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Methods 

Human and mouse transcript-confirmed exons 

Human and mouse transcript (mRNA and/or EST)-confirmed exons were extracted from the Alternative Splicing 
Database (ASD) (Release 2, April 2005) [1]. The AltSplice database in ASD is a computationally derived collection of 
alternative splicing (AS) events of human and mouse based on alignment of EST and mRNA sequences to the 
corresponding genomic sequences with high quality and minimal redundancy. In ASD, all transcript–genome 
alignments with ambiguities were removed. A confirmed intron is defined by an alignment gap of genomic sequence 
flanked by two splice sites of known types. A confirmed exon is defined by an alignment match flanked by two 
confirmed introns; therefore, only internal exons are considered as being confirmed. Confirmed introns and exons that 
overlap with each other indicate AS events. In human, AltSplice has 16 293 genes, including 9945 (61%) with one or 
more alternative splicing events. In mouse, AltSplice has 16 352 genes, including 8211 (50%) alternatively spliced ones. 
The higher percentage of alternatively spliced genes in human is probably due to the higher EST coverage. 

In this study, we considered only splicing events involving GT–AG intron boundaries. In total, 133 926 and 121 202 
exons, plus 200 nucleotides of flanking intronic sequences, were extracted for human and mouse, respectively. Cassette 
exons are those included in some transcripts but skipped in others, without affecting the two neighboring exons 
(denoted as SCE, for simple cassette exons, in ASD). We extracted 10 196 and 5992 cassette exons for human and 
mouse, respectively. We also compiled a set of 30 892 and 37 313 exons that appear to be constitutively spliced in 
human and mouse, respectively. These exons were extracted from genes without AS events. 

A summary of frame-preserving preference and human-mouse conservation (see below) is given in Table S1 and 
Figure S1. We also compared other features, such as intron phase bias (data not shown). All these general statistics are 
similar to and consistent to those reported previously (e.g. [2–4]).  

Exon inclusion/skipping level 

For each cassette exon, the number of supporting transcripts for the inclusion and the skipping isoforms was also 
extracted from ASD [1]. The number of supporting transcripts was used as an approximate measure of the abundance 
of the exon inclusion/skipping isoform, as done previously [5,6]. The ratio of the skipping to inclusion isoform or the 
ratio of the minor to major isoform (RMM) was used to estimate the relative abundance of the two isoforms. 

Previous studies (e.g. [5,7]) have shown that  newly evolved splicing isoforms usually have low abundance, whereas 
original ancestral isoforms remain dominant to minimize the deleterious effects of new isoforms to the organism. 
During evolution, the new minor isoform becomes more abundant if it has adaptive benefits and is positively selected. 
Therefore, RMM represents an approximate measure of the evolutionary age and fitness of an AS event. 

Frame-preserving preference 

An exon is defined as frame-preserving if its length is a multiple of three nucleotides, and as frame-shifting otherwise 
(e.g. [4]). The inclusion or skipping of a frame-preserving exon will not change the reading frame, thus affecting only 
the local protein sequence, unless the cassette exon has one or more premature termination codons, which is relatively 
infrequent. For a set of exons, the frame-preserving preference (FPP) is defined as the fraction of frame-preserving 
exons out of the total. The standard deviation of the FPP is estimated by a binomial distribution, 
std(FPP) = sqrt[FPP×(1-FPP)/n]. The statistical significance of the difference in the FPP between two exon groups is 
tested using a two-way contingency table, (group1 frame-preserving, group1 frame-shifting; group2 frame-preserving, 
group2 frame-shifting) by Fisher’s exact test [4].  

To generate the results given in Figure 1b,d, we used cassette exons with ≥10 supporting transcripts and ≥3 
transcripts for the minor isoform. The filtering permits a more precise estimate of the relative abundance of the two 
isoforms. FPPs were calculated for cassette exons with different ranges of relative abundance of the two isoforms. In 
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particular, we regard an isoform as being rare if the relative abundance is less than 0.1. The thresholds of filtering and 
intervals were somewhat arbitrary and determined empirically, but the results seem to be robust with different 
thresholds. 

Identification of orthologous exons for human–mouse comparison 

Orthologous exon pairs were identified between human and mouse as previously described [4], with minor adaptations. 
In brief, 19 330 othologous gene pairs were downloaded using the Ensembl BioMart tool (formerly known as EnsMart) 
[8] (November, 2005). Then, each exon in the human gene was aligned to each exon in the orthologous mouse gene at 
both the nucleotide and protein levels using CLUSTALW [9]. For the protein-level alignment, nucleotide sequences 
were translated in all frames. Only those frames without a stop codon were retained for alignment. The reading frame 
that gave the best amino acid identity in each orthologous comparison was identified. Orthologous exon pairs were 
defined as those with reciprocal best alignment with nucleotide identity ≥60% and amino acid identity ≥50%. Generally, 
a real exon pair has a much higher conservation level than the thresholds. We identified mouse orthologous exons for 
human cassette exons, and vice-versa. We also identified ancestral cassette exons (orthologous cassette exons that can 
be included and skipped in both species).  

To generate the results presented in Figure 2, we used the same filtering criteria as those described above (≥10 
supporting transcripts and ≥3 transcripts for the minor isoform). In addition, cassette exons with skip/inc>1 were not 
analyzed here because rarely included cassette exons are more likely to have been recently exonized and are difficult to 
match between human and mouse [5]. In other words, rarely included cassette exons that are conserved between 
human and mouse may represent a very biased sample. Subsets of exons with different relative abundance of the two 
isoforms were defined similarly as in Figure 1 of the main text. For each subset, synonymous (Ks) and non-synonymous 
(Ka) mutation rates in the exons, and sequence conservation level in the flanking intronic regions were estimated as 
described below. 

Calculation of synonymous and non-synonymous mutation rates 

Following a previously described approach [4,10], the protein alignment generated to identify orthologous exons was 
used to realign the two nucleotide sequences of each orthologous exon pair. Gaps were removed. Synonymous and non-
synonymous substitutions/sites were estimated by the Yang-Nielsen maximum-likelihood method, using the program 
yn00 in the PAML package [11]. For each subset of exons, the number of substitutions and sites were added up to 
calculate the overall Ks and Ka mutation rates, respectively, by the ratio of the two sums. The standard deviation of the 
ratio (Ka or Ks) was estimated by a binomial distribution, as for the estimation of standard deviation of FPP, as 
described above. The difference in Ks (Ka) for two exon groups was tested using the total number of substitutions/sites 
and Fisher’s exact test, as described above and in previous studies [4].  

Intronic sequence conservation 

For each orthologous exon pair, we aligned both the upstream and downstream intronic flanking sequences (200 
nucleotides in each region) using CLUSTALW. The 50 positions immediately upstream or downstream of the cassette 
exons were used to estimate the intronic conservation level. For each subset of exons, the average conservation level 
and standard error were calculated. We used robust estimates, that is, median and scaled MAD (median absolute 
deviation), which impose no assumption of normality. More precisely, the standard error is estimated by MAD/sqrt(n) , 
where n is the number of sequences. Note that in the software package R [12], MAD is scaled to be equivalent with the 
standard deviation for normal distributions.  

Comparison of exon length for frame-shifting and frame-preserving exons 

To generate the results in Table 1 in the main text, we used all constitutive and cassette exons, as well as ancestral 
cassette exons. The difference in median of exon size for frame-preserving exons and frame-shifting exons was tested by 
a Wilcoxon rank sum test. To generate the results presented in Figure S3, we filtered cassette exons by requiring ≥50 
supporting transcripts. Exons were then broken down into three subsets, according to the relative abundance of the two 
isoforms. For each subset, we calculated the average and the standard error by robust estimates, that is, Median and 
MAD/sqrt(n).  

We also examined three additional, readily available  datasets of ancestral cassette exons generated by other groups 
[3,4,13]. Consistent differences between frame-preserving and frame-shifting exons were observed, as with the ASD 
data (not shown). 

Statistical analyses 

All statistical analyses and tests were performed in R [12]. 

Data availability 

The original data can be downloaded from ASD. All datasets derived from ASD that were used in this study are 
freely available upon request. 
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Table S1. Frame-preserving preference and exonic/intronic conservation of orthologous exons in 
human and mouse 

Exon type (hs17 vs 
mm5) 

Exon 
number 

Frame-
preserving 
preference 
(%) 

Exon 
nucleotide 
identity(%) 

Exon  

amino acid 
identity(%) 

Upstream 
identity(%) 

Downstream 
identity(%) 

exon vs exon 86063 39.6(0.2) 87.8(0.0) 93.8(0.0) 60.0(0.0) 56.0(0.1) 
constitutive vs 
constitutive 

9645 40(0.5) 87(0.1) 93(0.0) 60(0.1) 56(0.1) 

exon vs cassette 4700 48(0.7) 88(0.1) 92(0.2) 64(0.2) 58(0.3) 
cassette vs exon 2956 49(0.9) 89(0.1) 93(0.2) 66(0.3) 62(0.3) 
cassette vs 
cassette 

809 62(1.7) 93.0(0.3) 94.6(0.4) 78.0(0.6) 70.0(0.7) 

The median and the standard error are shown. Cassette exons overall are more similar to constitutive exons than ancestral 
cassette exons. 

 

Table S2. Frame-preserving preference of tissue-specific cassette exons from the literature 

 Frame-preserving All Fraction(%) Data source 

Brain-specific 106 171 62 [14] 
Muscle-specific  17 28 61 [14] 
Validated Nova targetsa 29 35 83 [15] 
aA few exons not matched in ASD were excluded. 
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Figure S1. Frame-preserving preference (FPP) of all exons, constitutive exons, cassette exons and ancestral cassette exons in human (H) and mouse (M). The error 
bars show the standard deviation estimated from a binomial distribution. Cassette exons overall are more similar to constitutive exons than to ancestral cassette 
exons. 
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Figure S2. Distribution of frame-preserving cassette exons in terms of relative isoform abundance. (a) Human and (b) mouse data are shown. Refer to the legend 
of Figure 1 in the main text for details. The bimodal distribution (when a threshold of supporting transcripts was applied) is very similar to that observed for all 
cassette exons. This suggests that as the transcriptome is sampled more deeply, it is easier to find low-abundance splicing isoforms. This low abundance is 
largely independent of NMD. Also note that, in both Figure 1 and Figure S2, the peak of cassette exons with rare-skipping is almost twice that of cassette exons 
with rare-inclusion, which implies that leaky or aberrant exon skipping is more prevalent than inclusion. As an alternative interpretation, it is easier for random 
mutations to attenuate splicing signals than to create them in intronic sequences. These observations cannot be explained by NMD either. 
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Figure S3. Comparison of exon size for cassette exons with different inclusion levels. Cassette exons with ≥50 supporting transcripts were divided into three bins 
according to skipping-to-inclusion ratio (<0.1, between 0.1 and 10 and ≥10). Frame-preserving and frame-shifting exons were compared separately (shown in blue 
and red respectively). The bars show median exon sizes. Error bars show standard errors. (a) Human and (b) mouse data are shown. Note that exons included at 
intermediate levels are shorter than those predominantly skipped or included. The difference seems to be larger for frame-preserving exons than frame-shifting 
ones. If suboptimal exon definition by the spliceosome is the primary reason for the shorter size of AS exons, rarely included exons should be even shorter, which 
contradicts our observation. 

 


