Endothelial Progenitor Cells Control the Angiogenic Switch in Mouse
Lung Metastasis

Dingcheng Gao, et al.

Science 319, 195 (2008);

AVAAAS DOI: 10.1126/science.1150224

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your
colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by
following the guidelines here.

The following resources related to this article are available online at
www.sciencemag.org (this infomation is current as of July 12, 2011 ):

Updated information and services, including high-resolution figures, can be found in the online
version of this article at:
http://www.sciencemag.org/content/319/5860/195.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2008/01/07/319.5860.195.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be
found at:
http://www.sciencemag.org/content/319/5860/195.full. html#related

This article has been cited by 107 article(s) on the ISI Web of Science

This article has been cited by 54 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/319/5860/195.full. html#related-urls

This article appears in the following subject collections:
Medicine, Diseases
http://www.sciencemag.org/cgi/collection/medicine

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the
American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright
2008 by the American Association for the Advancement of Science; all rights reserved. The title Science is a
registered trademark of AAAS.

Downloaded from www.sciencemag.org on July 12, 2011


http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/319/5860/195.full.html
http://www.sciencemag.org/content/319/5860/195.full.html#related
http://www.sciencemag.org/content/319/5860/195.full.html#related-urls
http://www.sciencemag.org/cgi/collection/medicine
http://www.sciencemag.org/

18. Materials and methods are available as supporting
material on Science Online.

19. T. P. Young, B. D. Okello, D. Kinyua, T. M. Palmer, Afr. J.
Range Forage Sci. 14, 94 (1998).

20. M. Huntzinger, R. Karban, T. P. Young, T. M. Palmer,
Ecology 85, 609 (2004).

21. T. P. Young, M. L. Stanton, C. E. Christian, Oikos 101,
171 (2003).

22. T. M. Palmer, Ecology 84, 2843 (2003).

23. B.]. Peterson, B. Fry, Annu. Rev. Ecol. Syst. 18, 293 (1987).

24. D. M. Post, Ecology 83, 703 (2002).

25. M. L. Stanton, T. M. Palmer, T. P. Young, Ecol. Monogr.
72, 347 (2002).

26. R. M. Pringle, T. P. Young, D. I. Rubenstein, D. ]. McCauley,
Proc. Natl. Acad. Sci. U.S.A. 104, 193 (2007).

27. E. G. Brockerhoff, A. M. Liebhold, H. Jactel, Can. ]. For.
Res. 36, 263 (2006).

28. D. W. Davidson, Biol. ]. Linn. Soc. 61, 153 (1997).

29. 1. T. Du Toit, D. H. M. Cumming, Biodiversity Conserv. 8,
1643 (1999).

30. W. K. Ottichilo, ]. De Leeuw, A. K. Skidmore, H. H. T. Prins,
M. Y. Said, Afr. J. Ecol. 38, 202 (2000).

31. We thank ]. Lemboi and the excellent staff at Mpala
Research Centre and Mpala Ranch for logistical support,
students from The Kenya Wildlands Program for field
assistance, and the Gordon Lab (Stanford University),
Koch Lab (University of California), Silliman Lab
(University of Florida), K. Rudolph, and four anonymous
reviewers for helpful comments on the manuscript.

This work was funded by NSF grants DEB-0089706 and
DEB-0444741 to T.M.P., M.L.S., and T.P.Y. The KLEE
plots were built and maintained with grants from the
James Smithson Fund of the Smithsonian Institution (to
A. Smith), the National Geographic Society (4691-91),

REPORTS

NSF (BSR-97-07477 and BSR-03-16402), and the
African Elephant Program of the U.S. Fish and Wildlife
Service (98210-0G563) (to T.P.Y.). This research was
carried out under the auspices of the Ministry of
Education, Science, and Technology of the Republic of
Kenya (Permit number MOEST 13/001/34 17). This paper
is dedicated to the memory of Otis Trout Palmer, a true
mutualist.

Supporting Online Material
www.sciencemag.org/cgi/content/full/319/5860/192/DC1
Materials and Methods

Fig. S1

References

10 October 2007; accepted 28 November 2007
10.1126/science.1151579

Endothelial Progenitor Cells Control
the Angiogenic Switch in Mouse

Lung Metastasis

Dingcheng Gao, Daniel ]. Nolan, Albert S. Mellick, Kathryn Bambino,

Kevin McDonnell, Vivek Mittal*

Angiogenesis-mediated progression of micrometastasis to lethal macrometastasis is the major cause of
death in cancer patients. Here, using mouse models of pulmonary metastasis, we identify bone

marrow (BM)—derived endothelial progenitor cells (EPCs) as critical regulators of this angiogenic switch.
We show that tumors induce expression of the transcription factor Id1 in the EPCs and that suppression of
Id1 after metastatic colonization blocked EPC mobilization, caused angiogenesis inhibition, impaired
pulmonary macrometastases, and increased survival of tumor-bearing animals. These findings establish
the role of EPCs in metastatic progression in preclinical models and suggest that selective targeting of
EPCs may merit investigation as a therapy for cancer patients with lung metastases.

isseminated malignant primary tumor
Dcells colonize target secondary organs,

through bone marrow (BM)—derived
premetastatic niches (/, 2), to form dormant
micrometastases (3). In some cases, these micro-
metastases activate the angiogenic switch and
progress to macrometastases (4, 5). The cellular
and molecular mechanisms regulating the angi-
ogenic switch and the dynamics of vessel assem-
bly during the progression of micrometastases to
macrometastases remain poorly understood, which
limits the utility of antiangiogenic approaches to
controlling metastasis. In this study, we have
investigated whether BM-derived endothelial pro-
genitor cells (EPCs) contribute to angiogenesis-
mediated progression of micrometastases into
deadly macrometastases.

To facilitate tracking of both metastatic tumor
cells and BM-derived cells in vivo, we implanted
Lewis lung carcinoma cells stably expressing red
fluorescent protein (LLC-RFP) into syngeneic
mice reconstituted with BM cells expressing
green fluorescent protein (GFP" BM) (fig. S1A)
(6). After primary tumor resection (fig. S1B),
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numerous RFP" pulmonary micrometastases (<1
mm in diameter) were detected by stereomicro-
scopic imaging at day 14 after tumor inoculation
(12 on average per animal) (fig. S1C). The total
number of metastases increased with time (aver-
age 22 and 35 per animal at day 21 and day 28,
respectively) (Fig. 1A), with a concomitant in-
crease in macrometastases (>1 mm in diameter,
47% at day 28) (Fig. 1A), which indicated a time
window of micrometastasis to macrometastasis
progression. We next determined whether this
window of metastasis progression was associated
with the angiogenic switch. Immunohistochemical
staining showed that the micrometastatic foci
(day 14) were largely avascular, as determined
by a lack of CD31" vessels (Fig. 1B, top). In
contrast, macrometastatic foci (days 21 to 28)
were infiltrated with many CD31" neovessels
of various sizes (Fig. 1B, bottom), which sug-
gested that these lesions had undergone an an-
giogenic switch during their expansion in size.
As expected, many BM-derived GFP" cells
were recruited to both micro- and macro-
metastases (fig. SIC and Fig. 1B). Although a
majority of these cells represented hemato-
poietic lineages, as previously described in pri-
mary tumors (7) (fig. S2A), we focused on
BM-derived endothelial cells that directly con-
tribute to neovascularization (8). Microscopic

analysis of macrometastases showed that a sub-
set of neovessels had incorporated BM-derived
endothelial cells [GFP'CD31" (Fig. 1C)]. Lumi-
nal incorporation was confirmed by optical sec-
tioning microscopy, which showed that the GFP
and CD31 signals were localized to the same
individual cell in all three dimensions [supporting
online material (SOM) text, Note 1, and (fig.
S2B)]. Functional incorporation of BM-derived
endothelial cells was quantified by systemic per-
fusion of fluorescently labeled isolectin GS-IB4,
which specifically binds to the luminal surface
of endothelial cells in vessels with active blood
circulation (8, 9). Macrometastases were dis-
sected from the lungs, and fluorescence activated
cell sorting (FACS) analysis showed that the
luminally incorporated BM-derived endothelial
cells (GFP'Lectin'CD31°CDI11b") represent on
average 12.7 + 2.9% of total endothelial cells
(Lectin'CD31'CD11b") (Fig. 1, D and E).

To confirm that these events also occur in a
model of spontaneous metastasis, we transplanted
syngeneic GFP" BM into MMTV-PyMT trans-
genic mice, a model of breast cancer. Pulmonary
micrometastases were detected in the mice at 12
weeks of age, and these lesions progressed into
numerous macrometastases by week 16 (Fig. 2A).
Notably, GFP* BM-derived cells colocalized with
the metastatic lesions (Fig. 2B). As observed in the
LLC model, the micrometastases were avascular
and lacked CD31" vessels (Fig. 2C), whereas macro-
metastases were infiltrated by CD31" neovessels
(Fig. 2D), which indicated that these lesions had
undergone an angiogenic switch at this defined win-
dow. Histology revealed vessel-incorporated GFP"
CD31" BM-derived endothelial cells (Fig. 2E).
Further quantification showed that 11.7 £+ 3.7%
of vessels in the metastases contained incorporated
GFP" BM-derived endothelial cells (Fig. 2F).

We have previously shown that the BM-derived
endothelial cells are derived from progenitor cells
defined by cell surface expression of vascular
endothelial (VE)—cadherin, vascular endothelial
growth factor receptor 2 (VEGFR2), dim CD31,
and Prominin I and lack various hematopoietic
markers (8). Analysis of micrometastases showed
infiltration of BM-derived GFP" VE-cadherin"
EPCs in the peripheral region of the lesions (Fig.
3A). FACS analysis of the lungs bearing micro-
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metastases showed a fivefold increase in BM-
derived EPCs (GFP' VE-cadherin® CD319™
CD11b), as compared with that of control normal

lungs (198.5 +29.9 versus 37.3 £ 6.1, P<0.0001)
(Fig. 3, B and C). To determine the mechanism
underlying EPC recruitment to the sites of neo-
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Fig. 1. BM-derived endothelial cells contribute to the angiogenic switch in mice transplanted with
LLC cells. (A) Quantification of total metastatic colonies in the lung after tumor inoculation. The
percentage of macrometastases (>1 mm in diameter) is indicated; n = 6 per time point. (B)
Microscopy showing avascular micrometastases (top, day 14) and a vascularized macrometastasis
(bottom, day 21). Blood vessels were detected by CD31-specific antibody. Dotted line separates the
host tissue from the tumor in this and subsequent figures. Scale bar, 200 um. (C) Vessel
incorporated BM-derived endothelial cells (GFP* CD31*, arrows) in RFP* macrometastasis stained
with DAPI (4',6'-diamidino-2-phenylindole). Scale bar, 100 um. (D) Scatter plot depicting
contribution of BM-derived endothelial cells in functional vessels of microdissected macrometas-
tasis. P1 gate, total functional endothelial cells (CD31" Isolectin® CD11b7); P2 gate, BM-derived
endothelial cells (GFP* CD31* Isolectin* CD11b"). Results obtained by analyzing 1 x 10° cells.
SSC, side-scatter values. (E) Quantification of FACS analysis showing percentage of BM-derived
endothelial cells (BMEC) in vessels of macrometastases. Data are means + SD; n = 5 per group.

Fig. 2. BM-derived endothelial cells contribute to
the angiogenic switch in MMTV-PyMT mice, a model
of spontaneous metastasis. (A and B) Representa-
tive lung images showing metastasis progression
(weeks 12 to 16) in MMTV-PyMT mice reconstituted
with GFP* BM; n = 20 mice. Scale bar, 5 mm. CD31
staining of pulmonary micrometastases (C) and
macrometastases (D) in MMTV-PyMT mice. Dotted
line, as in Fig. 1. Scale bar, 200 um. (E) Incor-
porated BM-derived endothelial cells (GFP* CD31",
arrows) in the vessels in macrometastases in MMTV-
PyMT mice. Scale bar, 20 um. (F) Quantification of
vessels containing GFP*™ BM-derived endothelial cells.
Data are means + SD. (A total of 2418 vessels were
counted; n = 38 metastases derived from six animals).
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vascularization, we examined metastatic lesions
for the expression of adhesion molecules. Nascent
vessels confined to the metastatic lesions expressed
higher levels of vascular cell adhesion molecule—
1 (VCAM-1), and notably, EPCs expressed cog-
nate receptors integrin o, (fig. S3, A, C, and D).
Indeed, the presence of EPCs in the proximity of
VCAM-1" vessels (fig. S3B) suggests that inter-
actions between VCAM-1 and integrin oy,
mediate EPC recruitment, as observed previously
for hematopoietic progenitors (/0—12). Taken
together, these results demonstrate that an an-
giogenic switch is associated with the progression
of micrometastases to macrometastases, during
which BM-derived EPCs are recruited to the
metastastic foci and contribute luminally to the
neovasculature in metastatic lesions.

To explore whether BM-derived EPCs are re-
quired for the progression of micrometastasis to
macrometastasis, we studied the effects of loss of
EPC function in vivo. We focused on the Id1
transcription factor because Id1 knockout mice
(11"~ 1d3™") exhibit impaired tumor growth, be-
cause of BM-associated angiogenic defects (13, 14).
Notably, in response to a tumor challenge, we
detected a ~2.5-fold up-regulation in Id1 mRNA
expression in the BM cells (Fig. 3D). More
important, Id1 expression was confined to EPCs
and was not seen in other BM cells upon tumor
challenge (Fig. 3E and fig. S4A), which suggests
that Id1 may be critical for EPC function in the
context of metastasis. To dissect the role of Id1 in
EPC-mediated progression of metastatic lesions,
we used a lentiviral-based synthetic microRNA
(miR-30)-based short hairpin RNA (shRNA) ex-
pression system whose activity could be induced
by doxycycline (Dox) to target Id1 expression in
vivo (fig. S5). This approach allowed us to gen-
erate acute Id1 suppression in the BM selectively
during metastasis progression without compro-
mising the contribution of BM-derived endo-
thelial cells to the growth of primary tumor,
which cannot be achieved in the Id1 knockout
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mice. An effective SARNA that reduced endog-
enous Idl mRNA and protein levels (>95%
reduction) (fig. S4, B and C) was cloned into a
Dox—inducible expression vector (fig. S4D). The
specific and tight regulation of Idl shRNA
expression by the inducible system was estab-
lished in the context of genomic integration in
vitro (fig. S4, E and F).

To determine the impact of Id1 gene suppres-
sion on metastasis progression, lineage negative
(Lin") cells derived from ROSA26 reverse
tetracycline transactivator (rtTA) transgenic mice
(15) were transduced ex vivo with lentivirus
expressing either the Id1 shRNA or the non-
specific sShRNA and transplanted into lethally
irradiated recipient mice according to the scheme

REPORTS

in fig. S5A. No significant change in primary
tumor growth was observed in these animals (fig.
S5B) before Dox administration. However, Dox-
mediated induction of Id1 shRNA expression sub-
stantially reduced the total number of metastases
in animals having an Id1 shRNA bone marrow
transplant (BMT) (28 + 6 in —Dox versus 8 + 5
in +Dox) as compared with nonspecific sShRNA-

Fig. 3. 1d1* EPCs contribute to early metastatic lesions
in mice. (A) Microscopy showing recruitment of BM-
derived EPCs (GFP* VE-cadherin™) at the periphery of
LLC micrometastases in the lung (day 14). Dotted line
is as in Fig. 1. Scale bar, 100 pum. (B) FACS analysis of
EPC recruitment from lungs bearing micrometastases
(day 14). Of the total lung cells, BM-derived non-
hematopoietic cells (GFP* CD11b") cells were gated
(P1), from which BM-derived total endothelial cells
(GFP* VE-cadherin® CD11b") were determined (P2). A
subset of these cells are EPCs (GFP* VE-cadherin™
CD31%™ CD11b") represented by (P3). (C) Quantifica-
tion of FACS analysis showing EPC recruitment to
metastatic lungs (LM) (day 14) versus control lungs
(Cont.). Results are from analysis of 1 x 10° cells per
animal. Means + SD; n = 5 per group. (D) Quantitative
RT-PCR analysis showing Id1 mRNA levels in Lin™ BM
cells harvested from tumor challenged versus un-
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lungs. Data are means + SD; n = 10 per

group. (D) Survival curve comparing untreated (—Dox) and treated (+Dox) Id1
shRNA—BMT mice. (Insets) Representative lungs isolated from —Dox (day 30
post resection) and +Dox (day 42 post resection) mice. Scale bar, 5 mm. (E)
Quantitative RT-PCR analysis showing 1d1 mRNA levels in the BM harvested
from the treated (+Dox) versus untreated (—Dox) Id1 shRNA—BMT mice. Data
are means =+ SD; n = 10 per group. (F) FACS analysis of the circulating EPCs
(c-kit"VEGFR2*CD11b") in peripheral blood of untreated (—Dox) and treated
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bar, 100 um. Dotted line separates the RFP* metastases from the host lung.
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BMT animals [32 + 7 in —Dox versus 33 + 6 in
+Dox (Fig. 4A)]. This reduction was due primarily
to a decrease in macrometastases in Dox-treated
Id1 shRNA-BMT animals [13.8 + 6.1 in —Dox
versus 0.6 + 1.3 in +Dox, P=0.0014 (Fig. 4B)].
No significant reduction in micrometastases was
observed in the lungs of these animals (Fig. 4C),
which suggested that the inducible Id1 suppression
did not affect initial lung colonization by tumor
cells, but impaired their progression into macro-
metastases. Furthermore, tumor-bearing Id1 shRNA—
BMT mice treated with Dox outlived the untreated
mice [P = 0.0233 (Fig. 4D)]. Necropsy revealed
that the untreated mice had collapsed lungs con-
taining numerous macrometastatic lesions (Fig. 4D,
insert —Dox), which suggested that pulmonary
macrometastasis was the main cause of death.

Inducible suppression of Id1 gene expression
in vivo was confirmed by quantitative real-time
polymerase chain reaction (RT-PCR), which
showed a reduction in Id1 mRNA levels in the
BM of the Dox-treated Id1 shARNA-BMT mice
to one-fifth those of untreated mice (Fig. 4E).
More important, conditional Id1 suppression re-
sulted in reduction in the level of circulating
EPCs (c-kit ' VEGFR2'CD11b") to one-third the
circulating EPCs in those without doxycycline
(Fig. 4F). The reduction in EPCs was specific, as
we detected no significant change in the levels of
BM-derived hematopoietic cells, including B
cells, T cells, and myeloid and VEGFR1" cells
(figs. S6 to S8). Our data also suggest that a
decrease in lymphocytes in resting Id1 knockout
mice recently reported by Nimer and colleagues
(16) was most likely due to developmental com-
pensations associated with the knockout mice.
Overall, our study provides evidence that BM-
derived EPCs play a direct role in angiogenesis-
mediated progression of metastatic lesions, but
they have no effect on metastatic initiation, which
is dependent on VEGFR1" cells. Notably, im-
paired mobilization of EPCs resulted in a dramatic
reduction in vessel density in metastatic lesions in
Dox-treated Id1 ShARNA-BMT mice [22.2 £4.7%
in —Dox versus 4.1 + 2.9% in +Dox (Fig. 4G)].
Although we have observed that a reduction in the
levels of circulating EPCs correlates with impaired
angiogenesis, our study does not address whether
local lung resident progenitors or dedifferentiation
of committed hematopoietic cells also contribute
to EPC population as reviewed in (/7).

This study illustrates the critical role of EPCs
as novel regulators of the angiogenic switch in
metastatic progression and points to a direct role
of Idl in mediating EPC mobilization and re-
cruitment. Although only 12% of the neovessels
in the metastatic lesions showed luminal incor-
poration by BM-derived endothelial cells, it is
noteworthy that blocking EPC mobilization caused
severe angiogenesis inhibition and significantly
impaired the formation of lethal macrometastases,
which suggested that EPCs may have additional
proangiogenic properties in mediating the angi-
ogenic switch. Notably, gene expression analysis
of FACS-purified EPCs from tumor tissue revealed

up-regulation of a variety of key proangiogenic
genes including growth factors, receptors, chemo-
kines, and ECM modifiers (table S1). Together,
these findings support the rationale for the anti-
angiogenic treatment of metastatic cancer and sug-
gest that the efficacy of antiangiogenic inhibitors
currently used in clinical trials, such as blocking
antibodies to VEGF and VEGFR2, may be a con-
sequence of directly targeting BM-derived EPCs,
as well as the nascent tumor vasculature. This
hypothesis is bolstered by studies that have shown
that antiangiogenic drugs also suppress the mobi-
lization and levels of EPCs (/8). Given that BM-
derived endothelial cells also contribute to vessels
in humans (/9, 20) and that initial metastatic
colonization has usually occurred by the time of
the primary tumor diagnosis, our results suggest
that targeting BM-derived EPCs, perhaps in com-
bination with conventional chemotherapeutics, may
provide a feasible therapeutic approach for cancer
patients with lung metastases. It is important to
note, however, that in the clinical setting it can
sometimes take years for dormant micrometastases
to progress to lethal micrometastases, a time course
that is not recapitulated in our mouse models.
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Dendritic Cell-Induced Memory T Cell
Activation in Nonlymphoid Tissues

Linda M. Wakim,* Jason Waithman,* Nico van Rooijen,?

William R. Heath,®* Francis R. Carbone®*

Secondary lymphoid organs are dominant sites of T cell activation, although many T cells are
subsequently retained within peripheral tissues. Currently, these nonlymphoid compartments are
viewed as sites only of effector T cell function, without the involvement of renewed induction of
immunity via the interactions with professional antigen-presenting cells. We describe a method of
reactivation of herpes simplex virus to examine the stimulation of tissue-resident T cells during
secondary challenge. The results revealed that memory CD8* T cell responses can be initiated
within peripheral tissues through a tripartite interaction that includes CD4* T cells and recruited
dendritic cells. These findings lend evidence for the existence of a sophisticated T cell response
mechanism in extra-lymphoid tissues that can act to control localized infection.

he activation of T cells during localized

I infection takes place within the draining
lymph nodes, where the bulk of T cell
priming is thought to occur (/). However,
peripheral nonlymphoid tissues harbor a sizable
proportion of the overall T cell pool, primarily
consisting of long-lived memory T cells (2, 3).
During infection, peripheral tissues invariably
represent the first point of contact with a wide
range of pathogens, with resident T cells con-
sidered as critical to local infection control (4).
Indeed, it has been suggested that such sites
should be viewed as an extension of the sec-

ondary lymphoid compartment, and the term
effector-lymphoid tissue (ELT) has been used in
their description (5). Nevertheless, the contribu-
tion of the individual components within the ELT
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