SYNOPSIS OF BIOLOGICAL DATA ON SKIPJACK Katsuwonus pelamis (Linnaeus) 1758 (INDIAN OCEAN) Exposé synoptique sur la biologie du bonite à ventre rayé Katsuwonus pelamis (Linnaeus) 1758 (Océan Indien) Sinopsis sobre la biología del bonito de vientre rayado Katsuwonus pelamis (Linnaeus) 1758 (Océano Indico) Prepared by S. JONES and E. G. SILAS Central Marine Fisheries Research Institute Mandapam Camp, India FISHERIES DIVISION, BIOLOGY BRANCH FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1963 #### 1 IDENTITY ## 1.1 Taxonomy ## 1.1.1 Definition Phylum VERTEBRATA Subphylum Craniata Superclass Gnathostomata Series Pisces Class Teleostomi Subclass Actinopterygii Order Perciformes Suborder Scombroidei Family Scombridae Subfamily Thunninae Genus Katsuwonus Kishinouye, Katsuwonus pelamis (Linnaeus), 1758 ## 1.1.2 Description - Genus Katsuwonus Kishinouye Body robust, rounded in cross-section, teeth on jaws about 40 in each, absent on vomer and palatine; corselet well defined; hardly any scales visible on rest of body; interspace between first and second dorsal hardly exceeding eye diameter; margin of first dorsal fin strongly concave; lateral line with a decided downward curve below second dorsal; gillrakers number 50 to 63 of which 33 to 42 on lower limb; generally four dark conspicuous longitudinal bands along side of body below lateral line, none above lateral line. Internal characters include long gall-bladder, nearly free from liver running along dorsal side of As in Thunnus and Sarda, a pair of cutaneous arteries branch just behind insertion of pharyngeal muscles, but passing through kidneys, arteries turn outward and forward instead of backwards; epaxial and hypaxial arterial branches running below and above first rib respectively, well-developed; vertebrae 20 + 21 (41). ## Katsuwonus pelamis (Linnaeus) 1758 Body proportions expressed as percentages of total length /from tip of snout to fork, latter slightly flexed, Marr and Schaefer (1949), for ten specimens 283 mm to 458 mm from Laccadive Sea (Minicoy Island) caught by pole and line during January 1960 and November 1961 are as follows: Head 29.6 to 30.7; first predorsal distance 33.6 to 34.9; second predorsal distance 60.5 to 62.9; preanal distance 64.2 to 67.5; prepelvic distance 32.9 to 35.6; greatest depth of body 23.0 to 26.3; length of pectoral 13.1 to 16.7; distance between origin of pectoral and first dorsal 13.1 to 15.5; base of first dorsal 24.5 to 28.4; base of second dorsal (excluding finlets) 7.4 to 9.1; base of second dorsal including finlets 31.8 to 34.9; caudal spread 25.6 to 26.5; longest (first) dorsal spine 13.0 to 15.6; length of second dorsal 6.0 to 9.3; length of anal 4.6 to 8.4; length of pelvic 10.3 to 11.9; least depth of caudal peduncle 1.9 to 2.2; greatest width of caudal peduncle at keel 3.5 to 4.5; length of maxilla 10.2 to 11.9; diameter of iris 4.3 to 5.9; longest gill-raker 3.9 to 4.4 and longest gill filament 6.7 to 7.4 percent in total length. (Fig. 1). The disposition of the different organs of the viscera and the nature of the liver and gall bladder are shown in Fig. 2. For me ristic characters see section 1. 3.1. Color in life is steel blue tinged with lustrous violet along dorsum and decreasing in intensity on sides to level of pectoral base; half of body including abdomen whitish to pale yellow; evanescent vertical light bars seen on sides of body immediately after capture, fading within an hour; so also yellowish tinge on abdomen; conspicuous four to six longitudinal dusky to black stripes below lateral line on each side of body; light greyish tinge on underside of mandible (chin) merging posteriorly with whitish color of lower half of body. In preservative (formalin) corselet area is light grey, tinged with yellow, upper half of body shining grey; between corselet scale along first dorsal base and along second dorsal base distinct black patches; so also dorsum of head; chin dark grey; lower half of body pale whitish to light grey, but generally four conspicuous longitudinal black stripes present; spine of first dorsal fin dusky, but inter-spinous membrane whitish between anterior spines, but margin tinged dusky between last few spines; second dorsal and dorsal finlets dusky with narrow white margins; so also Fig. 1 Katsuwonus pelamis (Linnaeus) Fig. 2(a) Disposition of the visceral organs, and (b) of liver and gall-bladder in Katsuwonus pelamis (Linnaeus) LV - liver IN - intestine PC - pyloric caeca ST - stomach GB - pall-bladder pectorals and pelvics; blackish patch along abdomen for whole length of pelvics; anal and finlets lighter; median caudal peduncular keels blackish with light margin dorsally, but light grey ventrally. Hardly any color difference between smallest and largest adult specimens in the collection. Juvenile coloration for a specimen 27 mm in total length: "The pigmentation in the specimen is comparatively denser on the dorsal aspect of the head and body. The spinous dorsal has patches of chromatophores on the upper half of the fin membranes between the anterior eight rays. The ventral side of the body is practically devoid of chromatophores except for a few on each side along the base of the anal fin and finlets". (Jones 1959a). ## 1.2 Nomenclature 1. 2.1 Valid scientific name Katsuwonus pelamis (Linnaeus) 1758 1.2.2 Synonyms (specially for Indian Ocean area) (Only taxonomic references are cited here chronologically). Scomber pelamis Linnaeus 1758 Scomber pelamides Lacépède 1803 Thynnus vagans Lesson 1828 Euthynnus pelamis Deraniyagala 1933; Molteno 1948; Fourmanoir 1957; Smith 1961 Euthynnus (Katsuwonus) pelamis Fraser-Brunner 1950; Deraniyagala 1952; Mendis 1954 Euthynnus (Katsuwonus) pelamys Fourmanoir 1960 Gymnosarda pelamys Barnard 1925 Thynnus pelamys Cuvier and Valenciennes 1831; Günther 1860; Day 1888, 1889; Gilchrist 1902 Katsuwonus pelamis Kishinouye 1915; Serventy 1941; Rosa 1950; Munro 1955, 1958; Jones and Silas 1960, 1962; Talbot 1962; Whitley 1962 1.2.3 Standard common names, vernacular names (See Table I). ## 1.3 General variability - 3.1 Subspecific fragmentation (races, varieties, hybrids) - Meristic counts Details of meristic counts for specimen from Indian Ocean is given in Tables II and III. So far no attempts have been made to distinguish populations, varieties or races, nor do the counts given above throw much light on the subject. Generally XIV - XVI spines are present in the first dorsal and this makes the minimum count of XII given by Smith (1961) exceptionally low. Natural hybridization is unknown. Albinism or melanism have not been reported. However, at Minicoy Island in the Laccadive Sea, among freshly caught skipjack, in a lot of a hundred or so specimens, two or three may be a much lighter color, the lateral bands appearing faded and the dorsum being light dusky, but retaining the basic color pattern. Such occurrences in small numbers are not infrequent, and these specimens can be easily detected in fresh landings. . Table I Common and vernacular names | Country | Standard
Common name | Vernacular Name(s) | |-----------------------------|-------------------------|--| | Aden, Gulf of | ** | Af Muss; Dabub (Somali dialect);
Hargheiba (Alula dialect) | | Australia | Striped tuna | Watermelon; Skipjack | | Ceylon | Skipjack | Baleya; Alaguduva (Sinhalese dialect); Ocean Bonito; striped tur | | East Africa and
Zanzibar | Skipjack | Sehewa (Kiswahili dialect; also refers to Euthynnus sp., Auxis spp.) | | India | Oceanic skipjack | Bonito; Kali-phila-mas (Mahal dialect, Laccadives); Vari Choors (Malayalam, Kerala coast) Choora and Metti (Malayalam, Amini Island, Laccadives) | | Indonesia | Bonito | Tjakalang; Tjakalang-lelaki;
-Tjakalang-perempuan;
Tjakalang-merah | | Madagascar | Bonite | Bonite a ventre raye; Diodary (Sakalawa dialect); M'bassi (Swahili dialect) | | Maldive Islands | | Kali-phila-mas | | Reunion, Mauritius | Bonite | | | South Africa | Skipjack | Oceanic Bonito; Lesser tunny;
Bonito; Watermelon; Katunkel | Table II Meristic characters for ten specimens of Katsuwonus pelamis (Linnaeus) from Minicoy Island, Laccadive Sea | Dorsal spine | Dorsal finlets | Anal finlets | Pectoral | |--------------|----------------|--------------|-------------| | No. 15 16 | 8 8+1(=9) 9 | 7 7+1(=8) | 26 27 28 | | F. 2 8 | 6 2 1 | 7 3 | 3 6 1 | | N = 10 | N = 9 | N = 10 | N = 10 | | Mean = 15.8 | Mean = 8.4 | Mean = 7.3 | Mean = 26.8 | ## Gill-rakers | | | UF | per li | mb | | | | | L | ower | limb | | | | | |----|----|----|----------------|----|----|----|----|----|----|------|------|----|----|----|----| | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 1 | 3 | 2_ | 2 | 2 | - | - | | - | 2 | - | 2 | 4 | 1 | 1 | - | | | | | N =]
n = 1 | | | | | | Me | N = | | | | | | ## Total gill-rakers | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | |----|----|----|----|-----|---------|----|----|----|----|----| | - | - | 2 | 1 | 2 | 2 | 1 | 2 | | _ | - | | | | - | | | | | | | | | | | | | | I. | 1 = 10 | | * | | | | | | | | | Mea | n = 52. | 5 | | | | | No. = Counts; F = Frequency of occurrence; N = Number of specimens Table III Meristic characters as given by various authors for Katsuwonus pelamis (Linnaeus) from the Indian Ocean | | Charac- | | Africa | | Mada-
gascar | Aus-
tralia | Indonesia | Cey | lon | Laccadives
(India) | |
---|--------------------------|-----------------------------|--------------------------------|--------------------------|---------------------------|-----------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------| | | ters | Williams
(1962) | Smith
(1961) | Talbot
(1962) | Fourma-
noir
(1957) | Munro
(1958) | de
Beaufort
(1951) | Derani-
yagala
(1952) | Munro
(1955) | Jones et
Silas
(1962) | Total
range | | | Dl | XIV-XV | XII-XVI | XIV-XV | xv | xıv-xvı | xv | xv-xvII | xv | xv-xvı | xıı-xvı | | 2 | D ₂ + finlets | 13-15+
7-8 | 12 - 13+
8 | 14-15+
8 | 14 - 16+
8 | 14-16+
7-9 | i, 12-14
(=14-16)
+ 8 | 3, 12
(=15)
+8 | ii, 12-14
(=14-16)
+ 8 | 13-14 +
8-9 | 12-16+
7-9 | | 1 | Pectoral | - | - | - | - | 26-29 | ii, 24
(= 26) | 27-30 | ii, 24
(=26) | 26-28 | 26-29 | | THE REAL PROPERTY OF THE PARTY | A +
finlets | 14-15+
7 | I-III, 12
(=13-15)
+ 7-8 | 15+7 | 14-16+
7 | 14-15+
7-8 | iii, 12
(=15)+
7 | 3-4
12-13+
7 | iii,12
(=15)+
7 | 13-14
+7-8 | 13-16+
7 - 8 | | | Gill-
rakers | 15-16+
38-40
(=53-56) | <u>+</u> 35 | 18-20+
36-38
(=56) | - | 17-21+
33-42 | - | ±35-
40 | <u>+</u> 35 | 14-18+
34-39
(50-55) | 14-21+
33-42 | #### 2 DISTRIBUTION 2.1 Delimitation of the total area of distribution and ecological characterization of this area The occurrence of <u>Katsuwonus pelamis</u> has been reported from the following areas in the Indian Ocean: - (a) From the Indian Coast off Bombay, Vizhingam and Tuticorin; - (b) off Ceylon; - (c) Laccadive Sea - (d) Maldives; - (e) Gulf of Aden; - (f) Indian Ocean off Somali Coast; East and South Africa and Mozambic channel; - (g) Madagascar; - (h) Aldabra Island; - (i) Mauritius, Reunion Islands; - (j) Seychelles; - (k) Cocos Island; - (1) Great Australian Bight; South east of Tasmania; - (m) Western Australia; - (n) West of Java and Sumatra; and - (o) Andaman Sea. The species is rarely encountered in coastal waters where other tunas, such as Euthynnus affinis affinis (Cantor), Kishinoella tonggol (Bleeker), and Auxis spp. may be found. Off South Africa it has not been taken south of 30°S, but captures from the Australian Bight and south of Tasmania would indicate its occurrence in that area as far south as even 43°S. Northward skipjack also occur in the Gulf of Aden, thus, on the whole, covering the tropic and subtropic sections of the Indian Ocean. In the Laccadive Sea off Minicoy Island where skipjack is caught regularly, the surface temperatures range between 27°C and 30°C during the fishing season extending from November to April (data for 1960 to 1961). However, most frequent temperature readings for the area for the said season is 28°C to 29°C. Williams (1962) remarks that off East Africa (between 1°30'S and 10°30'S) skipjack are found mainly inside the 100 fathom line. Off Minicov in the Laccadives, fishing is carried out in waters 800 fathoms or more in depth, but hardly 6 to 10 km from the island as is also practiced in the Maldives. The species is known on rare occasions to enter lagoons, sometimes in pursuit of shoals of Spratelloides, or accidentally during high tides. Skipjack prefers waters of high salinity as would be evident from their non-occurrence in the northern parts of the Bay of Bengal. Hydrographic work in the Laccadive Sea (Jayaraman et al, 1960) indicates the presence of isothermal water down to 50 m. The discontinuity layer is observed between 75 and 150 m, while a salinity maximum is seen to occur within a tongue of high saline water at about From the nature of the density surfaces and the computed geopotential anomalies the authors infer that there are circulatory water movements around the island at practically all levels down to 500 m. The motion is anticyclonic in the upper 100 m, while the reverse below that level, thus helping in maintaining a high productivity level for the waters around the island. Results of carbon-14 experiments carried out in the Laccadive Sea (Prasad and Nair 1962) as well as similar data from adjacent waters collected by the Galathea and Vitiaz expeditions have indicated high productivity, especially in certain localized areas. The waters around Minicoy Island showed the highest production rates with a value of Ca 300 mg C/m²/day, and a photosynthetic zone more than 75 m deep. Bogorov and Rass (1961) indicate that a significant correlation exists between congregation of tunas and other pelagic fishes and abundance of plankton in regions of the Indian Ocean. The areas referred to are: the central part of the Arabian Sea from Aden Bay to Bombay; between the Seychelles and Maldive Islands; off Zanzibar and Comoro Islands; to the north east of Madagascar; off Chagos Bank; off Ceylon; to the south from Java; and to the west from Australia. In certain of these areas, the amount of plankton exceeds 15 mg of dry matter per mo in the 0 to 100 m layer of water. The tuna species observed by them in these areas of high productivity were Neothunnus macropterus, Katsuwonus pelamis and Auxis thazard. The wide range of temperature from 17°C to 31°C or more in which skipjack may be encountered indicates either its tolerance to wide fluctuations in water temperature or the existence of distinct populations in different areas of different sets of temperature ranges. Fourmanoir (1960) reports active and voracious shoals of skipjack off Fort Dauphin (extreme south of Madagascar) in waters with a surface temperature of 22°C, and he further opines that in the Indian Ocean the optimum temperature for skipjack would be 28.5°C. #### 2.2 Differential distribution There is only scant information for this area. The skipjack is truly oceanic in habit and as already mentioned is rarely ever encountered in shallow coastal waters or in areas of low salinity. Collections of larvae have also been from offshore areas. 2.2.1 Areas occupied by eggs, larvae and other junior stages: annual variations in these patterns, and seasonal variations for stages persisting over two or more seasons. Areas occupied by adult stages: seasonal and annual variations of these. #### - Eggs Definite identification of spawned skipjack eggs from any part of the Indian Ocean is wanting. However, eggs suspected to be of either skipjack or yellowfin have been collected from the Laccadive Sea by one of the authors during the cruise of R.V. Kalava in February 1958 from station 209 ca 73020 E and 8040 N. fairly close to Minicoy. Raju (1960) mentions 0.809 mm as the diameter of the largest transparent intraovarian egg (with a single oil globule) he had observed from a hermaphrodite skipjack from Minicoy. Fully ripe ova up to a diameter of 1.125 mm have been reported for skipjack from the Pacific. Northwest of Madagascar (Mitsio) two Katsuwonus measuring 62.2 and 63 mm Tength up to tail notch (?) captured on 7 August 1960 had ovaries very near maturity (stage III) with eggs of 0.30 mm and 0.35 mm diameter, some transparent (Fourmanoir 1960). However, the above size is too small for the eggs to be considered ripe, and the socalled transparency should be different from that seen in oozing eggs. ## - Larval stages Correlative evidence from the occurrence of larval skipjack ranging from 2.63 to 7.08 mm and the examination of adult gonads made by Jones (1959a) do indicate the Laccadive Sea, especially around Minicoy and adjacent islands, as one of the spawning grounds of this species (Fig. 3). Further data by Raju (1962a) tend to confirm this. Jones (1959a) also indicates the presence of several skipjack larvae in the collection of the Danish Dana Expedition of 1928 to 1930 between stations 3905 and 3975 in the Indian Ocean (Fig. 4). Yabe and Ueyanagi (1961) have shown that in the seas south of Sumatra (ca 100°E,
10°S) numerically large concentrations of skipjack larvae are present from where the maximum numbers were taken in February, while few were collected in June, July and January, the ratio being in the proportion of 14:1:1:1 respectively. This is contrary to their collection of more skipjack larvae during June and July in the Pacific which indicates, among other things, difference in spawning period of the skipjack in both these areas. These authors also infer that tuna larvae (including skipjack larvae) make Fig. 3 Centers of collection of larvae of Katsuwonus pelamis (Linnaeus) from the Laccadive Sea (after Jones 1959a) Fig. 4 Distribution of larvae of Katsuwonus pelamis (Linnaeus) in the Indian Ocean based on previous collections: - X from the Laccadive Sea (for more details see Fig. 3) - 1928 to 1930 Danish Dana Expedition Collection stations from where Katsuwonus pelamis larvae have been identified - ▲ Japanese collections of Katsuwonus pelamis larvae worked out by Yabe and Ueyanagi (1961); and - Vitiaz collections of tuna larvae including larvae of <u>Katsuwonus</u> <u>pelamis</u> vertical diurnal migration in the upper 50 m layer, they being rarely encountered in the surface layers to a depth of 20 m during daytime. At night they show a tendency to uniformly distribute in the upper 50 m layer. Bogorov and Rass (1961) have also indicated several localities from where larval tunas have been collected during the thirty-first cruise of the <u>Vitiaz</u> in the Indian Ocean and when the results are analyzed it is likely to throw more light on the more widespread occurrence of skipjack larvae in various parts of the Indian Ocean. No information is available of the time taken between spawning and hatching; the rate of growth of larvae; their passive dispersal by ocean currents and the distance traversed from spawning ground before attaining shoaling size. Details of area of occurrence of skipjack larvae in the Indian ocean are shown in Fig. 4. ## - Young fish Practically nothing is known of juvenile skipjack, except for one specimen 27 mm in total length from the Laccadive Sea (Jones 1959a). Young and half-grown are not generally caught at Minicoy although during certain months (February and March) the size group 270 mm to 370 mm may be taken in stray numbers. The smallest we have examined was 283 mm. Thomas (in litt.) reports that between Minicoy and Cannanore on the West Coast of India, usually several schools of young skipjack are encountered which Minicoy fishermen can easily tell apart from other tuna shoals. #### - Adult For spatial distribution see Fig. 5. Reports of the occurrence of large shoals of skipjack are available from various parts of the Indian Ocean within the areas delimited in Fig. 5. Adults are caught mainly by pole-and-line, using live-bait (Minicoy and Maldive Islands); sometimes by trailing lures or trolling; oc-casionally on longlines; and rarely by shoreseine and driftnets when they enter lagoons and coastal waters. For more on fishing see section 5. Seasonal variations for stages persisting over two or more seasons Information is very scanty. Size composition data for May 1958 to April 1959 and November 1960 to April 1961 from the Laccadive Sea given by Raju (1962a), and Thomas (1962b) indicate the likelihood of sporadic influx of smaller size groups into the fishery which is mainly dependent on 400-720 mm size group. Seasonal and annual variations of areas occupied by adults No information with special reference to skipjack. However, data given by Yamanaka and Anraku (1961) on oceanographic conditions relevant to distribution of tunas give some data on surface temperature and chlorinity in tuna waters from surface layer to 300 m depth. 2.3 Behavioristic and ecological determinants of the general limits of distribution and of the variations of these limits and of differential distribution Skipjack is essentially a surface fish and prefers waters where the salinity is 33°/oo or more and as mentioned under 2.1, the optimum temperature for skipjack waters in the Indian Ocean appears to be 28.5°C. For details of competitors, predators and parasites, see sections 3.3.3, 3.3.4, and 3.3.5 respectively. No information is available about vertical migrations of adult skipjack from any part of the Indian Ocean. Fig. 5 Distribution of Katsuwonus pelamis (Linnaeus) in the Indian Ocean Range of regular occurrence Sporadic occurrence Fishing areas #### 3 BIONOMICS AND LIFE HISTORY ## 3.1 Reproduction 3.1.1 Sexuality (hermaphroditism, heterosexuality, intersexuality) Skipjack is heterosexual. No externally observable characters have been found to easily distinguish males and females. Raju (1960), and Thomas and Raju (1962) have reported on three instances of hermaphroditism in the skipjack from the Laccadive Sea. Raju (1960) has also described two types of gonadial abnormality in the skipjack from the same area; one in which the right ovary had an anterior lobe completely cut off from the lower portion which was connected to the normal left ovary and the second in which there was an enormous development of the left lobe and the complete destruction of mature ova in it as a result of infection by larval nematodes. In the above instances of gonadial abnormality as well as hermaphroditism the gonads were maturing or mature. #### 3.1.2 Maturity (age and size) No definite information on age determinations of skipjack for this area is available, except some preliminary observations in the Laccadive Sea on size composition of the fish caught in certain months from 1958 to 1961 (Raju 1962 a and Thomas 1962b). The data is retabulated in Fig. 6, from which it will be noted that the size composition and the catch for the different months at Minicoy do not throw any light on growth trends but probably indicate the constant influx of fresh shoals into the fishing area. Bimodal occurrence is seen for the months from December to April during both periods of observation with few variations. It is inferred that by February a smaller size group enters the fishery. There appears to be much in common in the size compositions of skipjack caught by pole-and-line both in the Laccadive Sea as well as the Eastern Tropical Pacific (Schaefer and Marr 1949) for in both areas the fishery depends on one or two age groups of the species which enter the fishery at about 45 to 50 cm and are probably two years old by then, and a larger group with a modal size of 60 to 70 cm. However, in the Laccadive Sea a third group may also occur occasionally for according to Thomas (1962): "The fishing in Minicov depends on three age groups of Katsuwonus pelamis. The first group is of the size 280 to 450 mm, their age being probably over one year. The second group of fish range in size from 450 to 600 mm and are probably more than two years old. larger fish ranging in size from 600 to 720 mm are probably three years old. Fishes four years old and older are extremely rare in the catches in Minicoy". This age determination based on size composition may not be in agreement with Aikawa's (1937) findings based on appearance of rings in vertebrae of skipjack in Japanese waters, where the first ring is found when the fish attains 26 cm, the second at 34 cm, the third at 43 cm, and the fourth at 54 cm, indicating that 26 to 34 cm represents one-year class and those above 54 cm the four-The general applicability of this vear class. has not been tested. Fourmanoir (1960), following Aikawa, remarks that small quantities of skipjack caught off Comoros and Madagascar are three to six years old with a body length of 50 to 80 cm (For longevity see section 3.3.1). The smallest skipjack with mature ovaries observed at Minicoy during the 1958 to 1959 season was 390 mm and 396 mm respectively, while the largest size with immature ova was 481 mm. Generally immature gonads are rare in specimens 450 mm or more in length, but spent ovaries have been encountered in the 400 to 450 mm size group. (Raju 1962a). # 3.1.3 Mating (Monogamous, polygamous, promiscuous) Skipjack is polygamous. However, no information is available for this area on prespawning or spawning behavior. ## 3.1.4 Fertilization (internal, external) External. As in the case of other scombroids, eggs should be pelagic. ## 3.1.5 Fecundity Estimates of number of eggs in the ovary derived from gonad weight vary considerably from fish to fish. Raju (1962a) observed that Fig. 6 Size composition of Katsuwonus pelamis (Linnaeus) landed at Minicoy for certain months from May 1958 to April 1961. Horizontal black vertical portion and bars indicate modes, and vertical thin lines the size ranges for the months of observation. Table IV Months of collections and size range of skipjack larvae collected from the Laccadive Sea (after Jones 1959a) | 5 | Size (mm |) | |-----------|------------------|--------------| | Month | 1958 | 1959 | | January | - | 3.85 to 5.71 | | February | 3.60 to 7.08 and | | | | 27.0 | - | | March | 3.94 to 6.62 | - | | April | - | 2.63 to 5.82 | | May | 1=0 | - | | June | 1-7 | - | | July | y=0 | - | | August | : | - | | September | - 1 | - | | October | - | ~ | | November | × * | - | | December | 5.08 to 6.85 | - | Fig. 7 Stages of larvae and juveniles of skipjack described from Laccadive Sea (a) 2.97 mm; (b) 3.60 mm; (c) 5.08 mm; (d) 7.08 mm; (e) juvenile 27.0 mm, (after Jones 1959a) However, Fourmanoir (1960) remarks that longevity is probably eight or nine years. The maximum weight appears to be 19 kg and the fish attains 95 cm. Larger specimens about a meter long may be caught rarely. #### 3.3.2 Hardiness Adaptability to wide range of temperature is quite likely. ## 3.3.3 Competitors No definite information. However, mixed schools of adult yellowfin and skipjack are frequently seen in the Laccadive Sea and food studies of both species have indicated preference to the same major groups of food items, mainly, young of fish, crustaceans (stomatopod larvae, mysids and Megalopa larvae) and
cephalopods (Raju 1962b; Thomas 1962a). The degree of competition between the two species is not known. Collection of larval tunas from the Laccadive Sea indicates that along with skipjack larvae, only yellowfin larvae occur, while there appears to be a total absence of larvae of Auxis spp., Euthynnus sp., and other thunnids which are generally known from that area. Different spawning localities for the latter are suspected which may perhaps help in avoiding competition between species in larval and juvenile stages. Fourmanoir (1960) remarks that the whale shark Rhineodon typus was found several times associated with mixed shoals of Euthynnus alletteratus and Katsuwonus pelamys probably for feeding on a part of the Anchoviella and Spratelloides sought by them. He also mentions a young yellowfin Neothunnus albacora weighing 9 to 11 kg frequently associating with skipjack. *P.T. Thomas (inlitt.) informs that on 18 February 1961 at Minicov 47 specimens of the dolphin, Coryphaena hippurus, ranging from 63 to 103 cm and 639 skipjack 59 to 66 cm and 18 yellowfin 29 to 40 cm were caught in two boats by pole-and-line from mixed schools, this being quite unusual as generally only one or two C. hippurus are taken occasionally along with skipjack. Unlike in certain parts of the Pacific, off Minicoy, skipjack schools are not reported to be found associated with birds (Sula sp.) or with porpoises. #### 3.3.4 Predators Off Minicoy, it is not uncommon to sight skipjack schools accompanied by sharks, although no attempts have been made to identify the latter, nor are they landed during fishing with pole-and-line. Fourmanoir (1960) mentions that shoals of Katsuwonus observed on the ridge of the continental shelf west of Madagascar are often followed by Carcharinus albimarginatus 2.20 to 2.60 mlong, and swimming fast enough to capture skipjack when opportunity arises. The marlins (Makaira spp.) are also known to prey on skipjack, although no actual data is available for this area. #### 3.3.5 Parasites and diseases Several species of helminth parasites and parasitic copepoda have been described from the skipjack (Silas 1962; Silas and Ummerkutty 1962). However, only two records, a monogenetic trematode, Pricea minimae Chauhan (1945), and a caligid copepod, Anuretes branchialis Rangnekar (1951) have been observed on specimens from Indian seas from host said to be Thynnus pelamis (= Katsuwonus pelamis). Fourmanoir (1960) mentions that besides nematodes and trematodes, the Pleurocercus (Dasyrhynchus) larvae are also very numerous, encysted in the forepart of the liver. Of thousands of specimens of skipjack caught at Minicoy, none was found to be heavily infected with parasites as to impair its vitality. ## 3.4 Nutrition and growth 3.4.1 Feeding (time, place, manner and season) No direct observations are available on time, place and manner of feeding nor the season. However, food of skipjack caught on pole-and-line examined for various months from 1958 to 1961 from Minicoy Island would indicate differences in the predominant natural food components and slight differences in the feed of the different size groups. See section 3.4.2. ## 3.4.2 Food (type, volume) Raju (1962b) has shown that the ratio of natural food <u>versus</u> baitfish in skipjack caught by pole-and-line was 1:6.9 to 29.7, the latter varying from month to month. Thomas (1962) arrived at similar conclusions for the period November 1960 to April 1961. Fourmanoir (1960) mentions that the main food of Katsuwonus are engraulids, clupeids and cephalopods, and also planktonic stomatopods. Off Madagascar, the main components of food are Anchoviella commersoni (adults or very young - 4.7 to 9 cm), and Spratelloides delicatulus. Large Katsuwonus over 70 cm seek small sardines such as Sardinella jussieu or S. melanura and some inclusions of these as food weigh as much as 100 g, while in smaller Katsuwonus 60 to 65 cm long, some stomach inclusions with Anchoviella weigh about 50 g. At Fort Dauphin at the southern extremity of Madagascar another engraulid known only from colder waters has been encountered in the stomach of Katsuwonus. The observation that fishes constitute the dominant food items of <u>Katsuwonus</u> is more or less in line with the data given by Thomas (1962a) for 280 stomachs examined by him. (Table VI) When compared with the above data, that given by Raju (1962) indicate notable differences (see Table VII), although the major items of food are the same. These differences in percentage composition of the different food items may as well reflect seasonal fluctuations in the availability of the natural food elements of the skipjack in the environment. ## 3.4.4 Relation of growth to feeding, to other activities and to environmental factors Raju (1962b) found that there was an increase in the main food volume of skipjack with the increase of the fork length of the fish, and decrease in the average stomach content per unit of body weight with the increase in body weight, paralleling similar phenomena seen in yellowfin (Reintjes and King, 1953; King and Ikehara 1956). The data on variations in the composition of food with fish size given by Raju (1962b) for four size groups of skipjack from Minicoy is summarized (Table VIII). Records of various species of baitfish recovered from the stomach indicate that Lepidozygus tapeinosoma, Dipterygonotus leucogrammicus, Caesio caerulareus, Archamia lineolatus, and Chromis caeruleus constitute the dominant items while Caesio tile, C. chrysozona, Pomacentrus tripunctatus, Apogon aureus, A. septemstriatus, A. sangiensis, A. frenatus are frequent. Occasionally Spratelloides delicatulus, S. japonicus, and species of Panacentrus, Abudefduf, and Apogon are encountered while the remaining species are rare. (Raju 1962b; Thomas 1962a). However, there are seasonal fluctuations in the occurrence of the major species of bait fishes recovered from the stomachs and those occurring in the bait collections (Thomas 1962a). Of all the baitfishes used at Minicoy, L. tapeinosoma appears to be the most suitable one for chumming tuna, while from experience fishermen know that species of Caesio, (e.g. C. tile) are most effective in this respect. However, availability limits their usage. Most of the live-bait fishes are juveniles. No direct observations is available about the breeding of baitfishes, but data on size composition given by Thomas (1962b) indicate that batches of smaller size groups of these species appear in the bait fishing grounds from time to time. #### 3.5 Behavior #### 3.5.1 Migration and local movements Present knowledge is inadequate to state anything definite on these subjects. No information is available about agencies helping in the spatial dispersal of larvae. Only information available on vertical distribution is given by Yabe and Ueyanagi (1961). (See section 2.2.1) No tagging experiments have been undertaken in this area for studying the migratory habits of skipjack. The sight records of moving shoals do not throw light as to whether the movements are localized or whether they represent largescale seasonal movements of an entire stock from one area to another and vice versa to feeding grounds or spawning areas. Size $\begin{array}{c} \textbf{Table V} \\ \textbf{Composition of the major items of food of } \underline{\textbf{Katsuwonus}} \ \underline{\textbf{pelamis}} \\ \textbf{from the Laccadive Sea} \end{array}$ | | No of | Volur | netric j | percentage | | 4 | | | | | |---------------------------------------|---|---|-------------------------|--|--
--|--|--|--|--| | Period of observation | fish
examined | Crus-
tacea | Fish | | | occurre | ence | pe: | rcenta | ıge | | | | (/ | (2) | (0) | (A) | (1) | (C) | (A) | (B) | (C) | | May 1958
to April | 2,506 | 57.2 | 18.7 | 24.1 | 76.0 | 15.1 | 23.2 | 91.9 | 6.4 | 19.7 | | 1959
Nov. 1960
to April
1961 | 280 | 37.29 | 58.78 | 3.93 | 47.83 | 77.71 | 10.91 | | - | - | | 0 | May 1958
to April
1959
Nov. 1960
to April | May 1958 2,506 to April 1959 Nov. 1960 to April | Period of fish examined | Period of observation fish examined Crustacea (A) Fish (B) May 1958 to April 1959 2,506 57.2 18.7 Nov. 1960 to April 280 37.29 58.78 | Period of observation fish examined Crustacea (A) Fish and Misc. (C) May 1958 to April 1959 2,506 sto April 280 to April 4950 37.29 58.78 3.93 | Period of observation fish examined Crustacea (A) Fish and Misc. (C) Fish tacea (A) Fish and Misc. (C) Fish tacea (A) Fish and Misc. (C) Fish and Misc. (C) Fish tacea (A) Fish tacea (B) Fish tacea (B) Fish tacea (Crustacea (A) Fish tacea (B) Fish tacea (Crustacea (B) Fish tacea (Crustacea (B) Fish tacea (B) Fish tacea (Crustacea (B) Fish tacea (B) Fish tacea (Crustacea (B) Fish tacea tace | Period of observation fish examined (A) (B) Squids and Misc. (C) | Period of observation Include the property of prop | Period of observation fish examined (A) (B) (Crustacea (A) (B) (Crustacea (A) (Cr | Period of observation fish examined (A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | Table VI Food items of Katsuwonus (Thomas 1962 a) | Size 50 cm | and below | Size above 50 cm | | | |------------|-----------------------------|--|--|--| | Volume | Frequency of occurrence | Volume | Frequency of occurrence | | | 48.07% | 78.33% | 69.5% | 67.1% | | | 46.69% | 46.66% | 27.89% | 49.0% | | | 5.24% | 8.33% | 2.61% | 13.5% | | | 99 | 99 | 181 | 181 | | | 39.4% | 39.4% | 54.7% | 54.7% | | | | Volume 48.07% 46.69% 5.24% | 78.33%
46.69% 46.66%
5.24% 8.33% | Volume Frequency of occurrence Volume 48.07% 78.33% 69.5% 46.69% 46.66% 27.89% 5.24% 8.33% 2.61% 99 99 181 | | Table VII Dietary items of <u>Katsuwonus pelamis</u> caught on pole-and-line off Minicoy, Laccadive Sea (Natural food only - after Raju 1962b) | Major groups | Food items | Volumetric
percentage
(Mean) | I Monthe of | Highest
percentage and
month | |--------------|---|------------------------------------|--|------------------------------------| | CRUSTACEA | Stomatopoda (larvae and juveniles) viz., Gonodactylus demani; Squilla (Alima) hyalina; S. (Alima) hieroglyphica; S. wood-masoni; S. fasciata; Lysiosquilla suleirostris | 24.7 | July, August September October Nov., Dec. January February March, April | 57.9 May | | 10 E | Megalopa | 24.2 | May, June July, August September Oct., Nov. Dec., Jan. Feb., March April | 44.4 June | | | Mysids | 8. 3 | June, August
Sept., Oct.
Nov., Dec.
February | 38.0 June | | | Euphausids | 2.16 | Feb., Sept.
November | 3.7 Feb. | | | Acetes | 1.65 | October
February | 2.5 Feb. | | | Phyllosoma | 6.95 | December
March | ll.4 March | # Table VII (continued) | Major groups | Food items | Volumetric
percentage
(Mean) | Months of occurrence |
Highest
percentage and
month | |-------------------------------|---|------------------------------------|--|------------------------------------| | MOLLUSCA | Cephalopods Cavolina sp. and other pteropods | 21.8 | May, June August. Sept. Oct. Nov. Dec., Jan. February August | 75.1 August | | FISHES | Balistidae and Monacanthidae Species: Odonus niger; Sufflamen capistratus Balistes stellaris; Melichthys ringens; Hemibalistes chrysopterus; Balistes spp; Monacanthus spp; Syngnathidae: Halicampus koilomatodon; Corythoichthys fasciatus; Hippocampus kuda; Tetraodontidae: Gastrophysus lunaris Chelondon patoca; Arothron immaculatus Miscellaneous fishes | 8.7 | May, June July, August Sept., Oct. Nov., Dec. Jan., Feb. March, Aug. | 30.3 July | | OTHER
MISCEL LANE
ITEMS | OUS Zoea larvae; Caprella sp; Ascidian tadpoles; Salpa sp; Rubber pieces; Wooden pieces; Bits of sea weeds | 1.54 | All months | | composition data obtained from pole and line catches at Minicoy tend to indicate the influx of fresh batches of small size groups throughout most months of the year, probably reflecting on the fractional spawning habits of the fish itself. Stray instances of skipjack entering lagoons are known. Sometimes they may be in pursuit of prey (Spratelloides spp.) during high tides. ## 3.5.2 Schooling Schools around Minicoy Island in the Laccadive Sea are small. Generally the surface agitation caused by the shoal is less than a 100 m wide, as has also been reported for Madagascar waters by Fourmanoir (1960). Within a school, fishes are usually distributed in different layers. Off Minicoy it is not uncommon to see two or more shoals of skipjack hardly half a kilometer apart. Fourmanoir (1960) remarks that it is frequent to cross over six successive shoals of Katsuwonus less than 300 m apart, especially around the Radama and Mitsio Islands off Madagascar where shoals occur regularly for most of the year in waters 40 to 60 m deep. Occasionally larger shoals of 300 to 400 are seen, but shoals over 500 m wide have not been observed off Madagascar. Along the northwest coast of Madagascar, between St. Sebastian Cape and St. Andrew's Cape, skipjack shoals occurred at the frequency of one shoal every seven miles and one in two shoals was associated with yellowfin tuna measuring 87 to 92 cm. In spite of apparently normal oceanographic conditions between 1955 and 1957, shoals seemed to disappear except in the Mitsio Island area. P.T. Thomas (in litt.) reports that when stormy weather makes seas choppy, generally skipjack of smaller size groups are caught around Minicoy Island. When the weather clears, shoals of both large-sized and small-sized fish may be encountered. The smaller size group disappears almost completely within a few days. #### - General habits Skipjack is a very alert fish and shoals often sound when approached in a mechanized craft (probably due to the noise of the engine) or when approached by a spearfish (Marlin). During pole-and-line fishing at Minicoy it has been observed when chummed to take any baitfish offered. Instances are not uncommon of hooked fish dropping into the water without the school becoming frightened and disappearing. Indiscriminate feeding, probably at such times is also suggested by stomach contents such as coir fiber, cooked rice, scrapings of paint, pieces of wood, bits of algae etc. Table VIII Composition by volume of stomach contents (other than baitfish) of four size groups of skipjack obtained from pole-and-line fishery at Minicoy | | | Skipjack size | e groups | | |--------------------------|------------------------|------------------|------------------|------------------------| | ¥ | (1)
Below
400 mm | 401 to 550
mm | 551 to 700
mm | (4)
Above
700 mm | | Stomatopod larvae | 60.5 | 36.2 | 9.7 | 16.2 | | Mysids and
Euphausids | - | 19.4 | 7.7 | 8.3 | | Megalopa | 14.3 | 18.0 | 15.3 | 7.7 | | Cephalopods | - | 8.8 | 25.2 | 37.8 | | Fishes | 12.5 | 14.2 | 37.5 | 27.8 | | Miscellaneous | 12.9 | 3.4 | 4.6 | 2.3 | ## 4 POPULATION (STOCK) ## 4.1 Structure ## 4.1.1 Sex ratio Raju (1962a) indicates a disparity in the sex ratio of skipjack in Minicoy waters, with males predominating during most months, a slightly higher percentage of females among the smaller groups and males among the larger size groups. ## 4.1.3 Size composition Some data available are given under section 3.1.2. # 4.4 Mortality, morbidity ## 4.4.1 Rates of mortality No information except suspected mortality of juvenile tuna probably also including skipjack in certain sections of the Indian Ocean (Jones 1962b). ## 5 EXPLOITATION ## 5.1 Fishing equipment ## 5.1.1 Fishing gear In the Laccadives and Maldives, skipjack is invariably caught near the surface and the gear used is pole-and-line with simple, barbless, lead-coated iron hooks. Strong bambo poles three to four m long are used. The length of the line equals that of the pole. When not in use the hook is kept fixed to the base of the pole. At present nylon has replaced the steel wire used for the distal one third of the line, the rest being of cotton. More details may be had from Jones and Kumaran (1959). Skipjack has been taken by trolling during experimental fishing operations in East African waters; Madagascar; and off the West Coast of India. In the Laccadives around Minicov as well as off Tuticorin in the Gulf of Mannar (Silas 1962) boats returning from fishing on rare occasions catch a few skipjack using troll lines. Fourmanoir (1960) mentions that off Madagascar small quantities are also taken by trolling, but due to the brittleness of the mouth of the fish, only one out of eight that take the bait are successfully landed. He added that sport fishermen at Mauritius join "bonate" shoals in small mechanized boats at 10 to 12 knots speed with troll lines and stop as soon as the bait is taken. Around Reunion Island occasionally largesized skipjack are caught trolling with Decapterus, and <u>Selar</u> as bait. Japanese longline catches indicate that less than 4 percent of the tunas caught by them using this method in the Indian Ocean are skipjack. The infrequent capture of skipjack in shoreseines and driftnets has already been mentioned. Live-bait fishing is the most effective for catching skipjack and at present in the Indian Ocean it is practiced only around Minicoy Island in the Laccadive Archipelago and around several islands in the Maldives (Fig. 8a and b). Jones and Kumaran (1959) have given details of fishing methods at Minicoy which do not differ from that given for the Maldives by Hornell (1934, 1950) and Jonklaas (1962). Details of bait fish used are given under section 3.4.5. References to sport fishing for the skipjack from this region are few (Gadsden 1898, 1900). ## 5.1.2 Fishing boats In the Maldives as well as at Minicov-Island in the Laccadives, special boats are built for bonito fishing (Figs. 9). These boats are of sturdy construction and have a remarkable degree of stability. At Minicoy as reported by Jones and Kumaran (1959), this type of boat: "is locally built usually with coconut planks fastened with copper nails. Sometimes timber from the local laurel tree (Callophyllum inophyllum) is also used along with coconut The partitions and certain small parts within the hull are made of wood brought from the mainland. The boat is about 12.5 m long and about 3 m broad. It is broadest at the aft which is provided with a slightly raised platform (peelaga) which extends like wings outside the bulwarks. A piece of wood (Kumbukamphi) about 1, 25 to 1, 5 m in length and 20 cm in breadth is fixed vertically on the plat-This helps to give a supporting hold to the person who steers the rudder, and the aft mast is also kept on this when not in use. The fen-fona-fori or water-splasher is hung on one side. A curved piece of wood (unkanudhuni) about 1 m long, usually colorfully painted is attached to the rudder (unkanu) to facilitate its operation. There are nine compartments in all, of which four in the middle have a series of two to three holes (inguri) at the bottom on each side for access of water from below. inter-compartmental partitions have small holes for the free flow of water from one compartment to the other. The middle three or four sections (eng-vy) hold live-bait fish, and the water that accummulates at the aft compartment is baled out regularly by a couple of boys with copper balers known as diya-hikka-fe. There is provision for seven to nine oars (phali) on each side. The blade of the oar (phalidu) is of wood about 30 cm long and 20 cm broad, and the handle (thandu) is of coconut timber about 3.5 to 4 m long. There are two masts (kombu) of coconut timber, a longer one about 8 m long in the eighth compartment and a shorter one about 6 m long in the third compartment. The sails are of cloth. Small tuna boats are 8 to 9 m long but these have no platform. Sometimes a wooden raft known as Fig. 8 (a) Live-bait basket anchored in the lagoon at Minicoy; (b) An "emvery" used for transferring live-bait with some fish inside. Fig. 9 (a) Tuna fishing boat of Minicov returning after fishing; (b) same, proceeding to fishing grounds after collection of bait-fish from the live-bait basket seen on the right side. kanthu-fathi are used for going to the boat anchored in the lagoon" (Fig. 10). Hornell (1950) mentions the resemblances of the prow and graceful curves of these boats to the old viking ships. Speaking of the sails of these tuna fishing boats in the Maldives as they were during the early part of this century, Hornell (1934) remarks
that: "The rig of the larger vessels is a strange combination of fore and aft and square sails. A high rectangular mat sail, the head laced to a yard, is hoisted on the foreside of the mast, while abaft, on the same spar, is set of fore and aft main sail, laced to a gaft but without a boom. Not infrequently this main sail is of thin cotton. The combination of pale brown mat square sail and white cotton main sail is picturesque but to a sailor has a strangely unhandy appearance. In the hands of the islanders the rig works satisfactorily. Considerable taste is shown in all details of painting and carving. While black and yellow form the usual color scheme used in the decoration of the hull, the rudder-head and the tiller are often simply but effectively carved in elegant symmetric pattern, picked out in two colors". In Minicoy as well as in the Maldives the mat sail of former days has given place to the cotton sail. At Minicoy every Thursday evening the tuna boats are hauled ashore for cleaning, painting and minor repair work, and are launched on Saturday morning for regular fishing. The boats are hardy and durable and most of them last at least 20 to 25 years. The present day cost of constructing a tuna boat at Minicoy is about Rs.5000/-. Except for the copper nails, keel and bent frames, indigenous timber is used. ## 5.2 Fishing areas 5.2.1 General geographic distribution See section 2.2.1. 5.2.2 Geographical ranges (latitudes, distances from coast, etc.) See section 2.2.1 ## 5.3 Fishing seasons 5.3.1 General pattern of fishing seasons Around Minicoy Island in the Laccadives the fishery is operative from September to April, with the peak season from December to March. The same would apply also to the Maldives further south (Jonklaas 1962). 5.3.2 Duration of fishing season See section 5.3.1. 5.3.3 Dates of beginning, peak and end of season See section 5.3.1. 5.3.4 Variation in time or duration of fishing season During two periods of observation, from May 1958 to April 1959 (Raju, in litt) and November 1960 to April 1961 (Thomas, in litt), the time of fishing varied in relation to the availability. In the former period, fishing was confined to the early hours of the morning and to the forenoon, while in the second period it was carried out throughout the day, the boats returning even after dusk. 5.3.5 Factors affecting fishing season Around Minicoy the main factors affecting fishing are: - (i) the non-availability of bait fish in sufficient quantities; - (ii) very rough weather during the monsoon period; - (iii) skipjack schools occasionally not responding to bait; - (iv) though the boats are inefficient, as they have to depend on wind and oars, the time taken to get to sighted shoals is greater, with the chance of the shoal disappearing. Due to the same reason more time is taken up in scouting for shoals and fishing is restricted to within a few kilometers from the Island. #### 5.4 Fishing operations and results ## 5.4.1 Effort and intensity For the seasons November 1960 to April 1961 when more than 1,000 metric tons of skipjack were landed in Minicoy, the catch per man hour of effort for the whole season has been calculated to be 0.62 kg (Thomas 1962 b). Fig. 10 (a) Tuna fishing boat, (b) raft used in ferrying persons to boat anchored in lagoon or to bait baskets; (c) pole-and-line used for tuna fishing; (d) tuna fishing hook; (d1) cross section of same; (e) oar used in fishing boats; (f) coral stone anchor; (g) water-splasher; (h) water-baler; (i) wooden trough used for carrying tuna; (j) method of filleting tuna for preparation of mas (semidiagrammatic); (k) a piece of mas (semidiagrammatic) with split coconut leaf; (l) copper vessel used for boiling tuna meat (after Jones and Kumaran 1959). ### 5.4.2 Selectivity The absence of smaller size groups of skipjack below about 300 mm and larger fish above 720 mm in the catches at Minicoy remains to be explained. It is not known whether it may be due to the selective nature of the gear (the hook used is of a standard size) or for some other reason. Fishermen prefer skipjack over yellowfin, which also occur in fair abundance in those waters, since the dried product (mas-min) obtained from skipjack is considered superior in quality. ## 5.4.3 Catches For Minicoy for the period November 1960 to April 1961 - see section 5.4.2. The export figures for the smoked product are given in Table IX. The ratio between the fresh and the smoked product is 4:1. Export figures to Ceylon from Maldive Islands in 1951 (Anonymous 1954) were 2, 151 tons of 'Maldive fish' (about half the prewar figure), which would mean that the annual prewar landings of fresh skipjack at the Maldives could have been around 16,000 tons. Fourmanoir (1960) gives the skipjack landing figure for Madagascar as about two tons a year, in La Reunion 5 tons and Comoro Islands 1.5 tons. # 5.4.4 Past and present factors of effect on operations and results It is assumed that only a very small percentage of the available stock of skipjack is tapped at present in this region. Fourmanoir (1960) comments on the considerable scope for improving skipjack fishery in the Malagasy waters and the same should be applicable for other areas also. At Minicoy, the catch per man effort is very low but continuous data is not available to study fluctuations. ## 5.5 Fisheries management and regulations In India, the Central Marine Fisheries Research Institute, Mandapam Camp has been collecting data on skipjack biology and fishery; bait fish resources, etc. from the Laccadive Sea for the past few years. The East African Marine Fisheries Research Organization has been conducting experimental troll fishing and there are indications that good fishing grounds for skipjack exist off East Africa and Zanzibar. In Madagascar, work carried out at the Office de la Recherche Scientifique et Technique, Outre-Mer (ORSTOM) indicates considerable scope for developing skipjack fishery in that area. In Australia, the Commonwealth Scientific and Industrial Research Organization (CSIRO) has been carrying out active experimental fishing for tunas which has revealed the occurrence of skipjack around Tasmania, Great Australian Bight and Western Australia in the Indian Ocean. Table IX Export figures for smoked skipjack | Year | Number of bags (1201b each) | Approximate value in Rupees | |------|-----------------------------|-----------------------------| | 1952 | 1, 570 | 1, 57, 785 | | 1953 | 2, 221, 5 | 2, 44, 365 | | 1954 | 1, 921 | 2, 30, 520 | | 1955 | 1, 191 | 1, 39, 283 | | 1956 | 3, 110 | 3, 34, 150 | | 1957 | 5, 544 | 6, 04, 931 | | 1958 | 3, 406 | 3, 92, 254 | | 1960 | Ca 1,112 | Ca 1,77,920 |