

Provided by CMFRI Digital Repository

J. Mar. Biol. Ass. India, 53 (1): 121 - 129, January - June 2011

Coastal and marine floral biodiversity along the Karnataka coast

*P. Kaladharan, ¹P. U. Zacharia and ²K. Vijayakumaran

Calicut Research Centre of CMFRI, Calicut - 673 005, Kerala, India.

*E-mail: kaldharanep@gmail.com

¹Central Marine Fisheries Research Institute, Kochi- 682 018, Kerala, India.

²Fishery Survey of India, Mumbai, Maharashtra, India.

Abstract

Assessment of floral biodiversity along the Karnataka coast carried out during 2005-2006 revealed the occurrence of 53 phytoplankton, 78 seaweed and 2 seagrass species from estuary, intertidal, open sea and island ecosystems. Phytoplankton from Karnataka coast was dominated by diatoms and five species of toxic forms. The phytoplankton diversity was found to be the richest in estuarine areas than in sea and intertidal regions. Among the 78 species of seaweeds belonging to 52 genera and 28 families, exploitable quantity of commercially important seaweeds were algin yielding *Sargassum ilicifolium* from grids 8 and 9 and agaroid yielding *Gracilariopsis lemaneiformis* from grids 3 and 4. Seagrasses were represented by *Ruppia maritima* and *Halophila beccarii* from the Swarna - Sita, Chakra, Haladi and Kollur estuarine systems including Venkatapur. The study is the first comprehensive account of the floral biodiversity occurring along the entire Karnataka coast. Occurrence of red seaweed *Gracilariopsis lemaneiformis* in certain estuarine areas indicates the possibility of its farming in the estuary.

Keywords: Coastal and marine floral diversity, phytoplankton, standing crop, seaweeds, seagrasses

Introduction

Karnataka state is situated between 11° 31' and 18° 45' N lat. and 74° 12' and 78° 40' E long. and lies in the west-central part of the peninsular India. More than one dozen rivers originating from the Western Ghats open into the Arabian Sea along the Karnataka coast, rendering the inshore waters rich in nutrients and plankton. Netravati, Gurupur, Gangoli, Sitanadi, Aghanasini, Kali and Sharavati are the important rivers. The estuaries formed by these rivers are important from the ecological and biological points of view. Karnataka has a coastline of about 300 km starting from Talapadi in the south to Karwar in the north. Distribution of marine algae in the littoral zone of the entire Karnataka coast was first studied in detail by Agadi (1985) and is found to be of 43 species. Ecology of tidal pond in Mavinahole estuarine creek,

Karwar was studied in 1979 by Bopaiah and Neelakantan (1982). NAAS (2003) reported 39 species of seaweeds from Karnataka coast, whereas Untawale *et al.* (1989) observed 65 species belonging to 42 genera from the northern Karnataka coast alone. Venkataraman and Wafar (2005) listed 39 species of seaweeds from Karnataka coast.

Pioneering study on the phytoplankton of Karnataka coast was made by Subrahmanyan (1959). Later Naik *et al.* (1990) made some attempts to understand the seasonal distribution of phytoplankton from the coastal waters of Karwar. The monthly variation in total biomass of phytoplankton in the surface waters of selected rivers and estuaries of Dakshina Kannada district was studied in detail by Ramesh *et al.* (1992). Karolina *et al.* (2009) investigated the phytoplankton assemblages in

122 P. Kaladharan et al.

relation to hydrographic factors from the area near the old port in Mangalore. In the present communication we report the coastal flora of Karnataka coast comprising planktonic algae (phytoplankton), macroalgae (seaweeds) and submerged flowering plants (seagrass) collected from estuaries, sea, intertidal regions and islands spread over 9 grids from Mangalore to Karwar.

Material and Methods

For sample collection, the Karnataka coastline is divided into nine sampling grids of 0.25° (Fig. 1) and the geo-locations of the sampling sites are given in Table 1. Phytoplankton samples were collected

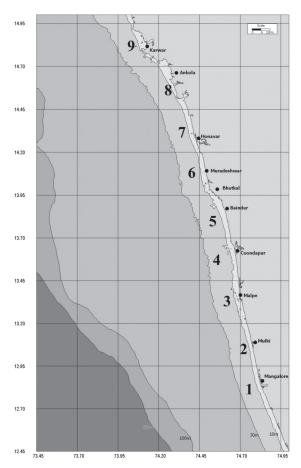


Fig. 1.Map showing the study area along the Karnataka coast with nine sampling grids of 0.25°

from 56 sites spanning estuaries, intertidal and island ecosystems along the nine grids. One litre of water collected from the surface was fixed with 2.0 ml Lugol's iodine solution, mixed thoroughly and allowed to settle overnight in measuring jars. Upper layer was siphoned out leaving 100 ml containing phytoplankton cells, which settled to the bottom. The cell suspension were saved in separate bottles and preserved with a few drops of glycerine and 5% formalin for qualitative and quantitative analysis.

Seaweeds were collected from 48 intertidal as well as estuarine stations and 12 stations from the island ecosystems along the Karnataka coast during low tide period. From the island ecosystems, seaweeds from the reef slope and subsurface were collected using mask and snorkel or SCUBA diving. Seagrasses were collected during the low tide using random sampling method. The present investigation on the assessment of floral biodiversity along the Karnataka coast was carried out during 2005-2006.

Results and Discussion

Phytoplankton: A total of 53 phytoplankton species was observed along the Karnataka coast (Table 2) and out of which 5 species were toxic dinoflagellates, capable of producing paralytic shell fish poisoning (PSP) if they bloom. Intertidal area from the Malpe coast (Grid 3) was the richest area in terms of phytoplankton diversity representing 35 species out of the total 53 species observed. Mulki and Pavanje estuaries (Grid 2) were having the second highest phytoplankton diversity followed by Venkatapur estuary (Grid 5). The diatoms, Chaetoceros affinis registered wide distribution along the Karnataka coast spanning 36 stations spread over the entire grid and Skeletonema costatum and Thalassiosira subtilis occupied second and third positions, respectively.

Toxic phytoplankton cells *Gonyaulax* sp. and *Peridinium directum* but not in blooming density, were encountered from the intertidal waters between Baindur and Murdeshwar (Grid 5-6). Abundance of phytoplankton blooms such as *Fragilaria oceanica*, *Coscinodiscus* spp. and *Pleurosigma* spp. cause

Table 1. Geo-location of sampling sites in different ecosystems

Grid No.	Intertidal	(°N) lat.	(°E) long.	Sampling Code	
G1	Mangalore	12°89′889″	74°79′389″	IT1	
G2	Mulki	13°02′917″	74°78′861″	IT2	
G3	Malpe	13°36′556″	74°69′750′′	IT3	
G4	Kundapura	13°60′778″	74°67′611′′	IT4	
G5	Baindur	13°87′333″	74°61′528″	IT5	
G6	Murdeshwar	14°09′806″	74°49′083″	IT6	
G7	Kumta	14°43′778″	74°38′583″	IT7	
G8	Ankola	14°65′889″	74°28′306″	IT8	
G9	Karwar	14°88′878″	74°10′278″	IT9	
	Estuary				
G1	Netravati-Gurupur	12°83′972″	74°82′889″	E1	
G2	Mulki	13°07′361″	74°78′222″	E2	
G3	Swarna-Sita	13°330972″	74°71′056″	E3	
G4	Chakra-Haladi-Kollur	13°64′306″	74°65′861″	E4	
G5	Vankatapur	13°98′333″	74°56′167″	E5	
G7	Saravati-Badgani	14°28′139′′	74°44′333″	E6	
G8	Aganashini	14°50′056″	74°31′528″	E7	
G9	Kali	14°80′444″	74°12 ′ 000 ′′	E8	
	Sea/subtidal				
G1	Mangalore	12°92′000′′	74°80 ′ 111″	S1	
G2	Mulki	13°70′111″	74°76 ′ 889 ′′	S2	
G3	Malpe	13°33′972″	74°70 ′ 889 ′′	S 3	
G4	Kundapura	13°63′278″	74°13′500″	S4	
G5	Baindur	13°98′417′′	74°56 ′ 167 ′′	S5	
G6	Murdeshwar	14°08′861″	74°33′389″	S6	
G7	Kumta	14°29′861″	74°38′500″	S7	
G8	Ankola	14°50′694″	74°31′639″	S8	
G9	Karwar	14°73′361″	74°01′556′′	S9	
	Island				
G3	St.Mary's	13°38′194″	74°68′250′′	IS1	
G6	Netrani	14°01′500″	74°33 ′ 278″	IS2	
G8	Kukre	14°70′611″	74°24′583″	IS3	
G9	Devgad	14°82′250″	74°06 ′ 444 ′′	IS4	
G9	Kurmagad	14°84′833″	74°10 ′ 111″	IS5	

significant fluctuations in fish production in association with the ocean currents from year to year in the west coast (Gary, 2004). Estuaries registered the highest biodiversity when compared to the sea and island ecosystems. Generally, the entire Karnataka coast was dominated by diatoms during the study period.

Seaweeds: A total of 78 species of seaweeds was observed along the Karnataka coast (Table 3) belonging to 52 genera and 28 families (Table 4). According to Untawale et al. (1983), there are 624 species of marine algae belonging to 215 genera and 64 families in India. Of these, nearly 60 species are commercially important. In a revised checklist of marine algae (Oza and Zaidi, 2001) 844 species were

P. Kaladharan et al.

Table 2. Species list of phytoplankton recorded along the Karnataka coast

Sl.No	Types/Order	Suborder	Family	Species
	Diatoms			
1	Pennales	Araphidineae	Fragilarioidea	Asterionella japonica
2				Climacosphenia sp.
3				Fragilaria oceanica
4				Grammatophora undulata
5				Raphoneis sp.
6				Rhabdonema sp.
7				Synedra formosa
8				Thallassiothrix longata
9				Thallassiothrix longissima
10				Thallassionema nitzchioides
11		Biraphideae	Naviculoideae	Amphiphora sp.
12		1		Diploneis puella
13				Diploneis splendica
14				Gyrosigma sp.
15				Navicula lcanceolate
16				Navicula sp.
17				Pleurosigma directum
18				Pleurosigma nitzchioides
19			Nitzschiaceae	Bacillaria paradoxa
20			TATESCHIACCAC	Nitzchia pungens
21				Nitzchia frigida
22		Monoraphideae	Achannthoideae	Coconeis littoralis
23	Centrales	Biddulphioideae	Biddulphieae	Biddulphia mobilensis
24	Centrales	Bidduipinoideae	Didduipineae	Biddulphia pulchella
25				Biddulphia sinensis
26				Climacodium frauenfeldianum
27				Ditylum brightwelli
28				
29				Eucampia sp.
30			Chastasamasas	Triceratium sp.
31			Cheatoceracea	Chaetoceros affinis
32			Hemiaulineae	Chaetoceros lorenzianus
			пеннаиннеае	Ceratulina sp.
33		D::4	A _4: 1:	Hemiaulus sp.
34		Discoideae Discoideae	Actinodisceae	Aulacodiscus sp.
35		Discoideae	Coscinodisceae	Coscinodiscus rothi
36				Cyclotella meneghinians
37				Melosira striata
38				Skeletonema costatum
39				Stephanophyxis sp.
40		G 1 '1	0.1.	Thallassiosira subtilis
41		Solenoideae	Solenieae	Coryetheron hystix
42				Lauderia annulata
43				Leptocylindrus danicus
44				Rhizosolenia alata
45				Rhizosolenia robusta
46				Rhizosolenia setigra
47				Rhizosolenia stoleteforthii
48				Rhizosolenia striata
	Dinoflagellates			
49	Gonyaulacales	-	Gonyaulacaceae	Gonyaulax sp.
50	Gymnodiniales	-	Gymodiniaceae	Gymnodinium breve
51	Peridinales	-	Peridinaceae	Peridinium directum
50		_	Podolampaceae	Podolampus sp.
52 53				

Table 3. Species list of seaweeds identified from Karnataka coast

Sl. No	Class	Order	Family	Species		
1	Chlorophyceae	Ulvales	Ulvaceae	Enteromorpha intestinalis		
2				E. clathrata		
3				E. flexuosa		
4				Ulva reticulate		
5				U. fasciata		
6				U. lactuca		
7				U. rigida		
8				Monostroma sp.		
9		Cladophorales	Cladophoraceae	Chaetomorpha antennina		
10				C. linum		
11				C. media		
12				Cladophora fascicularis		
13				Spongomorpha sp.		
14			Codiaceae	Codium decarticatum		
15			Anadyomenaceae	Microdictyon sp.		
16			Valoniaceae	Ernodesmis verticillata		
17		Bryopsidales	Caulerpaceae	Caulerpa peltata		
18			•	C. racemosa		
19				C. sertularioides		
20				C. scalpelliformis		
21				C. prolifera		
22				C. taxifolia,		
23			Bryopsidaceae	Bryopsis plumosa		
24			Struviaceae	Struvea sp.		
25			Udoteacea	Chlorodesmis hildebrandtii		
26				Avrainvillea amadelpha		
27	Phaeophyceae	Ectocarpales	Ectocarpaceae	Giffordia mitchellae		
28		•	-	Ectocarpus sp.		
29		Sphacelariales	Sphacelariaceae	Sphacelaria frucigera		
30		Fucales	Sargassaceae	Sargassum ilicifolium		
31				S. tenerrimum		
32				S. myriocystem		
33				S. wightii		
34				S. cinereum		
35				Turbinaria ornate		
36		Dictyotales	Dictyotaceae	Stoechospermum marginatum		
37		-	-	Spathoglossum asperum		
38				Dictyota bartayresiana		
39				D. dichotoma		
40				D. dumosa		
41				Padina gymnospora		
42				P. tetrastromatica		

126 P. Kaladharan et al.

43				Dictyopteris australis
44				Dilophus fasciola
45				Lobophora variegata
46		Ralfsiales	Ralfsiaceae	Ralfsia sp.
47		Scytosiphonales	Punctariaceae	Colpomenia sinuosa
48	Rhodophyceae	Bangiales	Bangiaceae	Porphyra vietnamensis
49		Cryptonemiales	Halymeniaceae	Grateloupia filicina
50			•	Grateloupia lithophila
51				Cheliosporum spectabile
52		Gelidiales	Gelidiaceae	Gelidium pusillum
53			Gelidiellaceae	Gelidiella acerosa
54			Gracilariaceae	Gracilaria corticata
55				G. foliifera
56				G. edulis
57				Gracilariopsis lemaneiformis
58		Rhodymeniales	Rhodymeniaceae	Gelidiopsis variabilis
59				Rhodymenia australis
60			Champiaceae	Champia parvula
61		Corallinales	Corallinaceae	Amphiroa fragilissima
62				Amphiroa sp.
63				Jania adherence
64				Melobasia sp.
65		Gigartinales	Hypneaceae	Hypnea musciformis
66				H. pannosa
67				H. cervicomis
68		Ceramiales	Ceramiaceae	Centroceros clavulatum
69				Ceramium fastigatum
70				Antithamnion sp.
71				Chondria armata
72			Delesseriaceae	Caloglossa leprieuri
73			Rhodomelaceae	Acanthophora spicifera
74				Laurencia papillosa
75				Polysiphonia sp.
76				Polysiphonia macrocarpa
77	Cyanophyceae	Oscillatoriales	Oscillatoriaceae	Lyngbya majuscule
78				Schizothrix sp.

Table 4. Distribution of green, brown, red and blue green algae along the Karnataka coast

Taxonomic groups	Chlorophyceae	Phaeophyceae	Rhodophyceae	Cyanophyceae	Total
Order	3	7	7	1	18
Families	9	6	12	1	28
Genera	14	14	22	2	52
Species	26	21	29	2	78
~ F		=-		_	

Table 5. Number of phytoplankton, sea	aweed and	seagrass	species	observed	from	different	ecosystems	from	each
sampling grid along Karnatak	a coast								

	Estuary			Intertidal			Sea			Island		
Name of Grid & No	Sea grass	Sea weed	Phyto plankton									
G1												
Mangalore G2	0	6	14	0	8	10	0	1	27	0	-	-
Mulki G3	0	5	35	0	8	11	0	0	29	0	-	-
Malpe G4	2	12	28	0	14	13	0	2	35	0	20	14
Kundapur G5	2	7	17	0	12	16	0	0	8	0	-	-
Byndoor G6	2	6	14	0	6	12	0	0	11	0	-	-
Murdeshwar G7	r -	-	-	0	14	11	0	0	8	0	12	16
Kumta G8	0	8	22	0	7	11	0	0	10	0	-	-
Ankola G9	0	10	20	0	10	12	0	0	10	0	13	14
Karwar	0	11	26	0	16	14	0	0	11	0	21	16

reported from India, comprising 216 species of Chlorophyta, 191 species of Phaeophyta, 434 species of Rhodophyta and 3 species of Xanthophyta indicating a considerable increase in the species recorded from India. Generally, seaweed vegetation was found sparsely populated along the coast. Intertidal rocks in the Islands registered fairly good flora of brown seaweeds dominated by Sargassum ilicifolium, having economic importance in extracting algin. The density of seaweeds ranged from zero to 250 g wet weight/sq. m during the study period and the standing crop of seaweeds was estimated to be 800 t wet weight. The standing stock of seaweeds in India is determined to be 2.6 lakh tonnes (Chennubhotla, 1992) comprising 6% agarophytes, 8% carrageenophytes, 16% alginophytes and the remaining 70% green and other non commercial seaweeds (Devaraj et al., 1999).

Occurrence of red seaweed Gracilariopsis

lemaneiformis in the estuarine areas of Grid 3 and 4 indicates the possibility of its farming in the estuary. Occurrence of *G lemaneiformis* is also reported from the backwaters of Kerala (Kaladharan, 2005) and from Rameswaram coast and Visakhapatnam (Rao, 1972).

Seagrasses: Sea grasses are submerged flowering plants generally found in the marine environment. Sea grasses were observed only from the estuarine systems (Table 5) of the Karnataka coast (Swarna-Sita, Chakra, Haladi and Kollur estuarine system including Venkatapur estuary). Only two species were recorded *Ruppia maritima* L and *Halophila beccarii* (Asch). *H. beccarii* is known to occur from Mandovi estuary, Goa (Untawale and Jagtap, 1977) and from Kumbala estuary, Kerala (Kaladharan, 2006). As they tolerate wide range of salinity, they are not true seagrasses. *R. maritima* popularly known as beaked tassel-weed belongs to Class Alismatidae;

Order Najadales and Family Ruppiaceae. *H. beccarii* belongs to Class Liliopsidae, Oder Hydrocharitales and Family Hydrocharitaceae. *R. maritima* is an excellent sand binder and can prevent coastal erosion. The seeds and other parts too are eaten by waterfowls. There is immense scope for gene transfer studies using this salt tolerant seagrass growing very rarely in certain estuaries of Karnataka.

Acknowledgements

The authors are grateful to the Director, CMFRI and Dr. C. Muthiah, former Scientist-in-Charge, Research Centre of CMFRI, Mangalore for facilities and encouragements. The financial support provided by the Karnataka Biodiversity Board, Forest Ecology and Environment Department, Govt. of Karnataka to carry out the study is gratefully acknowledged.

References

- Agadi, V. V. 1985. Distribution of marine algae in the littoral zone of Karnataka coast, *In*: V. Krishanmurthy and A. G. Untawale (Eds.) *Marine Plants*. SRUA, p. 35-42.
- Bopaiah, B. A. and B. Neelakantan. 1982. Ecology of tidal pond in Mavinahole estuarine creek, Karwar. *Mahasagar*, 15(1): 29-36.
- Chennubhotla, V. S. K. 1992. Survey of seaweed resources of Andaman-Nicobar Islands, Visakhapatnam-Chilka lake region and Lakshadweep group of islands. Final Technical report, ICAR Ad-hoc scheme (unpublished). 180 pp.
- Devaraj, M., V. K. Pillai, K. K. Appukuttan, C. Suseelan, V. S. R. Murthy, P. Kaladharan, G. Sudhakara Rao, N. G. K. Pillai, K. Balan, V. Chandrika, K. C. George and K. S. Sobhana. 1999. Packages of practices for sustainable ecofriendly mariculture (Land based saline aquaculture and sea farming). In: M. Mohan Joseph (Ed.) Aquaculture and the Environment. Asian Fish. Soc. Indian Branch, Mangalore, India, p. 35-69.
- Gary Morgan, 2004. Country review: India (West Coast), Review of the state of World Marine Capture Fisheries Management: Indian Ocean. Fish. Tech. Paper, T. 488 (2006), 458 pp.

- Kaladharan, P. 2005. Gracilariopsis lemaneiformis (Bory.) Dawson- A red alga reported from certain backwaters of Kerala. J. Bombay Nat. Hist. Soc., 102 (3): 378.
- Kaladharan, P. 2006. Occurrence of *Halophila beccarrii* from Kumbala Estuary Kerala. *J. Bombay Nat. Hist. Soc.*, 103(1): 137-138.
- Karolina, H., I. Karunasagar and A. Godhe. 2009. Phytoplankton species assemblage and their relationship to hydrographic factors a study at the old port in Mangalore, coastal Arabian Sea. *Indian J. Mar. Sci.*, 38(2): 224-234.
- NAAS. 2003. Seaweed Cultivation and Utilization. National Academy of Agricultural Sciences, Policy Paper No 22, 5 pp.
- Naik, U. G., C. R. Reddy, D. C. Shetty and B. Neelakantan. 1990. Plankton of Karwar waters with remarks on the hydrographic conditions and fishery. *Fish. Technol.*, 27: 98-102.
- Oza, R. M. and S. H. Zaidi. 2001. *A Revised Check list of Indian Marine Algae*, CSMCRI., Bhavanagar. 296 pp.
- Ramesh, A. M., R. J. Katti, V. Hariharan, C. Bhat and T. R. C. Gupta. 1992. Phytoplankton of northern coastal waters of Mangalore. *Environ. Ecol.*, 10: 310-316.
- Rao, U. M. 1972. On the Gracilariaceae of the seas around India. *J. Mar. Biol. Ass. India*, 14(2): 671-696.
- Subrahmanyan, R. 1959. Studies on the plankton of the west coast of India, Part II. Physical and chemical factors influencing production of phytoplankton with remarks on the cycle of phosphate content on fish landings. *Proc. Indian Acad. Sci.* 50(4)B: 189-252.
- Untawale, A. G. and T. G. Jagtap. 1977. A new record of *Halophila beccarii* (Asch.) from Indian coast. *Mahasagar*, 11: 91-93.

Untawale, A. G., V. K. Dhargalkar and V. V. Agadi. 1983. List of marine algae from India. *Natl. Inst. Ocenogr.*, Goa, p. 1-42.

Untawale, A. G., C. K. R. Reddy and G. V. Deshmukhe. 1989. Ecology of intertidal benthic algae northern Karnataka coast. *Indian J. Mar. Sci.*, 18: 73-81. Venkataraman, K. and M. Wafar. 2005. Coastal and marine biodiversity of India. *Indian J. Mar. Sci.*, 34(1): 57-75.

Received: 25/09/10 Accepted: 28/02/11 Published: 15/06/11