AQUACULTURE PRODUCTIVITY

B

Editors

V.R.P. SINHA

Director, Central Institute of Fisheries Education, Bombay

H.C. SRIVASTAVA

Advisor, Hindustan Lever Ltd. New Delhi

Proceedings of the Symposium on Aquaculture Productivity held in December 1988 under aegis of Hindustan Lever Research Foundation

Library of the Control Marine Fisheries
Research institute, Cochin

Date of receipt 21-3-92

Accession No. 6752

Class No. KZ 332:7 StN

© 1991 Hindustan Lever Research Foundation

ISBN 81-204-0559-5

Published by Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110001 and printed by Sunil Printers, Ring Road, Naraina, New Delhi 110028

Hydrological Conditions of Marine Fish Culture Ponds and Adjacent Inshore Waters of Palk Bay Near Mandapam during the North-east Monsoon Period

S. KRISHNAPILLAI and K. MUNIYANDI*

Introduction

In recent years, attempts were being made in India to utilise the coastal lagoons, estuaries and other water bodies for fish culture practices by which the protein uptake of our masses could be increased. Tampi (1960) has proved that the coastal lagoons with low biological productivity can be developed into fish farms. The Regional Centre of Central Marine Fisheries Research Institute, Mandapam Camp has developed a marine fish culture pond complex comprising 28 ponds of varying sizes adjoining the eastern side of Pillaimadam lagoon (longitude 79°06' E; latitude 9°15' N) along the coast of Palk Bay. Physico-chemical factors like water salinity, temperature, dissolved oxygen content, pH and availability of nutrients play a major role in regulating the growth, abundance, recruitment and distribution of fauna and flora in any unpolluted aquatic environment. Any fluctuations in these would lead to significant effects in the fertility and primary organic production thereby affecting the natural food supply and energy flow to the cultivable organisms. Hence a clear understanding of the physico-chemical characteristics of water is the essential prerequisite which will enable the fish farmer to select the suitable species for the successful and profitable culture practice. The study of the hydrological factors and the primary production in marine fish ponds (Udaya Varma et al., 1963) and the comparative hydrological study of five ponds near Mandapam and the adjoining inshore water of the Palk Bay (Krishnapillai

^{*}Regional Centre of Central Marine Fisheries Research Institute, Mandapam Camp,

et al., 1986) are some of the studies in this area line. In the present study, in addition to the usual hydrological parameters like water temperature, salinity, dissolved oxygen and pH essential inorganic nutrients such as reactive phosphate, silicate, nitrite and nitrate content of 15 pond waters during the North-east monsoon season of 1987 are studied and compared with those of the adjacent Palk Bay water.

Material and methods

All the 15 ponds in this study are in use for fish culture by CMFRI. Of the 15 ponds, the first seven ponds (No. 1-7) are having a direct connection with the adjacent Palk Bay through a concrete canal. The inner walls of these ponds are lined with granite stones. The other eight ponds receive their water supply by means of a 5 HP oil engine operated at frequent intervals. During the monsoon season, pumping of water is suspended. The inner walls of these ponds are sandy. Water levels in these ponds were found to fluctuate throughout the year with 80 to 102 cm during the North-east monsoon months. Observations and analysis were carried out at fortnightly intervals for four months (October '87 to January '88) Samples were collected between 0600 and 0700 hours in the ponds and the adjoining Palk Bay, pH of the samples were recorded using a digital pH meter. Salinity, dissolved oxygen and the dissolved inorganic nutrients were analysed following the procedures outlined in strickland and Parsons (1968). The data on rainfall was collected from the meteorological station. Pamban.

Results and discussion

Rainfall: Maximum rain was observed in October (348.2 mm) followed by November (194.5 mm) and December (138.7 mm). But there were variations in the amount of rainfall during a particular month in different years as evidenced by the data by James and Najmuddin (1986) and Krishnapillai et al. (1986). Season-wise however, the maximum amount of rainfall occurred during the North-east monsoon seasons.

Temperature: Water temperature in the Palk Bay ranged between 25.2°C (January) and 31.8°C (November). In the waters of the seven ponds having connection with Palk Bay it ranged between 24.8°C (January) and 33.0°C (November). In the earthern ponds water temperature ranged between 24.8°C (January) and 33.5°C (November). The atmospheric temperature during this period ranged between 25.8°C (January) and 30.5°C (October). Low water temperature during January would be due to the comparatively cooler atmosphere during that time.

Salinity: Salinity values, of the 15 pond waters and the Palk Bay are presented in Fig. 1. Water salinity in the Palk Bay and the seven ponds having connection with it showed a gradual decrease from the beginning of the North-east monsoon (October) to the end of the season (January). But in the other earthen ponds there was a sharp fall in the salinity immediately after the beginning of the monsoon and the salinity started to

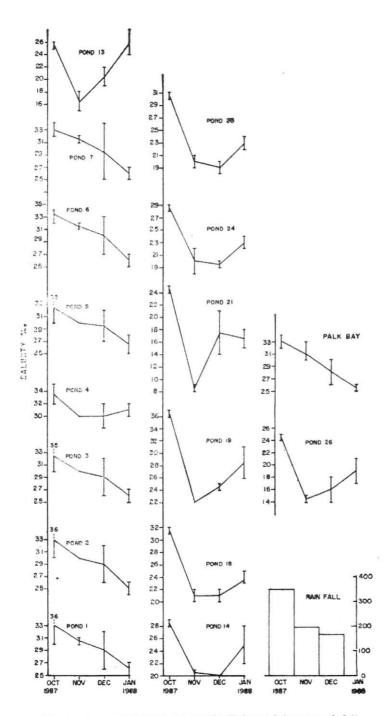


Fig. 1. Range and mean values of salinity and data on rainfall,

increase then onwards owing to poor precipitation. Salinity fluctuated between 25 and 34 per cent in the Palk Bay. Being a dynamic system, it controlled the salinity variations to a limited extent in the connected seven ponds also between 24 and 36 per cent. But in the earthen ponds salinity values showed wider fluctuations between 8 and 37 per cent. Low salinity values in these ponds are due to the effect of precipitation and the salinity increases to higher levels during January due to the abrupt cessation of rainfall, evaporation and seepage. Salinity values reaching as high as 65 per cent in August (Krishnapillai et al., 1986) were also recorded in one of the earthen ponds.

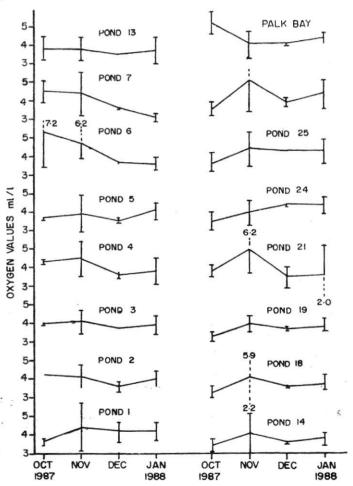


Fig. 2. Range and mean values of dissolved oxygen content.

Dissolved Oxygen Content: Dissolved oxygen values in the waters of Palk Bay and the 15 ponds are presented in Fig. 2. In general, the dissolved oxygen content of Palk Bay and of the connected seven ponds was at a higher level during October and it sloped down as the season progressed. But in the earthern ponds, dissolved oxygen values in general were at the

Fig. 3. Range and mean values of inorganic phosphate-phosphorus.

lower level during October and the concentrations increased as the season progressed. Dissolved oxygen values fluctuated between 3.3 and 5.8 ml/l in the Palk Bay; between 2.9 and 7.2 ml/l in the sea-connected ponds and between 2.0 and 6.8 ml/l in the earthen ponds. Relatively higher oxygen values between October and November in almost all the pond waters were caused by the agitation of water due to the rains and photosynthetic release. Similar higher oxygen content in Vizhinjam Bay waters during the South-west monsoon period was observed by Dharmaraj et al. (1986).

pH. pH is an important factor controlling the growth and reproduction in many of the culturable fish species. In the present study pH of the Palk Bay water oscillated between 7.5 and 8.2; between 7.0 and 8.3 in the connected ponds and between 7.0 and 8.5 in the earthen ponds. The role of dissolved oxygen and carbon dioxide in regulating the pH of natural waters has been emphasised by Sankaranarayanan (1973) by attributing the photosynthetic release of oxygen to the cause of high pH during day time and the respiratory release of oxygen to the cause of low pH during night time. The role of precipitation in lowering the pH of the natural water is also emphasised by Dharmaraj et al. (1986).

Nutrients

Inorganic Phosphorus: Phosphorus in combination with nitrogen can limit the aquatic production. Reactive phosphate content above approximately $3\mu g/l$ will be a sign leading to eutrophication (Ketchum, 1967). Dissolved phosphate values of the 15 pond waters and the Palk Bay are presented in Fig. 3. Phosphate values were higher in the pond waters than in the Bay. Higher values of dissolved phosphate were observed in most of the pond waters during November. Phosphate values fluctuated between 0.05 and 0.3 $\mu g/l$ in the bay waters; between 0.025 and 1.3 $\mu g/l$ in the connected pond waters and between 0.02 and 1.05 $\mu g/l$ in the earthen ponds. Phosphate values as high as 1.78 $\mu g/l$ in the surface waters of Vizhinjam Bay were observed during the intense North-east monsoon month of October by Dharmaraj et al. (1986). In the present study too, during the North-east monsoon season the amount of dissolved phosphate in the pond waters may be high, optimum for phytoplankton growth which in turn may be ideal for the culture of fishes.

Silicate-Silicon: Silicate values in the 15 pond waters and the Palk Bay water during the study period are shown in Fig. 4. Silicate values fluctuated between 4.5 and 32 μ g/l in the Palk Bay water; between 5 and 42 μ g/l in the connected ponds and between 8 and 66 μ g/l in the earthen ponds. Considerably higher concentrations of silicate in the earthen ponds than in the Palk Bay were due to land drainage and solubilisation of sand particles from the walls of the earthen ponds. It has been found that the nutrient contents were often considerably higher in fresh water than the corresponding amounts in marine environments and the mixing of fresh water with sea water may lead to about 40 per cent removal of dissolved silicon present in the former (Liss, 1976).

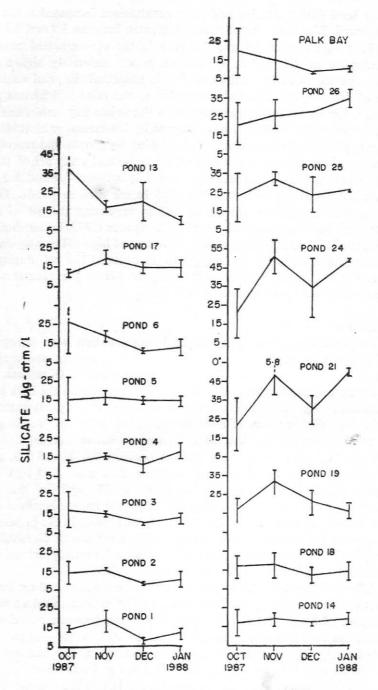


Fig. 4. Range and mean values of silicate-silicon.

Nitrite (NO₂-N) and Nitrate (NO₃-N): Nitrite values in the 15 pond waters and the Palk Bay water during the study period are shown in Fig. 5. Nitrite values reached their peak in the Palk Bay waters during

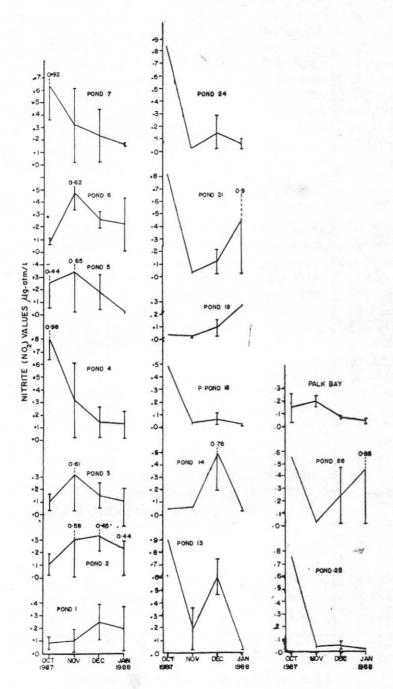


Fig. 5. Range and mean values of nitrogen.

November and the concentration decreased as the season progressed. Higher nitrite values were observed in the earthen ponds than in the seaconnected ponds. Nitrite values oscillated between 0.021 and 0.26 μ g/l

- Ketchum, B.H. Phytoplankton nutrients in estuaries, In: G.H. Lauff (ed). Estuaries. Am. Ass. Adv. Sci. Washington, Publ. 83, 329-335, 1967.
- Krishnamurthy, K., V. Sundararaj and R. Santhanam. Aspects of an Indian mangrove forest. Proc. Int. Symp. Biol. Managem. Mangroves. Honolulu, Hawaii, 1: 88-95, 1975.
- Krishnamurthy, K. and M.J. Prince Jeyaseelan. Prospects of aquaculture in a mangrove ecosystem. *Proc. Symp. Coastal Aquaculture*, 4: 1059-1067, 1986.
- Krishnapillai, S., M. Selvaraj and M. Najmuddin. Comparative hydrological study of five ponds and the adjoining inshore water of the Palk Bay, Mandapam. J. mar. biol. Ass. India, 28 (1 and 2): 229-232, 1986.
- Liss, P.S. Conservative and non-conservative behaviour of dissolved constituents during estuarine mixing. In: J.D. Buston and P.S. Liss (eds.) *Estuarine chemistry*, Academic Press, London, pp. 93-130, 1976.
- Menzel, D. and J.P. Spaeth. Occurrence of ammonia in Sargasso sea waters and in the rain water at Bermuda. *Limmol. and Oceanogr.* 9: 179-186, 1962.
- Sankaranarayanan, V.N. Chemical characteristics of waters around Kavarathi atoll (Laccadives). *Indian J. mar. Sci.*, 2: 23-26, 1973.
- Strickland, J.D.H. and Parsons. A practical handbook of sea water analysis. Fisheries Research Board of Canada. Bulletin, 167, 1968.
- Sundararaj, V. Suitability of a mangrove biotape for brackish water aquaculture. Seafood Export Journal. 10 (12): 23-27, 1978.
- Tampi, P.R.S. Utilisation of saline mud flats for fish culture. An experiment in marine fish farming. *Indian J. Fish.* 7 (1): 137-146, 1960.
- Udaya Varma, P., P.R.S. Tampi and K.V. George. Hydrological factors and primary production in marine fish ponds. *Indian J. Fish.* 10 (1): 197-208, 1963.

Assessment of Fish Production in Aquaculture

K. ALAGARAJA*

Introduction

More than half of the world's population has an insufficient and nutritionally unbalanced diet. An adequate diet requires an average of about 44 g per day protein, being about 10 to 12 g of the total caloric intake. Fish is an excellent source of protein, containing all the 10 essential amino-acids in desirable concentrations for human beings and available at cheaper rates.

Oceanic area of about 36,000 million hectares and fresh water area of about 600 million hectares sustain this resource. Continental shelves being 8 per cent of oceanic area contributes about 80 per cent of the total marine catch. Similarly in the case of fresh waters well managed water area such as ponds yield more than other areas. For instance the average yield from fresh waters is about 10 kg per hectare. Whereas in a well managed pond it has been shown that production can be increased to 6,000 kg per hectare and above. The total fish catch in the world has touched 90 million tonnes.

Fish is a renewable resource of wealth. Unlike mineral and other fixed resources which do not have self-generating capacity to replenish the loss due to natural causes and or human exploitation, fisheries is a dynamic resource which when judiciously exploited replenishes the loss and hence a maximum sustainable yield from this resource is possible. Fisheries can broadly be divided into two types, namely, capture fisheries and culture fisheries. In capture fisheries human intervention comes in the stage of harvesting only whereas in culture fisheries it is involved in all stages starting from rearing the stocks to harvesting.

There are direct and indirect methods of assessing aqua-production.

^{*} Central Marine Fisheries Research Institute, Cochin 682 031.

Under direct method comes (Beverton and Holt, 1957; Ricker, 1975) exploratory surveys involving acoustics, aerial surveys and remote sensing using satellites and analytical studies involving vital statistics of exploited stocks such as mortality and growth. Primary productivity studies and yield comparison with the areas where full exploitation is done are indirect methods.

Analytical approach has been studied extensively both for capture and culture fisheries. Models have been developed though mainly deterministic. The other methods of assessing production require extensive studies involving quantitative approach. Much work could be done in this area.

In capture fisheries under analytical approach, there are at present two models, namely, micro-analytic model (Beverton and Holt, op. cit.) and macro-analytic model (Schaefer, 1957). In micro-analytical model all the components such as age, growth and mortality require intensive study and coverage. However, there are areas where collection of vital statistics for micro-analytical model becomes almost impossible. For instance, determination of age of fish in tropical waters (using hard parts) as in the case of temperate zones is not possible. Hence macro-analytical approach is preferred in which catch and effort expended are the main items required for estimation of potential yield.

In culture fisheries since human agency is involved right through all the stages of development as mentioned earlier, collection of vital statistics poses no problem. We shall consider here this problem in detail.

Aqua-production is a three-dimensional one as compared to twodimensional terra production. The factors involved in aqua-production can be grouped under three categories: (i) condition of water resource, (ii) seed introduction, and (iii) feeding characteristics.

Growth of fish depends on the fertility of the water in which it lives. Inherent fertility may not be sufficient for the maximum growth of fish sustainable by the water resource. Proper manurial practices such as liming and applying fertilisers will increase the fertility of a water resource. Growth of fish is found to be directly proportional to the fertility of the water up to a certain level. Then the fertility becomes ineffective beyond this maximum level and it may even prove harmful to the growth of fish, once the fertility level is very high. Another important factor is the water area available for culture. In this case it is found that the growth or yield rate is inversely proportional to the water area. The height of the water column also plays an important role in the overall yield. A minimum height of three feet is required to sustain fish in a water column in tropical areas for water bodies with less water columns which become very hot for fish to survive. However, a too deep water resources may not yield as much as its water column can afford to, since light penetration may not be effective in deeper waters and hence the fertility of deeper waters are less when compared to shallow water areas.

Thus we see inherent fertility, manuring, water area, and depth of

water column are important factors affecting production of water body in different ways.

Production from aqua or terra regions depends on the quality of seed introduced. In the case of fish culture rate of growth depends on the size of the fish stocked. An ideal recruitment is one when natural mortality is minimum and growth rate is maximum. Natural mortality and growth also depend on the season of the recruitment. For instance, if fish are stocked during winter, then natural mortality may be high and growth rate minimum. Hence appropriate period of stocking should be determined for obtaining maximum production.

Productivity of water area depends on the density of the seed introduced. As the density increases to a certain level the production also increases. Beyond this critical level the production declines and that too sharply. Production can be increased by introducing fishes preferring different niches and not competing with each other for food. Polyculture is the solution for this. For instance in prawn culture ponds introduction of mullets and milk fish do not affect the growth of prawns and at the same time contribute to the overall production of the water body. Similarly in composite fish culture, adopted in fresh water ponds, catla, the surface feeder, rohu, the column feeder and calbasu, the bottom feeder together with exotic species such as Chinese carps all grow well, compatible to each other and this combination utilises the entire volume of water body. In polyculture experiments the ratio, in which different species are to be introduced, is to be determined for obtaining maximum production.

In short, the stage of quality seed recruitment, time of recruitment, density and ratio of species recruited are the important factors under recruitment that determine the productivity of a water body individually and collectively.

Carrying capacity of a water body is the maximum weight of fish which can be sustained by the water body (Hickling, 1962). Inherent productivity of a water body is not the only factor for its carrying capacity but it depends on fish pond management methods (Tal, 1972) that too mainly on the levels of supplementary feeding.

Quality of supplementary feed needs no emphasis. The best combination of different items that make the supplementary feed, requires extensive experimental studies. Much work has already been done in this regard. Quantity or rate of feeding is also to be determined so that feed is not wasted without being consumed by fish and this unconsumed food will decay and turn toxic for life. Overfeeding may not lead to proportional growth and undernourishment arrests growth. This aspect also requires extensive experimental studies. Methods of feeding such as supplying feed once a day or twice a day, spraying the food evenly over the water body or placing the feed at fixed points for the fish to come there and feed are some of the items to be studied under this aspect. The important items under supplementary feeding can be then summed up to

quality, quantity and methods of feeding. In polyculture the effect of these factors on each species is also to be taken into account.

Harvesting schedule may improve the production. Multiple harvesting will lead to continuous harvesting of marketable size with suitable seed replacement. To sum up, physical chemical characteristics of the water body such as its size, shape and depth, salinity, DO2 etc., seeding schedule including the suitable size of the seed for the better growth and less mortality, season of its introduction, density and proportion combination in polyculture, feeding schedule, harvesting pattern and proper management are the factors to be considered for successful operations of pisciculture activities. Thus pisciculture assumes multidimension and ordinary quantitative analysis becomes too inadequate to lead one to any valid conclusion. Hence system analysis and simulation process should be taken up to study the overall effects of these multidimensional factors.

Limited number of water resources such as ponds for experimental studies does not allow extensive studies using suitable designs of experiments for getting information on the overall affects of factors considered earlier. At present mostly few factors alone are considered at a time keeping other factors at a known level. Even then suitable variance functions are not available to compare productions from different water bodies to see the effect of the treatments. Alagaraja (op. cit.) has developed variance functions suitable for application. Here we shall see in a nutshell the development of production functions and their associated variance functions.

As Ricker (1971) puts it, Biomass is the amount of substance in a population expressed in material units, such as living or wet weight, dry weight, ash-free weight, nitrogen contents etc. It is also termed as standing crop. Biomass can be expressed as

$$B_t = N_t \overline{W}_t \tag{1}$$

where at time 't' Bt is the biomass, Nt the number of fish in the pond and W, is the average weight of a fish.

Production in a given time interval is defined as (Ivleve, 1966) the total elaboration of animal tissue during that time interval including what is formed by individuals that do not survive till the end of that time interval. Though this general definition is broad enough to include the components such as released eggs, spawn etc. we shall confine our attention to the wet weight of the fish only. When individuals alone are considered such as a single fish, production and growth are synonyms. In temperate regions negative production may take place during winter months.

Let Pt be the production at time 't'. Then

$$\partial P_t = \overline{N}_t \, \partial \overline{W}_t \tag{2}$$

Where $\partial \overline{W}_t = \overline{W}_t + \partial_t - \overline{W}_t$ and \overline{N}_t is the number of fish living during 'dt'.

Hence
$$\int_{0}^{T} \partial P_{t} = \int_{0}^{T} \overline{N}_{t} \partial \overline{W}_{t}$$
 (3)

Case 1: when there is no mortality then

$$P_t = N_t (\overline{W}_t - \overline{W}_o) = B_t - B_o$$
 (4)

In the absence of any functional form of N_t and W_t it is difficult to solve (3).

To differentiate yield from production let us define that what is produced is production and what is harvested is yield. In fisheries the quantity harvested, in other words the final biomass may be termed as gross yield and net yield is the difference between final biomass and initial biomass. From (4) it is clear that production and net yield become one and the same if and only if there is no mortality. Yet Y_t be the net yield at time 't'. Then

$$Y_t = B_t - B_q \dots (5)$$

Different production functions are proposed by many workers. Ricker (1946) and Allen (1950) propose

$$P_1 = G \overline{B} \dots (6)$$

This form necessarily implies that growth follows exponential law, namely,

$$W_t = W_o e^{Gt} \dots (7)$$

Where W_{θ} is the initial average weight of a fish, C is the instantaneous mortality rate and 1

 $B = \int_{0}^{\infty} B_{t} dt$, the mean annual biomass. Alagaraja

(1980) has considered to more forms

$$P_2 = Y_t + \overline{ZB} \dots (8)$$

and
$$P_3 = b \overline{N}$$
 (9)

In (8) it is implied that change in population numbers follows exponential law whereas growth may follow any law. However in (9) both growth and change in number are linear with time 't'. Z is the instantaneous mortality rate and 'b' is the rate of increase in weight. Hence

$$G = (\log_e W_T - \log_e W_t)/T - t \dots (10)$$

$$Z = (\log_e N_t - \log_e N_t)/T - t \dots (11)$$

$$b = (W_T - W_t)/(T-t) \qquad \dots \qquad (12)$$

 \overline{B} and \overline{N} are mean biomass and mean number of fish surviving during (t, T).

Alagaraja (op. cit.) has developed variance functions for (6), (8) and (9). The variance function for (6) considered by Chapman (1971) is not complete in the sense that he assumes that the covariance factor arising in the variance function is negligible. Alagaraja (op. cit.) has evaluated the amount of contribution from this covariance factor and thus has improved

chapman's (op. cit.) result. To elucidate the procedure let us consider the following examples.

Example 1

In the beginning of a month 100 fish were there with an average weight of 50 g. After 10 days 20 die; overall average weight being 60 g. After another 10 days 10 die with average weight 80 g and the rest were alive to the end of the month reaching to an average weight of 100 g. What is the production and yield?

P_t in 1st 10 days =
$$100 \times 60 - 100 \times 50 = 1,000 \text{ g}$$
P_t 2nd 10 days = $80 \times 80 - 80 \times 60 = 1,600 \text{ g}$
P_t 3rd 10 days = $70 \times 100 - 70 \times 80 = 1,400 \text{ g}$
Total = $4,000 \text{ g}$
The yield Y_t = B_t - B_o = $70 \times 100 - 100 \times 50 = 2,000 \text{ g}$

Thus $P_t = 4.0$ kg and $Y_t = 2$ kg. From this it is clear that had the mortality been controlled, yield would have been almost double the present yield.

Example 2

Data taken from Chapman (op. cit.) are givan in Table 1. Only seven months data are considered here.

Table 1

Date	Mean wt. W (g)	Stock number N	B (N W) (kg)	
May 1	1.5	8,000	12.0	
June 1	2.0	4,500	9.0	
July 1	2.5	3,500	8.7	
August 1	3.5	3,000	10.5	
September 1	4.5	2,500	11.2	
October 1	6.5	2,000	13.0	
November 1	6.9	1,900	13.1	

Now let us take the period May-1 to June 1. ($t_2-t_1=1$ month). Here $\overline{W}_1=1.5$, $\overline{W}_2=2.0$, $N_1=8,000$ and $N_2=4,500$. Hence for this period

G = Log_e 2.0 - Log_e 1.5 = 0.29
Z = Log_e 8,000 - Log_e 4,500 = 0.58
b = 2.5 - 2.0 = 0.5
N =
$$\frac{8,000+4,500}{2}$$
 = 6,250

 $B_1 = 12,000$, $B_2 = 9,000$. Hence B = 10,500. Similarly the corresponding values for other periods are calculated and presented in Table 2.

-	•			-
T	a	D.	e	2

Period	G	Z	B (kg)	N	b (g)	G B (g)	ZB (kg)	bN (kg)
May-June	0.29	0.58	10.5	6250	0.5	3.0	6.1	3.1
June-July	0.22	0.25	8.8	4000	0.5	1.9	2.2	2.0
July-August	0.34	0.15	9.6	3250	1.0	3.3	1.4	3.2
August-September	0.26	0.18	10.8	2750	1.0	2.8	1.9	2.8
September-October	0.37	0.22	12.1	2250	2.0	4.5	2.7	4.5
October-November	0.06	0.05	13.0	1950	0.4	0.8	0.6	0.8

Now
$$Y_t = 13.1 - 12.0 = 1.1$$

Hence $P_1 = G\overline{B} = 16.3 \text{ kg}$
 $P_2 = Y_t + Z B = 1.1 + 14.9 = 16.0 \text{ kg}$
and $P_3 = b \overline{N} = 16.4$

It may be noted that all the three estimates are not differing much from each other.

The production function P_3 is comparatively easier to evaluate and so also its variance function. Moreover its variance function does not involve any covariance factor when independent samples are taken for evaluation of N_t and \overline{W}_t . Thus in culture operations where observations are taken at short intervals production for each such interval may be taken and total production becomes additive and so also the variance associated to the total production for any interval at the beginning and at the end of which independent samples are taken to evaluate N_t and \overline{W}_t .

In general to determine carrying capacity of a water body it is necessary to evaluate its production. For this, periodic sampling is required to determine the number of fish and their average weight. This helps to formulate feeding schedules on estimates of the population. Apart from this, difference between production and yield may throw light on factors such as mortality, that are responsible for the difference and thus may suggest ways to improve yield. Moreover evaluation of variance enables one to compare production of different water bodies in a more critical way.

Acknowledgements

The author is grateful to the Director, Central Marine Fisheries Research Institute, Cochin for permitting him to present the paper in the National Symposium on Aquaculture Productivity.

REFERENCES

- Alagaraja, K. Production functions in fishery research. Proceedings of the Symposium on Coastal Aquaculture. Jour. Mar. Biol. Asso. Ind.a. 4: 1139-1151, 1980.
- Allen, K.R. The computation of production in fish population. N. Z. Sci. Rev. 8: 89, 1950.
- Beverton, R.J.H. and S.J. Holtk. On the dynamics of exploited fish populations. Fish invest. Lond. Ser. 2, 19, 553, 1957.
- Chapman, D.W. Production methods for assessment of fish production in freshwater. I.B.P. Hand book No. 3. Blackwell, Oxford, 1971.
- Hockling, C.F. Fish culture, London, Faber and Faber, 1962.
- Ivlev, V.S. The biological productivity of waters. J. Fish. Res. Bd. Can. 23 (11): 1727-1759, 1966.
- Ricker, W.E. Production and utilisation of fish population. Ecol. Monogr. 16: 374-391, 1946.
- Ricker, W.E. Introduction: Methods of assessment of fish production in fresh waters.

 1.B P. Handbook No. 3, Blackwell. Oxford, 1971.
- Ricker, W.E. Computation and interpretation of biological statistics of fish population. Res. Bd Canada. Bull No. 191, 1975.
- Schaefer, M.B. A study of the dynamics of the fishery for yellow fish tuna in the eastern tropical Pacific Ocean, Bull. Inter-Am. Trop. Tuna Commn. 2 (6): 247-285, 1957.
- Tal, S. An exposition of the terms 'Pond productivity' and carrying capacity of ponds. Bamidge, 14: 49-51, 1972.

- Section 20 to 1955 the control of the control of

establish shift tribung to the territory will as assessed

Pam auni lume in nomini i en colle sincila como la colle si prelamente de la collectión de la collectión de la Seléana escalata in collectión e secretario de librain electronic de más a seegal a La simina decimina a la califeración de secretario de libración de la collectión de

till til merell har frekrig i fikk vint i tilkt har elemed, etit hal fikke til til

Warding to the company of the second

The state of the contract of the state of th

and the state of t

related hands of the end makes I, would be will all