI). Development of the MIST silencing system was supported by
HHMI and NIH (RO1MHO070052 to Karel Svoboda).

References and recommended reading
Papers of particular interest, published within the annual period of
review, have been highlighted as:

e of special interest
ee Of outstanding interest

1. Shah EM, Jay DG: Methods for ablating neurons. Curr Opin
Neurobiol 1993, 3:738-742.

2.  Marek KW, Davis GW: Controlling the active properties of
excitable cells. Curr Opin Neurobiol 2003, 13:607-611.

3. Miesenbock G: Genetic methods for illuminating the function of
neural circuits. Curr Opin Neurobiol 2004, 14:395-402.

4. Callaway EM: A molecular and genetic arsenal for systems
neuroscience. Trends Neurosci 2005, 28:196-201.

. Ibanez-Tallon I, Wen H, Miwa JM, Xing J, Tekinay AB, Ono F,
. Brehm P, Heintz N: Tethering naturally occurring peptide toxins
for cell-autonomous modulation of ion channels and
receptors in vivo. Neuron 2004, 43:305-311.

6. Lechner HA, Lein ES, Callaway EM: A genetic method for
selective and quickly reversible silencing of mammalian
neurons. J Neurosci 2002, 22:5287-5290.

7. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA:
Selective electrical silencing of mammalian neurons in vitro by
the use of invertebrate ligand-gated chloride channels.

J Neurosci 2002, 22:7373-7379.

8. Karpova AY, Tervo DG, Gray NW, Svoboda K: Rapid and

ee reversible chemical inactivation of synaptic transmission in
genetically targeted neurons. Neuron 2005, 48:727-735.

Provides in vitro and in vivo characterization of MISTs.

9. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H,

. Hegemann P, Landmesser LT, Herlitze S: Fast noninvasive
activation and inhibition of neural and network activity by
vertebrate rhodopsin and green algae channelrhodopsin. Proc
Natl Acad Sci U S A 2005, 102:17816-17821.

Characterizes rhodopsin 4-dependent silencing in vitro and in chick

embryos.

10. Han X, Boyden ES: Multiple-Color Optical Activation, Silencing,
and Desynchronization of Neural Activity, With Single-Spike
Temporal Resolution. 2007: e299.

11. Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N,

ee Wood PG, Bamberg E, Nagel G, Gottschalk A et al.: Multimodal
fast optical interrogation of neural circuitry. Nature 2007,
446:633-639.

Introduces the use of the chloride pump halorhodopsin for rapid supres-

sion of neuronal activity and demonstrates its use in C elegans.

12. Tan EM, Yamaguchi Y, Horwitz GD, Gosgnach S, Lein ES,

ee Goulding M, Albright TD, Callaway EM: Selective and quickly
reversible inactivation of mammalian neurons in vivo using the
Drosophila allatostatin receptor. Neuron 2006, 51:157-170.

Extends the use of allatostatin receptor to in vivo applications in the

thalamus and cortex of rats, ferrets, and monkeys.

13. Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA,

ee Anderson DJ: Reversible silencing of neuronal excitability in
behaving mice by a genetically targeted, ivermectin-gated cl(-)
channel. Neuron 2007, 54:35-49.

In vivo application of the GIuCl system to silencing of the striatal circuits.

14. Birgll N, Weise C, Kreienkamp HJ, Richter D: Reverse physiology
in drosophila: identification of a novel allatostatin-like
neuropeptide and its cognate receptor structurally related to
the mammalian somatostatin/galanin/opioid receptor family.
EMBO J 1999, 18:5892-5900.

15. Gosgnach S, Lanuza GM, Butt SJB, Saueressig H, Zhang Y,

. Velasquez T, Riethmacher D, Callaway EM, Kiehn O, Goulding M:
V1 spinal neurons regulate the speed of vertebrate locomotor
outputs. Nature 2006, 440:215-219.

16. Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH,
Schaeffer JM, Arena JP: Cloning of an ivermectin-sensitive
glutamate-gated chloride channel from Caenorhabditis
elegans. Nature 1994, 371:707-711.

17. Li P, Slimko EM, Lester HA: Selective elimination of glutamate
activation and introduction of fluorescent proteins into a
Caenorhabditis elegans chloride channel. FEBS Lett 2002,
528:77-82.

18. Slimko EM, Lester HA: Codon optimization of Caenorhabditis
elegans GIuCl ion channel genes for mammalian cells
dramatically improves expression levels. J Neurosci Methods
2003, 124:75-81.

19. Wulff P, Goetz T, Leppa E, Linden AM, Renzi M, Swinny JD,
ee Vekovischeva QY, Sieghart W, Somogyi P, Korpi ER et al.: From
synapse to behavior: rapid modulation of defined neuronal

www.sciencedirect.com

Current Opinion in Neurobiology 2007, 17:581-586



586 New technologies

Describes the use of zolpidem-sensitive GABAA channel to enhance

types with engineered GABA(A) receptors. Nat Neurosci 2007,
10:923-929.

IPSCs onto targeted cells.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Kitamoto T: Targeted expression of temperature-sensitive
dynamin to study neural mechanisms of complex behavior in
Drosophila. J Neurogenet 2002, 16:205-228.

Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR:
Controlling signal transduction with synthetic ligands. Science
1993, 262:1019-1024.

Margrie TW, Brecht M, Sakmann B: In vivo, low-resistance,
whole-cell recordings from neurons in the anaesthetized and
awake mammalian brain. Pflugers Arch 2002, 444:491-498.

Lee AK, Manns ID, Sakmann B, Brecht M: Whole-cell recordings
in freely moving rats. Neuron 2006, 51:399-407.

Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC: Functional imaging
with cellular resolution reveals precise micro-architecture in
visual cortex. Nature 2005, 433:597-603.

Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC:
Highly ordered arrangement of single neurons in orientation
pinwheels. Nature 2006, 442:925-928.

Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O: A
FRET-based calcium biosensor with fast signal kinetics and
high fluorescence change. Biophys J 2005, 90:1790-1796.

Miyawaki A, Griesbeck O, Heim R, Tsien RY: Dynamic and
quantitative Ca2+ measurements using improved cameleons.
Proc Natl Acad Sci U S A 1999, 96:2135-2140.

Pologruto TA, Yasuda R, Svoboda K: Monitoring neural activity
and [Ca2+] with genetically encoded Ca2+ indicators.
J Neurosci 2004, 24:9572-9579.

Diez-Garcia J, Akemann W, Knopfel T: In vivo calcium imaging
from genetically specified target cells in mouse cerebellum.
Neuroimage 2007, 34:859-869.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS:
In vivo calcium imaging of circuit activity in cerebellar cortex.
J Neurophysiol 2005, 94:1636-1644.

Pritchett DB, Seeburg PH: Gamma-aminobutyric acidA
receptor alpha 5-subunit creates novel type Il benzodiazepine
receptor pharmacology. J Neurochem 1990, 54:1802-1804.

Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS,
Whiting PJ: Functional characterization of human gamma-
aminobutyric acidA receptors containing the alpha 4 subunit.
Mol Pharmacol 1996, 50:670-678.

Laurie DJ, Wisden W, Seeburg PH: The distribution of
thirteen GABAA receptor subunit mRNAs in the rat brain. lll.
Embryonic and postnatal development. J Neurosci 1992,
12:4151-4172.

Mehta AD, Jung JC, Flusberg BA, Schnitzer MJ: Fiber optic in
vivo imaging in the mammalian nervous system. Curr Opin
Neurobiol 2004, 14:617-628.

Yamamoto M, Wada N, Kitabatake Y, Watanabe D, Anzai M,
Yokoyama M, Teranishi Y, Nakanishi S: Reversible
suppression of glutamatergic neurotransmission of
cerebellar granule cells in vivo by genetically manipulated
expression of tetanus neurotoxin light chain. J Neurosci 2003,
23:6759-6767.

Dadarkar SS, Deore MD, Gatne MM: Comparative evaluation of
acute toxicity of ivermectin by two methods after single
subcutaneous administration in rats. Regul Toxicol Pharmacol
2007, 47:257-260.

Adelsberger H, Lepier A, Dudel J: Activation of rat recombinant
alpha(1)beta(2)gamma(2S) GABA(A) receptor by the
insecticide ivermectin. Eur J Pharmacol 2000, 394:163-170.

Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G,
North RA, Rassendren F: Altered hippocampal synaptic
potentiation in P2X4 knock-out mice. J Neurosci 2006, 26:9006-
90009.

Current Opinion in Neurobiology 2007, 17:581-586

www.sciencedirect.com



	Rapidly inducible, genetically targeted inactivation of neural �and synaptic activity in vivo
	Introduction
	Approaches to rapid silencing
	Allatostatin receptor-allatostatin system
	The ivermectin-sensitive chloride channel
	The zolpidem-sensitive GABAA channel
	MISTs
	Rhodopsin/halorhodopsin

	What to consider when choosing the silencing approach
	Time course of inactivation and its reversal
	The nature of circuit components to be silenced
	Expression strategy
	Delivery of the inducer

	Current challenges
	Conclusions
	Acknowledgements
	References and recommended reading


