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ABSTRACT

Motivation: The qualitative and quantitative characterization of
protein abundance profiles over a series of time points or a set
of environmental conditions is becoming increasingly important.
Using isobaric mass tagging experiments, mass spectrometry-based
quantitative proteomics deliver accurate peptide abundance profiles
for relative quantitation. Associated data analysis workflows need
to provide tailored statistical treatment that (i) takes the correlation
structure of the normalized peptide abundance profiles into account
and (ii) allows inference of protein-level similarity. We introduce a
suitable distance measure for relative abundance profiles, derive a
statistical test for equality and propose a protein-level representation
of peptide-level measurements. This yields a workflow that delivers
a similarity ranking of protein abundance profiles with respect to
a defined reference. All procedures have in common that they
operate based on the true correlation structure that underlies the
measurements. This optimizes power and delivers more intuitive
and efficient results than existing methods that do not take these
circumstances into account.
Results: We use protein profile similarity screening to identify
candidate proteins whose abundances are post-transcriptionally
controlled by the Anaphase Promoting Complex/Cyclosome
(APC/C), a specific E3 ubiquitin ligase that is a master regulator
of the cell cycle. Results are compared with an established protein
correlation profiling method. The proposed procedure yields a
50.9-fold enrichment of co-regulated protein candidates and a
2.5-fold improvement over the previous method.
Availability: A MATLAB toolbox is available from http://hci.iwr.uni-
heidelberg.de/mip/proteomics.
Contact: hanno.steen@childrens.harvard.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Current global quantitative proteomics experiments provide time-
resolved insight into the dynamic behavior of cellular processes
at the protein level and are more reflective of the immediate
status of a cell compared with, e.g. transcriptional studies which
completely ignore post-transcriptional regulation. In this context, the
quantitative and qualitative characterization of protein expression-
level profiles over a series of time points or a set of environmental
conditions is becoming increasingly important. Quantitative mass
spectrometry (MS) is the method of choice to directly identify,
quantitate and characterize hundreds or thousands of proteins
simultaneously, delivering accurate peptide abundance profiles that
yield relative quantitative information (Bantscheff et al., 2007; Ong
and Mann, 2005).

However, given the large numbers of proteins in these studies,
the biochemical validation of the information gathered in such
experiments is not feasible. It is hence desirable to develop
computational screening procedures that can rank proteins based on
their similarity to the abundance profile of a reference protein over a
time course or a set of conditions.Although observing similar protein
abundance profiles cannot prove specific biochemical properties, the
associated ranking can yield a valuable enrichment of protein groups
associated with the same or similar cellular processes and provide a
criterion for the prioritization of biological validation experiments,
i.e. a testable shortlist of candidate proteins (Andersen et al., 2003;
Foster et al., 2006).

Quantitative MS methods provide direct information about
abundance levels of endogenous proteins (Bantscheff et al., 2007;
Ong and Mann, 2005). Quantitative MS is thus a method of
choice for the comprehensive differential analysis of protein
abundance profiles, which vary with time and/or experimental
conditions (Bürckstümmer et al., 2006; Fields and Song, 1989;
Puig et al., 2001; Rigaut et al., 1999; Ross et al., 2004; Selbach
and Mann, 2006; Tedford et al., 2008; Thompson et al., 2003;
White, 2008). Multiplexed isobaric mass tagging (IMT) approaches
or multiplexed metabolic labeling allow for time-resolved protein
abundance measurements for thousands of proteins simultaneously,
overcoming the need for tedious individual protein testing. Recent
computational analyses (Hill et al., 2008; Oberg et al., 2008) have
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Fig. 1. Data analysis workflow for protein coregulation estimation: (A) IMT measurements yield sum-normalized quantitative peptide reporter ion profiles.
(B) The reporter ion profiles are subjected to hierarchical clustering using an appropriate simplicial distance measure. The number of clusters is determined
using a DLRT based on the observed peptide reporter ion profile distributions on the n-dimensional simplex. (C) Given the clustering, the quantitative
measurements are grouped on the protein level, yielding a peptide cluster distribution for each protein. (D) The protein signatures are used to determine
Mallows distances between proteins, taking into account the fact that the underlying clusters differ in their similarity. (E) The resulting distance matrix is
subsequently evaluated to yield a shortlist of coregulation candidates.

provided means of statistical evaluation of differential abundances
between IMT labels but have not focused on the statistical
concepts necessary to compare peptide and protein profiles. Protein
correlation profiling (PCP) is a heuristic protein profile screening
approach that has been developed in the context of tracking
interacting proteins over fractions of a sucrose gradient. It has
successfully been used for large-scale proteomic characterization of
the various human organelles (Andersen et al., 2003; Foster et al.,
2006). Here, we use PCP as a de facto standard for performance
comparison.

Our study introduces a protein profile similarity screening
(PSS) procedure that utilizes abundance profiles from quantitative
proteomics experiments using the IMT strategy. We investigate
the statistical consequences of data normalization, which, if
not accounted for, can jeopardize standard testing procedures.
We establish the connection between IMT series and the
analysis of compositional data (Aitchison, 1982, 1983, 1994)
and introduce a novel approach to propagate quantitative profile
information obtained from peptide measurements to the protein
level. The proposed procedure creates a similarity-ranked shortlist
of proteins in an automated and user-independent manner.
Such shortlists are easily tested by biochemical assays and
circumvent the laborious screening procedures that are currently
used. The proposed method is evaluated on a biologically
relevant example: we attempt to identify substrates of the
E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome
(APC/C), a master regulator of the cell cycle through M and
G1 phases (Peters, 2006). We are interested in proteins that
are degraded during mitosis or G1 phase, using quantitative
proteomics data from an IMT-based experiment measuring the
relative protein abundance at four different points during the
cell cycle specifically chosen to profile the activity of the
APC/C. Conventional assignment of a particular substrate to
its unique E3 ubiquitin ligase is a laborious task involving
the biochemical screening of hundreds or thousands of cloned
and expressed proteins in biochemical assays. Consequently,
computational screening procedures that help to prioritize among
the candidates contribute to significantly reducing the biochemical
effort.

Section 2 of the article provides all methodological details and the
proposed screening procedure is applied to real-world experimental
data in Section 3. In Sections 4 and 5, we report and discuss results,
suggesting that the proposed approach is indeed powerful: with only
few protein IMT abundance measurements, the identification of a
set of well-known co-regulated proteins is possible. Conclusions and
perspectives are offered in Section 6.

2 METHODS

2.1 Workflow overview
We propose a novel procedure for the inference of protein abundance
profile similarity from IMT analyses of proteomic time series experiments.
Given a set of normalized IMT peptide reporter ion profiles (Fig. 1A), we
apply a hierarchical clustering (Fig. 1B) method tailored to the statistical
dependence structure that results from the normalization. The Dirichlet
likelihood ratio test (DLRT) delivers a suitable cluster tree cutoff strategy
and yields a data grouping on the peptide level. From there we construct
protein signatures, representing the protein-wise peptide distribution over the
clusters (Fig. 1C). The Mallows distance then provides a suitable measure
for the inference of protein similarity (Fig. 1D). In the final step, proteins are
ranked according to their profile similarity to one or more predefined marker
proteins (Fig. 1E).

2.2 Statistical properties of IMT time-series
measurements

2.2.1 Isobaric mass tagging IMT labels such as TMT and iTRAQ
generally consist of three parts: a reactive group which binds to the
peptide, a reporter group and a balancer group. Varying combinations of
light and heavy isotopes in the reporter and balancer groups yield four
unique reporter ion masses while keeping the overall mass constant (Ross
et al., 2004; Thompson et al., 2003). For quantitation experiments, K
labels are attached to N peptide species from K experimental conditions. In
LC/MS analysis, the differentially tagged species have the same retention
time and consequently form a single peptide isotope distribution in the
MS parent spectrum. During fragmentation, the reporter/balance/peptide
compound breaks in three and yields K absolute reporter ion abundance
measurements x= (x1,x2,...,xK )T , for each of the N peptide species. Given
a protein, the vector x holds the respective reporter ion profile of observed
abundances.
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2.2.2 Normalization An absolute reporter ion profile x is subjected to
variable interpeptide ionization efficiency (Song et al., 2008; Turck et al.,
2007) and is dependent on the MS/MS sampling mode. Especially for
data-dependent acquisition (DDA) schemes, MS/MS sampling depends on
the sample complexity and there is no guarantee that MS/MS quantitation
is carried out at the apex of peptide elution. In order to remove these
effects, peptide reporter ion profiles need to be normalized. Commonly
applied approaches include reference- or sum normalization, i.e. element-
wise division by the abundance of a designated reporter ion or by the sum
of all abundances, respectively. In both cases, the normalization eliminates
1 degree of freedom and a covariance/dependency structure is imposed on
the measurements xi (Supplementary Material). The following presentation
studies the mathematically more tractable idea of sum normalization. It yields
normalized abundance reporter ion profiles x∗ = (x∗

1 ,x∗
2 ,...,x∗

K )T , where

x∗
i =xi/

∑K
j=1 xj . The loss of a degree of freedom is illustrated by the property

that the relative intensity of any marker i can be recovered from the remaining
normalized reporter ion intensities, i.e. x∗

i =1−∑
j �=i x

∗
j .

2.3 Clustering peptides on the simplex
2.3.1 Hierarchical clustering on the simplex In a first step, we group
peptides that exhibit similar peptide reporter ion profiles using a hierarchical
clustering procedure (Johnson, 1967). The method requires a suitable
dissimilarity measure between the observed data points. In our case, as a
direct consequence of sum normalization, the coefficients of any peptide
reporter ion profile x∗ add to 1, i.e.

∑n
i=1 x∗

i =1. This defines a hyperplane
in K dimensions and every vector x∗ lies on a K-dimensional simplex.
Standard distance measures like the Euclidean distance cannot account for
such dependency structures and we thus resort to the natural measure of
distance on the simplex (Aitchison, 1983) given by

�S(x∗, y∗)=
[

K∑
i=1

(
ln

x∗
i

g(x∗)
−ln

y∗
i

g(y∗)

)2
] 1

2

, (1)

where x∗ and y∗ are K ×1 vectors of sum normalized reporter ion profiles and

g(x∗)=
(∏K

i=1 x∗
i

)1/K
denotes the geometric mean of x∗. For the calculation

of agglomerative distances during the clustering procedure, we use average
linkage (Cortés et al., 2007).

2.3.2 Dirichlet likelihood ratio test Hierarchical clustering iteratively
merges (groups of) observations and eventually yields a merge tree. In order
to identify clusters within the tree, it is necessary to determine in which of
the tree nodes the merge operations are supported by the data and in which
they are not. We approach this problem with a statistical hypothesis test for
differences between groups of observations: the merge is accepted if there
is no statistical evidence that the observations in the two branches stem
from different distributions. Since the normalized underlying data violate
the independence assumptions necessary for standard statistical tests, we
interpret a normalized peptide reporter ion profile x∗ as a realization drawn
from a Dirichlet distribution

p(x∗|α)=D(α1,...,αK )= �(
∑

iαi)∏
i�(αi)

∏
i

(
x∗

i

)αi−1
, (2)

where � is the Gamma function, x∗
i >0,

∑K
k=1 x∗

i =1 and Dirichlet parameters
given by α= (α1,...,αK ),αi >0.

For the determination of statistical significance, we derive a likelihood
ratio test (Casella and Berger, 2001) for the Dirichlet distribution. Assume
we have two sets of observations X and Y . We test whether the observations
of the two groups stem from the same underlying Dirichlet distribution
with parameter vector αX∪Y . In other words, we evaluate if the null
hypothesis H0 :αX =αY can be rejected in favor of the alternate hypothesis
H1 :αX �=αY .

Wilk’s λ (Casella and Berger, 2001) is a measure of how well the data
can be explained under H0 versus H1 and is given by

λ(X ,Y)=
LH0

(
α̂

X∪Y |X ,Y
)

LH1

(
α̂

X
,α̂

Y |X ,Y
)
,

(3)

with the likelihoods LH0 and LH1 given by the products of the individual
likelihoods of the observations

LH0
(
α̂

X∪Y |X ,Y
)
=

|X |∏
i=1

p
(

x∗
i |α̂X∪Y) |Y|∏

i=1

p
(

y∗
i |α̂X∪Y)

(4)

LH1
(
α̂

X
,α̂

Y |X ,Y
)
=

|X |∏
i=1

p
(

x∗
i |α̂X ) |Y|∏

i=1

p
(

y∗
i |α̂Y)

. (5)

The vectors α̂
X , α̂

Y and α̂
X∪Y denote the maximum likelihood Dirichlet

distribution parameters estimated from the observations in X , Y and
X ∪Y . Since there is no closed form solution for the maximum likelihood
estimator of the Dirichlet parameter vector α, we follow previous approaches
(Minka, 2004; Ronning, 1989; Wicker et al., 2008) and estimate α based
on a Newton–Raphson approximation scheme with a method of moments
initialization. For inference, we take advantage of Wilk’s λ and define
t =−2log(λ(X ,Y)), where t can be shown to approximately follow a chi-
square distribution t ∼χ2

K , and are thus able to compute (one-sided) P-values.
The DLRT is the uniformly most powerful test (Casella and Berger, 2001)
for the problem at hand.

2.3.3 Adaptive thresholding for cluster determination With the DLRT, it
is possible to use a rigorous statistical testing scheme to determine adaptive
thresholds in the clustering tree: starting from the root we conduct a DLRT
for each cluster tree node. Given a predefined type-I error rate/alpha level
(generally 0.05 or 0.01), we merge all tree leaves into a cluster if the P-value
assigned to a node is larger than the alpha-level threshold. This implicitly
determines the number of clusters and the top-down scheme circumvents
potential multiple testing issues intrinsically related with bottom-up testing
procedures (Benjamini and Hochberg, 1995).

2.4 Estimating protein profile similarity
2.4.1 Protein signatures To determine which proteins show similar
reporter ion profiles over a set of K experiments, the quantitative peptide-
level information needs to be aggregated. The DLRT-based peptide-level
clustering identifies peptides with similar behavior and groups them into
C clusters. We represent each of the P proteins observed in the MS/MS
experiments by a C×1 peptide signature vector sp with p∈{1,...,P}. Hence,
the element spq holds the ratio of peptides observed for protein p which
fall into cluster q. Thus, making use of ratios we avoid a dependency on
the absolute number of peptides that have been identified for a protein. In
addition, the peptide cluster representation for proteins eliminates intracluster
variance (which is then regarded as experimental noise) and serves as a data-
dependent dimension reduction procedure, effectively projecting the protein
onto the peptide clusters.

The rationale behind this approach is that IMT peptide reporter ion profiles
are susceptible to post-translational modification effects: in the presence of
PTMs, peptides of a protein may exhibit very diverse reporter ion profiles.
Different types of reporter ion profiles aggregate in different clusters and
determining the distribution of peptides over these clusters yields a robust and
versatile protein representation. Subsequent comparison of protein signatures
then allows for the calculation of protein-level abundance profile similarity.

2.4.2 Mallows distance An intuitive way of comparing two protein
signatures sk and sl is to determine the least-effort redistribution of
the mass of the signature sk to yield sl , taking into account that the
clusters which underlie the signatures exhibit different degrees of similarity.
Mathematically, this leads to a discrete version of the Mallows distance
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(Levina and Bickel, 2001; Rubner et al., 1998): we define a discrete joint
distribution F(sk,sl)={fij(sk,sl)} of flows between the signature entries ski

and slj of proteins k and l. We then identify the distribution F∗ that minimizes
the expected cost dij :

F∗(sk,sl)=argmin
F

⎧⎨
⎩

C∑
i=1

C∑
j=1

dij fij
(
sk,sl

)⎫⎬⎭. (6)

Admissible solutions F∗ must fulfill the properties of a distribution
function, i.e.

f ∗
ij

(
sk,sl

)≥0, and
∑

i

∑
j

f ∗
ij

(
sk,sl

)=1, (7)

and their marginals must correspond to the signature vectors,∑
j

f ∗
ij

(
sk,sl

)=sk, and
∑

i

f ∗
ij

(
sk,sl

)=sl . (8)

The costs of changes dij are defined as the average squared distance between
the peptide clusters i and j, i.e.

dij = 1

NiNj

Ni∑
u=1

Nj∑
v=1

(xu∗ −yv∗)2, (9)

where xu∗ with u∈{1,...,Ni} represents all normalized reporter ion profiles
of peptides in the i-th cluster and yv∗ with v∈{1,...,Nj} represents all
normalized reporter ion profiles of peptides in the j-th cluster. This definition
of dij is consistent with the average linkage clustering scheme. The Mallows
distance between two protein signatures sk and sl is then given by

mkl =m(sk,sl)=
C∑

i=1

C∑
j=1

dij f
∗
ij (sk,sl). (10)

For the complete set of protein signatures, this yields a P×P protein distance
matrix M ={mkl}.

2.5 Identifying similar proteins
It is now possible to derive a shortlist of proteins that exhibit similar
abundance profiles from the distance matrix M. Given a known substrate
protein p, the elements of the column vector mp = (m1p,m2p,...,mPp)T are
constrained to the interval [0,1] and approximately follow a beta distribution.
The parameters αp and βp are estimated by maximum likelihood and
subsequently allow the computation of a cutoff quantile q (generally the
0.01 or 0.05 quantile). All proteins t with a Mallows distance mtp below the
quantile q are then included in the protein shortlist.

3 EXPERIMENTS
We evaluated our method on an iTRAQ (a specific IMT strategy)
MS experiment of the APC/C. The APC/C is a highly specific
ubiquitin ligase that marks its substrates for degradation by the 26S
proteasome and thus controls entry into and exit from mitosis in the
cell cycle.

The analysis attempts to elucidate APC/C substrate candidates
from a full cell extract, based on the temporal protein abundance
profile of the known APC/C substrate Cyclin-B1 (CCNB1) (King
et al., 1995).

We compared the proposed workflow against PCP (Andersen
et al., 2003), which calculates peptide-level χ2 distances based on
a predefined set of marker proteins and takes peptide medians to
infer protein-level dissimilarity. PCP has been used in a large-scale
proteomic organelle mapping study (Foster et al., 2006).

Fig. 2. Experimental setup: lysates from HeLa S3 cells were arrested in
different states of the cell cycle. Samples were digested, iTRAQ-labeled,
combined and analyzed by LC-MS/MS. Reporter ion profiles were acquired
by subsequent quantitation and normalization.

3.1 Experimental background
The data stem from lysates of HeLa S3 cells arrested in four
time points in the cell cycle: prometaphase, M/G1, G1 and G1/S
(Fig. 2). Over the selected time course cells divide and the observed
changes in protein abundance also reflect changes induced by
APC/C activity, i.e. controlled protein degradation. The samples
were digested with trypsin, iTRAQ-labeled, combined, fractionated
first by SCX then by reversed phase liquid chromatography and
analyzed by MALDI-TOF/TOF MS (Applied Biosystems/MDS
Sciex 4800 TOF/TOF). The iTRAQ reagents (Ross et al., 2004)
consist of three parts: a reporter group with mass 114–117, a
balance group with mass 28–31 and the amine-specific peptide
reactive group (N-hydroxysuccinimide, NHS), targeting the peptide
N-terminal and the ε-amino group of lysine. The overall mass of
the reporter-balance combinations is kept constant (145 Da) using
differential isotopic labeling of 13C, 15N and 18O. Peptide and
protein identifications were performed using the Mascot search
engine (Matrix Science, version 2.2.1) (Perkins et al., 1999) with
a fully tryptic human database (IPI human, version 3.23) and a
false positive rate of 4.1% at the peptide level. The iTRAQ reporter
group abundances were extracted from the raw MALDI-TOF/TOF
data, isotope-correlated and matched to identified peptides using
DataExplorer (Applied Biosystems, Foster City, CA, USA). In
addition, the quality of the spectra and/or identification matches was
also assessed requiring a spectral quality score (SQS; Parker et al.,
2004) above 1000.

3.2 Computational analysis
The MS analysis yielded 19 619 MS/MS spectra with complete
quantitative information, and identified 2443 proteins based on two
or more of the 16 785 unique peptides. All reporter ion profiles were
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sum-normalized and subjected to two computational analyses: (i)
PSS was carried out as described in the previous section, with a
DLRT significance level of 0.01 and (ii) PCP (Andersen et al.,
2003). The resulting distance measurements and χ2 values were
used to derive a ranked protein list for each method. In both cases,
we selected CCNB1 as a reference, and derived the top 1% shortlist
for the proteins in the sample whose protein-level abundance profiles
are most similar to the ones of the reference.

4 RESULTS
Table 1 lists the ranks of 10 known APC/C substrates and PRC1
that were observed in the acquired data as reported by PSS and PCP.
See the Supplementary Material for detailed references concerning
the chemical validation of the respective compounds. The CCNB1
reference profile is reported with rank zero and excluded from all
following statistics.

Figure 3 displays the normalized peptide reporter ion profiles
(gray lines) for the same set of proteins along with the geometric
means over the profiles of all associated peptides. The geometric
means serve as a measure of (simplicial) central tendency and are
suitable for visual comparison and discussion of the results. High-
ranking substrates (TK1, NUSAP, PLK1, TPX2) and PLK1 exhibit
U-shaped tendencies similar to CCNB1, whereas the low-ranking
AURKA, CDCA5, DNMNT1 and GTSE1 show clearly different
tendencies.

At a 1% confidence level, PSS reports five of the known APC
substrates, PCP reports two. Both approaches report confident hits
for PRC1, a mitotic spindle-associated microtubule binding and

Table 1. Results of the CCNB1 PSS

Description PSS PCP

CCNB1: G2/mitotic-specific cyclin-B1 0 0
TK1: Thymidine kinase cytosolic 2 1
PRC1: Protein regulator of cytokinesis 1 6 11
TPX2: Targeting protein for Xklp2 7 54
NUSAP: Nucleolar/spindle-assoc. protein 1 12 623
PLK1: Serine/threonine-protein kinase 24 28
CKAP2: Cytoskeleton-associated protein 2 399 624
AURKA: Serine/threonine-protein kinase 6 548 186
CDCA5: Sororin 1565 1958
DNMT1: DNA methyltransferase 1 1598 876
GTSE1: G2 and S phase-expressed protein 1 1724 373

Confirmed proteins in top 1% ranks 5/10 2/10
Ratio of confirmed proteins (q=1%) 20.8% 8.3%
Enrichment factor (q=1%) 50.9 20.4

The table displays the list of known (i.e. biochemically validated)
APC/C substrates present in the sample. The entries are ordered by
the ranking derived from computational PSS and annotated with the
ranking delivered by PCP (Andersen et al., 2003). PSS identifies 5 of
the 10 known coregulating proteins among the top 1% ranks whereas
PCP identifies only two. PSS thus yields a 50.9-fold enrichment of
CCNB1-coregulation candidates among the top 1% proteins in the
shortlist and a 2.5-fold increase compared with PCP.

bundling protein that is essential to cell cleavage. Its tight regulation
is necessary to maintain the spindle midzone and to guarantee
microtubule interdigitation. For PRC1, there is a body of evidence
indicating that it tightly co-regulates with CCNB1 and that it
indeed may be an APC/C substrate (Jiang et al., 1998; Mollinari
et al., 2002), although biological validation is still pending. For
all following statistics, we included PRC1 into the list of known
coregulating proteins.

The PSS results on the APC/C iTRAQ dataset yield an 50.9-fold
enrichment of CCNB1 co-regulated proteins as compared with the
original raw data: the likelihood to observe an CCNB1-coregulating
protein (i.e. an APC/C substrate candidate) in the set of significant
ranks is 5/24 = 20.8% compared with 10/2443 = 0.41% in the
original unranked data. For PCP, we observe an enrichment factor
of 20.4, corresponding to a likelihood of 8.3%. The fraction of
confirmed proteins present in the top 1% ranks is 5/10=50% for
PSS and 2/10=20% for PCP.

0.1

0.25

0.4

CCNB1 TK1 PRC1

0.1

0.25

0.4

TPX2 NUSAP PLK1

0.1

0.25

0.4

CKAP2 AURKA

114 115 116 117

CDCA5

114 115 116 117

0.1

0.25

0.4

DNMT1

114 115 116 117

GTSE1

Fig. 3. Peptide reporter ion profile plots for all identified APC/C substrates
in the sample: peptide reporter ion profiles are shown in gray, protein-wise
geometric means are used as a measure of simplicial central tendency and
shown in black.CCBN1 (upper left corner), the reference protein in the
analysis, exhibits a U-shaped central tendency of peptide profiles which
is shared by the coregulating proteins reported by the proposed screening
procedure at the 1% level as well as by CKAP2. In the bottom row,
the observed peptide reporter ion profiles and strongly diverging central
tendencies support the algorithmic findings that the data do not exhibit
detectable coregulation for AURKA, CDCA5, DNMT1 and GTSE1.
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5 DISCUSSION
The biologically validated set of top-ranked APC/C substrates
includes: CCNB1, TK1, NUSAP, PLK1, TPX2 and PRC1. The
examination of the peptide reporter ion profiles of the known
APC/C substrate (AURKA, CDCA5, DNMNT1 and GTSE1), which
were not reported as coregulation candidates at a 1% cutoff shows
significant deviations from the CCNB1 reporter ion profiles (Fig. 3).
The two observable peptide reporter ion profiles for CKAP2 exhibit
a U-shape with higher starting and lower ending points compared
with CCNB1. The cluster assignment of one of the peptide profiles
is close to a CCNB1 cluster (data not shown). However, because
only two reporter ion profiles are available, only half of the
CKAP2 protein signature matched to CCNB1; we assume that
if better sequence coverage were available, CKAP2 would be
ranked closer to the top. In this context, limiting the approach to
proteins with a minimum amount of sequence coverage might be a
worthwhile step to increase the screening accuracy. In summary,
the proteins that fall out of the top 1% ranks feature protein
signatures very different from the reference which result in increased
distance measures. This intuitive assessment of performance also
underlines the different distance measures used by PSS and PCP:
PCP orders PLK1 and AURKA further to the top. This is due
to the definition of the median and in particular in the case
of AURKA, the median-based PCP delivers less intuitive results
than PSS.

Based on the experiments conducted in this study, PSS provides
promise for practical application: among the top 1% ranked proteins,
the likelihood of finding a truly coregulating protein was 2.5 times
higher with PSS than with PCP; given that screening experiments
in general need to be followed up with labor-intensive biological
validation, this is a significant difference.

6 CONCLUSIONS
The proposed data analysis procedure enables PSS from
IMT experiments. The procedure introduces novel statistical
methodology for the treatment of IMT abundance reporter ion
profiles that takes into account the dependency structure inherently
present in the measurements. It also introduces advances in
exploratory data analysis that enable protein-level inference based
on peptide-level measurements. The experimental results indicate
that the methodology is sufficiently powerful to cope with practical
requirements.

In addition, the protein signatures sp hold the information across
which reporter ion profile clusters the peptides of a particular protein
are distributed. This information can be used to gain insight if
different homologs of a protein are present in an experiment.

PSS identifies proteins with similar abundance profiles without
the need for tailored biochemistry or high-effort experimental
protocols. In particular, the method is applicable to full cell lysate
measurements at endogenous protein levels. As a consequence, the
method is unbiased. In practical application, similarity screening is
carried out in a fully automated manner, requiring only a single,
well-interpretable user-parameter (the DLRT significance level).
The overall algorithmic setup merely assumes sum-normalized
relative quantification measurements, and the underlying statistical
methodology is thus applicable to a wide range of proteomic research
questions.

Ultimate validation of substrate relationships has to be carried
out in the biochemical domain. However, in the case of APC/C
co-regulation, our findings indicate that high-confidence candidates
reported by the proposed methodology are well-chosen candidates
for biochemical validation.

Of particular importance for the proposed approach is the fact that
each analysis step makes use of the correct metrics with respect to
the underlying statistical dependency structures. Thus, the overall
approach maintains statistical power and is able to generate usable
results even with comparatively small sample sizes. The underlying
methods, including the DLRT, can be applied to a wide field of use
cases and PSS can be used as a drop-in replacement for PCP.

Future developments in time-resolved IMT experiments will
likely include the ability to measure the sample under investigation
at much better temporal resolution, providing a much more complete
description of quantitative protein behavior and a significant increase
in the amount of available discriminative information.
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