DENMARK FUNDS-IN-TRUST GCP/INT/392/DEN/1

CONIRIBUTIONS TO TROPICAL FISH STOCK ASSESSMENT IN INDIA

Papers prepared by the participants at the FAO/DANIDA/ICAR National Follow-up Training Course on Fish Stock Assessment

Cochin, India
2-28 November 1987
edited by
S.C. Venema
Project Manager
FAO
Rome, Italy
N.P. van Zalinge
Consultant
FAO
Rome, Italy

GROWTH AND MORTALITY OF THE INDIAN SQUID (Loligo duvauceli) OFF COCHIN, INDIA

by
M.M. Meiyappan and M. Srinath
Central Marine Fisheries Research Institute Postbag 2704, Cochin-682031
India

Abstract

The squid (Loligo duvauceli) is caught as by-catch in the shallow water shrimp fishery along the coast of Kerala (India). It accounts for the entire squid landings in the area. Length-frequency data, collected by sexes during 198184 were used in the studies. The length-weight relationship is: males $W=0.25429 \mathrm{~L}^{2.143}$, females $\mathrm{W}=0.1893 \mathrm{~L}^{2.298}$. As the length-weight relationship indicated allometric growth, a modified growth formula based on weight and different from the classical VBGF was applied to estimate growth parameters, for males $\mathrm{L}_{\infty}=37.2 \mathrm{~cm}$ and $\mathrm{K}=1.1$ per year and for females $L_{\infty}=23.8 \mathrm{~cm}$ and $\mathrm{K}=1.7$ per year. Natural mortality, M, was estimated at 2.2 per year based on data collected on a shoal of spawning males. The same M was assumed for females. As there is no directed fishing covering the stock, exploitation rates and stock estimates could not be obtained. The difference between Z and M probably reflects a change with length in the availability of squid to the shrimp fishery, since the values of Z found by the length converted catch curve method were very high (males 9.0 and females 10.6 per year).

1 INTRODUCTION

Cephalopods constitute an economically important by-catch in the shallow water shrimp fisheries of India. Shrimp trawlers account for 73% of the country's average production of cephalopods. The landings have shown a phenomenal increase during the last two decades from less than a thousand tonnes in the late sixties to nearly $43,000 \mathrm{t}$ in 1986 (Table 1). This increase was partly due to effort increases in the shrimp fishery and partly to a change in discarding practices. Before 1973 the major part of cephalopods was thrown overboard to avoid the valuable shrimp catch from being contaminated with ink. However, as an export market for cephalopods developed during the seventies this practice ceased and in 1985 export earnings on cephalopods amounted to US $\$ 11.2$ million (MPEDA, 1987).

On an average, 43% of the catch of cephalopods is constituted of squids and 57\% of cuttlefishes. Octopus catches are negligible. Among the squids, the Indian squid (Loligo duvauceli), (Orbigny, 1848) is the dominant (97\%) species.

Considering their importance as a foreign exchange earner to the country, studies on cephalopods were taken up by the Central Marine Fisheries Re search Institute at different centres along the Indian coast in 1976. A comprehensive account on the taxonomy, distribution pattern, biology, fishery and stock estimates of the cephalopod resources from Indian wa-
ters has been given recently by Silas (1986), who has also estimated the potential harvest in the neretic sector to be $50,000 \mathrm{t}$. Earlier George et al. (1977) estimated the potential in the Indian EEZ at $180,000 \mathrm{t}$, while Chikuni (1983) estimated the potential stocks for the Eastern Arabian Sea at 100,000 to $150,000 \mathrm{t}$ and for the entire Bay of Bengal at 50,000 to $100,000 \mathrm{t}$.

2 BIOLOGY

The biology of \underline{L}. duvauceli has been studied by Silas et al. (1986) at different centres along the east and west coasts of India during 1976-80. This study revealed that there was no significant difference in the malefemale composition and that they were more or less distributed in equal proportions. Fully mature and spawning specimens of both sexes were encountered in the catches almost throughout the year, thereby indicating continuous spawning, while no clear-cut spawning seasons were noticed. The size at first maturity varied from place to place. Juveniles of less than 4.0 cm were not observed in the landings. Largest sizes recorded for males were 18.4 and 28.5 cm respectively along the east and west coasts and the largest females measured 19.0 cm on both coasts.

The food of L . duvauceli consists chiefly of crustaceans such as shrimps, crabs, stomatopods and euphausids as well as fin fishes. Cannibalism is common (Kore and Joshi, 1975 and Oommen, 1977). Kore and Joshi (1975) also observed that there was a decreased feeding activity during the spawning period.

Very little is known about the aspects of biology which are essential for understanding the dynamics of squid populations. There is still uncertainty about the growth models fitting squids. Silas et al. (1986) estimated the growth parameter of L . duvauceli using the von Bertalanffy growth formula. Lange (1981) fitted exponential growth in weight in the case of L. pealei. Some others have assumed that the squids follow asymptotic growth (Lange and Sissenwine, 1983; Supongpan, 1988). Lange and Sissenwine (1983) were also of the opinion that some cohorts of L . pealei might follow linear growth in length depending upon food availability.

There is also considerable uncertainty about their natural mortality. It is generally assumed that post-spawning mortality in cephalopods is very high. Roper and Sweeney (1984) have reported that many species die after spawning, but the phenomenon is apparently not universal. Post-spawning mortality of squids of both sexes has been established in the case of the Japanese flying squid (Todarodes pacificus, Steenstrup) and the Opalescent inshore squid (Loligo opalescens, Berry), while there is strong evidence that some species may spawn more than once (Juanico, 1983). There are few observations on spent squids and some authors report never having caught a spent animal. Juanicó (1983) gives three hypotheses viz.: 1) squids die after spawning; 2) they swim out of the fishing grounds after spawning; or 3) spent animals quickly recover from spawning and return to a maturing stage. At present nothing is known about the post-spawning mortality of $\underline{\underline{L}}$. duvauceli.

3 the fishery at cochin

Cochin is one of the important landing centres in Kerala State. A description of the trawl fishing grounds, crafts and gear is given by Suseelan and Rajan (this volume). On an average about 150 trawlers operate from Cochin at depths between 20 and 50 m . During the monsoon (June-August) they extend their operations to depths of 60 m . The codend meshsize of the trawlnet is 2.5 cm .

There is a lean period in the shrimp fishery between September and November, during which the trawlers serve as carrier boats for purse seiners.

Squids are only a by-catch for the shrimp trawlers as the whole effort is aimed at catching shrimps. The squid landings are composed of only one species, \underline{L}. duvauceli. The figures on landings, effort and the catch rates for the period 1977-86 are given in Table 2. There have been great fluctuations in the landings during the period: as low as 17 t in 1980 to as much as 345 t in 1986. The catch rates ranged from less than one kg per trawler day to $7.3 \mathrm{~kg} /$ day. Squids are caught mostly at depths from 20 to 35 m and whenever trawlers operate beyond this range, which is common during the monsoon period, there is a decrease in the squid landings. Again the fishery suffers during the lean season for shrimp.

Table 1 Estimated cephalopod production in India, 1967-1986 (tonnes)

Year	Production	Year	Production
1967	521	1977	10005
1968	1636	1978	15931
1969	769	1979	15032
1970	1184	1980	11335
1971	1505	1981	9548
1972	1026	1982	15799
1973	1394	1983	18355
1974	3677	1984	20421
1975	7889	1985	31642
1976	10826	1986	42638

Table 2 Production, effort expended and catch rates of squids at Cochin, 1977-1986

| Year | Effort
 (trawler)
 days | Squid
 Males | production
 Females | (t)
 Total |
| :--- | :---: | :---: | :---: | :---: | | C/E |
| :---: |
| (kg) |

4 MATERIAL AND METHODS

Data on effort and landings were collected from the commercial trawlers at Cochin Fisheries Harbour for 18 days in a month and data on species composition, length and other biological aspects were collected for 4-6 days in a month. Length data were collected sex-wise. The data on observation days were first weighted to get the day's estimates and the days' estimates were pooled and weighted to obtain the month's estimates. The length mea-

Table 3a Length frequency data of L . duvauceli (Males), Cochin, 1981 *)

Table 3b Length frequency data of L . duvauceli (Males), Cochin, 1982 *)

$\begin{aligned} & \text { size **) } \\ & (\mathrm{cm}) \end{aligned}$	JAN	FEB	mar	APR	may	JuN	Jul	nov	DEC	JAN	FEB	Mar	APR	MAY	JuN	Jul	nov	DEC
4-5	$=$		716								1636		464					
5-6		4266	4723	371	28			272		807	2220	2419	2674	1235	5864	627		698
6-7	658	13864	7337	2057	28			819	2009	2550	4577	13528	7082	1083	17592	1154	232	1033
7-8	850	29624	17873	7896	1741		87	272	8205	3123	10605	57055	15479	5035	15637	627	3985	2275
8-9	1699	31788	12191	9099	1617	26	167	819	15412	3099	9430	65970	9219	7491	25410	5242	3373	1958
9-10	2183	21481	15061	6544	6501	253	388	550	15752	4170	3678	26894	9816	6595	23456	1118	3730	3876
10-11	5501	17784	13449	4555	5660	177	305	272	15566	3144	9135	18309	13485	9800	7818	1878	1701	6316
11-12	4553	9254	4279	2413	2501	382	290	1092	19596	1794	8744	24062	8236	5343	7818	360	475	6963
12-13	834	3831	13751	3074	279	350	185	550	11142	615	3863	12294	7344	3183		97	356	3036
13-14	414	3308	2277	2247	1291	58	195	272	3919	213	2586	11889	1569	1539			443	1850
14-15	153	1509	1668	644	1088		65	272	3682	210	2586	9451	1088	926			304	1282
15-16	10	198	716	134	1090		7	272	3057	132	1135	5789		269			180	953
16-17	73	1044	679	234	1068				2138	132	1135	9159					41	1260
17-18	156	1042	235	368	178				721		1134	8745					678	953
18-19	970		1355	281	178				297									545
19-20	277		3747	140					36									329
20-21	73		5990															136
21-22	73		3290															136
22-23			1636															
23-24			564															
Total	18477	138993	111537	40057	23248	1246	1689	5462	101532	19989	62464	265564	76456	42499	103595	11103	15498	33599
weight (kg)	840	3673	5399	1403	1293	64	75	224	4691	633	2286	10336	2566	1613	2541	280	568	1691
Sample no.	750	789	726	836	556	165	264	300	695	450	595	775	825	363	424	354	450	592

[^0]**) Mantle length

Table	3c	Length frequency (Males), Cochin,			data 1983	of L *)	duva	3d	Length frequency (Males), Cochin,			$\begin{aligned} & \text { data of } L . \\ & 1984 \text { *) } \end{aligned}$		duvau DEC
$\begin{gathered} \left.s i z e^{* *}\right) \\ (\mathrm{cm}) \end{gathered}$	JAN	FEB	MAR	APR	may	JUN	SEP	FEB	Mar	APR	may	JuN	JUL	
4-5			159								165	265		
5-6	618	1654	159	2121		67		404		414	500	7641		
6-7	3642	9537	2269	9225	501	1347	407	1624		7540	784	10780		930
7-8	13889	16383	8169	15813	508	1075	609	2404	602	12674	1168	18008	107	2094
8-9	18554	11563	9619	30012	8713	1912	876	2812	1811	16971	1960	21564	141	2907
9-10	25479	12864	6762	19930	17633	2388	1449	3728	12690	19859	3360	19372	141	2234
10-11	14945	26310	9817	17019	23119	6421	1578	2660	10277	15552	2228	35334	212	2496
11-12	12918	6636	8137	9466	11803	4723	1567	1812	1811	25431	2056	13907	937	1337
12-13	9371	4659	5725	4874	5537	1325	1295	1555	1215	9045	1281	8721	625	2281
13-14	6008	3041	2924	4467	1724	583	472	404	602	5989	894	4901	625	1547
14-15	3977	3041	3123	3344	1810	377	301	592	1215	5061	1079	3407	866	795
15-16	4938	362	2273	3735	3033	114	405	184	602	414	285	3275	1182	538
16-17	3841	455	1740	3086	1924	487	444		1811	831	172	1497	625	851
17-18	2988	465	1740	615	1044	201	449			417	450	1497	383	309
18-19	2336	912	1494	358			674			2409	281	1365	312	308
19-20	1726	465	1442				536			1582		1910	312	126
20-21	3481		1275				295			1578		1910	310	126
21-22	1137		127				59						34	
22-23	1615		.				93						34	
23-24							59							
24-25							295							
25-26			.				59							
Total	131463	98357	66954	124065	77349	21020	11922	18179	32636	125767	16663	155354	6846	18879
weight (kg)	6733	3595	3393	4916	3312	818	792	740	1248	4884	662	5809	552	818
Sample no.	552	414	546	508	636	489	505	360	324	695	336	780	228	328

[^1]Table 4a Length frequency data of \underline{L}. duvauceli (Females). Cochin. 1981 *) 4b Length frequency data of L . duvauceli (Females). Cochin, 1982 *)

$\begin{gathered} \text { size**) } \\ \text { (cm) } \end{gathered}$	JAN	FEB	mar	APR	MAY	JuN	JuL	Nov	DEC	Jan	FEB	Mar	APR	May	Jun	Jul	nov	DEC
4-5	\rightarrow	222											687					
5-6		764	1093					275					2063	417		267		192
6-7		5827	4428	510				275	2631	1488	1272	12115	5254	417	9770	800	281	1078
7-8	137	15571	7934	2986	1078			275	8379	2274	4125	33004	11676	9240	13678	1733	229	3409
8-9	510	13249	6387	3742	1483		95	275	9526	1458	4716	31064	8322	7510	19540	4600	1189	4538
9-10	385	14874	3033	4266	1732	26	204	548	7156	1488	6649	25953	7738	7245	29310	2768	4984	6290
10-11	612	7090	9525	4347	4093	152	426	1645	9303	1137	4806	25896	8505	6448	5862	200	6021	5162
11-12	3892	111113	11857	4696	3692	204	135	275	10421	1974	7841	35263	6892	6570	1954	99	1629	5388
12-13	3300	6588	10185	5440	3199	429	247	275	13358	2184	4304	23572	7572	2839	1954		1232	2995
13-14	4733	5344	7023	3691	4697	330	446	548	14328	846	13457	9884	4250	2152			675	1344
14-15	1832	1357	2969	1583	140	50	90	275	7622	1041	2444	6269	1066	1896			362	539
15-16	564	454	2461	307			82		5021	402		1892		309			177	
16-17	19		235	305			82		2222			1892		152				
17-18	10								4357			1892						
18-19									1444			1892						
Total	15994	82453	67130	31873	20114	1191	1807	4666	95768	14292	49614	210588	64025	45195	82068	10467	16779	30935
Weight (kg)	825	2760	3124	1649	1109	73	107	192	5883	642	2560	8971	2155	1761	1954	240	774	1435
$\begin{gathered} \text { Sample } \\ \text { no. } \end{gathered}$	655	576	432	604	464	155	288	255	595	345	430	615	684	426	336	348	552	555

[^2]

$\begin{gathered} \text { Size**) } \\ (\mathrm{cm}) \end{gathered}$	Jan	FEB	MAR	APR	may	JuN	SEP	FEB	MAR	APR	MAY	JuN	Jul	DEC
5-6	408	1283	644	616		354					176	1778		
6-7	2885	6153	4250	8644		647	261	939		646	507	5329		468
7-8	9394	13482	8890	11698	386	1219	990	3559	607	11268	1643	12708		1217
8-9	11196	5943	9009	36025	7724	889	2275	1998	3024	23992	2038	11067		2751
9-10	14092	12503	9680	18287	13323	1238	2050	3501	6656	15379	2478	19367	976	2962
10-11	19497	14242	7702	21473	22470	3114	1077	1622	15734	13130	2948	27681	1289	4309
11-12	24480	7656	7813	7712	32790	2043	1505	2655	8471	15275	2313	23709	732	2106
12-13	16465	5089	10403	7479	9605	4172	1198	1405	1816	15091	1355	16872	1080	1666
13-14	14063	810	2777	2088	2968	1086	1038		607	6635	905	13336	698	1221
14-15	5703	809	1871	2122	887	264	453		1209	2412	729	6943	941	753
15-16	3345	362	640		851	135	804			417		1754	905	309
16-17	2211				365		152			417			835	
17-18							191							
Total	123739	68332	63679	116144	91369	15161	11994	15679	38124	105162	15092	140544	7456	17762
Weight (kg)	6255	2768	2574	4085	4198	688	554	625	1755	4188	603	5785	533	744
Sample no.	552	448	489	570	567	416	459	390	315	708	305	545	160	243

*) Raised to total catch
**) Mantle length

Table 5 Combined length frequency data of Luvauceli (Males). Cochin, 1981-84 *)

Size**) (cm)	JAN	FEB	MAR	APR	MAY	JUN	JUL	SEP	NOV	DEC
TOTAL										

Table 6 Combined length frequency data of L. duvauceli (Females). Cochin, 1981-84 *)

$\begin{gathered} \left.\mathrm{Size} \mathrm{e}^{* *}\right) \\ (\mathrm{cm}) \end{gathered}$	JAN	FEB	MAR	APR	MAY	JuN	JUL	SEP	Nov	DEC	total
4-5		2		7							9
5-6	2	14	12	25	7	17	9		15	3.	104
6-7	49	115	97	113	14	78	27	10	24	42	569
7-8	102	322	221	315	148	139	58	38	23	130	1493
8-9	106	222	226	498	194	147	168	87	54	178	1881
9-10	115	331	225	357	241	232	145	78	194	198	2116
10-11	139	225	326	367	354	237	102	41	288	209	2289
11-12	316	262	309	307	398	183	41	58	69	190	2131
12-13	261	152	229	322	188	244	63	46	56	159	1719
13-14	277	159	100	170	165	124	86	40	52	130	1305
14-15	126	36	62	68	41	41	35	17	27	67	520
15-16	48	6	26	9	8	11	32	31	6	35	211
16-17	11		7	9	4		31	6		14	81
17-18			6					7		27	40
18-19			6							9	14
Total	1552	1845	1851	2566	1763	1452	796	459	807	1393	14483

*) Not raised to total catch
**) Mantle length
surement was taken along the dorsal midline from the posterior tip to the anterior tip of the mantle. Data collected during the 1981-84 period have been used for the present study. As the males and females appear to follow differential growth patterns they were treated separately.

Sex-wise monthly length frequency data (Tables 3 and 4) for 1981-84 were pooled (Tables 5 and 6) for further analyses. The Bhattacharya method (1967) was applied to distinguish different components from the length frequency data and the modes (mean values of the components) obtained were used for estimating growth parameters through modal progression and the Gulland \& Holt plot (1959). Total mortality was estimated by the length converted catch curve method (Pauly, 1983). Computer programs developed by Sparre (1987) were used for data analysis.

5 RESULTS

5.1 Sex and maturity

Data collected for the present study agree with the findings of Silas et al. (1986 a) in Cochin waters. Males and females were found in equal proportion. Both males and females were found to mature from the size of 9.0 cm with the sizes at first maturity of the former being 12.6 cm and of the latter, 12.9 cm . Mature and spawning individuals of both sexes occurred in the catches throughout the year except during August and October. Juveniles of less than 4.0 cm were not caught by the trawlers.

Table 7 shows the average length composition of the males and females in the catch of 1981-84.

5.2 Length-weight relationship

Dorsal mantle length measured to the nearest 0.1 cm and weight in grams were used to arrive at the relationship of the form $W=a . L^{D}$. The results for males and females are summarised below.

	n	length range	a	b	r
Males	252	$4.4-25.5 \mathrm{~cm}$	0.25429	2.143	0.992
Females	198	$4.3-18.6 \mathrm{~cm}$	0.1893	2.298	0.987

Both males and females have exponents (b) significantly different from 3, indicating allometric growth.

5.3 Growth

Most of the growth studies on marine fish assume that the growth follows the von Bertalanffy's growth formula (VBGF) which has the basic form as

$$
\mathrm{dw} / \mathrm{dt}=\mathrm{HS}-\mathrm{kW}
$$

where $d W / d t$ is the rate of change in weight, S and W are the surface area and the weight respectively and H and k are constants. This form is transformed into one in length by assuming S to be proportional to square of length and W to be proportional to the cube of length. This indicates that the growth form in length may only be suitable in the case of isometric growth or in cases where the exponent in the length-weight relationship is not very different from 3. When the exponent in the length-weight relationship is about 2 as in the case of squids, then the usual VBGF in length may not be valid as this gives rise to the assumption that the surface area (S) is directly proportional to the length, which is not a biologically tenable assumption. So a modified growth formula in length (dorsal mantle length) under the assumption that the growth in weight

Table 7 Average length frequency data *) of L. duvauceli (males and females), 1981-84

Size (cm)	Frequency	
Males	Females	
$4-6$	10922	2810
$6-8$	101568	67416
$8-10$	161942	120819
$10-12$	123984	127793
$12-14$	46704	76337
$14-16$	22328	18955
$16-18$	14395	3834
$18-20$	6676	834
$20-22$	5008	
$22-24$	1000	
$24-26$	89	
Total	494616	418799

*) Average over 4 years of raised frequencies from Tables 3 and 4

Table 8 Bhattacharya analysis of combined length frequency data *) of L. duvaucelii (Males), Cochin, 1981-84. Mean lengths of cohōrts found **)

JAN	8.219	10.932	a)	$14.426 \mathrm{c})$	$18.501 \mathrm{~d})$	21.600
FEB	9.348	15.419				
MAR	9.267	13.943	a)	$17.467 \mathrm{c})$	$21.023 \mathrm{~d})$	
APR	8.448	12.405	$18.720 \mathrm{c})$			
MAY	9.796	15.372				
JUN	9.724	$15.822 \mathrm{~b})$				
JUL	9.712	15.111	19.630			
SEP	10.101	17.853	b)	24.066		
NOV	8.587	12.391		20.927		
DEC	10.403	16.704				

*) See Table 5
**) The mean values used in fitting the growth curve are indicated by a), b), c) and d)

Table 9 Bhattacharya analysis of combined length frequency data *) of L. duvauceli (Females), Cochin, 1981-84 **)

JAN	7.832	b)	11.835	a)	14.676
FEB	7.742	11.527			
MAR	7.949	c)	10.816	b)	13.492
APR	8.592	12.264			
MAY	8.132	10.708	c)	12.601	b)
JUN	7.975	d)	10.648		13.056
JUL	9.358	d)	13.329	c)	16.005
SEP	9.016	12.141	15.737	c)	
NOV	6.867	10.246	12.582		
DEC	8.203	10.753	13.338	16.611	

*) See Table 6
**) The mean values used in fitting the growth curve are indicated by a), b), c) and d)
follows the VBGF has been derived starting from

$$
\begin{equation*}
\frac{\mathrm{dW}}{\mathrm{dt}}=\mathrm{HW}^{2 / 3}-\mathrm{kW} \tag{1}
\end{equation*}
$$

where H and k are constants.
Assuming W is proportional to L^{b}, where b is the exponent in the lengthweight relationship, then the above equation can be transformed into one in length in the form given below, namely

$$
\begin{equation*}
\ln \mathrm{L} / \mathrm{dt}=(\mathrm{k} / \mathrm{b}) *\left(\mathrm{~L}_{\infty}^{\mathrm{b} / 3} * \mathrm{~L}^{-\mathrm{b} / 3}-1\right) \tag{2}
\end{equation*}
$$

The above growth equation in length in fact reduces to a generalized VBGF in length, given by

$$
\begin{equation*}
L t=L_{\infty}[1-\exp (-\mathrm{k} / \mathrm{b} *(\mathrm{t}-\mathrm{to}))]^{3 / \mathrm{b}} \tag{3}
\end{equation*}
$$

The above equation suggests a linear growth in the major part of the growth schedule. Here the estimation of L_{∞} and K are different from the corresponding ones in the classical VBGF and they are not comparable.

The estimates of L_{∞} and $K(=k / b)$ in Eq. 2 were obtained using the Gulland and Holt plot through the modal progression of the mean lengths obtained from the Bhattacharya analysis. The mean lengths which we considered would fit the modified growth equation, keeping in mind the fast growing nature of the squid, are given in Tables 8 and 9 .

The estimated values for males and females are presented below:

	L_{∞} (cm)	K (per year)
Males	37.9	1.1
Females	23.8	1.7

5.4 Estimates of mortality

Using the above growth parameters, the total instantaneous mortality rate (Z) was estimated using the length converted catch equation viz.,

$$
\ln (N / d t)=a_{0}+a_{1} * t
$$

where N is the number of individuals in a length class,
dt is the time taken to grow from the lower limit (L_{1}) of the length class to the upper limit (L_{2}) and is given by,

$$
d t=\frac{1}{k} \ln \left[\frac{L_{\infty}^{b / 3}-L_{1}^{b / 3}}{L_{\infty}^{b / 3}-L_{2}^{b / 3}}\right]
$$

t is the relative age corresponding to the mid length of the length class, a_{o} is a constant, $a_{1}=-z$.
The length frequency data of catch in numbers were grouped in 2 cm intervals and Z was estimated, for males at 9.0 per year and for females at 10.6 per year.

Spent individuals of either sex have never been observed in the landings at Cochin. However, during September-October 1978 a shoal of spawning squids of this species was caught in cast nets and scoop nets in knee deep
waters along the Alleppey coast about 60 km south of Cochin. The fishery which lasted for two days yielded about 6.5 t of squids, 82% of them being spawning males. Males were in the size range of 14.0 to 33.0 cm and $\mathrm{fe}-$ males 14.0 to 18.0 cm . It is of interest to note that male squids of the above size range never occurred in the trawl fishery at Cochin. The natural mortality rate for males was estimated by the catch curve method using the growth parameters already found:

$$
Z=M=2.2
$$

Since data for females were not available it was assumed to be of the same magnitude as that of the males as they belonged to the same stock (Table 10).

Table 10 Length frequency data of L . duvauceli (males) collected along Alleppey c̄oast in scoop nets and cast nets in September/October 1978

Size ${ }^{\star}$)	Frequency
$14-16$	11627
$16-18$	6644
$18-20$	3876
$20-22$	4430
$22-24$	1661
$24-26$	2767
$26-28$	2214
$28-30$	2215
$30-32$	1661
$32-34$	1108
Total	38203

*) Mantle length in cm

6 DISCUSSION

The data collected on the squid landings at Cochin do not seem to represent the actual stock. The gear in which they are caught is directed towards shrimps and it sweeps an area up to about one metre from the bottom, while neretic squids are semipelagic. It is obvious that the gear is not efficient enough to catch the squids. The squids caught were in the size range of 4 to 25 cm for males and 4 to 18 cm for females during the last one decade or so. Squids outside this range were never caught by the gear. The landings during 1977-86 exibit a lot of fluctuations suggesting that the stock may not be an all time resident one.

The biology of the species is not fully understood. They seem to spawn almost throughout the year without any clear cut seasons. But nothing is known about the spawning behaviour, spawning grounds or juveniles. As indicated in the biology section post-spawning behaviour of this species is not known and it is essential that this aspect is studied to understand the dynamics of the population.

In short-lived species such as squids both growth and mortality are quite high (Caddy, 1983), but estimation of growth in squids is yet to be fully understood. We have deviated from the classical form of the VBGF as the exponents in the length-weight relationship were closer to 2 . So we used
the modified growth equation in length assuming the growth in weight follows the VBGF. This needs further investigations and our present data base may not be suitable for the selection of an appropriate formula. Supongpan (1988), assessing the stocks of L. duvauceli in Thailand assumed that the growth in dorsal mantle length follows the VBGF, while she did not treat the sexes separately. The length-weight relationship given by her also indicates an exponent of 2 . It is obvious that the application of the VBGF in the classical form is not tenable for the reasons we have already discussed. We have also estimated the growth parameters by applying the classical form of the VBGF and the values then become:

	L_{∞} (Cm)	K (per year)
Males :	45.4 cm	0.53
Females:	27.0 cm	0.94

Unfortunately we are unable to compare our values with those of Supongpan's as her values are for the combined sexes. However, the K values in the present study and the one obtained by her confirm that the species is a fast growing one. The modified growth equation used in our study seems to be biologically reasonably sound.

Since the present method of exploitation is not efficient towards squids, the catch may not represent the actual stock. As such it is not possible to indicate the rate of exploitation with the available data. In this context, it may be pointed out that the difference between the total mortality (Z) and the natural mortality (M) for the males and females were 6.2 and 8.8 respectively. It is obvious that these values are not representing the fishing mortality as there is no directed fishing towards squids. Thus in this study we are neither making any estimates of the rate of exploitation nor of the stock size.

This paper should be treated only as a beginning in the way of understanding various problems in the population dynamics of the squids and formulating fishery management practices.

ACKNOWLEDGEMENTS

We are thankful to Dr. P.S.B.R. James, Director, Central Marine Fisheries Research Institute, Cochin for nominating us to this follow-up Course in Fish Stock Assessment. We gratefully acknowledge the guidance received from Dr. K. Alagarswami, Senior Scientist, Central Marine Fisheries Research Institute, the Project Leader of the Institute's research project on cephalopods.

7 REFERENCES

Bhattacharya, C.C., 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics, 23:115-35

Caddy, J.F., 1983. The cephalopods: factors relevant to their population dynamics and to the assessment and management of stocks. FAO Fish. Tech. Pap., (231):416-52

Chikuni, S., 1983. Cephalopod resources in the Indo-Pacific region. FAO Fish.Tech.Pap., (231):264-305

George, P.C., et al., 1977. Fishery resources of the Indian Economic Zone. In Silver Jubilee souvenir. Cochin, Integrated Fisheries Project, pp. 79-116

Gulland, J.A. and S.J. Holt, 1959. Estimation of growth parameters for data at unequal time intervals. J.Cons.CIEM, 25(1):47-9

Juanicó, M., 1983. Squid maturity scales for population analysis. FAO Fish.Tech. Pap., (231):341-78

Kore, B.A. and M.C. Joshi, 1975. Food of the squid, Loligo duvaucelii d'Orbigny. Proc.Indian Acad.Sci., 81B(1):20-8

Lange, A.M.T., 1981. Yield-per-recruit analyses for squid, Loligo pealei and Illex illecebrosus from the Northwest Atlantic. J.Shellfish Res., 1 (2) :197-207

Lange, A.M.T. and M.P. Sissenwine, 1983. Squid resources of the Northwest Atlantic. FAO Fish.Tech.Pap., (231):21-54

MPEDA (Marine Products Export Development Authority), 1987. Statistics of marine products exports, 1985. Cochin, India, Marine Products Export Development Authority, 263 p.

Oommen, V.P., 1977. Studies on the food, feeding and fishery of certain cephalopods from the west coast of India. Bull.Dep.Mar.Sci.Univ.Cochin, (8):73-152

Pauly, D., 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fish.Tech.Pap., (234):52 p. Issued also in French and Spanish

Roper, C.F.E., M.J. Sweeney and C.E. Nauen, 1984. FAO species catalogue. Vol.3. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fish.Synop., (125)Vol. 3:277 p.

Silas, E.G., 1986. Cephalopod bionomics, fisheries and resources of the Exclusive Economic Zone of India. Bull.Cent.Mar.Fish.Res.Inst., Cochin, (37):195 p.

Silas, E.G., et al., 1986. Some aspects of the biology of the squids. Bull.Cent.Mar.Fish.Res.Inst., Cochin, (37):38-48

1986a. Stock assessment: squids and cuttlefishes at selected centres. Bull.Cent.Mar.Fish.Res.Inst.,Cochin, (37):71-9

Sparre, P., 1987. Computer programs for fish stock assessment. Lengthbased fish stock assessment (LFSA) for Apple II computers. FAO Fish. Tech. Pap., (101)Suppl.2:217 p.

Supongpan, M., 1988. Assessment of Indian squid (Loligo duvauceli) and mitre squid (\underline{L}. chinensis) in the Gulf of Thailand. FAO Fish. Rep., (389):25-41

[^0]: *) Raised to total catch

[^1]: *) Raised to total catch
 **) Mantle length

[^2]: *) Raised to total catch
 *) Mantle length

