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Brief Communication

Specific Functions of Synaptically Localized Potassium
Channels in Synaptic Transmission at the Neocortical
GABAergic Fast-Spiking Cell Synapse
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Potassium (K ") channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and
fast activation/deactivation kinetics when compared with other voltage-gated K™ channels, features that confer on Kv3 channels the
ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins
are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determi-
nant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are
expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0
mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyrami-
dal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mm TEA, with a decrease in the paired pulse ratio
(PPR), effects not reproduced by blockade of the non-Kv3 subfamily K " channels also blocked by low concentrations of TEA. Moreover,
in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR
was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from
those of Kvl and large-conductance Ca® " -activated K * channels (also present at the FS cell synapse). We propose that at FS cell terminals
synaptically localized Kv3 channels keep APs brief, limiting Ca*>" influx and hence release probability, thereby influencing synaptic
depression at a synapse designed for sustained high-frequency synaptic transmission.

Key words: Kv3; potassium channels; interneurons; FS cells; synaptic transmission; GABA; inhibition

Introduction

GABAergic interneurons are the source of inhibitory synaptic
transmission in the cortex, have essential roles in cortical func-
tion, and are believed to be involved in the pathophysiology of
neuropsychiatric disorders such as epilepsy and schizophrenia

markably high frequency (McCormick et al., 1985; Swadlow,
2003), a feature that is determined mainly by the somatic expres-
sion of unique voltage-gated K™ channels composed of Kv3.1
and Kv3.2 pore-forming subunits (Rudy and McBain, 2001).
However, in addition to Kv3.1 and Kv3.2 protein expression at FS

(Jones, 1993; McBain and Fisahn, 2001; Noebels, 2003; Swadlow,
2003; Lewis et al., 2005).

The largest group (40—-50%) of cortical GABAergic interneu-
rons are the fast-spiking (FS) cells, which form strong inhibitory
axo-axonic and axo-somatic synaptic connections and thereby
exert powerful control over the output of their target neurons
(Kawaguchi and Kubota, 1997). FS cells are named for their abil-
ity to fire sustained trains of brief action potentials (APs) at re-

Received Dec. 28, 2004; revised April 15, 2005; accepted April 15, 2005.

This research was supported by National Institutes of Health Grants NS30989 and NS045217 (B.R.), National
Science Foundation Grant IBN-0314645 (B.R.), and National Research Service Awards F30 NS47882 (E.M.G.) and
HL64150 (C.S.L.). We thank Maria Luisa Garcia for the kind gift of iberiotoxin, Elaine Kwon for technical assistance,
and Max L. Schiff and Edward W. Zagha for a critical reading of this manuscript.

Correspondence should be addressed to Dr. Bernardo Rudy, Department of Physiology and Neuroscience and
Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016. E-mail:
rudyb01@med.nyu.edu.

DOI:10.1523/JNEUR0SCI.0722-05.2005
Copyright © 2005 Society for Neuroscience  0270-6474/05/255230-06%15.00/0

cell somata, there is prominent expression of these proteins at FS
cell synapses (Sekirnjak et al., 1997; Chow et al., 1999), yet noth-
ing is known concerning the role of these Kv3 channels.

The impact of FS cells on cortical circuits depends not only on
the anatomical localization but also on the functional properties
of these synapses, including the efficacy and dynamics of neuro-
transmitter release. The prominent expression of Kv3 proteins at
ES cell terminals suggests that Kv3 channels could have impor-
tant roles in regulating these functional properties, a possibility
that we investigated in the present study. Our results suggest that
Kv3 channels are major contributors to repolarization of the AP
at the FS cell terminal, governing spike duration, Ca®*t entry, and
neurotransmitter release, thereby influencing the efficacy and
short-term dynamics of the FS cell synapse.

Materials and Methods

Recording of extracellularly evoked IPSCs. Acute brain slices (300 wm)
were prepared from 16- to 24-d-old mice essentially as described previ-
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ously (Lau et al., 2000). Synaptic currents were recorded via whole-cell
voltage clamp of layer II/III pyramidal cells of mouse primary somato-
sensory (“barrel”) cortex. A concentric bipolar-stimulating electrode
(125 pm in diameter; FHC, Bowdoinham, ME) was placed either in the
layer IV barrel hollow of the same column as the recorded cell or lateral
(~100 pwm) to the recording pipette within layer II/III. IPSCs were
evoked by 0.2 ms pulses, typically 20—-100 nA, to keep IPSC magnitude
low to reduce voltage-clamp errors. Recordings were performed with
patch pipettes (2-2.5 M) filled with intracellular solution that, in most
experiments, contained the following (in mm): 130 CsMeSO,, 8.0 NaCl,
4.0 Mg?*-ATP, 0.3 Na " -GTP, 10 HEPES, 0.5 EGTA, and 6.0 lidocaine
N-ethyl bromide (QX-314), with pH adjusted to 7.40 with CsOH. Re-
cordings were performed at 28—32°C. Reported values for membrane
potential were corrected for the error attributed to liquid junction po-
tential (=15 mV). To minimize voltage-clamp errors, we used low-
resistance pipettes and series resistance compensation, and we recorded
at potentials close to the chloride equilibrium potential (E;) to reduce
extracellularly evoked IPSC (eIPSC) amplitudes. A cell was rejected if
series resistance (R,) after break-in was >18 M() (typically, 10-12 MQ}),
if R, could not be compensated to <10 M(} (typically, 4—8 M), or if R,
changed by >20% during the experiment.

Currents were recorded with an Axopatch 200B amplifier (Molecular
Devices, Union City, CA), low-pass filtered at 5 kHz, digitized at 16 bit
resolution (Digidata 1322A; Molecular Devices), and sampled at 20 kHz.
pClamp9 software (Molecular Devices) was used for data acquisition,
and analysis was performed with Origin (Microcal, Northampton, MA)
and the Clampfit module of pClamp.

Paired recordings. Simultaneous whole-cell recordings were performed
from FS cell—pyramidal cell (FS—PC) pairs in layer II/III primary so-
matosensory cortex by using patch electrodes (5-7 M()) filled with a
solution containing the following (in mwm): 65 KCl, 65 K-gluconate, 10
HEPES, 0.5 EGTA, 4.0 Mg-ATP, and 0.3 Na-GTP plus 0.5% biocytin, pH
7.40, with KOH. PV-GFP (parvalbumin—green fluorescent protein)
mice (Di Cristo et al., 2004) were used to aid in the identification of FS
cells. Both cells were recorded under current-clamp conditions with the
use of two Axoclamp 2B amplifiers (Molecular Devices). Voltage output
was filtered at 10 kHz, and data were acquired at a sampling frequency of
20 kHz.

Two-photon imaging. Experiments were performed by usinga 60X, 0.9
numerical aperture water immersion objective (IR1, Olympus, Tokyo,
Japan) on an Olympus BX-62 upright confocal laser-scanning micro-
scope modified for two-photon imaging. The pipette solution contained
the Ca?™ indicator Fluo-4 (50—200 um) and 25-50 um Alexa-594 biocy-
tin (Molecular Probes, Eugene, OR). Two-photon excitation was elicited
with a dye-pumped Ti-Sapphire Mai-Tai laser (Spectra-Physics, Moun-
tain View, CA) generating <100 fs pulses at 80 MHz. Both dyes were
excited at 810 nm. Presumed terminals were imaged with a 5-10X digital
zoom, and AP-evoked fluorescence changes were detected in line scan
mode, with fluorescence at each point acquired every 2.14 ms. Imaging
data were analyzed by using Fluoview, Image], and Igor software (Wave-
Metrics, Lake Oswego, OR).

Statistical analysis. Unless indicated otherwise, data are expressed as
the mean = SD, with p values derived from paired ¢ tests; *p < 0.05 and
**p < 0.01 were used to indicate statistical significance. For pooled IPSC
amplitudes, which were not distributed normally, the Mann—-Whitney
test was used.

Results

Low concentrations of tetraethylammonium enhance
inhibitory synaptic transmission in the neocortex via
presynaptic mechanisms

Given that Kv3 channels are important determinants of AP repo-
larization at FS cell somata and are expressed at high density at FS
cell synapses, we predicted that blockade of these channels would
broaden the AP at the FS cell terminal. However, because of the
inaccessibility of the FS cell terminal to direct electrophysiologi-
cal recording with the use of currently available techniques, we
made inferences as to the role of Kv3 channels in spike repolar-
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ization at these terminals, based on recordings of postsynaptic
events.

We recorded eIPSCs in layer II/IIT pyramidal neurons in the
presence of 10 mM CNQX and 50 mm D-APV. In most cases, a
CsMeSO,-based internal solution was used. The predicted E
under these conditions was approximately =70 mV, and eIPSCs
were recorded as outward currents during depolarizations to
membrane potentials between —45 and —15mV (Fig. 1 A). eIPSCs
reversed near E, (data not shown) and were blocked by GABA
receptor antagonists (Fig. 1C).

Kv3 channels are highly tetraethylammonium-sensitive
(TEA-sensitive; IC5, of 150—-300 uMm), with near-complete block
at 1.0 mM (Coetzee et al., 1999). Bath application of 1.0 mm TEA
increased the eIPSC amplitude nearly twofold (73.7 = 26.9%
increase over control; n = 14; p < 0.01) (Fig. 1A,C) without
changing the IPSC kinetics (Fig. 1 B). In addition, TEA applica-
tion did not affect pyramidal cell input resistance (Fig. 1D,).
Furthermore, the application of 1.0 mM TEA did not affect cur-
rents evoked by a brief local application of GABA (Fig. 1D,).
Together, these results suggest that the TEA-induced enhance-
ment of the eIPSC is attributable to a presynaptic mechanism
(i.e., an increase in evoked GABA release). Also consistent with
this interpretation, TEA decreased the paired pulse ratio (PPR)
from 0.86 * 0.09 to 0.66 = 0.08 (n = 7; p < 0.005) (Fig. 1 E-G)
and decreased the coefficient of variation of eIPSCs (data not
shown). Results obtained with a CsCl-based internal solution
(Choi et al., 2002) were not statistically different from data ob-
tained with the CsMeSO,-based internal solution (data not
shown).

The effect of TEA on inhibitory synaptic transmission is likely
attributable to blockade of presynaptic Kv3 channels

Whereas 1.0 mm TEA produces near-complete block of Kv3
channels, low concentrations of TEA also block other K™ chan-
nels with similar affinity. In heterologous expression systems, 1.0
mM TEA blocks homomeric channels composed of Kv1.1 and, to
a lesser extent, Kv1.6 subunits (ICs, values of ~0.5 and 1.7-7.0
mwM, respectively) as well as Slol large-conductance (BK, or
maxi-K) Ca®"-activated K* channels (IC5, of 80-330 uMm) (Co-
etzee et al., 1999). However, although there is no blocker specific
for Kv3 channels, toxins exist that are specific for the non-Kv3
channels also blocked by low TEA concentrations. For example,
100 nM dendrotoxin-I (DTx), which blocks K™ channels con-
taining one or more Kv1.1, Kv1.2, or Kv1.6 subunits (ICs, values
of 12-21,2.8-24, and 0.3—1.5 nM, respectively, for heterologously
expressed homomultimers) (Coetzee et al., 1999), had no effect
on the amplitude of eIPSCs (IPSC amplitude was 96.1 * 8.7% of
control; n = 4; p = 0.60) (Fig. 1C). This indicates that the large
effect of TEA on the eIPSC is not produced by blockade of Kv1
channels and suggests that DTx-sensitive Kv1 channels do not
contribute significantly to repolarization of the AP at interneu-
ron synapses, similar to the situation at FS cell somata (Erisir et
al., 1999).

Bath application of 100 nM iberiotoxin (IbTx) or charybdo-
toxin (ChTx), both of which block BK channels with high affinity
(IC5, values of 6-11 and 2—40 nm for heterologously expressed
Slol1, respectively), produced a small but statistically significant
enhancement of the eIPSC (18.6 = 8.6% increase over control;
p < 0.05; n = 6) (Fig. 1C), with no effect on the shape of the
eIPSC. However, blockade of IbTx/ChTx-sensitive BK channels
cannot account for most of the effect of TEA, because TEA still
had alarge effect when it was applied after a previous application
of IbTx or ChTx (58.5% increase) (Fig. 1C).
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Figure 1.  TEA increases the amplitude of elPSCs recorded in neocortical pyramidal cells by

blocking presynaptic Kv3 channels. A, Bath application of 1.0 mm TEA produced a reversible
78.7% increase in the amplitude of the elPSC (control, solid black line; TEA, solid gray line;
washout, dashed black line). Traces are averages of 10 individual sweeps. B, Same as A, with
traces scaled to the peak value of the elPSC obtained after TEA application to illustrate that the
elPSC decay kinetics did not change. ¢, Summary data; *p << 0.05 and **p << 0.01. D, TEA had
no effect on pyramidal cell input resistance. D,, In this example, brief hyperpolarizing 10 mV
steps to —40 mV from the holding potential of —30 mV elicited current transients that were
identical before (black) and after (gray) the application of 1.0 mm TEA, whereas the current
response to extracellular stimulation (indicated by the vertical arrow) was enhanced. D, TEA
had no effect on the current response to the local application of GABA (500 um; dissolved in
ACSF) via pressure ejection (5—20 ms; 2—10 psi) (before, 529.0 == 90.2 pA; after, 560.1 = 83.0).
E, Consistent with a presynaptic mechanism, TEA produced a large decrease in the PPR (ratio of
elPSG, to elPSC,, shown in inset). Currents elicited in response to a pair of identical stimuli
delivered at an interstimulus interval of 50 ms (20 Hz) before (black) and after (gray) the
application of 1.0 mm TEA are shown. F, TEA produced a decrease in the PPR in all experiments
(n = 7). G, Summary of PPR data; **p < 0.01.
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Figure 2.  The large effect of TEA on the elPSC is absent in DKO mice. A, Representative

example illustrating the elPSC recorded in a pyramidal cell from a slice prepared from a DKO
mouse under control conditions (solid black line), after the application of 1.0 mm TEA (solid gray
line), and with the subsequent application of IbTx in the presence of TEA (dashed black line). B,
An example showing control (solid black line), 100 nm IbTx (solid gray line), and the subsequent
application of TEA in the presence of IbTx (dashed black line; note that this trace overlaps with
the gray trace). ¢, Summary data; *p << 0.05. In the DKO mice, IbTx and TEA reciprocally occlude one
another. D, The maximal elPSCwas 52.4% larger (n = 5 for each genotype; p < 0.005) and the
PPR was 48.9% smaller ( p << 0.05) in slices prepared from DKO mice compared with wild type.

The sum of the evidence suggests that TEA enhances GABA
release from neocortical interneurons (most likely FS cells) pre-
dominantly by blocking presynaptic Kv3 channels, indicating
that these channels are key contributors to the repolarization of
the spike at the FS cell synapse. This result is consistent with
immunohistochemical data showing a high density of Kv3.1 and
Kv3.2 proteins at neocortical FS cell basket synapses (Sekirnjak et
al., 1997; Chow et al., 1999).

The large TEA-induced enhancement of evoked GABA release
is absent in Kv3.1/Kv3.2 double knock-out mice

To obtain more direct evidence that the effect of TEA on spike-
evoked GABA release is mainly attributable to blockade of pre-
synaptic channels containing Kv3.1 and Kv3.2 proteins, we per-
formed experiments using Kv3.1/Kv3.2 double knock-out
(DKO) mice (Ozaita et al., 2004). In slices prepared from DKO
mice, the large TEA-induced enhancement of eIPSCs seen in
wild-type animals was absent, and TEA produced only a small
increase in the eIPSC (Fig. 2A, C). However, the effect of TEA on
the amplitude of the eIPSC in DKO mice (15.7 * 9.8% increase
over control; n = 9; p < 0.05) was similar in magnitude to the
effect of IbTx/ChTx in both wild-type mice (Fig. 1C) and DKO
mice (Fig. 2C), suggesting that the small effect of TEA in DKO
mice is attributable to a blockade of BK channels. Consistent with
this interpretation, TEA occluded the effect of IbTx in DKO mice
(99.1% of control; n = 2) (Fig. 2A,C), and IbTx occluded the
effect of TEA (0.7 = 1.0% increase over TEA alone; n = 4) (Fig.
2B,C). These results demonstrate that the large effect of TEA on
the eIPSC in wild-type mice is attributable to a blockade of chan-
nels containing Kv3.1 and Kv3.2 subunits in interneuron termi-
nals, confirming the conclusions reached via pharmacological
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analysis. Furthermore, we also found that the maximal eIPSC
(Choi et al., 2002) was larger and the PPR smaller in DKO mice
compared with wild type (Fig. 2D).

Low concentrations of TEA enhance the amplitude of unitary
IPSPs in FS—PC pairs
The majority of the extracellularly eIPSC likely arises from FS
cells, because FS cells constitute 40-50% of all neocortical
GABAergic interneurons and form numerous proximal synapses
that exhibit high release probability (Kawaguchi and Kubota,
1997). However, many non-FS interneurons also are stimulated
under these recording conditions. Hence we performed dual
whole-cell current-clamp recordings from identified FS—PC
pairs (Fig. 3). TEA (1.0 mMm) increased the amplitude of the uni-
tary IPSPs (uIPSPs) recorded in pyramidal cells in response to AP
generation in a synaptically connected FS cell (61.6 = 25.6% of
control; n = 6; p < 0.05), an effect similar in magnitude to (and
statistically similar to) that observed in extracellular stimulation
experiments ( p = 0.90 by two-tailed unpaired t test) (Fig. 3B-D).
The increase in uIPSP amplitude also was accompanied by a de-
crease in the PPR (36.8 = 11.8% decrease compared with control,
from 0.75 = 0.18 to 0.58 * 0.10; n = 5; p < 0.05) (Fig. 3C,D).
In addition, 100 nM IbTx produced a small but statistically
significant enhancement of the uIPSP amplitude (11.0 = 9.5%
increase over control; n = 4; p < 0.05) that was similar in mag-
nitude to (and not statistically different from) the IbTx/ChTx-
induced increase in the extracellular eIPSC (p = 0.25 by two-
tailed unpaired ¢ test) (Fig. 3D), confirming the presence of BK
channels at FS cell terminals.

TEA enhances AP-evoked Ca’* transients imaged in FS

cell terminals

The results are consistent with a model in which Kv3 channel
blockade reduces the rate of spike repolarization at the FS termi-
nal, leading to spike broadening, enhanced Ca*" influx, and
hence to increased neurotransmitter release. Because whole-cell
recording from the FS cell terminal is probably physically impos-
sible, the AP itself or AP-evoked Ca®" currents cannot be re-
corded directly. Thus we used two-photon laser-scanning mi-
croscopy combined with whole-cell recording and Ca*™ imaging
to visualize AP-evoked Ca*™ transients in FS cell terminals (Fig.
4). Consistent with the proposed mechanism for TEA-induced
enhancement of GABA release from FS cells, the application of
1.0 mm TEA enhanced the AP-evoked Ca”" transient in FS cell
terminals (213.2 = 24% of control; p < 0.02; range, 136-297%;
n = 6 terminals from three FS cells) (Fig. 4 D-F). After recovery
of the somatic AP waveform after washout of the TEA, the Ca*™
transients also recovered to baseline levels (105.6 *= 10.9% of
control; p > 0.05).

Low TEA concentrations broaden the AP at the FS cell soma
(Erisir et al., 1999; Lau et al., 2000) (Fig. 4D). It is extremely
unlikely that somatic AP broadening alone will increase Ca*™
influx at the FS cell terminal; purely passive conduction of so-
matic depolarizations to the terminal will be very inefficient be-
cause of, among other factors, the low-pass cable-filtering prop-
erties along with the extent (>100 wm) and highly branched
nature (Fig. 4A) of the axon. Furthermore, during active propa-
gation, the AP will be shaped by the conductances present along
the axon. Nevertheless, to confirm our expectations, we demon-
strate (supplemental Fig. S1, available at www.jneurosci.org as
supplemental material) that TEA applied near the recorded cell
and its surrounding perisomatic inhibitory synapses produced an
enhancement of IPSC amplitude similar in magnitude to that

J. Neurosci., May 25, 2005 - 25(21):5230-5235 « 5233

A
-
- R
25 um:
B, B,
N |
_, 10 mV
200 pA
100 ms
D
C —control IPSP PPR
amplitude
TEA q}100 7 %
-------- h
e~ |
557 |
1mv X ¥
20 mV 0 N T
25 ms ]
T £
50 T
IbTx IbTx
A TEA

Figure 3. TEA enhances the amplitude of ulPSPs in dual whole-cell recordings of FS
cell—>pyramidal cell pairs in layer Il/1ll of the primary somatosensory cortex. A, Inmunoperox-
idase labeling of the FS cell—pyramidal cell pair studied in B—D. B, Fast-spiking and regular-
spiking firing patterns of the presynaptic FS cell (B;) and the postsynaptic pyramidal cell (B,),
respectively, in response to depolarizing current injection. C, An example of an FS
cell—pyramidal cell connection. The presynaptic FS cell was stimulated with pairs of brief,
identical depolarizing pulses (1.0 nA, 1.5 ms) with a 50 ms interspike interval (20 Hz) and with
10 s intervals between each paired pulse. The IPSPs are averages of 25 sweeps. The wash (dashed
black line) overlaps with the control trace (solid black line). D, Summary data; *p << 0.05.

seen with the bath application of TEA (supplemental Fig. S1C-E,
available at www.jneurosci.org as supplemental material),
whereas TEA applied close to the stimulating electrode had no
effect (supplemental Fig. S1A,B,E, available at www.jneuro-
sci.orgas supplemental material). Furthermore, in FS—PC pairs,
spike-like depolarizations (1.5-2.0 nA) of varying duration (from
2 ms to 1 s) delivered to presynaptic FS cells in the presence of
TTX failed to evoke IPSPs in connected PCs (supplemental Fig.
S2, available at www.jneurosci.org as supplemental material).
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Discussion

Understanding the mechanisms of GABA
release in the cortex critically depends on
knowledge of the ion channels that deter-
mine the electrophysiological properties
of FS cell synapses. Our results show that
voltage-gated K™ channels containing
Kv3.1 and Kv3.2 subunits are major con-
tributors to AP repolarization at the FS
cell synapse, thereby governing spike-
evoked Ca®" entry and neurotransmit-
ter release. BK-type Ca’"-activated K™
channels are also present at this synapse
but make a smaller contribution to spike
repolarization. In contrast, blockade of
Kv1 channels (known to be present at FS
cell terminals by immunohistochemis-
try) (E. M. Goldberg, S. Chang, and B.
Rudy, unpublished observations) had
no effect on the amplitude of eIPSCs,
suggesting that these channels do not
contribute to spike repolarization.

These results support the idea that the
role of a particular K channel in the reg-
ulation of neurotransmitter release cannot
be predicted easily from its mere presence
at a particular synapse. First of all, block-
ing a given K™ channel may or may not
broaden the spike, depending on the
channels that shape the AP waveform of
that particular terminal. For example,
blockade of Kvl or Kv3 subunit-
containing K * channels with DTx or low
concentrations of TEA, respectively, has
no effect on spike-evoked Ca’" transients
in cerebellar basket cell terminals (Tan and Llano, 1999), despite
the fact that Kvl and Kv3 currents have been recorded directly
from this synapse (Southan and Robertson, 2000).

Furthermore, the effects of AP broadening on presynaptic
Ca** influx and hence transmitter release are difficult to predict
and can depend on several factors, such as the density and gating
kinetics of the voltage-gated Ca®" channels present at that par-
ticular synapse (Llinas et al., 1981; Spencer et al., 1989; Bischof-
berger et al., 2002). Our data indicate that at the FS cell synapse
AP-evoked Ca** influx is submaximal and can be increased by
spike broadening.

At the calyx of Held, the blockade of K * channels (likely com-
posed of Kv3 subunits) broadens the presynaptic AP and aug-
ments neurotransmitter release (Ishikawa et al., 2003), similar to
our results at the FS cell synapse. However, although IbTx-
sensitive currents can be recorded at the calyx, BK channel block-
ade has no effect on presynaptic Ca®" influx (Ishikawa et al.,
2003). This is in contrast to our findings at the ES cell synapse and
observations at the frog neuromuscular junction (Robitaille et al.,
1993). However, at the hippocampal Schaffer collateral synapse,
the block of BK channels enhances synaptic transmission only
after previous AP broadening with 4-aminopyridine (Hu et al.,
2001). It is possible that the APs at the calyx of Held and at
CA3— CAl synapses are too brief to allow for significant opening
of the particular BK channel molecular complexes present at
these synapses. Alternatively, the geometry of the presynaptic
terminal (i.e., the relationship between voltage-gated Ca** chan-

Figure 4.
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TEA enhances AP-evoked Ca2* transients imaged in identified FS cell synaptic terminals. A, Recorded FS neuron
imaged by two-photon excitation of Alexa 594. A pseudocolored projection of 117 images having a z separation of 0.46 wm is
shown. B, Terminal boutons from the boxed regionin A (projection of 136images; z separation, 0.46 um). Subsequent high-speed
line scans along the arrow were obtained from the indicated boutons (1-3) in a single z plane. ¢, Firing pattern of the recorded FS
cell. D, As expected, 1.0 mm TEA produced a large and reversible broadening of the somatic AP. E, Raw line scan data of Fluo-4
emission obtained before and after four somatic APs (15 ms interstimulus interval) from boutons 1-3 (bottom to top) before
(control) and 10 min after (TEA) the bath application of 1.0 mm TEA. The dashed line indicates stimulus onset. Calibration: 5 um
(vertical), 100 ms (horizontal). F, Ca > transients obtained from the ratio of Ca > " -dependent (G; Fluo-4) and Ca* -independent
(R; Alexa 594) emissions. TEA reversibly increased the spike-evoked Ca® signals in these terminals.

nels and BK channels) or differences in Ca*>* buffering capacity
also could govern the degree of BK channel activation and hence
the contribution of these channels to AP repolarization at a given
terminal.

FS cells are known to fire at high frequencies both in vitro and
in vivo (McCormick et al., 1985; Swadlow, 2003). Hence the dy-
namic properties of the FS cell synapse must be adapted to high-
frequency activity. The finding that blocking Kv3 channels pro-
duced a decrease in the paired pulse ratio of FS cell—>pyramidal
cell inhibitory connections suggests a role for Kv3 channels in the
dynamics of neurotransmitter release. We propose that, by keep-
ing the AP at the FS cell terminal brief, Kv3 channels limit Ca’*
influx and hence release probability and thereby control synaptic
depression during high-frequency repetitive activity. Neuro-
transmitter release from FS cells appears to depress less than in-
tracortical excitatory neurotransmission during sustained epochs
of activity (Galarreta and Hestrin, 1998), a difference that could
be attributable to the presence of Kv3 channels at the FS cell
synapse. This could explain the augmented seizure susceptibility
exhibited by Kv3 knock-out mice (Lau et al., 2000; Noebels,
2003), which at first appears at odds with the increase in eI[PSC
amplitude observed after channel blockade. However, we hy-
pothesize that the enhanced short-term synaptic depression that
occurs with genetic elimination of Kv3 channels renders it such
that the steady-state level of cortical inhibition is impaired in
these mice.

There previously has been an apparent incompatibility be-
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tween two well known features of FS cells, namely, high-
frequency firing and short-term synaptic depression. What is the
purpose of high-frequency firing if neurotransmitter release de-
presses with repeated activity? The present study suggests that the
very same proteins that generate high-frequency firing (i.e., K™
channel subunits of the Kv3 subfamily) also act to limit synaptic
depression and thus maintain the efficacy of neurotransmitter
release at the FS cell synapse during repetitive activity.
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