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SUMMARY

We have analyzed two residues in the helicase
domain of the E1 initiator protein. These resi-
dues are part of a highly conserved structural
motif, the b-hairpin, which is present in the heli-
case domain of all papovavirus initiator pro-
teins. These proteins are unique in their ability
to transition from local template melting activity
to unwinding. We demonstrate that the b-hair-
pin has two functions. First, it is the tool used
by the E1 double trimer (DT) to pry open and
melt double-stranded DNA. Second, it is re-
quired for the unwinding activity of the hexame-
ric E1 helicase. The fact that the same structural
element, but not the same residues, contacts
both dsDNA in the DT for melting and ssDNA
in the double hexamer (DH) for helicase activity
provides a link between local origin melting and
DNA helicase activity and suggests how the
transition between these two states comes
about.

INTRODUCTION

The preparation of template DNA for replication involves

several basic steps that are obligatory in all organisms.

One step is the initial separation of the two DNA strands

at the origin of DNA replication (ori), local melting, to

generate a single-stranded region of DNA. This step is

essential because most known DNA helicases, which are

required for unwinding of the template, require a single-

stranded region to initiate unwinding (for a review, see

Patel and Donmez [2006]). In spite of the obvious im-

portance of local melting for the replication process, only

a few activities are known that can perform this task. In

eukaryotes, no such activity has been identified. In bacte-

ria, DnaA is responsible for local ori melting, but the mech-

anism involved is unknown except that the process

involves a large complex of DnaA and is dependent on

bound ATP (Bramhill and Kornberg, 1988; Sekimizu

et al., 1987). Viral initiator proteins such as T-ag and E1
Molec
from the papovavirus family (papillomaviruses, polyoma-

virus, and SV40) are the only other proteins known to

melt double-stranded ori DNA, although the mechanism

employed by these proteins is also unknown (Borowiec

et al., 1991; Borowiec and Hurwitz, 1988; Gillette et al.,

1994; Sanders and Stenlund, 1998).

From recent studies, there is evidence that the local

melting of the ori is initiated by a specific form of the E1

protein, a double trimer (DT), which forms on the E1 bind-

ing sites present in the ori. Formation of the DT is depen-

dent on ATP binding, but not hydrolysis. The DT is a

required precursor for the formation of the active DH

helicase, and correct melting appears to be a prerequisite

for the formation of a DH that can unwind the ori (Schuck

and Stenlund, 2005).

Recent crystal structure determination of fragments of

both SV40 T-ag and papillomavirus E1 has identified

a highly conserved structural element, a b-hairpin, in the

helicase domain of these proteins (Abbate et al., 2004;

Enemark and Joshua-Tor, 2006; Gai et al., 2004; Li

et al., 2003). In both the E1 and T-ag structures, this b-hair-

pin is oriented toward the central channel of the hexamer

(Figures 1A and 1B) and in the E1 structure, which also in-

cludes ssDNA, the hairpin is making contacts with the

ssDNA. Mutational analysis of T-ag has suggested that

this b-hairpin is required for its DNA helicase activity

(Shen et al., 2005). Biochemical and mutational analysis

of the corresponding b-hairpin in the bovine papillomavi-

rus E1 protein has indicated that the b-hairpin instead

may be required for local ori melting activity. Mutation of

the highly conserved H507 at the tip of the b-hairpin re-

sults in a protein that fails to melt ori DNA in the presence

of ADP and fails to form a DT, the precursor form of E1

required for assembly of the DNA helicase (Schuck and

Stenlund, 2005).

Here we demonstrate that the E1 b-hairpin is required

for both local ori melting and DNA helicase activity but

that these activities are associated with different residues

in the b-hairpin (Figure 1B). K506 is required for both local

ori melting and DNA helicase activities, but H507 is only

required for local ori melting. We also show that the b-hair-

pin likely interacts with dsDNA directly and that, although

either of the aromatic side chains H, Y, or F at position 507

is functional for DT formation, melting of the ori requires
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Figure 1. DNA Replication by Substitu-

tion Mutants in the b-Hairpin

(A) Image representing the structure of a hex-

amer of the BPV E1 helicase domain highlight-

ing the positions of two residues, K506 and

H507, which form the tip of the b-hairpin and

generate an inner constriction in the hexameric

ring (Enemark and Joshua-Tor, 2006).

(B) Image of the b-hairpin structure in BPV E1

showing the highly conserved residues K506

and H507.

(C) In vivo DNA replication. The eight substitu-

tions at residue H507 were introduced into

the mammalian E1 expression vector pCGE1

by site-directed mutagenesis and tested for

activity in transient DNA replication assays.

Ori plasmid (100 ng), 0.5 mg of E2 expression

vector (pCGE2), and 2 mg of expression vector

for the WT or mutant E1 proteins were cotrans-

fected into CHO cells using electroporation,

and low molecular weight DNA was harvested

48, 72, and 96 hr after transfection. The DNA

was digested with HindIII, which linearizes the

plasmid, and DpnI, which digests unreplicated,

methylated DNA, and analyzed by Southern

blotting.

(D) Cell-free DNA replication. The ability of WT

E1 and the eight H507 substitutions to support

DNA replication in a cell-free replication system

were compared. Each substitution mutant pro-

tein (6 pmol), purified from E. coli, was incu-

bated with 50 ng of ori plasmid in replication

mix (see Experimental Procedures) in the pres-

ence of radiolabeled dCTP. After 60 min at

37�C, the replication products were isolated

and analyzed by agarose gel electrophoresis

and quantitated.
826 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc.
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either H or F at this position in the b-hairpin. Together,

these results identify the b-hairpin as the instrument that

E1 uses for both the local melting of dsDNA and for DNA

helicase activity, although these activities reside in differ-

ent E1 complexes.

RESULTS

DNA Replication Activity of Substitution Mutants

at H507

To define the function of the tip of the b-hairpin, we

substituted H507 with a range of amino acids with different

properties, including A, V, L, R, N, M, F, and Y. We gener-

ated these substitutions in the E. coli expression vector

pET E1 and expressed and purified full-length E1 with the

respective substitutions (see Figure S1 in the Supple-

mental Data available with this article online). We also

generated the same substitutions in the context of the

mammalian expression vector pCGE1. We first tested

these substitutions in transient DNA replication assays

in vivo to determine whether they affected DNA replication.

We transfected an expression vector encoding the viral

E2 protein, which is required for DNA replication in vivo,

together with an ori plasmid and expression vectors for ei-

ther WT E1 or the individual 507 substitutions into CHO

cells using electroporation. Two, three, and four days after

transfection, low molecular weight DNA was harvested

and analyzed by Southern blotting after digestion with

DpnI, which digests unreplicated (methylated) DNA, and

HindIII, which linearizes the plasmid (Figure 1C). We ob-

served robust replication, detectable as a prominent

2.9 kb band, in the presence of the WT E1 and H507F ex-

pression vectors (lanes 1–3 and 22–24, respectively) as

well as a faint trace of replication (>10-fold reduced) with

the H507Y vector (lanes 25–27). The remaining H507 sub-

stitutions did not support detectable DNA replication.

We next tested the substitutions for their ability to sup-

port DNA replication in vitro (Figure 1D). In such an in vitro

DNA replication assay, a plasmid containing the ori is incu-

bated in the presence of E1 in a H293 cell extract in the

presence of radiolabeled nucleotide. After separation of

the replication products by agarose gel electrophoresis,

the level of DNA synthesis can be quantitated. The only

substitutions that had detectable in vitro DNA replication

activity were H507Y and H507F (Figure 1D, compare lanes

1, 8, and 9). The other substitutions generated no detect-

able replication product (lanes 2–7). These results demon-

strate that H507 is important for DNA replication and

that F and Y, which have side chains similar to that of H,

are also active for replication.

Complex Formation by Substitution Mutants at H507

Preparation of a template for initiation of DNA replica-

tion can be divided into several steps. The first step,

sequence-specific binding of the initiator, is followed by

local melting of the ori, which can be detected by treat-

ment with permanganate, which reacts with unbasepaired
Molecul
T residues. After melting, the DNA helicase activity un-

winds the template. A defect in any of these steps would

result in a defect in DNA replication. To determine whether

the H507 substitutions could generate the appropriate E1

DNA complexes required for these different activities, we

first tested them for their ability to form a DH on a short

(32 bp) probe (Figure 2A). This complex, which is nonfunc-

tional and does not unwind the template, provides a con-

trol for the ability of E1 to oligomerize into a DH and to bind

and hydrolyze ATP (Schuck and Stenlund, 2005). All

mutants with the exception of H507V (lanes 7–9) were

capable of DH formation on the 32 bp probe, albeit at dif-

ferent levels. This result demonstrates that the b-hairpin is

not directly involved in E1 oligomerization or ATP binding

and hydrolysis. The H507V protein (lanes 7–9) was prone

to aggregation, which is the likely cause for its failure to

function in EMSA.

We have previously demonstrated that E1 has the intrin-

sic propensity to form E1 BS-independent trimers on

dsDNA in the presence of ADP and that formation of the

trimer relies on the E1 b-hairpin. (Schuck and Stenlund,

2005). We next tested the mutant proteins for their ability

to form this trimer. Using a short probe where the E1 BS

had been mutated, the WT E1 (Figure 2B, lanes 1–3) and

two of the mutants, H507F (lanes 10–12) and H507Y (lanes

19–21), formed the trimer while the other substitutions

failed to do so. Clearly, the failure to form the trimer did

not result from a general DNA binding defect, since all of

the substitutions formed other complexes such as dimers

on this probe. H507V (lanes 25–27) was the only mutant

with a general DNA binding defect, likely due to the aggre-

gation problem mentioned above.

We next determined whether the H507 substitutions

could form the functional DT that melts the ori and the

functional DH that unwinds the ori. Formation of these

complexes requires an 84 bp ori probe with four E1 BS

(Figure 2C). In the presence of ADP, the progression

from DT to DH is arrested at the DT stage because DH

formation requires ATP hydrolysis. We can therefore ana-

lyze DT formation in the presence of ADP and analyze DH

formation in the presence of ATP for each mutant protein.

Our expectation was that the same mutants that were

unable to form the trimer would also be unable to form

the DT. Furthermore, since the DT is a precursor for the

DH, the mutants defective for trimer and DT formation

are also expected to be defective for DH formation on

the 84 bp probe. Only the two mutants H507Y (lanes 8–

10) and H507F (lanes 14–16), which could form the trimer,

were also capable of forming the DT, while H507L (lanes

20–22) as well as the rest of the H507 substitutions failed

to do so (see Figure S2). H507F also formed a DH (lanes

17–19), while H507Y and H507L (lanes 11–13 and 23–

25, respectively) as well as the remaining mutants (see

Figure S2), failed to do so. We can therefore distinguish

three types of mutants. The majority of the substitutions

are defective for DNA replication as well as for trimer,

DT, and DH formation. The two substitutions H507F and

Y are exceptions in that they have replication activity
ar Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc. 827
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Figure 2. Complex Formation by Substi-

tution Mutants at H507

(A) Formation of the nonproductive DH by H507

substitutions. EMSA was performed using the

32 bp ori probe shown below the panel. Three

quantities of the WT and mutant E1 (60, 120,

and 240 fmol) were used in the presence of

ATP as indicated in the figure. Lane 28 con-

tained probe alone.

(B) Trimer formation by H507 substitutions.

EMSA was performed using a 39 bp probe

with a mutated E1 BS as shown below. Three

quantities (15, 30, and 60 fmol) of the WT E1

(lanes 1–3) and the respective mutant proteins

were used in the presence of ADP. Lane 28

contained probe alone.

(C) DT and DH formation by H507 substitutions.

EMSA was performed using the 84 bp ori probe

shown below. Three quantities (30, 60, and 120

fmol) of the WT E1 (lanes 2–7), H507Y (lanes 8–

13), H507F (lanes 14–19), and H507L (lanes 20–

25) were used in the presence of ADP or ATP as

indicated in the figure. Lane 1 contained probe

alone.
and also are able to form a trimer and DT; however, only

H507F forms the DH on the ori.

Template Melting by H507 Substitutions

The results presented above demonstrated that the

majority of the H507 substitutions (H507A, V, L, R, N,
828 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevie
and M) are defective for DT formation, which may account

for their replication defect. Since the DT melts the ori, we

would expect that the mutants defective for DT formation

would also have melting defects. We therefore performed

permanganate reactivity assays, which detect melted

DNA (Figure 3). We incubated an ori probe labeled on
r Inc.
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the top strand with the WT or mutant E1 proteins in the

presence of ADP and treated with KMnO4 for 2 min at

room temperature. WT E1 generates a characteristic melt-

ing pattern consisting of melting at three positions, one T

residue to the left of the E1 BS (L), one T residue to the right

of the E1 BS (R), and the T6 stretch to the left of the E1 BS

(Figure 3, lane 2). The right-hand reactivity was observed

with all the mutants with the exception of H507V. The

left-hand reactivity and the reactivity in the T6 stretch

were only observed with the mutant H507F, albeit at lower

levels than for WT E1 (lane 9). These results demonstrate

that all substitutions at H507 with the exception of

H507F show melting defects and that although H507Y

can form a DT, this DT does not melt the DNA correctly.

This was a surprising result in light of the activity of

H507Y for DNA replication in vitro (Figure 1D). We have

provided an explanation for the activity of H507Y in in vitro

replication later in the paper.

H507 Is Not Required for DNA Helicase Activity

An ori fragment unwinding assay is a comprehensive as-

say that measures the ability of E1 to bind DNA correctly,

to locally melt the ori, to provide DNA helicase activity,

and, most importantly, to couple these activities to each

Figure 3. Permangante Reactivity of Substitutions at Residue

507

Permanganate reactivity assays were performed by incubating the

84 bp ori probe with 1 pmol of WT E1 (lane 2) or the respective H507

substitutions (lanes 3–10) in the presence of ADP. Following treatment

with KMnO4, modified DNA was cleaved with piperidine and analyzed

by denaturing PAGE. Lane 1 shows the permanganate reactivity of

the probe in the absence of E1. Positions of prominent permanganate

reactivity (R, L, and T6) are indicated. Below is a schematic for the

positions of permanganate reactivity for WT E1 relative to the ori

sequence.
Mole
other. In such an assay, E1 is incubated with an ori frag-

ment in the presence of E. coli SSB, and generation of

ssDNA can be detected by the appearance of ssDNA as

an ssDNA/SSB complex by EMSA (Figure 4A). The

H507F substitution, which had near-WT activity for DNA

replication in vivo, showed significant ori fragment un-

winding activity, indicating that it can bind, melt, and un-

wind the ori fragment nearly as well as the WT protein

(compare lanes 3 and 4 to lanes 17 and 18), consistent

with the in vivo and in vitro replication results. In contrast,

H507Y (lanes 19 and 20) showed only trace amounts of

activity in this assay (�10% of WT), similar to H507L and

H507N (lanes 9 and 10 and 13 and 14), while the rest of

the substitutions lacked detectable activity. These results

are completely consistent with the melting results above

and indicate that the lack of melting observed for all mu-

tants except H507F in the permanganate reactivity assays

also results in a defect for ori fragment unwinding.

To ascertain that defects in helicase activity were not

the cause of the replication defect, we measured DNA

helicase activity of the H507 substitutions using several

different helicase assays, one of which is shown in Figures

4B and 4C, where we used a time-resolved fluorescence

helicase assay. In this assay, E1 is incubated with a fluo-

rescently labeled oligonucleotide substrate in which the

fluorescence is quenched by the presence of the com-

plementary strand. As the substrate is unwound, the

quencher is removed, resulting in a dramatic increase in

fluorescence. Thus, the fluorescence and hence the un-

winding in a single sample can be monitored in real time.

We chose a very low ratio (8:1) of E1 to substrate, approx-

imately one 1 E1 hexamer per helicase substrate, to reveal

differences in all steps of the unwinding process, including

the binding of E1 to the substrate and formation of the

hexameric helicase on ssDNA (Sedman and Stenlund,

1998). We then measured unwinding every 2 min for 32

min (Figure 4B). Interestingly, the five substitutions (A, M,

F, Y, and R) that showed the lowest levels of unwinding

compared to WT E1 had only a 2-fold reduction in the level

of unwound substrate after 30 min. H507N and -L showed

levels of unwinding similar to that of WT E1 after 30 min.

We also in a separate experiment tested WT E1, H507N,

and H507F in triplicate and obtained virtually identical re-

sults (Figure 4C). Clearly, these modest helicase defects

are not responsible for the replication defects of the

H507 substitutions. H507F, which has among the lowest

activities in the helicase assay, is the only substitution

that has close to WT activity for DNA replication in vivo

and in vitro. Similarly, H507N, which shows no defect for

helicase activity, has no activity for DNA replication. A po-

sition in which such a wide range of substitutions only has

modest effects on the helicase activity is clearly not a crit-

ical residue for the helicase activity of the E1 protein.

An interesting aspect of these helicase assays is the

slow rate of unwinding that is observed in all cases. This

effect is observed in all of our helicase assays and is not

related to the fluorescent substrate (data not shown).

Since the substrate is very short, it is unlikely that this
cular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc. 829
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Figure 4. Ori Fragment Unwinding and

Helicase Activity of Substitution Mutants

at H507

(A) Ori fragment unwinding assays were per-

formed by incubating an ori probe with 80 or

160 fmol of WT E1 (lanes 3 and 4), or of the re-

spective H507 substitutions (lanes 5–20) in the

presence of E. coli SSB followed by analysis by

PAGE. Lane 1 contained probe alone; in lane 2,

SSB was added to denatured probe, providing

a marker for the ssDNA-SSB complex.

(B) DNA helicase activity of substitution mu-

tants at H507. The substitutions at H507 were

tested for DNA helicase activity using a time-

resolved fluorescence based oligonucleotide

displacement assay. WT E1 (1.5 pmol) or the

respective E1 mutants were incubated with

200 fmol of fluorescent substrate at 37�C, and

fluorescence was measured every 2 min for

32 min. In one sample (2 3 WT E1) 3 pmol of

WT E1 was used.

(C) WT E1, H507F, and H507N were tested for

DNA helicase activity in triplicate using the

same procedure as in (B). The error bars repre-

sent the standard deviation for each point.
830 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc.
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Figure 5. K506A Is Defective for Double

Trimer Formation and for DNA Helicase

Activity

(A) The b-hairpin substitution mutant K506A

was tested by EMSA for the ability to form the

DT (left panel) and the inactive DH (right panel)

in parallel with WT E1. In the left panel, three

quantities (30, 60, and 120 fmol) of WT E1

(lanes 1–3) and K506A (lanes 4–6) were used

in the presence of ADP and the long 84 bp

probe. In the right panel, 60, 120, and 240

fmol of WT E1 (lanes 1–3) or K506A (lanes 4–

6) were used with the short 32 bp ori probe

shown below.

(B) K506A was tested for DNA helicase activity

in parallel with WT E1. Five quantities (15, 30,

60, 120, 240 fmol) of WT E1 (lanes 1–5) or

K506A (lanes 6–10) were incubated with heli-

case substrate and analyzed by PAGE. In lane

11, no E1 was added, and lane 12 shows

a boiled sample.
reflects the actual unwinding step. Instead, this slow step

likely reflects the formation of the hexameric helicase on

the substrate. It is interesting that some of the mutants,

e.g., H507R, H507A, and H507M, plateau significantly

earlier (7–10 min) than the rest of the mutants (�15 min),

possibly reflecting a more rapid formation of the active

helicase on the substrate. This may indicate that binding

to these artificial helicase substrates is affected by the

mutations at H507. Nevertheless, these results demon-

strate that a defect for helicase activity is not likely to ac-

count for the DNA replication defect of substitutions at

H507.

Another Residue in the b-Hairpin, K506, Is Required

for DNA Helicase Activity

These results demonstrate that the function of the con-

served histidine at the tip of the b-hairpin is to melt dsDNA

and that clearly this residue is not specifically required for

helicase activity of E1. We have previously generated

a mutation in the residue adjacent to H507 (K506A)

(Schuck and Stenlund, 2005). This mutant has similar de-

fects as H507A and fails to form a trimer and a DT (Fig-

ure 5A, compare lanes 2–4 and 5–7) and also fails to

melt the template (data not shown), although this mutant
Molecu
can form the nonfunctional DH on a short probe as well

as WT E1 (Figure 5A, compare lanes 9–11 and 12–14)

and therefore is capable of oligomerization and ATP hy-

drolysis. However, in contrast to the substitutions at posi-

tion H507, which maintained significant helicase activity,

K506A has no detectable helicase activity compared to

WT E1 (Figure 5B, compare lanes 1–5 and 6–10). Thus,

template melting is affected by substitution of either

K506 or H507, but the helicase activity is significantly af-

fected only by the K506A substitution. This result demon-

strates that the b-hairpin is involved in at least two different

biochemical activities, template melting and helicase ac-

tivity, and that these two functions can be distinguished

by substitutions at these two adjacent residues.

H507Y Shows Altered Specificity for Initiation of DNA

Replication In Vitro

The lack of melting and unwinding activity of H507Y was

curious, given the high levels of in vitro DNA replication

for this mutant (Figure 1D). To understand this discrep-

ancy, we performed a form-U assay, which detects un-

winding as a fast-migrating underwound form of an input

plasmid (Dean et al., 1987) (Figure 6A). The substrate for

this assay is generated by incubating an ori plasmid with
lar Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc. 831
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Figure 6. Specificity of Initiation of DNA Replication In Vitro

(A) Plasmid unwinding by substitution mutants at H507. WT E1 and H507 substitutions were tested for the ability to unwind an ori plasmid using

a form-U assay. The ori plasmid DNA (lane 2) was relaxed by incubation with topoisomerase I (lane 3) and then incubated in the absence of E1

(lane 4) or in the presence of 6 pmol of WT E1 (lane 5) or of the indicated H507 substitutions, respectively (lanes 6–13). The samples were analyzed

by agarose gel electrophoresis and stained with ethidium bromide, and the level of form-U DNA was quantitated. Lane 1 contains a DNA ladder.

(B) In vitro DNA replication assays were performed using either pUC 19 (lanes 1–3) or an ori plasmid containing a 60 bp ori fragment cloned into the

polylinker of pUC 19 (lanes 4–6). The plasmids were incubated in the presence of 6 pmol of WT E1, (lanes 1 and 3), H507F (lanes 2 and 4), or H507Y

(lanes 3 and 6). The replication products for each template were digested with PvuII and DdeI and analyzed by PAGE. The level of incorporation of
32P dCTP was determined for each sample and compared.

(C) In vitro DNA replication assays were performed using the ori+ template and either WT E1, H507F, or H507Y (lanes 1–3), respectively, and termi-

nated after 8 min. As a control, WT E1 was used to replicate the ori� plasmid pUC 19 under the same conditions (lane 4). The replicated material was

digested with PvuII and DdeI and analyzed by PAGE.

(D) Each band in (C) was quantitated, and the incorporation was divided by fragment size to derive the relative labeling/nucleotide. The relative la-

beling efficiency for each restriction fragment from the plasmid is plotted in the graph.
topoisomerase to generate a relaxed form of the plasmid

(compare lanes 2 and 3). In the absence of added E1, in-

cubation of this substrate in the presence of SSB, ATP,

and topoisomerase I results in loss of some topoisomers

due to further relaxation (compare lanes 3 and 4). In the

presence of E1, SSB, ATP, and topoisomerase I, a new,
832 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier
faster-migrating form is generated (form-U) which

migrates at a similar position as form I DNA (lane 5). This

represents an underwound form of the plasmid due to

the action of the E1 helicase (Dean et al., 1987). In this as-

say, we observed significant unwinding with H507F (lane

12) and importantly now also with H507Y (lane 13), which
Inc.
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has �2-fold reduced activity compared to WT, consistent

with the in vitro DNA replication result. The remaining mu-

tants showed unwinding levels 3- to 10-fold lower than

those of WT E1 (lanes 6–11).

These data demonstrate that H507Y is unable to unwind

the ori fragment but is active for DNA synthesis in vitro and

for unwinding in the form-U assay. A distinction between

these assays is that the fragment unwinding assay uses

a small (<100 bp) ori fragment, while both the in vitro

DNA replication assay and the form-U assay use the whole

ori plasmid. An interesting possibility is that H507Y can use

other sequences present in the plasmid backbone for un-

winding in the form-U assay and for replication in vitro.

To determine whether the H507Y mutant showed an

‘‘altered specificity’’ phenotype, we compared WT E1,

H507F, and H507Y for the ability to initiate replication on

plasmids with and without an ori (Figure 6B). Significant

levels of replication can be observed on plasmids lacking

an ori due to the low ori specificity of the E1 protein in the

absence of E2 (Sedman and Stenlund, 1995; Yang et al.,

1993). We compared the ability of WT E1, H507F, and

H507Y to replicate pUC 19 and the ori plasmid, which con-

tains a 60 bp ori fragments inserted into the polylinker of

pUC 19. The replication reactions were digested with PvuII

and DdeI and analyzed by PAGE. WT E1 showed �3-fold

reduced levels of replication with the pUC 19 template

compared to the ori template, as expected (Figure 6B,

compare lanes 1 and 4). H507F showed�2-fold reduction

with the pUC 19 template compared to the ori template

(compare lanes 2 and 5). Strikingly, H507Y showed iden-

tical levels of replication in reactions containing pUC 19

or the ori plasmid (compare lanes 3 and 6), demonstrating

that H507Y has no preference for the ori sequence and

uses other sequences in the plasmid backbone. This

result is consistent with both the lack of activity in the

fragment unwinding experiment (Figure 4A) and the

substantial activity in the form-U assay (Figure 6A).

Importantly, although this replication result would be

consistent with a reduction in ori specificity of H507Y,

the failure to unwind the ori in the fragment unwinding

assay (Figure 4A) demonstrates that the effect is more

likely to result from an altered specificity. An altered spec-

ificity of H507Y also provides an explanation for the in vivo

DNA replication results. Initiation of DNA replication in vivo

requires cooperative binding of E1 and E2, which relies on

binding sites for E2 (Stenlund, 2003). Since E2 binding

sites are present only at the ori, H507Y cannot initiate at

other sites in the plasmid and is confined to the subopti-

mal ori sequence for initiation, resulting in a severely re-

duced level of DNA replication in vivo compared to WT

E1 and H507F (Figure 1C).

To determine whether a particular sequence in the plas-

mid backbone was required for initiation of DNA replica-

tion by H507Y, we performed in vitro replication assays

in which we terminated the replication reaction early (at

8 min) to trap intermediates. After termination of the repli-

cation reactions, we digested the DNA with the restriction

enzymes PvuII and DdeI and analyzed the samples by
Molec
PAGE (Figure 6C). Incorporation into each DNA fragment

was quantitated and total incorporation was divided by

fragment size to yield the relative incorporation/bp, which

was plotted as a function of the position in the ori plasmid

(Figure 6D). WT E1 and the H507F mutant gave rise to

identical patterns, with �5-fold enrichment at the origin

of DNA replication compared to sequences distal to the

ori. In contrast, the level of replication at the ori was re-

duced significantly for H507Y, consistent with an altered

sequence specificity of H507Y. The ability of H507Y to

utilize a different target sequence is equivalent to restora-

tion of the interaction by a compensatory mutation in the

target. Such data are generally considered to be good

evidence for a direct interaction. We have not been able

to identify the sequence(s) that is used instead of ori,

most likely because multiple such sequences are present.

DISCUSSION

H507 Is Required for Local Ori Melting,

but Not for DNA Helicase Activity of E1

The majority (six out of eight) of the substitutions at H507

are severely defective for all the activities that we can

measure, with the exception of DNA helicase activity.

These defects include trimer and DT formation, melting,

unwinding, and DNA replication in vivo and in vitro. None

of the substitutions appear to have general defects such

as defects for DNA binding, oligomerization, or ATP bind-

ing/hydrolysis, since they all can form the nonproductive

DH on the short (32 bp) probe. The underlying cause for

the defect for unwinding and DNA replication for these

substitutions appears to be the failure to form the correct

protein-DNA complex, i.e., the DT. This in turn is likely

caused by the failure of the substituted side chains to in-

teract correctly with DNA, as will be discussed below.

The excellent correlation between the H507 b-hairpin sub-

stitutions that support DNA replication and also support

trimer and DT formation provides good evidence that the

recently characterized DT is an essential functional com-

plex that melts the ori DNA, as has been proposed

(Schuck and Stenlund, 2005). The fact that H507 and

K506 play different roles in the helicase activity of E1 is in-

teresting in light of the recent cocrystal of a hexamer of the

E1 oligomerization and helicase domains bound to ssDNA

(Enemark and Joshua-Tor, 2006). In this structure, K506

interacts through its side chain with ssDNA, providing an

explanation for the importance of this residue for the heli-

case activity of E1. H507 in this structure interacts both

through the main chain and through its side chain with

the ssDNA. The side-chain interaction is clearly of limited

importance for the helicase activity of E1 based on the

mutational results presented here.

The Conservation of the b-Hairpin

The E1 proteins belong to the SF3 family of helicases,

which also includes the initiator proteins from polyoma vi-

ruses (T-ag) and parvoviruses (Rep). Interestingly, when

these three groups of helicases are aligned (Figure 7A),
ular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc. 833
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Figure 7. The b-Hairpin Histidine Melts dsDNA and Generates the Substrate for Helicase Loading

(A) The b-hairpin generates the substrate for helicase loading. Sequence alignment of the B0 and C motifs of representative members of the SF3 heli-

case family. Shown above the alignment is the relative location of SF3 signature motifs in BPV E1. The number above each motif corresponds to the

starting and end residue number of each motif in BPV E1. The residue at the tip of the b-hairpin (H507) is marked with an asterisk. Green, invariant

residues in papova and parvoviruses. Red, conserved residues in papovaviruses and parvoviruses. Blue, highly conserved residues in papova viruses

only. Included in the comparison are the following: BPV1 E1, bovine papillomavirus type 1 E1 protein; HPV18 E1, human papillomavirus type 18 E1

protein; SV40 TAg, simian virus 40 large T antigen; AAV2 Rep, adeno-associated virus 2 Rep 40 protein; ADVG NS1, Aleutian mink disease parvovirus

(strain G) NS 1 protein; FPV NS1, feline panleukopenia virus NS1 protein; PAVBO NS1, bovine parvovirus NS 1 protein; and PAHVB NS1, human

parvovirus B19 NS1 protein.

(B) Model for the transition between the E1 DT complex, which melts DNA, and the E1 DH, which unwinds DNA. E1 forms a DT, and H507 at the tip of

the b-hairpin intercalates into the DNA in the minor groove. The DT-DNA complex is the substrate for formation of the DH, which forms on one of the

melted strands, and K506 at the tip of the hairpin interacts with ssDNA. For simplicity, only one trimer and one hexamer are shown.
the lysine at the position corresponding to K506 in E1 is

completely conserved between these three virus groups,

consistent with the importance of this residue for the heli-

case activity of the E1 protein. In contrast, although the

papilloma and polyomaviruses have a virtually completely

conserved histidine at position 507 (all of the 214 T-ag se-

quences have a histidine at this position, and out of 168 E1
834 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier
proteins only 13 [12 tyrosine, 1 phenylalanine] do not have

the conserved H507), the parvovirus group contains a va-

riety of residues (C, N, G, H, M) at this particular position.

Since it is well established that the parvovirus Rep pro-

teins are functional helicases, this clearly demonstrates

that a histidine at this particular position is not an essential

feature of SF3 helicases. We believe that the reason that
Inc.
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the histidine is not conserved in the parvovirus group is

that the parvoviruses have ssDNA genomes and therefore

do not require an activity that locally melts the ori.

H507Y Shows Altered Specificity

H507Y is capable of forming the trimer and DT and is fully

functional for in vitro DNA replication. However, it fails to

melt and unwind the ori (Figure 3 and 4). This indicates

that, while the tyrosine side chain interacts with DNA

equally well as the histidine or phenylalanine to form the

DT, there is a structural aspect of the tyrosine side chain

that is incompatible with local ori melting and DH forma-

tion. H507Y apparently is capable of using other DNA

sequences for unwinding in the form-U assay and in the

in vitro DNA replication assays, indicating that the con-

sequence of the H507Y substitution is a change in the

sequence that can be melted.

The altered specificity of H507Y indicates that the histi-

dine side chain may contact DNA directly. F and Y both

have similar aromatic six-membered ring structures, and

the flat ring structure is shared with the histidine (an aro-

matic five-membered ring). A possible mode of interaction

with DNA based on these side chains is intercalation of the

planar rings into DNA, as has been observed for binding of

TBP, in which a phenylalanine in each stirrup intercalates

into the minor groove (Kim et al., 1993a, 1993b). This inter-

calation results in major distortion of the DNA, including

unstacking of neighboring base pairs.

The likely target for the b-hairpin is the stretch of 6 T-A

bp, which is the only sequence flanking the E1 BS that is

essential for DNA replication. These are the same six T

residues that are melted by the E1 DT (Figure 3). Mutants

affecting this T-A stretch in the template have a melting

defect, but such templates can still support DT formation

(Schuck and Stenlund, 2007). The dependence on the T-A

stretch for melting, but not for DT formation, mirrors the

distinction that we observe between H507F and H507Y.

While the phenylalanine and tyrosine substitutions both

can generate the DT on the ori fragment, the tyrosine sub-

stitution cannot melt this template. An interesting possibil-

ity, therefore, is that the histidine and phenylalanine at the

tip of the b-hairpin both are capable of engaging the 6 T-A

bp flanking the E1 BS, while the extra hydroxyl of tyrosine,

although it allows DT formation, precludes the b-hairpin

from interacting with DNA in a manner that is required

for melting.

Implications for Helicase Loading

An activity that can melt DNA in preparation for DNA rep-

lication has not been identified in eukaryotes. Melting

activity could reside in any of the proteins or protein com-

plexes that are known to take part in initiation of DNA rep-

lication (e.g., ORC, MCM 2–7, etc.) or in some unknown

complex. The current view of helicase loading, which is

derived from what is believed to happen in E. coli, is that

the replicative DNA helicase (DnaB) is loaded as a pre-

existing ring structure onto pre-existing ssDNA generated

by DnaA (Carr and Kaguni, 2001; Fang et al., 1999; Mars-
Molec
zalek and Kaguni, 1994). The viral initiator proteins such as

E1 provide an alternative mechanism for helicase loading.

Since the DT is a precursor for the formation of the DH, the

DT is incorporated into the helicase in the assembly pro-

cess. Because of the obvious facility of an arrangement

in which local melting is an integral part of helicase assem-

bly, it is conceivable that a similar strategy might be used

also in eukaryotes in which a melting activity has not been

identified. For example, a subassembly of a multimeric

helicase could contain the melting activity. Archaeal

MCM proteins contain a b-hairpin structure, but it is un-

known whether this b-hairpin functions in the helicase, in

melting, or in both processes (Fletcher et al., 2003). The

precise feature that makes the E1 b-hairpin capable of

melting DNA (the aromatic side chain at the tip) is not pres-

ent in the b-hairpin in the MCM protein (Fletcher et al.,

2003). However, the b-hairpin that is thought to intercalate

into DNA and effect melting in the phage T7 RNA polymer-

ase also lacks this particular feature.

Well-studied hexameric DNA helicases such as DnaB

and T7 helicase are believed to function by binding as hex-

amers to ssDNA, followed by translocation on ssDNA and

displacement of the complementary strand (Egelman

et al., 1995; Jezewska et al., 1998; Kaplan and O’Donnell,

2002; Yu et al., 1996). A recent X-ray crystal structure of

the helicase and oligomerization domains of E1 in the

presence of ssDNA indicates that this is the case also

for the E1 protein (Enemark and Joshua-Tor, 2006). A

remaining question is how one of the DNA strands is

displaced to the outside of the hexameric ring while one

strand remains inside the ring. The involvement of the

b-hairpin in both melting and helicase activity provides

some hints (Figure 7B). The E1 DT, which forms on dsDNA,

melts the dsDNA by interaction of the b-hairpin histidine

with DNA, and this complex now becomes the substrate

for DH formation. If, after melting, further addition of E1

molecules to the DT occurs specifically on one of the

melted strands, the result would be exclusion of one

strand and encirclement of the other strand by the hex-

amer, i.e., helicase loading. In such a model, the b-hairpin

can remain in contact with the DNA throughout the melting

process and the transition to the DNA helicase, consistent

with the dual function of the b-hairpin.

EXPERIMENTAL PROCEDURES

E1 Protein: Expression and Purification

WT E1 and E1 mutants were expressed in E. coli as N-terminal GST

fusions, purified by affinity chromatography, and cleaved and isolated

by ion exchange chromatography as described (Sedman et al., 1997).

E1 purified in this manner is monomeric, as determined by glycerol

gradient sedimentation and gel filtration (Sedman and Stenlund,

1998). The concentrations of the WT and mutant E1 proteins were de-

termined using the fluorescent dye SYPRO Red using 532 nm as the

excitation wave-length in a FujiImager FLA 5000.

Plasmid Constructs

The template used for in vivo and in vitro DNA replication assays was

a 60 bp minimal ori fragment (7914–7927) cloned between the XbaI and

HindIII sites in pUC 19 (Ustav et al., 1991). The template for generation
ular Cell 25, 825–837, March 23, 2007 ª2007 Elsevier Inc. 835
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of ori probes is a 110 base pair BPV-1 sequence (nucleotides 7894–

7857, centered on the E1 binding site) cloned between the XbaI and

HindIII sites in pUC19 generating the plasmid 11/12/X (Sanders and

Stenlund, 2000).

In Vivo DNA Replication Assay

In vivo DNA replication assays were performed as described (Ustav

et al., 1991). Briefly, CHO cells were transfected by electroporation

with an expression vector for the E2 protein (pCGE2), an ori plasmid

(7914–7927), and an expression vector for either WT E1 (pCGE1) or

the respective H507 substitutions. Two, three, and four days after

transfection, low molecular weight DNA was prepared using alkaline

lysis, digested with DpnI and HindIII, and analyzed by Southern

blotting.

In Vitro DNA Replication

In vitro DNA replication assays were performed essentially as

described (Sedman and Stenlund, 1995; Yang et al., 1991). In vitro

replication was performed in 25 ml reaction mixtures containing the

following: 40 mM HEPES-KOH (pH 7.5); 8 mM MgCl2; 0.5 mM DTT;

3 mM ATP; 0.2 mM each of GTP, UTP, and CTP; 0.1 mM each of

dATP, dGTP, and dTTP; 10 mM of [32P]dCTP (2 mCi; 3000 Ci/mmol);

40 mM creatine phosphate; 400 ng creatine kinase; 10 ml S100 extract;

and 0.5 ml high-salt nuclear extract from H293 cells. The concentration

of template in the in vitro reactions was 2 ng/ml. Reactions were incu-

bated for 60 min at 37�C unless stated otherwise. The reactions were

stopped by addition of SDS to 1% and EDTA to 10 mM and treated

with proteinase K followed by phenol/chloroform extraction and

precipitation with ethanol and ammonium acetate. The products

were analyzed by electrophoresis on 1% agarose gels in TAE buffer.

For the in vitro replication assays shown in Figure 6, a slightly differ-

ent protocol was used. To alleviate the long lag preceding initiation that

is observed in these assays, the replication mix was preincubated for

20 min at 32�C in the presence of ATP but in the absence of rNTPs and

dNTPs. Upon addition of rNTPs and dNTPs, initiation of DNA replica-

tion is instantaneous.

DNA Helicase Assays

Oligonucleotide displacement assays were performed using two

methods. For the time course experiments in Figure 4, a helicase kit

from PerkinElmer (TruPoint) was used. Briefly, an europium-labeled

44-mer annealed to a 26-mer containing a fluorescence quencher

was incubated with E1 in a buffer containing 50 mM Tris-HCl (pH

7.9), 5 mM MgCl2, 2 mM DTT, 1 mM ATP, and 0.2 mg of BSA/ml and

incubated at 37�C. Time-resolved fluorescence was measured every

2 min using 1420 Victor software in a PerkinElmer fluorometer. The

substrate concentration was 4 nM and the capture strand concen-

tration was 15 nM, and the reactions were carried out in a volume of

50 ml. WT E1was used at two concentrations, 30 nM and 60 nM (2 3

E1), while the H507 substitutions were tested at 30 nM. At 30 nM of

WT E1, maximally 50% of the substrate is unwound.

Oligonucleotide displacement assays in Figure 5 were performed

essentially as described (Sedman and Stenlund, 1998; Seo and Hur-

witz, 1993). A 50-mer oligonucleotide with partial complementarity to

M13mp18 was synthesized, generating a substrate with a 28 nucleo-

tide long double-stranded region and a 22 nucleotide long single-

stranded 30 tail. E1 was incubated with substrate in a buffer containing

50 mM Tris-HCl (pH 7.9), 3 mM MgCl2, 2 mM DTT, 1 mM ATP, and

0.2 mg of BSA/ml at 37�C for 15 min. After incubation, SDS was added

to 0.1%, and the samples were analyzed by PAGE.

EMSA

Four percent acrylamide gels (39:1 acrylamide:bis) containing 0.5 3

TBE, lacking EDTA, were used for all EMSA experiments. E1 was

added to the probe (�2 fmol) in 10 ml binding buffer, BB (20 mM HEPES

(pH 7.5), 100 mM NaCl, 0.7 mg/ml BSA, 0.1% NP40, 5% glycerol,

5 mM DTT, 5 mM MgCl2, and 2 mM ATP or ADP). After incubation at
836 Molecular Cell 25, 825–837, March 23, 2007 ª2007 Elsevie
room temperature for 1 hr, the samples were loaded and run for 2 hr

at 9V/cm. The ability to generate discrete complexes, especially the

DT and DH, was critically dependent on high-purity acrylamide, freshly

prepared APS solution, overnight polymerization of the gels, and pre-

cise prerunning time (9V/cm for 4 hr).

Combined EMSA and Unwinding Assays

Unwinding assays were performed by incubating 2 fmol of probe with E1

at32�Cfor30minunderEMSAconditions (seeabove)but in thepresence

of 10 mg/ml E. coli SSB. Before loading samples on the EMSA gel, the

concentration of NaCl was increased to 500 mM to disrupt E1 DNA com-

plexes. The ssDNA was detected as an SSB/ssDNA complex.

Form-U Assays

Relaxed DNA substrate was prepared by incubation of plasmid DNA

with human topoisomerase I (Sigma) in 10 mM Tris-HCl (pH 7.5),

100 mM KCl, 1 mM PMSF, and 1 mM 2-mercaptoethanol. After incuba-

tion overnight at 37�C, the relaxed products were deproteinized, etha-

nol precipitated, and resuspended in 10 mM Tris-HCl (pH 7.5) contain-

ing 1 mM EDTA. The conditions for unwinding were modified from those

described previously (Dean et al., 1987). Reaction mixtures (30 ml) con-

taining 20 mM HEPES (pH 7.5), 5% glycerol, 40 mM creatine phos-

phate, 7 mM MgCl2, 1 mM dithiothreitol, 4 mM ATP, 33 mg of creatine

kinase/ml, 125 ng of relaxed ori plasmid DNA, 2 units of human topoi-

somerase I, 450 ng of E. coli SSB, and 400 ng of E1 were incubated

for 3 hr at 37�C, and the reaction was terminated by the addition of

15 mM EDTA, 0.3% SDS, 1 mg of tRNA, and 0.3 mg of proteinase K

and further incubated for 15 min at 37�C. Reactions were extracted

with phenol/chloroform and ethanol precipitated. The DNA was dis-

solved in 10 mM Tris-HCl (pH 7.5), 1 mM EDTA and electrophoresed

in 1% agarose gels at 9V per cm. Gels were stained with ethidium

bromide, photographed, and quantitated under UV irradiation.

Permanganate Reactivity Assays

Permanganate reactivity assays were performed as described

(Sanders and Stenlund, 1998). Briefly, binding reactions (20 mM

HEPES [pH 7.9], 100 mM NaCl, 0.1% NP40, 5% glycerol, 1 mM

DTT, 5 mM MgCl2, and 5 mM ATP) containing�10 fmol of end-labeled

probe were assembled and incubated with E1 at room temperature.

After 30 min, KMnO4 was added to a final concentration of 6 mM

and reactions incubated for a further 2 min. Modification was termi-

nated by adding b-mercaptoethanol to 80 mM, SDS to 0.3%, and

EDTA to 10 mM. Reactions were then digested with proteinase K

(20 mg/ml) for 60 min at 37�C, and the DNA was recovered by phe-

nol-chloroform extraction and ethanol precipitation. Cleavage at mod-

ified bases was achieved with piperidine (30 min at 90�C).

Supplemental Data

Supplemental Data include two figures and can be found with this ar-

ticle online at http://www.molecule.org/cgi/content/full/25/6/825/

DC1/.
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