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ABSTRACT 

The thesis highlights the effect of copper, cadmium and zinc in green tiger 
prawn Penaeus semisu/catus, one of the penaeids occurring throughout the 
Indian coastal waters particularly in the Gulf of Mannar and Palk Bay. Acute 
toxicity bioassays were conducted for copper (Cu), cadmium (Cd) and zinc (In ). 
The 96 h LCso for copper, cadmium and zinc were 6.98 ppm, 2.8 ppm and 5.00 
ppm respectively. The degree of toxicity of the three metals were in the order Cd 
> In > Cu. Based on the LCso values, two sublethal concentrations of copper (0.7 
ppm and 1.4 ppm), cadmium (0.25 ppm and 0.5 ppm) and zinc (0.5 ppm and 
1.00 ppm) were selected for bioaccumulation, physio-biochemical and 
histopathological studies. In all the lethal and sublethal exposures, blackening of 
the gill lamellae and exoskeleton was noticed. The accumulation of metals was 
pronounced in the hepatopancreas, gills, muscle, tail and carapace. The results 
of the study suggest that the shrimps could not regulate the accumulation of Cu. 
Cd and In . The bioaccumulation in the selected organsltissues was found to be 
dose dependent. In the physio-biochemical studies. an increase in the respiration 
rate was found in shrimps exposed to lethal concentrations of copper. cadmium 
and zinc. The biochemical components, carbohydrate, protein and lipid were 
found to get reduced during the various phases of metal exposure. The observed 
change in the proximate components is attributed to the alterations in the 
enzymes involved in cellular energy generation processes. inhibition of protein 
synthesis by the alteration in the DNA and RNA content and increases in the free 
fatty acid content due to changes in the synthesis and mobilization of lipids. 
Histopathological changes include haemocy1ic infiltration. swelling of gill 
lamellae. fusion of gill lamellae. lifting of lamellar epithelium. fusion and necrosis 
of secondary gill lamellae in gills and tissue debris, necrotic tubules, swelling and 
abnormal lumen in hepatopancreas. Ultrastructural changes in gills include 
damaged nuclear membrane. disrupted mitochondria, distorted endoplasmic 
reticulum. apical cell damage, and damage to mitochondrial and nuclear 
membrane. In hepatopancreas vacuole formation. breakage of cell membrane. 
swelling of nuclear membrane. condensed nucleus. aggregations in nucleus. 
disrupted endoplasmic reticulum and formation of electron dense bodies were 
the major changes. 
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1. INTRODUCTION 

In recent years , the role of metals in causing environmental pollution has 

been well recognized and is gaining significance. Many of these metals occur 

naturally in the environment and in trace amounts are essential to the normal 

metabolism of the aquatic organisms. However. industrial and agribusiness 

wastes, in some cases, have elevated the natural levels of such metals in the 

aquatic environment. 

Toxicity tests, otherwise called "Bioassay tests" are performed widely to 

evaluate the impact of chemicals both on aquatic and terrestrial organisms. Since 

1950, the acute toxicity testing has become the 'work house' for the detection. 

evaluation and abatement of water pollution. Information generated from toxicity 

tests can be of use in the management of pollution for the purpose of (i) 

prediction of environmental effects of a waste, (ii) comparison of toxicants or 

animals or test conditions and (ii i) regulation of discharge (Buikema et al .. 1982). 

Acute toxicity studies have been performed to determine the effects of metals on 

marine and freshwater invertebrates and fishes (Sprague. 1969. 1970). 

Decapod crustaceans form an important component of aquatic biota and 

are found in fresh, brackish and marine waters. Decapod crustaceans such as 

prawns, crabs, shrimps and lobsters form an important group of seafood items. 

The US Environmental Protection Agency has developed guidelines for deriving 

national water quality criteria for the protection of aquatic organisms and their 

uses. These guidelines have been in place for a long time and states have used 

them to establish water quality standards for their water bodies. More recent 

reports have been directed towards the development of technical regulation 

based on the concept that bioassessment and biocriteria programs for estuaries 

and near coastal waters are interrelated and are critical components of 

comprehensive water resource protection and management. This is a holistic 



approach to protection and management, integrating biological assessments into 

traditional chemical and physical evaluations and augmenting the established 

water quality criteria (Russo, 2002). 

The bioaccumulation or bioconcentration of toxic substances has become 

a cause for concern in pollution toxicology as it may wreak havoc with the higher 

trophic members. Despite the relatively low concentrations of trace metals in the 

surrounding medium, aquatic organisms take up and accumulate them in their 

soft tissues to concentrations several folds higher than those of ambient levels 

(Wright, 1978; Bryan, 1979). The ability of many edible aquatic organisms to 

accumulate metals is potentially hazardous to human health. Shellfishes 

commonly accumulate much higher concentrations of trace metals than the 

finfishes. This ability has been found in Penaeus semisulcatus and Mytilus edulis 

and so shellfish can be considered as indicators of environmental quality 

(Eustace, 1974; Philips, 1976). 

The pattern of bioaccumulation of heavy metals in animals differs from 

metal to metal and from organ to organ. Abiotic and biotic factors also influence 

the accumulation of heavy metal in animal tissues. The biological significance of 

metal deposition in soft tissues of decapod crustaceans is still a matter of intense 

debate (Gibson and Barker, 1979; Dall and Moriarty, 1983; Rainbow, 1988; 

1995a, b; 1997a, b.). Trace metals are accumulated by marine invertebrates to 

body concentrations higher than the concentration in the surrounding seawater 

environment (Esler, 1981 ; Rainbow, 1990). 

Regarding, nonessential and toxic metals like lead, cadmium and mercury, 

there is a general agreement that intracellular inclusions of these metals reflect 

detoxification mechanisms. In contrast, the interpretation of respective metal 

granules is controversial for essential metals like copper, iron and calcium. Some 

authors consider them as storage compartments for physiological requirements 

whereas others advocate for their role in removal and detoxification of surplus 
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metal acquired passively from the feed or water (AI-Mohanna and Nott, 1985, 

1986, 1987; Rainbow, 1988). 

A sequence of metabolic and biochemical changes are known to precede 

the histological manifestation of pathological alterations in tissues. Therefore, an 

understanding of the biochemical changes would appear to be a rational 

approach to the assessment of the toxic stress caused by the metal poisoning. 

The biochemical changes that can be studied in organisms include the changes 

in protein, carbohydrate and lipid. The difference in the changes in these basic 

components will indicate the changes in the activity of the substrate level 

metabolites and enzymes involyed in the oxidative metabolism, hydrolysis and 

detoxification. The extent of the deleterious effects of various stress producing 

substances can be elucidated from the studies on the concentrations or activities 

of various metabolites and the metabolic processes occurring in vivo. 

In aquatic organisms the rate of oxygen consumption is considered to be a 

useful tool to assess the influence of environmental stressors like salinity, pH, 

temperature etc. The rate of respiration serves as an index of energy expen~iture , 
(Vemberg and Vernberg , 1972; Thurberg et al., 1973; Vijayaraman, 1993). The 

respiratory responses of an organism to any environmental contamination may 

provide information about the magnitude of the stress posed to the exposed 

population of organisms. Damage to the physiological processes of the 

organisms may cause morbidity and, ultimately mortality. The measurement of 

oxygen consumption is also a sensitive method of establishing the relative 

importance of various environmental factors. The findings thus obtained may 

help in the evaluation of the possible resistance or susceptibility of the tissue 

concerned to the heavy metal. Such studies can also offer clues as to the extent 

of possible tissue damage. 

The biochemical composition of crustaceans changes with development 

and growth, particularly during moulting and maturation and also due to the 

3 



'stressors' that include heavy metals and pesticides. The major biochemical 

constituents are the energy yielding proteins, carbohydrates and lipids. Various 

organs differ both in quantity and quality of the protein, carbohydrate and lipid 

components. 

Various indices of metabolism have been formulated to evaluate the 

intensity of stress in a given organism. Certain metabolites have been known to 

show pronounced response to the stressors. Biochemical studies afford a 

rational way of assessing early changes in various tissues caused by exposure to 

toxic metals. Besides, information on the interplay between certain important 

metabolites might lead to a better understanding of the aerobic and anaerobic 

potential of cells and tissues and about which the energy requirements are 

... satisfied. 

The exposure of aquatic organisms to pollutants in their environment may 

result in various biochemical, physiological and histological alterations in the vital 

tissues. Histological methods have been used to assess the effects of pollutants 

on aquatic organisms, since such studies bear a direct testimony to the 

deleterious effects of toxicants. A number of light microscopic studies have been 

performed on the general structure and function of the crustacean gill and 

hepatopancreas. Studies on the uHrastructure of the gills and of the 

hepatopancreas in crustaceans include those of Loizzi (1971) a~ Talbot et al. 

(1972). However, there have hitherto been few attempts to document histological 

changes occurring in the tissues of the gills and hepatopancreas of crustaceans 

following exposure to different concentrations of metal ions. 

The present study is carried out to evaluate the effect of copper, cadmium 

and zinc in the green tiger prawn Penaeus semisulcatus (de HilAln, 1844), a 

common shrimp occurring throughout the Indian marine waters with a dominance 

in the Gulf of Mannar and Palk Bay, with the following objectives. 
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1. To determine the 96 h Leso levels for the above heavy metals. 

2. To investigate the bioaccumulation patterns in major soft tissues of Penaeus 

semisulcatus exposed to lethal and sublethal concentrations of the heavy metals. 

3. To determine the rate of oxygen consumption in the shrimp exposed to lethal 

concentrations of heavy metals at various time intervals. 

4. To determine the effects of lethal and sublethal concentrations of copper. 

cadmium and zinc on important biochemical components viz. protein . 

carbohydrate and lipid in various tissues of the shrimp. 

5. To elucidate the structural changes in the gill and hepatopancreas of Penaeus 

semisulcatus exposed to lethal and sublethal concentration of copper. cadmium 

and zinc through light and electron microscopy 
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2. REVIEW OF LITERATURE 

2.1. Bioassay Studies 

Copper is an essential trace metal required in small doses by organisms 

for metabolic functions, but it is potentially very toxic if the internal available 

concentration exceeds the capacity of physiologicall biochemical detoxification 

processes (Sunda and Hanson, 1987; Rainbow, 1992). Normal transport, storage 

and metabolism of copper must thus safeguard the cells against toxicity. This is 

partially true for decapod crustaceans, that require copper for biosynthesis of the 

respiratory pigment, haemocyanin, dissolved at huge concentrations in 

haemolymph (Rtal and Truchot, 1996). 

Cadmium, a non-essential metal is a micro pollutant with a wide range of 

ecological and physiological effects. It is considered as a potential hazard to 

marine organisms under elevated levels and crustaceans are known for their 

sensitivity to cadmium (White and Rainbow, 1982; Rainbow and White, 1989; 

Bambang et a/., 1994). 

Zinc is an essential element and in vivo levels are therefore regulated by 

most organisms. In decapod crustaceans the absorption of zinc and probably 

other metals from solution is almost certainly a passive process involving 

absorption on to the surface of the gills and inward diffusion, probably attached to 

organic molecules (Bryan, 1967; 1971). 

Evaluation of the toxic effect of certain heavy metals (Hg, Cd, Pb, As and 

Se) on the common Indian marine crab Scylla serrata showed mercury to be the 

most toxic among the metals tested (Krishnaja et a/., 1987), and that cadmium 

showed an increase in toxicity with increase in time of exposure. 
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The acute toxicity of cadmium to different embryo stages of the penaeid 

shrimp Penaeus japonicus and the effect of copper on the survival and 

osmoregulation of various developmental stages of shrimp Penaeus japonicus 

were reported by Bambang et al. (1994; 1995) who found that the tolerance to 

copper increased with the developmental stage of the shrimp. 

In the marine amphipod. Allorchestes compressa. copper was found to be 

6 times more toxic than cadmium and 4 times more toxic than that of zinc 

(Ahsanullah et al .. 1988). The LCse levels of copper for Penaeus indicus. 

Penaeus merguensis and Crangon crangon were 0.3. 6.1 and 1.9 ppm Cull 

respectively (Mary Carmel et al .. 1983; Denton and Burdon . 1982 and Portman 

and Wilson. 1971). 

Morphological and behavioral studies have emphasized the importance of 

both the activity and chemical senses of crustaceans (Mc Leese, 1970; 1974; Mc 

Leese et al .. 1977). Studies on the physiology and behavioral responses of 

marine and estuarine organisms to pollutants often necessitate the establishment 

of acceptable concentrations of the pollutants (Henderson. 1957; Anderson. 

1971 : Preston . 1971 ; Tarzwell . 1971 : Sprague. 1971. 1976; Vern berg and 

Vernberg . 1974; Vernberg . 1975; Vern berg and De Coursey. 1977; Nammalwar. 

1982) in the natural habitat. 

The acute toxicity levels of Penaeus indicus to zinc are reported by 

Visvanathan and Manisseri (1993). A few data are available on the acute toxicity 

bioassay of cadmium. copper and zinc to marine crustaceans (Bahner and 

Nimmo. 1975; Ahsanulla . 1976: Sivadasan et al .. 1986) and for freshwater 

prawns (Nimmo et al .. 1977: Vijayaram and Geraldine. 1992 and Vijayaraman . 

1993). 
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2.2. Bioaccumulation 

2.2.1. Copper 

The marine environment is the final reservoir for heavy metals produced 

by both anthropogenic and natural activities. The concentrations of metals in 

coastal and estuarine areas tend to be higher than in the open sea. due to 

anthropogenic input. The copper level in the unpolluted marine waters is less 

than 0.05 ~g/l. but in polluted coastal zones and estuaries. concentrations of 

copper exceed by far this value (Saager et al .. 1997). 

Decapod crustaceans can regulate their body copper concentration . which 

is required for haemocyanin synthesis (Alikhan. 1972: Alikhan et al.. 1990: 

Alikhan and Storch. 1990: White and Rainbow. 1982). However. above a certain 

concentration of copper in the external medium. the regulation breaks down and 

decapod crustaceans accumulate this metal. which becomes toxic at high 

concentration (Rainbow. 1985: Sunda and Hanson. 1987: Scott-Fordmand and 

Depledge. 1997: Soegianto et al .. 1999) . 

Elevated concentrations of copper are lethal as demonstrated in 

Callianassa australiensis (Ahsanullah et al .. 1981a. b) . Penaeus merguiensis 

(Denton and Burdon Jones. 1982) and Penaeus japonicus (Bambang et al .. 

1994). Several adverse effects on physiology of crustaceans have been reported . 

particularly on respiration and osmoregulation if high concentration of copper was 

present in the environment. Exposure to high copper levels disrupted respiration 

in Car'ciuns maenas (Depledge. 1984: Boitel and Truchot. 1989) and Cancer 

pagurus (Spicer and Weber. 1991 . 1992). and it affected osmoregulation in 

Carcinus maenas (Thurberg et al .. 1977: Boitel and Truchot. 1989: Hansen et al .. 

1992: Soegianto et al .. 1999). 

Accumulation of heavy metals from the aquatic milieu has been reported 

in crabs. In Callinectes spp. copper concentrations were higher than other metals 

in the hepatopancreas. In Scylla serrata. the pattern of accumulation of heavy 
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metals in the tissues in the laboratory experiment was similar to what was 

observed in the environment: hepatopancreas > gill> muscle. Further. increased 

uptake of metals by tissues was recorded with increase in the test concentrations 

(Devi and Yogamoorthy. 1997: Narayanan . 1989: Narayanan et al .. 1997: Sastre 

et al . 1999). 

2.2.2. Zinc 

The accumulation and regulation of zinc in invertebrates have been 

described by various authors. The bioaccumulation of zinc in the lobster 

Homarus vulgaris. crab . Carcinus maenas and shrimp Crangon crangon has 

been reported (Bryan. 1964. 1976: Rainbow. 1988). Decapod crustaceans 

regulate the body concentration of zinc over a wide range of ambient zinc 

bioavailability (Bryan. 1964: 1966: 1967: 1968: 1976: White and Rainbow. 1982: 

Bryan et al .. 1986.). White and Rainbow (1982). carefully defined physico­

chemical conditions for regulation of zinc in the laboratory using Palaemon 

elegans. 

2.2.3. Cadmium 

There is no evidence to suggest that any decapod regulates body 

cadmium concentration to a constant level. The bioaccumulation of cadmium in 

various tissues has been reported in the crab Carcinus maenas (Wright. 1977a. 

b: Jennings and Rainbow. 1979: Rainbow. 1985. 1988). the prawns Pa/aemon 

elegans (White and Rainbow. 1982. 1986). Palaemon serratus (Devineau and 

Amiard Triquet. 1985). Macrobrachium malcolmsonii (Vijayaraman. 1993) and 

Crangon crangon (Dethlefson. 1978: Amiard et al .. 1985). and in the lobster 

Homarus american us (McLeese et al .. 1981). The accumulation of cadmium was 

found to be more in the hepatopancreas of Carcinus maenas (White and 

Rainbow. 1986). Cancer pagurus (Overnell . 1986) and Homarus american us 

(Engel and Brouwer. 1984). 



2.3. Physio-Biochemical studies 

The effect of heavy metals on the respiratory efficiency of crustaceans has 

been studied in crabs (Raymont and Shields, 1963; Vemberg and Vernberg , 

1972; Collier et al., 1973; Thurberg et al., 1973; Bubel , 1976; Vernberg and De 

Coursey, 1977; Reish, 1978; Reddy, 1980; Gokhle and Borgaonkar, 1985; 

Bharani kumar, 1986; Tulasi et al., 1987; Narayanan, 1989; Sarojini et al., 1989; 

Sakundala, 1992), cray fish (Anderson, 1978; Costa, 1985; Miaz-Mayans et al., 

1986; Torreblanca et al. , 1987), fresh water shrimp Caridina rajadhari 

(Chinnayya, 1971) and in prawns Palaemon serratus (Papathanassiou,1983) and 

Macrobrachium malcolmsonii (Vijayaraman, 1993). 

Reddy and Ramamurthi (1997) reported on the inhibitory effect of 

pesticide, phosalone in the mitochondrial function and respiratory metabolism of 

Penaeus monodon resulting in lesser production of energy molecules. 

Studies pertaining to the effect of heavy metals on biochemical 

components and function of hepatopancreas, gills and muscle of crustaceans are 

scanty. The changes in these vital organs due to various stressors following 

exposure to pesticides, dichlorves, aldrin, endosulphan and phosphamidone 

have been revealed in Macrobrachium lamarrei (Omkar and Shukla, 1985) and in 

Macrobrachium malcolmsonii following exposure to cadmium, copper, chromium 

and zinc (Vijayaraman, 1993). 

In fishes exposed to heavy metals a decrease in glycogen reserves has been 

observed (Qayyum and Shaffi, 1977; Koundinya and Ramamurthi, 1979; 

Srinivassalu Reddy et al., 1986). Toxic stress following exposure to heavy metals 

induce an amplified utilization of carbohydrate and glycogenolysis. The reduction 

of carbohydrate is possible when concentration of free sugars increases in the 
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tissue. The elevation in the free sugar level has been observed in 

Macrobrachium malcolmsonii (Vijayaraman. 1993: Ramalingam. 1988. 1989. 

1990. 2003; Sakundala. 1992) exposed to heavy metals and also in fishes. 

The effect of cadmium leads to a reduction in carbohydrate and lipids in 

gill . muscle. liver. intestine and kidneys of Oreochromis mossambicus 

(Balasubramanian. et a/. 1999). The effect of cadmium on carbohydrate 

reduction in tissues was reported in invertebrates by Vijayaraman (1993): and 

Indra (1998). The decrease in carbohydrate was also reported by Srinivasalu 

Reddy et a/. (1986) in Penaeus indicus exposed to phosphamidon. A decrease in 

glycogen reserves has been reported in Macrobrachium lamarrei exposed to 

dichlorves. aldrin . endosulphan and phosphamidon (Omkar and Shukla. 1985) 

and in Macrobrachium malcolmsoni when exposed to copper. cadmium. 

chromium and zinc (Vijayaraman. 1993). 

Anoxic conditions create an increase in carbohydrate consumption 

through the activation of phosphorylase enzyme in fishes (Larsson. 1975). 

Barytelphusa guerini (Fingerman et a/ .. 1981 ). Therapon jarbua (Selvakumar. 

1981 ) Sarotherodon mossambicus (Ramalingam. 1988). Spiralotelphusa 

hydrodroma (Sakundala. 1992) Carassius auratus (Gargiulo et a/ .. 1996) and in 

the crab Scylla serrata (Sreenivasulu Reddy and Bhagyalakshmi. 1994) exposed 

to cadmium and pesticides. 

Depletion of proteins in tissues following exposure to various toxicants has 

been reported in fishes. Oncorhynchus kisutch (Mc Leay and Brown. 1974) 

Sarotherodon mossambicus (Ramalingam and Ramalingam. 1982) and Mugil 

cephalus (Mihelic et a/., 1999). crabs Scylla serrata (Narayanan. 1989) 

Spira/otelphusa hydrodroma (Sakundala. 1992) Carcinus aestuari (Mihelic et a/ .. 

1999) shrimp. Metapenaeus monoceros (Vijayalakshmi and Ramana Rao. 1985) 

and the prawn Macrobrachium ma/colmsonii (Vijayaraman. 1993). 
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Reduction of protein in the hepatopancreas has been reported in 

Macrobrachium kistensis exposed to pesticides (Nagabhusanam et a/ .. 1987) 

Jackim et a/. (1970) observed an inhibition in nucleic acid levels in killi fishes 

when exposed to heavy metals. Histochemical studies revealed an inhibition of 

RNA synthesis in Scylla serrata when exposed to mercury. cadmium and zinc 

(Narayanan. 1989). 

Kulkarni and Kulkarni (1989) reported elevation in blood glucose. lactic 

acid. blood serum proteins. sodium. potassium and specific activity of aspartate 

aminotransferase and alanine aminotransferase in the crab . Scylla serrata 

exposed to malathion. Lee (1988) explained the action of Glutathione S­

transferase (GST). an enzyme system which conjugates glutathione to a variety 

of xenobiotics . Fayi et a/. (1990) described the activity of cytochrome oxidase 

and molecular distribution of copper in the hepatopancreas of the prawn 

Penaeus orienta/is. Yeragi et a/. (2000) reported a reduction in protein content in 

gills. testes. ovaries. larger chelae muscle. smaller chelae muscle and 

hepatopancreas of the marine crab Uca marionis exposed to pesticide malathion. 

The reduced activity of cytochrome P450 was reported in Scylla serrata (Hong et 

a/ .. 2000) and Barbus barbus (Hugla and Thome. 1999). exposed to Cu. Zn . and 

Cd and polychlorinated biphenyls. 

Reduction in the fat content of the liver was reported in vertebrates 

exposed to mercury. arsenic. phosphorous and chloroform exposure (Bell et a/ .. 

1972). The fat content of Metapenaeus monoceros exposed to phosphamidon 

and methyl parathion was found reduced (Srinivasalu Reddy et a/ .. 1986). Due to 

the exposure to copper. cadmium and zinc in Macrobrachium ma/co/msonii. an 

increase in lipase activity has been explained by Vijayaraman (1993). 

Xenobiotic detoxification mechanisms have been explained in vertebrates 

and invertebrates by various studies. The role of metallothioneins In 

detoxification of metals is reported in Pa/aemon e/egans when exposed to 
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copper, zinc and cadmium (White and Rainbow, 1984) and in Callinectes sapidus 

exposed to cadmium (Syring et al., 1992; Brouwer et al., 1994; 2000). 

2.4. Light and Transmission Electron microscopy (TEM) 

The exposure of aquatic organisms to pollutants in their environment may 

result in biochemical, physiological and histological alterations in the vital tissues 

(Hinton et al. , 1973; Rao et al., 1982; Anbu and Ramaswamy, 1991 ; Geraldine et 

al., 1999; Bhavan and Geraldine, 2000). 

Histological methods have been used to assess the effects of pollutants 

on aquatic organisms, since such studies bear a direct testimony to the 

deleterious effects of toxicants (Hinton, et al. , 1973). A number of light 

microscopic studies have been performed on the general structure and function 

of the crustacean gill and hepat0pancreas (Loizzi, 1971 ; Barker and Gibson, 

1978; Gibson and Barker, 1979). Similarly histological alterations have been 

characterized in crustaceans such as Palaemonetes pugio and Macrobrachium 

spp exposed to various chemicals such as copper, mercury, cadmium, zinc, 

pentachlorophenol and dithiocarbomates (Ghate and Mulherkar, 1979; Rao et al., 

1982; Doughtie and Rao, 1983; Rao and Doughtie, 1984; Victor et al., 1990; 

Vijayaraman, 1993; Maniseeri and Menon, 1995; Bhavan and Geraldine, 2000). 

However, there have been a few attempts to examine the 

histopathological changes effected by pollutants in crustaceans, including 

cadmium in Penaeus duorarum (Couch, 1977), Palaemonetes vulgaris and P. 

pugio (Nimmo et al., 1977), Palaemon serratus and Crangon crangon 

(Papathanassiou, 1983, 1985) and Marobrachium malcolmsonii (Vijayaraman, 

1993), copper in Macrobrachium spp and caridina spp (Ghate and Mulherkar, 

1979), Marobrachium malcolmsonii (Vijayaraman, 1993), Metapenaeus dobsoni 

(Manisseri and Menon, 1995) and in Penaeus japonicus (Soegianto et aI. , 1999), 

chromium in Palaemonetes pugio (Doughtie and Rao, 1983; Rao and Doughtie, 

1984) and mercury in Scylla serrata (Narayanan, 1989). 
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Studies on the ultrastructure of the gills and of the hepatopancreas in 

crustaceans include those of Loiui (1971) and Talbot et al. (1972). However. 

there have been few studies to document ultrastructural changes occurring in the 

tissues of the gills and hepatopancreas of crustaceans following exposure to of 

metal ions (Bubel. 1976: Nimmo et al.. 1977: Papathanassiou. 1983. 

Papathanassiou and King . 1986: Doughtie and Rao. 1983: Vijayaraman. 1993: 

Manisseri and Menon. 1995: Soegianto et al.. 1999). 
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3. MATERIALS AND METHODS 

3.1. Collection and transportation of test shrimps 

The shrimp, Penaeus semisulcatus were collected from both Palk Bay and 

Gulf of Mannar (Lat 8°551 
- 9° 151 N and Long 78° 01 

- 79° 161 E) using a 

traditional type of net. which can be operated by two persons along the inshore 

shallow areas, called 'Thalluvala '. Shrimp collections were done mainly at night 

(21 .00-23.00 h), since the shrimp is a nocturnal feeder, comes out from the 

substrate during night for feeding . The collected shrimps were sorted out 

according to the size and the required size group 6-8 cm (4.5 - 7.1 g) for the 

). experiment was selected . The shrimps were transported in plastic can of 40 L 

capacity with 20 L seawater from the place of collection and aeration was 

provided through portable battery operated aerators at a stocking density of 

approximately 5-6 noll. The shrimps were immediately transferred to Shrimp 

Hatchery of Mandapam Regional Centre of CMFRI. where they were 

acclimatized in the seawater (30-32 ppt) collected from Gulf of Mannar. The 

shrimps were maintained in two-ton capacity tanks filled with clear, filtered 

seawater. Hydrological characteristics, such as temperature. salinity, dissolved 

oxygen and pH were recorded concurrently. Shrimps were fed with boiled clams 

ad libitum once in a day at night (21 .00 h) during maintenance. The fecal matter 

and other waste materials were siphoned off daily and the water quality was 

maintained. 

3.2. Bioassay tests under laboratory conditions. 

Static bioassay for 96 h was conducted under laboratory conditions with 

the methods recommended for toxicity test with aquatic organisms (APHA, 

1976). Healthy P. semisulcatus in intermoult stage of size 6-8 cm total length 

(4.5-7.1 g) were separated using the method of Darch (1939) for bioassay 
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experiments. These shrimps were starved for 24 h in order to remove the 

stomach contents during acclimatization prior to experiments. 

Stock solutions were prepared from analar grade copper sulphate (CUS04 

5H20 ), cadmium chloride (CdCI2) and zinc sulphate (ZnS04 7H20 ) with deionised 

water following the dilution technique adopted by committee on methods for 

toxicity test on aquatic organisms (Sprague, 1970; 1973). 

3.3. Evaluation of LCso Levels. 

Ten numbers of P. semisulcatus of the size group of 6-8 cm weighing (4.5 

to 7.1 g) were starved for 24 hrs prior to experimentation, and released into tanks 

containing 50 L of seawater (Sprague, 1970; 1973). A series of ten static 

bioassay tests in triplicates were conducted with shrimps using known 

concentrations of copper, zinc and cadmium and the occurrence of mean 

percentage mortality of 20%, 50% and 80% for 24, 48. 72 and 96 hrs after 

exposure was recorded. Concurrently, three control experiments without the 

toxicant were maintained for each set of experiments (Buikema et a/.. 1982; 

Ward and Parrish , 1982). Hydrological characteristics, such as temperature, 

salinity, dissolved oxygen and pH were recorded concurrently. 

The data so obtained were plotted on a log probit chart no. 32.376 

(supplied by Codex Co. Norwood, Massachusetts, USA) which gives a simple 

solution of the dose effect curve with 95% confidence limits for LC50 values. 

(Sprague, 1970; 1973; Mohapatra, and Rengarajan. 1995; 2000). Further lower 

and upper limits and slope function were also computed. The slope functions (S) 

were calculated as per the method of Reish and Oshida (1987) 

3.4. Morphological and Behavioural observations 

The morphological and behavioral changes in the shrimp P. semisu/catus 

were studied during the acute bioassay test. External body parts were observed 
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particularly: the exoskeleton. gills . appendages. telson and uropod and any 

colour change in these parts were recorded for morphological changes. 

Behavioral changes observed during the bioassay study included the pattern of 

movement! swimming behavior of the shrimp. 

3.5. Sublethal Studies 

Sublethal studies of metal effects were conducted for 14 days in two 

different concentrations (10% of LCse and 20% of LCse ). For 10% of LCse 

sublethal levels the concentration of copper (0.7 ppm/l). zinc (0.5 ppm/l) and 

cadmium (0.25 ppm/l) and for 20% of LCse copper (1.4 ppm/I). zinc (1 .0 ppm/l) 

and cadmium (0.5 ppm/l) were selected. Triplicates were conducted in all the 

experimental and control exposures. The physicochemical parameters of water 

during the study were salinity (30.1-30.3 ppt). Temperature (25.1-26.4 0 C). pH 

(8.01-8.03) and dissolved oxygen (5.03-5.82 mg/l) . 

Each of the experiments was conducted in 50 litre plastic tubs with 10 

numbers of shrimps (5 such tubs forms an experimental group). Water exchange 

(50 %) was done daily and refilled with the same concentration of the element. 

Complete water exchange was done on the 3'd 6th
. 9 th and 1 i h day of the 

experiment. The stuimps were fed with boited clam meat ad libitum. daily at night 

(21 .00 h). After 14 days. shrimps were collected from the tanks. 

For analysis. whole shrimp (5 numbers) from the control and experiment 

group was taken. The remaining shrimps were dissected and tissues such as 

hepatopancreas. gills . tail and carapace were taken and dried. The temperature 

was maintained at 60°C for 2 days to get a constant weight. The dried samples 

were taken for analysis of bioaccumulation of zinc. copper and cadmium and for 

biochemical changes in protein . carbohydrate and lipid content due to the effect 

of metals. For bioaccumulation and biochemical analysis. the dried tissues from 

each experimental and control groups were combined to get appropriate weight 

of the tissues. 
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3.5.1. Bioaccumulation Studies 

For bioaccumulation analysis. dried samples of approximately 100 mg 

were taken and then digested in perchloric acid : nitric acid mixture (1 :4 ratio). 

Dried powdered sample (1 g) was taken and soaked in the above mixture for 4 h 

in a glass beaker. The soaked samples were digested on a hotplate for 5 h at 

80aC. When the sample colour turned from yellow to white the samples were 

taken out. cooled and filtered using Whatmann No. 2 filter paper. They were 

made into 5 ml aliquots and used for determining the level of the selected metals 

in an atomic absorption spectrophotometer (ICP) (Agemian and Chau. 1976). 

~. 3.5.2. Physio-Biochemical Studies 

3.5.2.1. Respiratory Physiology 

A static method (Mohapatra and Rengarajan 1995) was used to determine 

the rate of oxygen consumption in the shrimps. The shrimps were exposed to 

LCso levels of copper. cadmium and zinc. The shrimps were left undisturbed for a 

period of 2 h prior to the commencement of the experiment so as to allow them to 

get acclimatized to the test concentration . i.e. copper @ 6.98 ppm. cadmium @ 

2.8 ppm and zinc @ 5.00 ppm. Three shrimps from each concentration were 

introduced into a chamber with 5 L of seawater with the same concentration of 

the test metal. Liquid paraffin was poured carefully to make a thin layer on the 

surface of the medium to avoid diffusion of atmospheric oxygen. The amount of 

oxygen consumed by the experimental and control shrimps were measured at 

different time intervals (1 . 2. 3. and 4 h) by Winkler's method (Strickland and 

Parsons. 1972) and the respiratory rate was expressed in mllg (wet wt)/hr. 

3.5.2.2. Biochemical studies 

From the dried samples. 50 mg of sample was taken for protein and 

carbohydrate analysis and approximately 3 g was used for lipid analysis. Protein 
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content in the tissues was determined by Biuret method . using bovine serum 

albumin as standard (Gomall et al .. 1949). Total lipid was estimated by 

gravimetric method (Folch et al" 1957) and modified by Linford (1965). 

Carbohydrate was estimated by phenol sulphuric acid method of Dubois et al. 

(1956). 

3.5.3. Light Microscopy 

The hepatopancreas and gills of the shrimp were fixed in Davidson's 

fixative for 48 h. The preserved tissues were processed by following routine 

histological methods with slight modification (Bell and Lightner. 1988): 

dehydrated in alcohol series and embedded in paraffin wax. They were cut into 

sections of 6 ~lm thickness by a rotary microtome. The thin sections of the 

hepatopancreas and gills were stained using haematoxylin and eosin for 

observation in light microscope. 

3.5.4. Transmission Electron Microscopy (TEM) 

1 mm3 tissues were incised from the gills and hepatopancreas and fixed in 

3 % sodium cacodylate buffered gluteraldehyde for 4 hrs under refrigeration . 

After decanting the solution. the tissues were subjected to sodium cacodylate 

buffer wash for 3 times and postfixation was done with 1 % osmium tetroxide 

(OsO.) for 1 h under refrigeration. After decanting the OsO •. the tissues were 

washed with buffer for three times of 15 mts duration. The tissues were then 

dehydrated in different grades of acetone (30. 50. 70. 90 and 100) each of 15 

mts duration in SPURR embedding resin. The tissues were made into blocks 

after infiltration by keeping the mould in the incubator setting the temperature 

initially at 60°C for two hours and raising the temperature to 70°C for another 10 

hrs. The blocks were trimmed and ultrathin sections were made by LKB 

Ultramicrotome (Ultranova) and stained in uranyl acetate and lead citrate for 

enhanced contrast and sections were observed in the Hitachi (H-600) Electron 

microscope choosing different magnifications. 
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3.6. STATISTICAL ANALYSIS 

3.6.1 . Bioaccumulation 

Data on bioaccumulation in whole shrimp and in different tissues at lethal 

and sublethal levels of heavy metals were analysed by using ANOVA (SYSTAT 

Version 7.0) 

3.6.2. Biochemical analysis 
The test of significance for variations in the biochemical contents in whole 

animal and among tissues with the heavy metals at lethal and sublethal levels 

were analysed by using ANOVA (SYSTAT Version 7.0) 

The test for significance among the tissues of each exposure and control 

were done by using "I" test (SYSTAT Version 70) 
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, 



4. RESULTS 

.. 4.1. Lethal Concentration Studies 

4.1.1. Lethal Concentration of copper 

The results of the experiment to determine lethal concentration levels of P. 

semisulcatus exposed to copper are given in Table 1. 

The 24, 48, 72 and 96 h LC50 levels P. semisulcatus to copper were found 

to be 16.74 ± 0.19, 12.64 ± 0.14, 8.86 ± 0.11 and 6.98 ± 0.09 ppm Cull 

respectively. The experiments showed no significant difference between 

replicates when tested with 1.96 SEdiff explained by . Litchfield and Wilcoxon, 

1949. 

4.1 .2. Lethal concentration of cadmium 

The results of the experiment to determine lethal concentration levels of 

shrimp. exposed to cadmium are given in Table 2. 

The 24 h, 48, 72 and 96 h LC50 values for P. semisulcatus were 8.18 ± 

1.3, 5.16 ± 0.48, 4.00 ± 0.122 and 2.68 ± 0.15 ppm Cdll respectively. The 1.96 

SE dill Litchfield and Wilcoxon (1949) formula showed no significant difference 

between replicates of the experiments. 

4.1.3. Lethal concentration of zinc 

The results of the experiment to determine lethal concentration levels of 

shrimp exposed to zinc are given in Table 3. 
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The 24, 48, 72 and 96 h LCso levels for P. semisulcatus were 11 .5 ppm ± 

0.25, 7.73 ± 0.18, 6.4±0.11 and 4.9 ppm Zn/l. There was no Significant difference 

between replicates of the experiments. 

Table 1: LCso values and slope values of copper to P. semisuatus 

Time in LCsovalue Slope (S) I Confidence I Filucidal Values (95%) 
hrs (ppm) limits (CL) Upper I Lower 

«ppm) (ppm) 
24 16.74 2.06 1.80 I 29.40 9.00 
48 12.64 1.72 , 1.50 I 18.96 8.42 
72 8.86 1.49 I 1.30 I 11 .52 : 6.81 
96 6.98 1.39 1.22 8.51 5.72 

Table 2: LCso values and slope values of cadmium to P. semisuk.tus 

I Time in LCsovalue Slope (S) I Confidence I Filucidal Values (95%) 
hrs (ppm) limits (CL) I Upper Lower 

, I «ppm) I (ppm) I 

24 8.18 2.34 2.05 16.76 I 4 .00 
48 5.16 2.13 1.86 9.6 2.8 J 
72 4.00 1.97 1.72 I 6.9 2.32 I 

96 2.68 1.58 1.34 I 3.6 2.00 

Table 3: LCso values and slope values of zinc to P. semisuk.tus 

I Time in LCsovalue Slope (S) Confidence l Filucidal Values (95%) I 

hrs (ppm) limits (CL) Upper Lower ! 
«ppm) (ppm) 

24 11 .5 1.84 1.61 18.515 7.15 I 

48 7.73 1.64 1.43 I 11 .05 5.4 I 

72 6.4 1.64 1.43 I 9.19 4.48 
96 4.90 1.5 1.31 6.4 3.74 
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4.2. Morphological and Behavioral Characters 

Various body parts of the control shrimps during the study are shown in Plate 1. 

4.2.1. Cadmium toxicity changes 

Shrimps exposed to 2.8 ppm Cdll had the following morphological and 

behavioral changes. 

4.2.1.1. Morphological 

The various morphological changes after exposure are shown in Plate 2. 

Among the three metals. cadmium showed more toxicity effects at a lower 

concentration . It caused blackening of the rostrum tip. antennae and the 

antennules. Melan.isation was observed in the scaphognathite of the antennae. 

the flagella of the antennules and the pereiopods. The Black deposits were 

visible clearly on the exoskeleton of the cephalothorax and on the pleura. The tip 

of the uropod had blackened areas. 

Gills showed major changes since it is directly in contact with the exposed 

medium. It turned black on the third day of the exposure. 

4.2.1.2. Behavioral 

... 
When shrimps were exposed to cadmium. on the first day itself. they 

showed some erratic movements. On the second day it came to normal. They 

mostly found attached near to the air stone. When disturbed. they showed less 

reaction . On the third day. the shrimps settled down at the bottom. the movement 

became slow. Continuous movement of the pleopods showed that the shrimps 

were under stress due to the pollutant and lead to mortality. 

, . 
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4.2.2. Copper toxicity changes 

4.2.2.1. Morphological 

The various morphological changes observed in P. semisulcatus when 

exposed to copper are shown in Plate 3 A-E. 

The flagella of the antennules. which are regarded as the chemosensory 

functional organ. got blackened due to the exposure. The exopodites of the 

pereiopods showed blackening and ~s associated very close to the gills. It is this 

part which gets blackened first when exposed to copper. 

The melanisation of the pereiopods are prominent at the joints of ischium. 

merus. carpus. propodus and dactylus. Copper toxicity resulted in breakage of 

these parts/joints. The uropod showed blackening. The gills turned black at the 

third day of exposure. 

4.2.2.2. Behavioral Changes 

Shrimp showed erratic movements after two days of exposure in copper. 

They were found attached to the air tubes and stones most of the time. 

4.2.3. Zinc toxicity changes 

4.2.3.1. Morphological 

The telson became dark and in some case even breakage occurred in the 

shrimps exposed to zinc (Plate 3 F. G) 
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4.2.3.2. Behavioral Changes 

Behavioral changes include erratic movements, continuous movement of 

the pleopods, settling at the bottom without much movement and when disturbed 

with a probe, it showed slight movement of the pereiopods. 



Plate 1. Various parts of control Penaeus semisulcatus 

Dorsal view of cephalothorax Lateral view of cephalothorax 

Lateral view of abdomen Uropods and tel son 

Control (A) and shrimp exposed to cadmium (B) 

.... 
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Plate 2. Penaeus semisulcatus exposed to cadmium 

A B 

• 

C o 

E 

A. Ventral view showing blackening of antennules and antennae 
B. Uropods showing blackening and breakage 

.. C. Pleura with blackened areas 
D. Cephalothorax with blackened areas 
E. Blackening of rostrum, antennules and pereiopods 
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Plate 3 

A. Melanisation in appendage and flagella 
B. Blackened Gills 
C. Blackening in appendages 
D. Blackening of uropod 
E. Blackened exopodites 

F. Blackened uropod 
G. Blackening of telson 



Plate 3. Effects of exposure to copper 

o 

Effects of exposure to zinc 

F G 



4.3. Bioaccumulation Studies 

Bioaccumulation of copper in various organs 

The bioaccumulation of copper in various tissues at lethal and two 

sublethal doses are given in the Table 4. 

Bioaccumulation of cadmium in various organs 

The bioaccumulation of cadmium in various tissues at lethal and two 

sublethal doses are given in the Table 5 

Bioaccumulation of zinc in various organs 

The bioaccumulation of zinc in various tissues at lethal and two sublethal 

doses are given in the Table 6. 



Table 4. Bioaccumulation of copper in various tissues 

(1I9/9 dry wt of the tissue) 

Tissues Concentration SO (±) 

Lethal Concentration (6.98 ppm) 

Hepatopancreas 15B7.29 59.B1 

Gills 2B4.96 24.37 

Muscle 1B.79 3.72 

Tail 3B.73 1.54 

Exoskeleton 19.94 2.56 

Whole shrimp 223.20 13.62 

Sub Lethal (0.7 ppm) 

Hepatopancreas 2431.29 39.98 

Gills 114.2B 6.70 

Muscle 11.17 0.79 

Tail 22.25 1.79 

Exoskeleton 11.26 1.43 

Whole shrimp B1.43 6.24 

Sub Lethal (1.4 ppm) 

Hepatopancreas 5236.32 4B.53 

Gills 95.37 B.95 
Muscle 19.36 0.74 
Tail 50.99 3.79 

Exoskeleton 31 .63 3.93 
Whole shrimp 1B 1.23 B.42 

Control 

Hepatopancreas 334.50 10.60 
Gills 7B.30 3.40 
Muscle 7.94 1.45 
Tail 16.B6 1.90 
Exoskeleton B.92 3.32 
Whole shrimp 36.6B 4.16 
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Table 5. Bioaccumulation of cadmium in various tissues 

(j.lg/g dry wt of the tissue) 

Tissues Concentration SO (±) 

Lethal Concentration (2.8 ppm) 

Hepatopancreas 1057.85 87.89 
Gills 144.84 11 .39 
Muscle 1.07 0.18 

Tall 7.39 1.51 

Exoskeleton 6.38 1.42 

Whole shrimp 38.73 5.78 

Sub Lethal (0.25 ppm) 

Hepatopancreas 100.06 5.33 
Gills 38.34 3.48 
Muscle 1.16 0.12 
Tall 2.71 0.70 

Exoskeleton 1.55 0.68 
Whole shrimp 6.42 0.82 

Sub Lethal (0.5 ppm) 

Hepatopancreas 376.37 8.56 

Gills 95.37 8.95 
Muscle 5.07 0.80 
Tall 5.89 0.64 
Exoskeleton 0.82 0.26 
Whole shrimp 20.93 1.84 

Control 

Hepatopancreas nd 
Gills nd 
Muscle nd 
Tall nd 
Exoskeleton nd 
Whole shrimp nd 

nd. Not detected 
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Table 6. Bioaccumulation of zinc in various tissues 

(lJg/g dry wt of the tissue) 

Tissues Concentration SO (±) 

Lethal Concentration (5.00 ppm) 

Hepatopancreas 1145.72 93.75 

Gills 271 .99 34.42 

Muscle 54.52 2.66 

Tail 94.19 1.24 

Exoskeleton 39.67 3.19 

Whole shrimp 77.05 4.90 

Sub Lethal (0.5 ppm) 

Hepatopancreas 181 .33 14.59 
Gills 138.75 7.38 
Muscle 59.16 3.98 
Tail 84.22 12.15 
Exoskeleton 18.39 5.08 
Whole shrimp 62.69 3.98 

Sub Lethal (1.00 ppm) 

Hepatopancreas 447.02 11 .92 

Gills 223.64 3.47 

Muscle 84.72 6.31 
Tail 122.29 8.01 
Exoskeleton 37.57 2.05 
Whole shrimp 70.92 3.63 

Control 

Hepatopancreas 11 .66 3.06 
Gills 124.23 6.56 

Muscle 43.50 3.85 
Tail 64.76 3.24 
Exoskeleton 20.74 0.59 
Whole shrimp 57.48 3.11 

32 



4.3.1. Comparison of copper, cadmium and zinc accumulation in various 
organs 

4.3.1 .1. Lethal concentration 

Hepatopancreas 

A marked difference among the metals in bioaccumulation was observed 

in hepatopancreas ((f = 36.06: p < 0.05) (Appendix 1 a) The mean concentrations 

of copper. cadmium and zinc in hepatopancreas were 1587.29 :: 59.81 . 1057.85 

:: 87.9 and 1145.72 :: 93. 74 ~g/g respectively. Copper concentration was five fold 

greater than that of control while zinc showed a 98.00 fold increase than that of 

control shrimp . 

. Gills 

In the gills of P. semisulcatus also a significant difference among the 

metals were observed in bioaccumulation pattern (f = 28.27. P < 0.05) (Appendix 

1 b). The mean concentrations of copper. cadmium and zinc in gills were 284.96 

:: 24.36. 144.83 ± 11.39 and 271 .77 :: 34.70 ~g/g respectively. Copper and zinc 

contents were 3.5 and 2.00 fold greater than that of the control 

Muscle 

A significant difference in accumulation of copper. cadmium and zinc were 

noticed in the muscle of P. semisulcatus. exposed to lethal concentrations of the 

metals (f = 318.62: p < 0.05) (Appendix 1c). The mean concentration of copper. 

cadmium and zinc in muscle were 18.79 :: 3.72. 1.07 :: 0.183 and be 54.52 :: 

2.65 ~g/g respectively. Copper was 2.36 fold greater. while zinc was 1.25 fold 

greater than that of contro l. 
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Tail 

In the tail. 38.73 :!: 1.54 j.Jg/g copper. 7.39 :: 1 5 j.Jg/g cadmium and 94.76 :: 

1.24 j.Jglg of zinc were recorded with a significant variation in bioaccumulation 

among metals (f = 2808.76: p < 0.05) (Appendix 1d). Copper was 2.3 fold greater 

while zinc showed 1.50 fold increase than that of the contro l. 

Exoskeleton 

The concentration of copper. cadmium and zinc were 19.94 :: 2.55. 6.37 :: 

1.41 and 39.67 :!: 3.18 j.Jglg respectively In exoskeleton of P sem/sulcatus 

exposed to metals. A marked variation in the bioaccumulation pattern among the 

metals (f = 134.88: p < 0.05) (Appendix 1e) was observed in the exposure. 

Copper was 2.24 fold greater while zinc showed 1.81 fold Increase than that of 

the control. 

Whole shrimp 

A significant difference was found in bioaccumulation among metals (f = 
351 .04: p < 0.05) (Appendix 1f). The concentration of copper. cadmium and zinc 

were 223.19 :!: 13.62. 38.74 :: 5.75 and 77 04 :: 4.86 j.Jg/g respectively. Copper 

concentration was six fold and zinc 1.35 fold greater than that of the control 

shrimp. 

4.3.1.2. Sublethal concentration (10 % of LCso) 

Hepatopancreas 

P. semisulcatus showed significant difference in bioaccumulation among 

the metals (f = 8564.77: p < 0.05) (Appendix 2a). The concentration of copper. 

cadmium and zinc were 2431 .29 :: 40. 100.06 :: 5.3 and 181.4 :: 14.6j.Jg/g In the 



hepatopancreas. There was a seven fold increase In copper and 15.00 fold 

increase in zinc more in the tissue than that of the control level. 

Gills 

Copper. cadmium and zinc levels in gills of P semlsulcatus were 114.28 ::: 

6.7. 38.34 ::: 3.48 and 138.75 ::: 7.37 ~g/g respectively and the observed 

differences were significant (f = 221.49: p < 0.05) (Appendix 2b). Copper and 

zinc levels were 1.2 fold greater than that of the control tissue. 

Muscle 

Metals showed a significant difference among themselves in the 

accumulation pattern in the muscle of P. semisulcatus (f = 525.81 : p < 0.05) 

(Appendix 2c) . The concentrations of copper. cadmium and zinc were 11 .17 ::: 

0.78. 1.16 ± 0.115 and 84.21 ::: 12.31 ~g1g respectively in the muscle of shrimp 

after the exposure. The copper level was 1.40 fold while was two fold greater 

than the control tissue. 

Tail 

Copper. cadmium and zinc in the tail of shrimp were 22.24 ::: 1.79. 2.71 ::: 

0.69 and 84.21 ± 12.141-1g/g of metals respectively. with a significant difference 

among the metals (f = 107.74: p < 0.05) (Appendix 2d) Both copper and zinc 

showed 1.30 fold increase in bioaccumulation than that of the control. 

Exoskeleton 

In the exoskeleton of P. semisulcatus. there was a significant difference in 

the accumulation among metals (f = 22.67: p < 0.05) (Appendix 2e) . The 



concentrations of copper. cadmium and zinc were 11 .25 ± 1.4. 1 55 :: 0.67 and 

23.39 ± 0.25 l1g/g. 

Whole shrimp 

Copper. cadmium and zinc in shrimps were 81.43 :: 6.43. 6.41 :: 0.82 and 

62.68 :: 3.97 l1g/g and the observed differences were (f = 247.61 : p < 0.05) 

(Appendix 2f). 

4.3.1.3. Sublethal Concentration (20 % of LCso) 

Hepatopancreas 

The hepatopancreas of P. semisulcatus showed significant difference in 

bioaccumulation among the metals (f = 27168: p < 0.05) (Appendix 3a) The 

concentration of copper. cadmium and zinc were 5236 :: 48.53. 376.36 :: 8.56 

and 447.02 :: 11.97 ~g/g in the hepatopancreas. Copper accumulates fifteen fold 

while zinc had 38 fold increase in the concentration in the tissue than that of the 

control shrimp. 

Gills 

In the gills of P. semisulcatus. significant differences among the metals 

were observed in bioaccumulation pattern (f = 286.78: p < 0.05) (Appendix 3b) 

The mean concentration of copper. cadmium and zinc in gills were 95.37 :: 8.94. 

90.99 ± 5.92 and 223.54 ± 3.47 ~g/g respectively. Copper concentration was 1.2 

fold greater than that of the control while zinc showed an increase of 2.00 fold 

with its control. 
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Muscle 

A significant difference in accumulation of copper. cadmium and zinc was 

noticed in muscle of P semisulcatus. (f = 395.66: p < 005) (Appendix 3c) The 

mean concentration of copper. cadmium and zinc In muscle were 95.37 = 8.94. 

5.07 1: 0.8 and 84.71 1: 6.31 ~g/g respectively. 

Tail 

In the tail. a concentration of 50.99 1: 3.9 ~g/g copper. 5.89 = 0.64 ~g/g 

cadmium and 122.28 :!: 8.00 ~g/g of zinc was observed. A marked variation In 

bioaccumulation among metals were observed (f = 392 75. P < 005) (Appendix 

3d). A 3.02 fold increase in copper and 1.88 fold Increase In zinc were observed 

in shrimps exposed to metals. 

Exoskeleton 

The concentration of copper. cadmium and zinc were 31 .62 = 3.93. 0.82 = 
0.26 and 37.57 1: 2.04 ~g/g respectively In exoskeleton of P semisulcatus 

exposed to metals and the bioaccumulation pattern (f = 177 76: p < 0.05) 

(Appendix 3e) was statistically Significant. A 571 fold Increase In copper was 

observed during the exposure. 

Whole shrimp 

The concentration of copper. cadmium and zinc were 181 .20 = 8.39. 20.93 

= 1.84 and 70.91 !: 3.63 ~g/g respectively A significant difference in 

bioaccumulation among metals (f = 691 .97: p < 0.05) (Appendix 3f) was 

observed with a five fold increase in copper accumulation 
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4.4. Physio-Biochemical studies 

4.4.1. Respiration 

The rates of oxygen consumption by Penaeus semisulcatus exposed to 

the heavy metals are shown in Table 7. The rate of oxygen consumption in 

shrimps exposed to copper. cadmium and zinc increased with increase in time 

when compared to that of the control. 

Table 7. Rate of oxygen consumption in Penaeus semisulcstus 
exposed to lethal levels of copper, cadmium and zinc at various time 

intervals (mllg (wet wt)/h) (± SO) 

I Control 

1h 

0.51 

(±002) 

2h 3h 

0.78 1.002 

(± 002) (± 0.05) 

1.195 

(±0.193) 

1.965 

(± 0.048) 

i Zinc I 0.95 I 1.063 1.562 

(±0.02) (±0.05) , (± 0.05) 

•• Shrimps died after 3 hrs 

4h 

1.1428 

(± 0.05) 

2.134 

(±0.102) 

1.635 

(± 0.05) 



4.4.2. Biochemical composition in Penaeus semisu/catus 

The biochemical composition in various tissues of control shrimp is given 
in Table 8. 

Table S. Biochemical composition of various organs in Pen •• us 
semisu/catus (% dry weight of the tissue) 

Concentration SO (±) 

Hepatopancreas 

Protein 66.46 0.42 
Carbohydrate 5.33 0.11 

Lipid 32.42 0.14 

Gills 

Protein 40.85 0.10 
Carbohydrate 1.11 0.05 
Lipid 1.10 0.09 

Muscle 

Protein 79.99 0.13 
Carbohydrate 1.67 0.31 
Lipid 9.59 0.08 



4.4.3. Lethal concentration exposure 

4.4.3.1: Copper 

The biochemical composition of various organs of Penaeus semisulcatus 

exposed to copper at the lethal concentration of 6.98 ppm is given in table 9. In 

the hepatopancreas and the muscle. the carbohydrate. lipid and protein levels 

were significantly (p<0.05) lower than that of control. whereas in the gills. protein 

and lipid levels were significantly lower at 1% level. However. the carbohydrate 

concentration did not show any significant variation in the gills of the test shrimp. 

4.4.3.2. Cadmium 

The biochemical composition of vanous organs of P. semisulcatus 

exposed to cadmium at the lethal concentration of 2.8 ppm is given in table 10. 

At this level of cadmium. significant low levels of carbohydrate (p<0.01 ). lipid 

(p<0.01 ) and protein (p<0.01 ) were observed in the hepatopancreas and muscle 

when compared to that of control. However. in the gills only the protein showed 

a significant variation than that of control and the other two variables were not 

showing any level of significance. 

4.4.3.3. Zinc 

The data for assessing the effect of zinc on the biochemical composition 

of various organs of P. semisulcatus is given in table 11 . The results indicated 

that all the variables such as carbohydrate (p<0.01 ). lipid (p<O.01 ) and protein 

(p<O.01 ) levels were significantly lower in the hepatopancreas. muscle and gills 

of the test shrimp than that of control. 
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4.4.4. Sub lethal exposure (10% LCso) 

4.4.4.1. Copper 

The mean concentration along with their SO for the biochemical 

composition of the various organs of P. semisulcatus exposed to copper at the 

sub lethal level of 0.7 ppm is given in table 12. The results showed that the 

carbohydrate (p<O.OS). lipid (p<O.OS) and protein (p<OOS) levels were 

significantly lower in hepatopancreas. whereas lipid (p<O.OS) was alone 

significantly reduced in the gills and a low level of protein (p<O.OS) was observed 

in the muscle of the test shrimp as compared to the control . 

4.4.4.2. Cadmium 

The mean concentration along with their SO for the biochemical 

composition of the various organs of P. semisulcatus exposed to cadmium at the 

sub lethal concentration of 0.2S ppm is given in table 13. Significant reductions in 

protein (p<O.OS) and lipid (p<O.OS) levels were noted in the hepatopancreas and 

gills as compared to the control. On the other hand. the protein content was 

alone significantly (p<O.OS) lower in the muscle. However. the carbohydrate level 

in all these organs did not show any level of significance during the period of 

experiment. 

4.4.4.3. Zinc 

The biochemical composition of vanous organs of P. semisulcatus 

exposed to zinc at the sub lethal level of O.S ppm is given in table 14. At this level 

of zinc. the concentrations of carbohydrate (p<O.OS) . lipid (p<O.OS) and protein 

(p<O.OS) were significantly reduced in the gills than that of control. The levels of 

carbohydrate (p<O.OS) and lipid (p<O.OS) in the hepatopancreas exhibited a 

significant variation between the test and control. In the muscle. the lipid (p<0.05) 
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recorded its least value than that of control. It was also observed that. both 

carbohydrate and protein levels did not show any significance in the muscle 

when compared to the same at the other tissues (hepatopancreas and gills). 

4.4.5. Sub lethal exposure (20% LCso) 

4.4.5.1. Copper 

The biochemical composition in various organs of Penaeus semisulcatus 

exposed to copper at 1.4 ppm is given in table 15. At this level of copper. both 

the protein (p<0.05) and lipid (p<0.05) levels significantly varied in the 

hepatopancreas and muscle of the test shrimp as compared to the control. In the 

gills. the lipid was alone significant (p<0.05) . 

4.4.5.2. Cadmium 

The biochemical composition of the various organs of Penaeus 

semisulcatus exposed to cadmium at 0.5 ppm is given in the table 16. Protein 

and lipid levels in the hepatopancreas and muscle were found to be significant 

(p<0.05) whereas. in gills. lipid was alone significant (p<0.05). 

4.4.5.3. Zinc 

The biochemical composition in various tissues of Penaeus semisulcatus 

exposed to zinc at 1.00 ppm is given in table 17. The results showed that all the 

variables such as carbohydrate. lipid and protein were significantly lower 

(p<0.05) in hepatopancreas. Similarly in the gills . both protein and lipid varied 

significantly (p<0.05) between the experiment and the control. In the muscle. 

significantly (p<O.05) lower levels of lipid were observed as compared to the 

control. 



Table 9. Biochemical composition of various organs of Penaeus 
semisulcatus exposed to copper at 6.98 ppm 

(% dry weight of the tissue) 

Concentration SO (±) t P 

Hepatopancreas 

Protein 62.24 0.55 9.22 0.05 

Carbohydrate 4.96 0.05 6.87 0.05 

Lipid 26.43 0.90 9.48 0.05 

Gills 

Protein 3906 0.48 4.78 0.01 

Carbohydrate 1.05 0.04 1.26 NS 

Lipid 1.01 0.03 1.77 0.05 

Muscle 

Protein 74.64 1.08 6.56 0.01 

Carbohydrate 1.58 0.11 5.7 0.01 

Lipid 6.79 0.29 11 .5 0.01 

r If p < 0.05 (significant) : if p< 0.01 (highly significant) : 
NS: Not Significant 
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Table 10. Biochemical composition of various organs of Penaeus 
semisulcatus exposed to cadmium at 2.8 ppm 

(% dry weight of the tissue) 

Concentration SO (±) t P 

Hepatopancreas 

Protein 60.64 0.54 13.46 0.01 

Carbohydrate 4.32 0.24 5.9 0.01 

Lipid 25.91 1.57 5.9 0.01 

Gills 

Protein 38.89 0.29 7.23 0.01 

Carbohydrate 0.90 0.06 2.94 NS 

Lipid 0.82 0.09 3.74 0.01 

Muscle 

Protein 73.95 0.50 13.43 0.01 

Carbohydrate 1.47 0.15 5.13 0.01 

Lipid 6.48 0.37 10.61 0.01 

If P < 0.01 (highly significant) 
NS: not significant 
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11. Biochemical composition of various organs of Penaeus 
semisu/catus exposed to zinc at 5.00 ppm 

(",4 dry weight of the tissue) 

Concentration SO (±) t P 

Hepatopancreas 

Protein 62.58 0.40 11 .21 0.01 

Carbohydrate 5.01 0.03 7.14 0.01 

Lipid 28.20 0.30 19.95 0.01 

Gills 

Protein 38.59 1.56 2.08 NS 

Carbohydrate 0.99 0.04 205 NS 

Lipid 0.89 0.10 2.54 NS 

Muscle 

Protein 71 .66 1.17 9.49 0.01 

Carbohydrate 1.26 0.19 5.64 0.01 

Lipid 6.44 0.31 12.34 0.01 

If P < 0.01 (highly Significant) 
NS: Not Significant 



Table 12. Biochemical composition of various organs of PemJeus 
semisulcatus exposed to copper at 0.7 ppm 

(% dry weight of the tissue) 

Concentration SO (±) t p 

Hepatopancreas 

Protein 64.49 0.70 4 .17 0.05 

Carbohydrate 5.27 0.06 201 NS 

Lipid 30.61 0.71 4.36 0.05 

Gills 

Protein 40.67 0.56 0.53 NS 

Carbohydrate 1 06 0.04 0.95 NS 

Lipid 0.82 0.10 3.36 0.05 

Muscle 

Protein 78.75 0.35 5.8 0.05 

Carbohydrate 1.97 0.04 1.85 NS 

Lipid 9.35 0.30 1.12 NS 

If P < 0.05 (significant) 
NS: Not Significant 



Table 13. Biochemical composition ofvarious organs of Penaeus 
semisulcatus exposed to cadmium at 0.25 ppm 

Hepatopancreas 

Protein 
Carbohydrate 
Lipid 

Gills 

Protein 
Carbohydrate 

Lipid 

Muscle 

Protein 

Carbohydrate 
Lipid 

If P < 0.05 (significant) 
NS: Not Significant 

("10 dry weight of the tissue) 

Concentration SO (±) t 

63.53 0.91 5.06 

5.10 0.20 1.29 

29.44 0.73 6.97 

39.46 0.73 3.27 

0.84 0.08 5.18 

0.67 0.10 5.48 

76.57 1.10 5.35 

2.07 0.13 1.61 

7.81 1.39 2.33 

~ 7 

P 

0.05 

NS 

0.05 

0.05 

0.05 

0.05 

0.05 

NS 

NS 
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Table 14. Biochemical composition of various organs of Pen"US 
semisulcatus exposed to zinc at 0.5 ppm 

Hepatopancreas 

Protein 

Carbohydrate 

Lipid 

Gills 

Protein 

Carbohydrate 

Lipid 

Muscle 

Protein 

Carbohydrate 

Lipid 

If P < 0.05 (significant) 
NS: Not Significant 

(0/0 dry weight of the tissue) 

Concentration SO (±) t 

65.36 0.92 1.42 

4.50 0.29 4.36 

30.83 0.61 4.39 

37.01 0.60 11 .00 

0.99 0.03 3.43 

0.83 0.05 4.52 

79.39 0.65 1.32 

1.99 0.02 1.69 

8.70 0.30 5.03 

P 

NS 

0.05 

0.05 

0.05 

0.05 

0.05 

NS 

NS 

0.05 



Table 15. Biochemical composition of various organs of Penaeus 
semisulcatus exposed to copper at 1.4 ppm 

(% dry weight of the tissue) 

Concentration SO (±) t P 

Heplltopllncreas 

Protein 62.48 0.78 9.47 0.05 

Carbohydrate 5.42 0.21 0.52 NS 

Lipid 28.84 0.76 7.05 0.05 

Gills 

Protein 40.84 0.42 0.93 NS 

Carbohydrate 0.98 0.03 2.03 NS 

Lipid 0.74 0.08 4.35 0.05 

Muscle 

Protein 77.04 0.61 7.66 0.05 

Carbohydrate 1.84 0.10 0.83 NS 

Lipid 7.84 0.25 8.89 0.05 

If P < 0.05 (significant): NS: not significant 



Table 16. Biochemical composition of various organs in Penaeus 
semisulcatus exposed to cadmium at 0.5 ppm 

(% dry weight of the tissue) 

Concentration SO (±) t P 

Hepatopancreas 

Protein 63.37 0.90 6.53 0.05 

Carbohydrate 5.37 0.27 0.39 NS 

Lipid 29.69 0.86 4.7 0.05 

Gills 

Protein 40.00 0.38 1.97 NS 

Carbohydrate 1.11 0.08 0.1 NS 

Lipid 0.82 0.04 3.65 0.05 

Muscle 

Protein 76.40 104 5.85 0.05 

Carbohydrate 2.01 0.02 1.88 NS 

Lipid 7.97 0.21 9.45 0.05 

If p < 0.05 (significant); NS: Not Significant 
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Table 17. Biochemical composition of various organs in Penaeus 
semisulcatus exposed to zinc at 1.00 ppm (Of. dry weight of the 

tissue) 

Concentration SO (±) t P 

Hepatopancreas 

Protein 65.69 0.65 2.90 0.05 

Carbohydrate 4.34 0.07 9.39 0.05 

Lipid 30.70 0.60 3.8 0.05 

Gills 

Protein 37.00 0.58 5.46 0.05 

Carbohydrate 1.31 0.36 0.89 NS 

Lipid 0.79 0.03 4.26 0.05 

Muscle 

Protein 79.92 0.67 0.15 NS 

Carbohydrate 1.99 0.02 1.81 NS 

Lipid 8.40 0.40 3.54 0.05 

If P < 0.05 (significant): NS: Not Significant 
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4.4.6. Effect of heavy metals on the constituents 

4.4.6.1. Lethal exposure 

In the hepatopancreas significant differences among the metals in protein 

(f = 8.67: p < 0.05) (Appendix 4a) and carbohydrate (f = 14.24: p < 0.05) 

(Appendix 4b) contents were observed but no difference in lipid (f = 3.70: p > 

0.05) (Appendix 4 c) to lethal exposure. 

In the gills. there was no significant difference among the metals in the 

biochemical contents (Appendix 4d-f). 

In the muscle. protein (f = 5.19: p < 0.05) (Appendix 4g) showed a 

significant difference among exposed metals in lethal concentration . 

4.4.6.2. Sublethal (10 % of LCso ) 

In hepatopancreas, the carbohydrate (f = 11 .78: p < 0.05) (Appendix 5b) 

content differed Significantly among metal treatments while protein and lipid did 

not show any difference among the metals (Appendix Sa and 5c). 

Protein (f = 26.15: p < 0.05) (Appendix 5d) and carbohydrate levels (f = 
13.27: p < 0.05) (Appendix 5e) in the gills showed a significant change while lipid 

had no change among the metals. 

In the muscle, protein (f = 11 .28: p < 0.05) (Appendix 5g) showed a 

significant change while carbohydrate and lipid showed no difference (Appendix 

5h-i) among the metals. 



4.4 .6.3. Sublethal (20 % of Lese ) 

The protein (f = 13.4 : p < 0.05) (Appendix 6a) and carbohydrate (f = 27.95: 

p < 0.05) (Appendix 6b) contents changed significantly among the exposed 

metals while the lipid had no significant change among copper, cadmium and 

zinc exposures (Appendix 6c) in hepatopancreas. 

Protein (f = 56.02: p < 0.05) (Appendix 6d) in the gills showed a significant 

change while carbohydrate and lipid did not differ significantly among the metals 

(Appendix 6e-f) . 

In the muscle, protein (f = 15.13: p < 0.05) (Appendix 5g) and 

carbohydrate (f = 7.9: p < 0.05) (Appendix 5h) levels showed a significant change 

among the metals while lipid levels were not significantly different (Appendix 5i). 



4.5. Histopathology 

4.5.1. light microscopy 

Histoarchitecture of the control shrimp 

The hepatopancreas of control shrimp exhibited the well organized 

glandular. tubular structure seen in shrimps (Bell and Lightner. 1988). The 

tubules were closed distally but opened out proximally into ducts which in turn 

united to form longer ducts that were ultimately connected to the digestive tract. 

The tubule lumen has "star" like appearance (Plate 4: A. 8) . A Single layer of 

epithelial cells was found lining the tubules . The cells showed normal 

differentiation into E (Embryonic) cells at the normal distal end of the tubule . 

young R (Restzellen) cells and F (Fibrllenzellen) cells a short distance away from 

the distal region. and 8 (Blasenzellen) cells in the middle and proximal region of 

the tubule (Plate 4: A. 8) . The interstitial sinuses between tubules are normal. 

The gills of control shrimps showed uniform arrangement of lamellae with 

uniform interlamellar space. The secondary gill filaments were normal and both 

branched and non-branched gill filaments were seen (Plate. 5: A. 8). The septum 

(sep) dividing the afferent vessel (Afs) and efferent vessel (efs) were visible 

(Plate 5: A) 

Histoarchitecture of gills and hepatopancreas exposed to copper. 

cadmium and zinc at various concentrations showed the following: 

Exposure of the shrimp to copper caused slight change in the 

histoarchitecture of the hepatopancreatic cells. Formation of tissue debris (TO): 

swelling of the intercellular membrane that separates the adjacent cells (SW). 

necrotic tubules near the areas of swelling (NT) were the main observed effects 

at 0.7 ppm of copper (Plate 6. A). When exposed to 1.4 ppm the changes include 

necrotic tubules (NT) . tissue debris (TO) and abnormal lumen (ALU) (plate 6. 8). 



Exposure to lethal concentration led to massive necrosIs of the cells in the 

hepatopancreas (NeH) (Plate 6. e ) 

The exposure to copper (0.7 ppm) showed fusion of the gill lamellae (FL). 

haemocytic infiltration (HI) and swelling of the secondary gill lamellae (SW) (Plate 

7. A). In 1.4 ppm lifting of lamellar epithelium (LLE) necrosis (N) and infiltration of 

haemocytes (He) became evident (Plate 7. B). The exposure to lethal 

concentration led to necrosis of the basal membrane of the secondary gi ll 

lamellae (N). swelling of the intercellular membrane that separates the adjacent 

cells (SW). fusion and necrosis of the gill filament (FN) and haemocytic infiltration 

(HI) (plate 7. e ) 

The histoarchitectural changes in the hepatopancreas of shrimps exposed 

to 0.25 ppm cadmium include abnormal lumen (ALU) and increase in the number 

of R cells (Plate 8. A). When exposed to 0.5 ppm cadmium necrosis of the 

hepatopancreatic cells (NeH) and abnormal lumen (ALU) (Plate 8. B) were 

observed. The lethal concentration exposure resulted in severe damages such 

as swelling of the intercellular membrane that separates the adjacent cells (SW). 

tissue debris (TO) and necrosis of the cells (N) (Plate 8. e ). 

Exposure to 0.25 ppm led to deformity in the secondary gill lamellae (OL) 

leading to its necrosis (N) (Plate 9. A). The exposure to 0.5 ppm caused 

malformation of the gill tip (ML). necrosis (N) and haemocytic infiltration (plate 9. 

B). A complete deformity in the gills occurred when exposed to 2.8 ppm. the 

common features include necrosis (N) and haemocytic infiltration (HI ) (Plate 9. 

e ) 

The hepatopancreas of shrimp exposed to zinc showed varied alterations 

in the histoarchitecture of the cells. When exposed to 0.5 ppm abnormal lumen 

(ALU) and slight swelling in the basal membrane (SW) (Plate 10. A) were 

observed. When exposed to 1.00 ppm. deformity in the architecture of the 
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cellular organization, swelling of the intercellular membrane that separates the 

adjacent cells (SW) and necrosis (N) (Plate 10. B) occured. When exposed to 

5.00 ppm zinc there was complete damage to the cell architecture which included 

destruction of the cells , swelling of the intercellular membrane and abnormal 

lumen (Plate 10. C). 

Not much changes were noticed in the gill filaments of the shrimp exposed 

to zinc @ 0.5 ppm. The alterations in the secondary branching gill filaments 

showed hemocytic infiltration (HI), fused basal membrane of the secondary 

branching gill filaments (FN) and th ickening of basal membrane (T) (Plate 11. A). 

When exposed to 1.00 ppm. the alterations in the histoarchitecture included, the 

necrosis of the basal membrane of the secondary gill lamellae (N) and deformity 

at the tip of the secondary gill filaments (DF) (Plate 11 . B). When exposed to 5.00 

ppm zinc the cells showed damage to the whole architecture of the gills including 

the fusion of the gill filament by the thickening of the outer layer of the membrane 

in the secondary lamellae (FL) (Plate 11 . C). 



Plate 4. Control Hepatopancreas 

A. Histoarchitecture of the hepatopancreas in Penaeus semisu/catus X 40x 
E - E-cell 
B - B- cell 
R - R-cell 
F - F cell 
IS - Interstitial space 
LU - Lumen 

B. Histoarchitecture of the hepatopancreas in Penaeus semisu/catus X 40x 

E - E-cell 
B - B- cell 
LU - Lumen 

..... 



Plate. 4. Hepatopancreas of control shrimp 

#>' 

A 

• 

B 
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Plate 5. Histoarchitecture of control gills 

A. Histoarchitecture of control gills of Penaeus semisu/catus X 40x 

NBF - Non branching secondary gill filament 
afs - Afferent vessel 
efs - efferent vessel 
sep - septum 
BFL - Branching secondary gill filament 

B. Histoarchitecture of control gills of Penaeus semisu/catus X 40x 

CEN - Primary gill lamellae with a portion of the central axis. 
efp - efferent vessel of primary gill lamellae. 
afp - afferent vessel of primary gill lamellae. 

., 



Plate. 5. Gills of control shrimp 

A 

B 
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Plate 6 Changes in the hepatopancreas of Penaeus semisulcatus exposed to 
copper 

A. Copper induced alteration in the histoarchitecture of hepatopancreas in 
shrimp. Formation of necrotic tubules (NT) . tissue debris (TO) and swelling (SW) 
leading to the deformity in basal lamina of the test shrimp exposed to D.7 ppm of 
copper. X 4Dx 

B. Copper induced alteration in the histoarchitecture of hepatopancreas in 
shrimp. Formation of abnormal lumen (ALU), necrotic tubule (NT) and tissue 
debris (TO) while exposed to 1.4 ppm of copper. X 4Dx. 

C Copper induced alteration in the histoarchitecture of hepatopancreas in 
shrimp. Necrotic cells of the hepatopancreas (NCH) after exposed to 6.98 ppm of 
copper. X 4Dx 



Plate. 6. Changes in the hepatopancreas of 
Penaeus semisulcatus exposed to copper 

A 

B 

C 

59 



Plate 7. Changes in the gills of Penaeus semisulcatu:o exposed to copper 

A. Copper induted alterations in the histoarchitecture in the gills. Haemocytic 
infiltration (HI ), swelling of gill lamellae (SW) and fusion of the gill lamellae (FL) in 
the test shrimp exposed to 0.7 ppm copper. X 40x 

B. Copper induced alteration in the histoarchitecture of gills in shrimp. Lifting 
of lamellar epithelium (LLE), necrosis (N) and accumulation of haemocyte (HC) in 
the test shrimps exposed to 1.4 ppm copper. X 40x 

C. Copper induced alteration in the histoarchitecture of gills in shrimp. Fusion 
and necrosis of the basal part of the gills (FN) necrosis (N) and swelling of gill 
lamellae (SW) in the test shrimp when exposed to 6.98 ppm copper. X 40x 



Plate. 7. Changes in the gills of Penaeus semisulcatus 
exposed to copper 

A 

B 

C 
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Plate 8. Changes in the hepatopancreas of Penaeus semisulcatus exposed to 
cadmium 

A. Cadmium induced alteration in the histoarchitecture of hepatopancreas in 

J 

shrimp. Abnormal lumen (ALU) in the test shrimp while exposed to 0.25 ppm -j 

cadmium. X 40x 

B. Cadmium induced variations in the histoarchitecture of hepatopancreas in 
shrimp. Necrosis of the hepatopancreatic cells (HCN) and abnormal lumen (ALU) 
in the test shrimp when exposed to 0.50 ppm cadmium. X 40x 

C. Cadmium induced changes in the histoarchitecture of hepatopancreas in 
shrimp. Tissue debris (TO), necrosis of the cells (N) in the test shrimp when 
exposed to 2.80 ppm cadmium. X 40x 



Plate. 8. Changes in the hepatopancreas of 
Penaeus semisulcatus exposed to cadmium 

• 

C 
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Plate 9. Changes in the gills of Penaeus semisu/catus exposed to cadmium 

A. Cadmium induced alterations in the histoarchitecture of gills in shrimp. 
Degeneration and necrosis of secondary gill lamellae (ON) and necrosis (N) of 
the gill filament in the test shrimps exposed to 0.25 ppm of cadmium. X 40x 

B. Cadmium induced alterations in the histoarchitecture of gills in shrimp. 
Malformation (ML), haemocytic infiltration (HI) and necrosis (N) of the gill 
lamellae in test shrimps exposed to 0.5 ppm cadmium. X 40x 

C Cadmium induced alterations in the histoarchitecture of gills in shrimp. 
Haemocytic infiltration (HI) and necrosis (N) of the gill lamellae in test shrimps 
exposed to 2.8 ppm cadmium. X 40x 

'I 

J 

, 
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Plate. 9. Changes in the gills of Penaeus semisulcatus 
exposed to cadmium 

A 

B 

C 

62 



Plate 10. Changes in the hepatopancreas of Penaeus semisulcatus exposed to 
ZinC 

A. Zinc induced alterations in the histoarchitecture of hepatopancreas in shrimp. 
Abnormal lumen (ALU). slight swelling in the basal membrane ((SW) in the test 
shrimps when exposed to zinc at 0.5 ppm X 40x 

B. Zinc induced alterations in the histoarchitecture of hepatopancreas in shrimp. 
Deformity in the architecture of the cellular organization leads to necrosis (N) and 
swelling (SW) in the test shrimps when exposed to 1.00 ppm zinc. X 40x 

C. Zinc induced alterations in the histoarchitecture of hepatopancreas in shrimp. 
A total damage of the cells (TOC) are visible in the case of zinc exposure at 5.00 
ppm. X 40x 



.. 

Plate. 10. Changes in the hepatopancreas of 
Peneaus semisulcatus exposed to zinc 

A 

C 
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Plate 11. Changes in the gills of Penaeus semisulcatus exposed to zinc 

A. Zinc induced alteration in the histoarchitecture of hepatopancreas in 
shrimp. Fusion and necrosis of the gill lamellae (FN) , thickening of the basal 
membrane (T) and necrosis (N) of the gill lamellae in test shrimps exposed to 0.5 
ppm zinc X 40x 

B. Zinc induced alteration in the histoarchitecture of hepatopancreas in 
shrimp. Deformation at the tip of secondary gill lamellae (OF) and necrosis (N) of 
the gill lamellae in test shrimps exposed to 1.00 ppm zinc X 40x 

C. Zinc induced alteration in the histoarchitecture of hepatopancreas In 

shrimp. Fusion of the lamellae (FL) in test shrimps exposed to 5.00 ppm zinc X 
40x 

. 
/ 
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Plate. 11. Changes in the gills of Penaeus semisulcatus 
exposed to zinc 

A 

B 

C 
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4.5.2. Electron Microscopy (TEM) 

Copper 

After 96 hrs exposure to 6.98 ppm copper the gills showed marked 

changes in the struct.ure and integrity of the cells; the nuclear membrane 

damaged with the second nuclear membrane disintegrated (plate 12); the cell 

contain large number of vacuoles (plate 13) and in some cases granules in the 

vacuole (plate 14); the structure of mitochondria changed with the scattered 

cristae (plate 15); the nucleus wore a wavy structure. The other organelles were 

marginally affected by the treatment. 

The gill cells treated with 0.7 ppm copper (sublethal concentration) also 

showed marked structural changes - a clear damaged nuclei (Plate 16), distorted 

endoplasmic reticulum (plate 17) number of organelles in the cell reduced with 

damage to mitochondria, many of which retain their saucer shape with 

considerably fewer cristae (plate 18); damage to apical cells (plate 19); and 

increase in the number of vacuoles. 

The hepatopancreas of the shrimp when exposed to lethal concentration 

(6.98 ppm) of copper showed structural deformity of mitochondria (plate 20). 

, increased number of vacuoles (plate 21). disfigured mitochondria (plate 22), 

scattered and broken endoplasmic reticulum and fewer cell organelles leading to 

whole cell damage (plate 23). 

Hepatopancreas of shrimps exposed to 0.7 ppm of copper for 14 days 

resulted in broken cell membrane (plate 24), damaged second nuclear 

membrane (plate 25), condensed nucleus (plate 26) and disturbed cytoplasm 

with numerous vacuoles in the cells (plate 27). 
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Cadmium 

Gills of shrimps exposed to 2.8 ppm cadmium showed whole cell 

destruction (plate 28). damaged nucleus with condensation due to water loss: 

disintegration of the outer membrane of nucleus (plate 29); swollen mitochondria 

and scattered cristae (plate 30) increase in the number of vacuoles and damaged 

and scattered endoplasmic reticulum (plate 31 ). 

Shrimps exposed to 0.25 ppm cadmium showed distortion of endoplasmic 

reticulum (plate 32): fewer swollen mitochondria with a clear disorientation of 

outer membrane (plate 33); loss of integrity in cuticle and the region just 

underlying it (plate 34); degenerated mitochondria. fewer cellular organelles and 

structural deformation of the nuclei (plate 35) in the gills. 

The hepatopancreas of shrimps exposed to 2.8 ppm of cadmium observed 

many nuclei had lost their typical elliptical shape due to extensive swelling of the 

nuclear membrane. (plate 36) . The integrity of the cell lost its characteristic 

inclusions. scattered endoplasmic reticulum. vacuoles. shrunken and condensed 

nucleus (plate 37). Damage in nucleus forming aggregations and empty space in 

the cell (plate 38) Mitochondria were destroyed with scattered cristae (plate 39). 

In the case of shrimps treated with 0.25 ppm cadmium. electron dense 

bodies (plate 40). disfigured and disintegrated endoplasmic reticulum and 

vacuoles (plate 41 ): damaged mitochondria (plate 42) and formation of vacuoles 

attached to nuclear membrane (plate 43) in hepatopancreas. 

Shrimps exposed to lethal concentration of 5 ppm zinc for 4 days showed 

numerous vesicles in the gills (plate 44) . fewer organelles in the cell (plate 45). 

disintegrated cytoplasm and damaged outer nuclear membrane. broken 

endoplasmic reticulum (plate 46) and damage to mitochondria (plate 47). 
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Zinc 

In shrimps exposed to 0.5 ppm zinc. the gill cells showed few disoriented 

microtubles (plate 48) . vacuole formation (plate 49), granular deposits in the 

cuticle (plate 50). and there were also cells with less cell components and slightly 

disoriented mitochondria (plate 51 ) 

Exposure to 5 ppm zinc resulted in granular formation (plate 52). 

mitochondrial swelling (plate 53). vacuoles formations (plate 54) and shrunken 

nucleus (plate 55) in the cells of hepatopancreas. 

Shrimps exposed to 0.5 ppm zinc showed electron dense body (plate 56). 

slight damage to mitochondria (plate 57). breakage in cell wall (plate 58) and the 

wavy appearance of condensed nucleus (plate 59) in the hepatopancreas. 

67 



EFFECT OF COPPER ON GILLS AT 6.98 ppm 

plate 12 plate 13 

plate 14 plate 15 

Plate 12 Damaged nuclear membrane (DNM) X 6,000 
Plate 13. Numerous vacuoles (V) X 12,000 
Plate 14. Deposition of copper in vacuoles (D) and vacuoles 01) X 12,000 
Plate 15. Disrupted mitochondria (M) X 10,000 
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EFFECT OF COPPER ON GILL AT 0.7 ppm 

Plate 17 

Plate 18 Plate 19 

Plate. 16. Damaged nucleus X 25.000 

Plate. 17. Distorted endoplasmic reticulum (ER) X 25,000 
Plate . 18. Fewer organelles in the cell X 8,000 
Plate . 19. Apical cell damage X 15,000 
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EFFECT OF COPPER ON HEPATOPANCREAS AT 6.98 ppm 

Plate 20 Plate 21 

Plate 22 Plate 23 

Plate. 20. Damaged mitochrondria X 15,000 
Plate. 21 . Vacuoles M in the cell X 20,000 
Plate. 22. Pear shaped mitochondria (M) X 17,000 
Plate. 23. Whole cell damage X 8,000 
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EFFECT OF COPPER ON HEPATOPANCREAS AT 0.7 ppm 

Plate 24 Plate 25 

Plate 26 Plate 27 

Plate. 24. Breakage in the cell membrane (BCM) X 12,000 
Plate. 25. Swelling of the nuclear membrane (SNM) X 50,000 
Plate. 26. Condensed nucleus and its damage X 17,000 
Plate. 27. Numerous vacuoles X 12,000 
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EFFECT OF CADMIUM ON GILLS AT 2.8 ppm 

Plate. 28 

Plate 30 

Plate. 28. Whole cell destruction X 5,000 

Plate. 29. Damaged Nucleus X 5,000 

Plate. 29 

Plate. 31 

Plate. 30. Swelling of mitochondria (M) X 10,000 

Plate. 31 . Mitochondrial damage (M), Nuclear membrane damage (N), 
Vacuoles (V) X 5,000 

72 



l 

EFFECT OF CADMIUM ON GILLS AT 0.25 ppm 

Plate 32 Plate 33 

Plate 34 Plate 35 

Plate 32. Endoplasmic reticulum (ER) distorted X 25,000 

Plate 33. Damages in mitochondrial membrane (M) and 
nuclear membrane (NM) x 25,000 

Plate 34. Damage in cuticle (C) X 35,000 

Plate 35. Whole cell damage X 10,000 
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EEFECT OF CADMIUM ON HEPATOPANCREAS AT 2.8 ppm 

Plate 36 Plate 37 

Plate 38 Plate 39 

Plate. 36. Swelling of nuclear membrane X 6,000 
Plate. 37. Whole cell damage X 5000 . 
Plate. 38. Aggregations in nucleus (AG) and empty space in the cell X 6):100 
Plate. 39. Mitochondrial damage (M) X 8,000 
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EFFECT OF CADMUIM ON HEPATOPANCREAS AT 0.25 ppm 

Plate 40 Plate 41 

Plate 42 Plate 43 

Plate. 40. Electron dense body (EDB) X 10,000 

Plate. 41 . Disturbed endoplasmic reticulum (ER) and vacuoles X12,OOO 

Plate. 42. Damage in mitochondria (M) X 10,000 

Plate. 43. Vacuoles attached to nuclear membrane (V) X 8,000 
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EFFECT OF ZINC ON GILLS AT 5.00 ppm 

Plate 44 Plate 45 

Plate 46 Plate 47 

Plate. 44. Numerous vesicles (VS) X 20,000 
Plate. 45. Whole cell damage X 6,000 
Plate. 46. Disintigrated cytoplasm (CY) and damage 

in nuclear membrane (DNM) X 8,000 
Plate. 47. Disrupted mitochondria (M) X 20,000 
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EFFECT OF ZINC ON GILLS AT 0.5 ppm 

Plate 48 

Plate 50 

Plate. 48. Microtubules (MT) X 30,000 
Plate. 49. Cell with vacuoles M X 6,000 

Plate 49 

Plate 51 

Plate. 50. Granules (G) in the cuticle of the gill cell X 30,000 
, Plate. 51 . Cells with less cell components X 8,000 
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EFFECT OF ZINC ON HEPATOPANCREAS AT 5 ppm 

Plate 52 Plate 53 

Plate 54 Plate 55 

Plate. 52. Granular formation X 8,000 
Plate. 53. Damaged mitochondria X 15,000 
Plate. 54. Vacuole M and microvilli X 6,000 
Plate. 55. Shrunken nucleus X 8,000 
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EFFECT OF ZINC ON HEPATOPANCREAS AT O.5ppm 

Plate 56 Plate 57 

Plate 58 Plate 59 

Plate. 56 . Electron dense body (EDB) X 10,000 
Plate. 57 . Slight damages in mitochondria (M) X 12,000 
Plate. 58. Breakage of cell wall (BeW) X 30 ,000 
Plate. 59. Wavy appearance of nucleus X 6,000 
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DISCUSSION 



5. DISCUSSION 

5.1. Bioassay studies 

Acute toxicity studies have been performed to determine the effects of 

metals on freshwater and marine fishes and shellfishes (Sprague, 1969, 1973, 

1976). From the present static bioassay study, the 96 h LCso of P. semisulcatus 

for copper, zinc and cadmium was determined as 6.98 ppm Cull , 5.0 ppm Znll 

and 2.8 ppm Cdll respectively. 

The results of the present study suggests that the toxicity of the three 

metals to Penaeus semisulcatus is in the order Cd> Zn> Cu. Copper being a 

component of haemolymph protein, haemocyanin and involvement of zinc in the 

metabolism of proteins and nucleic acids, these two are essential metals at 

optimum concentrations, whereas, cadmium is a non-essential metal and its toxic 

effect is more pronounced when compared to copper and zinc. The same pattem 

of toxicity (Cd> Cu> Zn) was reported by Vijayaraman (1993) in Macrobrachium 

malcolmsonii. 

5.1 .1.. Copper 

In Crangon crangon, 96 h LCse was 1.9 ppm Cull (portmann and Wilson, 

1971). For Penaeus merguiensis, 96 h LCso for copper was found to be 6.1 ppm 

(Denton and Burdon-Jones, 1982) and for P. indicus, 120 h LCse was 0.3 ppm 

(Mary Carmel et al., 1983). Sivadasan et al. (1986) reported a 96 h LCso of 2.25 

ppm for Metapenaeus dobsoni. In Penaeus japonicus, 96 h LCse was 2.05 ppm 

when reared in seawater whereas in dilute seawater (27 ppt) it was 1.2 ppm. 

(Bambang et al. , 1994). 
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Among the freshwater prawns Macrobrachium rude showed an Lese of 

0.018 ppm (Vijayaraman and Geraldine. 1992) and for M. malco/msonii it was 

0.955 ppm (Vijayaraman. 1993). 

From the present study. it can be concluded that PenaeL!s semisulcatus 

exhibits a better tolerance to copper than Penaeus mergu~nsis . Crangon 

crangon. Penaeus japonicus. and Metapenaeus dobsoni. The least tolerance 

elicited by the freshwater prawns is due to the lower salinity which is a major 

factor determining the toxicity of heavy metals (Vijayaraman. 1993). 

5.1.2. Zinc 

Viswanathan and Manisseri (1993) found that the 96 h Lese for Zinc to P 

indicus was 1.67 ppm. In Metapenaeus dobsoni. the 96 h Lese was 1.7 ppm 

(Sivadasan et al .. 1986). In the freshwater prawns. Macrobrachium rude and M. 

malcolmsonii. the 96 h Lese was 3.025 and 2.284 respectively (Vijayaraman and 

Geraldine. 1992: Vijayaraman. 1993). 

The present study reveals that Penaeus semisulcatus has the propensity 

to tolerate higher concentration of zinc when compared to P. indicus. 

Metapenaeus dobsoni. Macrobrachium rude and M. malcolmsonii. A possible 

reason for this higher tolerance must be the efficiency of this shrimp to regulate 

this metal if the ambient level of zinc is high. 

5.1.3. Cadmium 

In Penaeus duorarum. the 96 h Lese was 4.6 ppm (Bahner and Nimmo. 

1975). Ahsanullah (1976) reported a high value of 6.6 ppm as the 96 h LCso of 

cadmium in Palaemon spp. Bambang et al. (1995) found that in Penaeus 

japonicus . the 96 h LCse was 3.5 ppm. In the common Indian marine crab . Scylla 

serrata. the 96 hr Lese was found to be 6.61 ppm (Krishnaraja et al .. 1987) . 

81 



Among the freshwater prawns, 96 h LC50 of cadmium in Pa/aemonetes 

vulgaris and Macrobrachium malcolmsonii were, 0.76 ppm and 0.628 ppm 

r respectively (Nimmo et a/., 1977; Vijayaraman, 1993). 

In the present study, P. semisulcatus showed very low tolerance to 

cadmium when compared to other marine shrimps. 

Thus the result of the present study suggests that Penaeus semisulcatus 

can tolerate relatively higher concentrations of copper and zinc when compared 

with other shrimps mentioned above, however, in case the of cadmium it showed 

a low tolerance than other marine shrimps. 

5.2. Morphological and behavioural changes 

5.2.1. Morphological changes 

Penaeus duorarum, Pa/aemonetes pugio and P. vulgaris exposed to 

cadmium in acute and subacute tests developed blackened foci or melanised 

lamellae (Nimmo et a/., 1977). Melanisation of gills, carapace, telson and 

pareiopods was observed in Macrobrachium malcolmsonii, exposed to copper, 

cadmium, chromium and zinc individually as well as in combination· 

(Vijayaraman, 1993). Blackened gills were observed in Penaeus japonicus 

exposed to copper (Soegianto et a/., 1999). Viswanathan and Manisseri (1993) 

observed blackening in Penaeus indicus exposed to zinc and it resulted in 

blackening of the gills. In the present study also melanisation was observed in 

body parts of P. semisulcatus. 

The ultrastructural studies of gills of Penaeus duorarum, exposed to 

cadmium revealed that cell death leads to blackening of the gills (Couch, 1977). 

Experimental removal of the sinus gland of Pa/aemon serratus, was found to 

result in darkening of the carapace (Knowles, 1959). The sinus gland, which is 
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endocrine in function, controls and regulates body pigmentation in crustaceans 

(Gorbman and Bern, 1974). Neurosecretory hormones secreted by sinus gland 

have a significant role in the regulation and dispersion of the chromatophores in 

crustaceans (Ranga Rao and Fingerman, 1983). 

The black pigmentation in various body parts seen in P. semisulcatus 

could be attributed to either cell death or disruption in the functioning oflhe sinus 

gland. Thus, the exposure of shrimps to copper, cadmium and zinc may 

adversely affect the sinus gland, which is involved in the hormonal control of 

colour change in crustaceans. 

5.2.2. Behavioural changes 

Studies on the behavioural aspects of heavy metal toxicity in shrimps or 

prawns are scanty. Vijayaraman (1993) who studied the effect of copper, 

cadmium, chromium and zinc on Macrobrachium malcolmsonii reported 

behavioural responses like a gradual cessation of activity, paralysis due to 

impairment of muscular movements and erratic swimming. In the present study 

also, P. semisulcatus exhibited similar behavioural responses, which include 

erratic swimming and reduced response to stimuli, which may be due to the 

impairment of respiratory and endocrine system of the animal under heavy metal 

exposure. 

5.3. Bioaccumulation 

5.3.1 . Copper 

Copper is an essential trace element for cell growth and differentiation. 

The concentration of this metal can govern diverse metabolic pathways and 

physiological processes (Ghidalia, 1985). 
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In Penaeus semisulcatus. the highest amount of copper was accumulated 

in hepatopancreas and accumulation in the other tissues was in the following 

order: hepatopancreas > gills > tail > carapace > muscle in all the exposures. 

This is in conformity with the findings in many other decapod crustaceans (Bryan , 

1968: Peerzada. et al .. 1992) including Cambarus barloni (Alikhan et al .. 1990). 

Carcinus maenas (Truchot and Rtal. 1998) Penaeus japonicus (Soegianto et al .. 

1999) freshwater prawn. Macrobrachium malcolmsonii (Vijayaraman. 1993) 

crabs Potamonautes perlatus (Snyman et a/ .. 2002) and Porlunus pelagicus (AI­

Mohanna and Subrahmanyam. 2001 ). 

The copper content in the experimental shrimps increased significantly. 

with increase in the concentration of metal in the medium and the duration of 

exposure. The increase was only marginal in the tail. carapace and muscle 

tissues but sharper in hepatopancreas and gills. A similar pattern has been 

reported on exposure of copper in Cambarus barloni (Alikhan et al.. 1990). 

Carcinus maenas (Trichot and Rtal. 1998) Macrobrachium malcolmsonii 

(Vijayaraman. 1993) P. monodon (Vagt and Quinitio. 1994) and Penaeus 

japonicus (Soegianto et al., 1999). 

The significant increase in copper concentration in all the tissues of P. 

semisulcatus exposed to 6.98 ppm for four days and 0.7 and 1.4 ppm Cul l for 14 

days suggests that. the bioaccumulation of copper occurs through the circulation 

of haemolymph, and the high exchange surface of the gills with the external 

medium, constitute the entry site of the metal and act as a transient store for 

accumulated metal as proposed by Martin and Rainbow (1998). 

The hepatopancreas performs a central role in metabolism, storage and 

detoxification of a number of metals similar to the liver of vertebrate counterparts 

(Rainbow and Scott, 1979: Dall and Moriarty, 1983) Copper is primarily 

accumulated and deposited in the hepatopancreas. which is a major storage 

organ in decapods (Brown. 1982: Rainbow. 1988. 1990. 1992) and levels of 
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copper in the digestive gland are affected by environmental conditions (Darmono 

and Denton. 1990) 

In the sublethal studies with 0.7 ppm copper in the medium for 14 days. 

the hepatopancreas of P. semisulcatus accumulated significantly higher quantity 

of copper than that of the lethal concentration . As the lethal study was conducted 

only for 96 h. the bioavailability of copper might not have crossed the threshold 

level required for inducing the bioaccumulation process. Studies on the strategies 

of copper accumulation by decapods over a wide range of concentrations under 

defined physio-chemical conditions in the laboratory indicate that the 

concentration of copper in the body is regulated to a constant level till copper 

bioavailability reaches high threshold level. when regulation breaks down and net 

accumulation begins (White and Rainbow. 1982: Amiard et al .. 1985: Rainbow. 

1985. 1988.1990. 1992. 1995a.b. 1997a.b). The accumulation of copper in the 

carapace of P. semisulcatus seems to be a mechanism to counteract the metal 

stress in which moulting could be considered as a detoxifying mechanism 

accelerating the output of Cu accumulated in the carapace as observed in crab 

larvae (Lopez Greco et al. 2000) 

In the sublethal study with two concentrations (07 and 1.4 ppm) in P 

semisulcatus. the bioaccumulation of copper in hepatopancreas showed a dose 

.r dependent response. This shows that the environment copper concentration 

greatly influences the accumulation in the hepatopancreas compared to the other 

organs as highlighted by Rainbow (1985. 1988. 1990. 1992. 1995a. b. 1997a. b). 

5.3.2. Cadmium 

Cadmium in decapods is preferentially accumulated in the digestive gland : 

the pattem of accumulation . however differ among species. In P. semisulcatus. 

accumUlation of this metal was highest in the hepatopancreas followed by gills 

and other organs. This is consistent with reports in other decapods (Eisler. et al .. 

1972: Eisler. 1973. 1981 : Nimmo et al .. 1977: Jennings and Rainbow. 1979: 
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Jennings et al .. 1979: Ray et al .. 1980: Davies et al. . 1981 : Papathanassiou and 

King . 1983: 1986: White and Rainbow. 1986: Vijayaraman. 1993: Vijayram and 

Geraldine. 1996). This non essential metal could be sequestered and 

progressively accumulated in the hepatopancreas. perhaps as granules or bound 

to metal binding proteins (Wright. 1977a. b: Bjerregaard . 1990). 

The increase in the accumulation of cadmium based on dosage and lor 

duration of exposure observed in the present study is a trend similar to that 

recorded with other crustaceans such as Palaemon serratus (pappathanassiou 

and King . 1986) Palaemon e/egans (White and Rainbow. 1986) Carciuns 

maenas (Wright 1977a.b; Jennings et al .. 1979: Amiard-Triquet et al .. 1986) Uca 

pugilator (O'Hara. 1973), Callinassa australiensis (Ahsanullah et al. . 1984). 

Callianassa tyntlena (Thaker and Hariotis. 1989. 1993) and in freshwater prawn. 

Macrobrachium malcolmsonii (Vijayaraman. 1993). 

Cadmium is found to be accumulated in the gills . hepatopancreas. muscle 

and exoskeleton of Penaeus semisulcatus. with hepatopancreas and gills being 

the organs with highest concentrations. In the lobster. Homarus americanus 

cadmium is accumulated to a higher concentration in the gills than muscle. 

exoskeleton and viscera (Chavez-Crooker. 2002). 

There is no evidence to suggest that any decapod regulates the body 

.... cadmium concentrations to a constant level by balancing uptake and excretion 
\ 

(White and Rainbow. 1982: Napierska and Radlowska. 1998) Indeed the crab 

Carcinus maenas (Wright. 1977a: Jennings and Rainbow. 1979: Rainbow. 1985). 

the prawn Palaemon elegans (White and Rainbow. 1982: 1986) and the shrimp 

Crangon crangon (Dethlefsen. 1978: Amiard et al .. 1985) show increasing body 

concentrations of cadmium with increased exposure to dissolved cadmium as 

observed in Penaeus semisulcatus. In this context. it is of interest to note that 

both penaeids and palaemonids can concentrate cadmium in their tissues in 

ambient conditions (White and Rainbow. 1982: Napierska and Radlowska. 1998). 

Earlier studies revealed that metallothioneins bind the excess cadmium absorbed 
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from the ambient medium and store it in a detoxified form particularly in the 

hepatopancreas. In Cancer pagurus (Ovemell and Trewhella. 1979: Ovemell. 

1982. 1984. 1986) Palaemon e/egans (White and Rainbow. 1984) Homarus 

americanus (Engel and Brouwer. 1984) Carcinus maenas (Wong and Rainbow. 

1986) Callianassa tyrrtJena (Thaker and Haritos. 1989. 1993) Callinectes sapidus 

(Syring et al .. 1992; Brouwer. et al .. 1994. 2000. 2002) and in fish . Sarotherodon 

mossambicus (Ramalingam. 1988. 2003). Onchorynchus mykiss (Kammann. 

1995) Carcinus maenas (Pedersen et al .. 1998) and Onchorynchus spp (Gehrig 

et al .. 2000) detoxification mechanisms by metallothioneins are reported . 

5.3.3. Zinc 

Zinc is associated with the activity of nearly 100 enzymes involved in 

protein. carbohydrate. lipid and nucleic acid metabolism (Martin et al .. 1977: 

Elinder. 1986: Berry. 1997). At excessive concentrations. however. this essential 

metal becomes toxic to organisms (Phillips. 1980). 

The accumulation of zinc in P. semisulcatus increased with 

increase in the concentration of Zn in the test medium. Both in the lethal and 

sublethal exposures. the pattern of accumulation is hepatopancreas > gills> tail 

> muscle> exoskeleton. 

Tissue concentrations of zinc corresponds to the seawater concentrations 

(Bryan et al .. 1986). According to AI-Mohanna and Nott (1985. 1986. 1987). 

decapods respond to zinc concentrations in the ambient environment 

differentially. Regulatory responses of zinc were reported in Homarus vulgaris 

(Bryan. 1964: 1968: 1976). Carcinus maenas (Wright. 1976. 1978) Pandalus 

montagui (Ray et al .. 1980) and Palaemon elegans (White and Rainbow. 1982. 

1984) to control their internal concentration of this metal. The results of the 

present study in P. semisulcatus indicates breakdown of the internal regulatory 

mechanism after a threshold level leading to bioaccumulation of zinc in various 

tissues. Decapod crustaceans regulate the body concentration of zinc to an 

approximately constant level over a wide range of ambient zinc bioavailability. If 
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the rate of zinc uptake is beyond the physiological control of the net accumulation 

of absorbed zinc begins (Bryan, 1964; 1976; (White and Rainbow, 1982; Amiard 

et a/., 1985; Rainbow, 1985). 

Rainbow (1987) reported a very high concentration of zinc in species of 

crustaceans like barnacles in which this metal is stored in the form of zinc 

phosphates. AI-Mohanna (1986, 1987) also reported the presence of zinc as zinc 

phosphates in P. semisulcatus. 

5.4. Physio - Biochemical studies 

5.4.1. Respiratory studies 

In P. semisulcatus, an increase in oxygen consumption was observed 

while exposed to lethal concentrations of copper, cadmium and zinc. This is in 

agreement with the results reported in scallop, Argopectin irradians (Nelson et 

a/., 1976), lobster, Homarus americanus (Thurberg et al., 1977), Crassostrea 

virginica (Engel and Fowler, 1979) and in Pa/aemon serratus (Papathanassiou, 

1983) when exposed to metals. 

In contrast to the above observations, a decrease in oxygen consumption 

was reported in Eurypanopeus depressus (Collier et a/., 1973), Carcinus maenas 

and Cancer irroratus (Thurberg et a/., 1973), Uca pugi/ator (Vern berg and 

Vernberg, 1972), Palaemonetes vulgaris and lIyoplax gangetica (Reish, 1978), 

Scylla serrata . (Narayanan 1989) and in Macrobrachium malcolmsonii 

(Vijayaraman, 1993). 

Kinne (1 960) reported that the initial increase in oxygen consumption when 

aquatic animals are exposed to heavy metals is an ·overshoot" response. The 

increase in oxygen consumption seen in the present study might result from toxic 

stress-induced mobilization of metabolic reserves to meet immediate 
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energy requirements. It appears that shrimps exposed to heavy metals had to 

expend more energy to mitigate the toxic impact of heavy metals present in the 

medium. 

5.4.2. Biochemical 

5.4.2.1. Carbohydrate 

Carbohydrate is the first and the most efficient source of energy. Almost 

all animals use carbohydrate as respiratory fuel. They serve as an important 

source of energy for vital activities in the form of glucose and glycogen (Berry, 

1997). 

Hepatopancreas is a storage tissue and is actively involved in metabolism 

in crustaceans (Chang and 0 ' Connor, 1983). In the present study, P. 

semisulcatus exposed to copper, cadmium and zinc showed a mar1<ed reduction 

in the carbohydrate level of hepatopancreas, gills and muscle. 

Inside the tissues of animals subjected to toxic stress, a reducfion in 

carbohydrate content occurs due to various physiological changes like elevation 

of AMP level , triggering the activity of phosphorylase A to effect glycogenolysis. 

As a result of glycogenolysis there occurs a reduction in glycogen reserve and 

ultimately a drop in total carbohydrate level results. This has been demonstrated 

in Macrobrachium lamarrei (Omkar and Shukla, 1985), Macrobrachium 

malcolmsonii (Vijayaraman, 1993), Penaeus indicus (Srinivasalu Reddy et al., 

1985, 1986), Scylla tranquibarica (Anbarasu, 1993), Barytelphusa guerini 

(Fingerman, et al., 1981) Scylla serrata (Kulkarni and kulkarni, 1989; 

Srinivasaulu Reddy and Bhagyalakshmi, 1994) Homarus americanus (Chavez­

Crooker, 2002), Achatina futica (Indra, 1998), Mytilus edutis. (Dezwan and 

Zandec, 1972), Sarotherodon mossambica (Koundinya and Ramamurthi, 1979; 

Ramalingam, 1988, 1989, 1990, 2003) Oreochromis mossambicus 

(Balasubramanian, et al., 1999) Spiralotelphusa hydrosdroma (Sakundala, 1992) 
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Therapon jarbua (Selvakumar. 1981 ) and Carassius auratus (Gargiulo et al .. 

1996) 

The possible reason for a reduction in the carbohydrate levels can be 

attributed to the utilization of glycogen reserve for meeting the additional energy 

requirements caused by the toxicant exposure. 

5.4.2.2. Protein 

Proteins occupy a key position in the general body growth and in the 

repair of wear and tear of the cells with the help of aminoacids. A general 

reduction in the protein content of animal leads to a reduction in growth and also 

its metabolic activity in the cell (Berry. 1997). 

In the present study. Penaeus semisulcatus showed a marked reduction 

of protein in hepatopancreas. gills and muscle when exposed to lethal and 

sublethal concentration of copper. cadmium and zinc. 

Depletion of proteins due to various toxicants like heavy metal and 

pesticides has been reported in Oncorhynchus kisutch (Mc Leay and Brown. 

1974) . Sarotherodon mossambicus (Ramalingam and Ramalingam. 1982). Mugil 

cephalus (Mihelic et al .. 1999). Metapenaeus monoceros (Vijayalakshmi and 

Ramana Rao. 1985). Penaeus indicus (Srinivasalu Reddy et al. . 1986). Scylla 

serrata (Narayanan. 1989). Spiralotelphusa hydrodroma (Sakundala. 1992) and 

Macrobrachium malcolmsonii (Vijayaraman. 1993). 

The primary energy sources are carbohydrates and lipids. Proteins will be 

used to meet the energy requirements only when the carbohydrate and lipid 

sources are exhausted (Berry. 1997). In the present study. as there is a marked 

decrease in the carbohydrate and lipid levels. it can be presumed that these 

primary sources are exhausted and so the proteins are used to meet the energy 

requirements. Reduction of DNA and RNA was reported in killi fishes (Jackim et 
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al .. 1970). Macrobrachium kistensis (Nagabhusanam et al .. 1987). Scylla selTata 

(Narayanan. 1989) and Macrobrachium malcolmsonii (Vijayaraman. 1993). 

r- Penaeus monodon (Reddy and Ramamurthy. 1997) when exposed to heavy 

metals and pesticides. The reduced RNA content implies reduced protein 

content. The heavy metals can bind to certain sites on the nucleic acids. thus 

disrupting the normal function (Eichron. 1975). As nucleic acids are involved in 

protein synthesis. a disruption in their normal function can affect the protein 

synthesis . Therefore. heavy metal exposure can adversely affect the protein 

synthesis ultimately leading to a reduction in the protein content of the 

animal.The marked reduction in protein content observed in the present study. 

can be attributed to two reasons: (1) for meeting the energy requirements when 

the primary energy sources like carbohydrate and lipids got exhausted: (2) the 

protein synthesis was affected due to the disruption in the functioning of nucleic 

acids brought about the binding of metal ions to certain sites on them. 

5.4.2.3. Lipid 

Lipids serve as a tremendously important. energy rich fuel in higher 

animals and plants. since large magnitude can be stored in cells in the form of 

triglycerols (Gur and Harwood. 1991 ). 

In the presence of heavy metal and pesticides. a reduction in lipid has 

r been observed in Penaeus indicus (Srinivasulu Reddy et al .. 1985) and 

Macrobrachium malcolmsonii (Vijayaraman. 1993). In the present study lipid 

content in various tissues showed a significant reduction. As the carbohydrate 

source of energy was exhausted. the lipids might have been broken down as an 

alternate fuel source. This can be a possible explanation for the reduction in lipid 

content observed in the present study. 

f -



5.5. Histopathology 

Heavy metals are known to affect the structure and function of cellular 

components leading to impairment of vital functions of many marine organisms 

(Papathanasiou and king. 1983: Papathanasiou. 1985: Baticados. et al .. 1987: 

Vogt. 1987: Baticodos and Tendencia . 1991 : Vijayaraman. 1993: Manisseri and 

Menon. 1995: Marinescu et al.. 1997: Soentigo et al.. 1999: Bhavan and 

Geraldine. 2000: Cheng et al .. 2000). It is in this context that histological and 

ultrastructural alterations are employed as effective indices of physiological and 

biochemical changes caused by copper. cadmium and zinc induced stress at the 

lethal levels and sublethal levels of exposure. These biological indices provide 

insight into cellular injuries before any irreversible alteration occurs. 

The two vital organs most affected by environmental contamination are 

hepatopancreas and the gills. Gills perform osmoregulation and respiration while. 

hepatopancreas has secretory. excretory. absorptive and digestive functions. 

These organs have been identified as target organs for studying heavy metal 

pollution. pesticide pollution and other ecotoxicants because critical 

histopathological and ultrastructural alterations occur in these organs at very 

early stages of exposure. 

5.5.1. Gills 

In aquatic organisms. the gills represent a vital organ. since it plays an 

important role in the exchange of respiratory gases and regulate the osmotic and 

ionic balance. Toxic substances will cause damage to gill tissues (Vijayaraman. 

1993: Lignot et al .. 2000). 

The notable alteration in the histoarchitecture of the gills of P. 

semisulcatus include accumulation of haemocytes. necrosis. swelling. fusion of 

the lamellae lifting of the laminar epithelium. deformities and fusion and necrosis. 

+- Similar changes were noticed in Callinectes sapidus (Copeland and Fitzjaarel . 



1968) , Penaeus duorarom (Couch, 1977), P. duorarom and Palaemonetes 

elegans (Nimmo et al., 1977), Macrobrachium sp. and Caridina sp. (Ghate and 

Mulherkar, 1979), Cancer irroratus (Greig et al. , 1982), Scylla serrata 

(Narayanan, 1989), Macrobrachium idae (Victor et al., 1990), Macrobrachium 

malcolmsonii (Vijayaraman, 1993), Carcinus maenas (Hebel et a/., 1999), 

Penaeus japonicus (Soegianto et aI., 1999), Macrobrachium malcolmsonii 

(Bhavan and Geraldine, 2000) when exposed to heavy metals and endosulfan. 

Chandy and Kolwalkar (1984) also reported same alterations in gill histology of 

Charybdis lucifera and Scylla serrata due to crude oil. 

Ultrastructural changes observed in the gills of P. semisulcatus were 

damaged nuclear membrane, increase in number of vacuoles, deposition of 

metals in the vacuoles, disrupted mitochondria, damaged nucl.eus, distorted 

endoplasmic reticulum, apical cell damage, swelling of mitochondria, damage in 

mitochondrial membrane, scattered microtubules, numerous vesicles and 

disintegrated cytoplasm. Similar changes in gills were reported in Palaemon 

serratus (Papathanassiou and King, 1983), Penaeus duorarom, Palaemontes 

pugio and P. vulgaris (Nimmo et al., 1977), Palaemon serratus (Papathanassiou 

and King, 1983; Papathanassiou, 1985), Jaera nordmanii (Bubel, 1976), 

Carcinus maenas (Lawson et al. , 1985), . Macrobrachium malcolmsonii 

(Vijayaraman, 1993), Carcinus maenas (Hebel et a/., 1999), Penaeus japonicus 

(Soegianto et aI., 1999) when exposed to heavy metals and pesticides. 

In the gills of Penaeus semisulcatus the most affected organelles were the 

mitochondria, with damage in cristae, breakage in bounding membranes and 

swelling. Mitochondria with closely packed cristae have high metabolic activity 

(Berry, 1997). The disruption of mitochondrial membranes reduces the ability of 

mitochondria to synthesize ATP and leads to an increase in permeability which 

might account for their swollen appearance (Bubel, 1976). 

The increase in the intracellular vesicles helps in the transportation of 

metals from external medium to haemolymph (Papathanassiou and king, 1983; 
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Papathanassiou. 1985: Vijayaraman. 1993: Soegianto et al .. 1999). The 

presence of large number of vesicles can be attributed to the transportation of 

metal to haemolymph in P. semisulcatus. 

Damage of the endoplasmic reticulum suggests that an energy deficiency 

occurred within the cells due to inhibition of protein synthesis by the reduced 

number of ribosomal particles. The invagination of the apical membrane and the 

associated pinocytic vesicles are probably involved in the salt absortiing 

mechanism (Copeland and Filzjaarel. 1968). Damages to the cuticle. when 

exposed to toxicants suggest that the first part of the gill to be affected is this 

outer protective covering . The structural integrity of the cuticle is affected by 

pollutant exposure (Papathanassiou. 1985). 

Thus metals had an effect on the fine structure of the gill cells of P. 

semisulcatus and affect several functions such as enzymatic activities. 

absorption and transportation of salts. active ion uptake and protein synthesis 

(Papathanassiou. 1985: Soegianto. et al .. 1999). 

Disoriented microtubules were observed when the shrimps were exposed 

to metals. This suggests that the cytoskeletal system is impaired by the exposure 

of the pollutants to the shrimps (Sandbom et al .. 1964) 

r- Since exposure to copper. cadmium and zinc results in structural 

damages in the gills of Penaeus semisulcatus. it is likely to interfere with the 

diverse physiological functions of this vital organ. Several studies have reported 

that metal exposure to this organ can disrupt respiratory processes (Depledge. 

1984: 1989: Boitel and Truchot. 1989: Spicer and Weber. 1991 . 1992: Nonnotte 

et al .. 1993: Vijayaraman. 1993: Bhavan and Geraldine. 2000). 

5.5.2. Hepatopancreas 

The hepatopancreas of crustaceans have 4 groups of epithelial cells 

namely: E-. R-. F- and B- cells and formed by a sequence of cellular 
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differentiation (Dall, 1967; Miyawaki et al., 1961 , 1984; Miyakawi and Tanoue, 

1962; Davis and Burnett, 1964; Bunt, 1968; Gibson and Barker, 1979; Dall and 

Moriarty, 1983; Chambers, 1992; Vogt, 1994; Marinescu et al., 1997; Stainer et 

aI. , 1968; Hopkin and Nott, 1979; Erri Babu et al., 1982; Robinson and Dillaman, 

1985; AI-Mohanna, et aI., 1985; Al-Mohanna and Nott, 1986, 1987; 1989; Vogt, 

1987; Caceci et aI., 1988). The structural details of various cellular differentiation 

in hepatopancreas of P. semisulcatus observed in the present study was in 

conformity with the description given in the literature. 

The notable changes in P. semisulcatus exposed to copper, cadmium and 

zinc were necrotic tubule, tissue debris, swelling and necrosis of hepatopancratic 

cells and abnormal lumen. The observed changes are similar to that reported in 

Penaeus vannamei (Lightner et al. , 1996), Penaeus stylirostris, P. vannamei and 

P. monodon (Lightner et al., 1982; Bautisa et al., 1994), Penaeus indicus 

(Viswanathan and Manisseri, 1993), Macrobrachium malcolmsonii (Vijayaraman, 

1993), Metapenaeus dobsoni (Manisseri and Menon, 1995), Astacus 

leptodactylus (Marinescu et al., 1997) and in Macrobrachium malcolmsonii 

(Bhavan and Geraldine, 2000) when exposed to metals and pesticides. 

Ultrastructural changes observed in the study includes, mitochondrial 

damage, increase in number of vacuoles, breakage of cell membrane, swelling of 

nuclear membrane, condensation of nucleus, presence of electron dense bodies, 

disrupted endoplasmic reticulum and presence of granules. Similar changes 

were noti~ in Penaeus stylirostris and P. vannamei (Lightner, et al., 1982; 

Bautisa, et al., 1994), Penaeus monodon (Vogt et al. , 1985; Baticados, et al., 

1987; Baticodos and Tendencia, 1991 ; Vagt and Quininto, 1994), Macrobrachium 

malcolmsonii (Vijayaraman, 1993), Metapenaeus dobsoni (Manisseri and Menon, 

1995) Penaeus vannamei (Lightner et al. , 1996) and Eriochier sinensis (Cheng et 

al. , 2000) when exposed to metals and pesticides. 
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The nuclear damage observed in all the metal treatments in P. 

semisulcatus included distortion of nuclei. damage to nuclear membrane. overall 

shrinkage and condensation of nuclear material resulting in the nuclei losing its 

characteristic shape. The metals can interact with the nuclear proteins. resulting 

in the alteration of the complex structure of chromatin or the catalytic activity of 

the enzymes involved in DNA and RNA metabolism. This may induce the 

depolymerisation. favor hydrolysis of RNA. affect the correct replication and 
t\ 

transcription of DNA and alter the fidelity of the translation of RNAs during the 

process of protein synthesis at the ribosomal level and reduction in the protein 

content of the organ (Eichron. 1975). The decrease in protein content of the 

tissue as mentioned earlier is probably caused by the damage in the normal 

function of nucleus due to metals . 

The endoplasmic reticulum showed an extensive damage leading to 

disruption and disintegration in the present study. Various functions have been 

suggested for the endoplasmic reticulum. including the mechanical support of the 

cytoplasm. protein synthesis. glycogen storage. steroid synthesis. intracellular 

transport of metabolic products and cellular impulse conduction (De Robertis and 

De Robertis. 1980: Berry. 1997). The pollutants reduce the rate of protein 

synthesis by reducing the rate of RNA synthesis. influencing the attachment of 

polyribosomes to the endoplasmic reticulum and potentially damaging the 

ribosomes themselves (Viarengo and Noh. 1993). The structural damages of this 

organelle exposed to heavy metals leads to the non-functioning of this organ. 

The mitochondria transfer the chemical energy of the metabolites of the 

cell into high-energy phosphate bond of Adinosine triphosphate (ATP). Thus they 

are the ' power house" of the cell that provides the energy for many vital cellular 

functions viz. biosynthesis of cell material. active transport etc. (Berry. 1997). P. 

semisulcatus exposed to Cu. Cd and Zn showed deformities. including 

disfigured . swollen mitochondria. losing its typical saucer shape and loss of its 

integrity which inevitably disrupt in its vital functions like ATP synthesis. 



Penaeus semisulcatus exposed to copper. cadmium and zinc showed 

,.. merging of vesicles or vacuoles containing electron dense bodies. This is a 

method by which metal rich bodies are transported to the R-cells for further 

sequestration and elimination (AI Mohanna and Nott. 1987). The presence of 

these bodies was also observed in Metapenaeus dobsoni (Manisseri and 

Menon. 1995). The R- cells of the hepatopancreas of Penaeus semisulcatus can 

take up particulate material from the haemolymph by pinocytosis at the basal 

membrane and store in vacuoles and vesicles as large dense bodies (AI 

Mohanna and Nott. 1987). 

The lysosomal-vesicular systems are considered to be the major 

.... degradative systems within the cell. Lysosomes in the hepatopancreas and 

excretory organs can accumulate large quantities of metals. In Penaeus 

monodon. metals acquired from water were directed into the hepatopancreas for 

detoxification and stored as granules. The granules observed in the present 

study in hepatopancreas may be a process by which metals are stored and 

eliminated. (George. 1982: Vogt and Quininto. 1994) 

Thus. exposure of Penaeus semisulcatus to lethal and sublethal 

concentrations of copper. cadmium and zinc caused ultrastructural alterations in 

both gill and hepatopancreas. The functions of the organs are severely impaired 

due to the toxicity. 



6. SUMMARY 

The present investigation is an attempt to study the lethal and sublethal effects of 

three heavy metals. namely. copper. cadmium and zinc individually on the 

commercially important Green tiger prawn. Penaeus semisulcatus. 

1. Acute toxicity bioassays were conducted for copper. cadmium and zinc. 

The LCse 96 h was copper: 6.98 ppm. cadmium: 2.8 ppm and zinc: 5.00 

ppm. The degree of toxicity of the three metals were in the order Cd > ln 

> Cu. 

2. Based on the LCse values. two sublethal concentrations namely. copper (0.7 

ppm and 1.4 ppm). cadmium (0.25 ppm and 0.5 ppm) and zinc (0.5 ppm 

and 1.00 ppm) were selected for most of the investigations. 

3. Bioaccumulation studies revealed that the accumulation of metals occur in the 

hepatopancreas. gills . muscle. tail and carapace. The results obtained 

suggest that the shrimps could not regulate the accumulation of Cu. Cd 

and In . The bioaccumulation in all the organs/body parts were found to be 

dose dependent in the case of sublethal concentration. with the highest 

concentration in hepatopancreas. 

4. In the physic-biochemical studies. an increase in the respiration rate was 

found in shrimps exposed to lethal concentrations of copper. cadmium and 

zinc. The biochemical components. namely. carbohydrate . protein and 

lipid were found to reduce during the various phases of metal exposure. 

This reduction varied according to the essentiality of the metal in the 

biochemical aspects of the animal. The changes in the proximate 

components is due to the variation in the enzymes concerned with the 

tissue energy generation: like glycogen degradation. increase in the sugar 

pool by phosphorylase. formation of lactic acid due to increase in LDH: 



inhibition of protein synthesis by the alteration in the DNA and RNA 

content. Increase in the free fatty acid content due to changes in the 

synthesis and mobilization of lipids. 

5. Histopathological studies exhibited the changes in the structural integrity of the 

cells of gills and hepatopancreas. In all the lethal exposures. blackening of 

the gill lamellae and exoskeleton was noticed . Ultrastructural studies 

revealed changes in the cell organelles. especially in mitochondria. 

endoplasmic reticulum and nucleus. 

Future research should focus on the molecular basis of heavy metal 

toxicity and on the role of metallothionein and other enzymes that can sequester 

the metals in cellular functions and in detoxification processes. 
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8. APPENDICES 

Appendix 1. Summary of ANOVA between the metals and 
bioaccumulation of metals in various tissues at lethal concentration 
studies 

1 a. hepatopancreas 

Source of 
Variation df 

Between metals 2 
error 6 
Total 8 

1b. gills 

Source of 
Variation df 

Between metals 2 
error 6 
Total 8 

1c. muscle 

Source of 
Variation df 

Between metals 2 
error 6 
Total 8 

1d. tail 

Source of 
Variation df 

Between metals 2 
error 6 
Total 8 

1e. exoskeleton 

Source of 
Variation df 

Between metals 2 
error 6 
Total 8 

MS F 
241507.1 36.06 
6696.892 

MS F 
17985.5 28.27 
635.99 

MS F 
2223.76 318.62 

6.97 

MS F 
5796.20 2808.02 

2.06 

MS F 
840.84 134.88 
6.23 

P-value 
< 0.05 

P-value 
< 0.05 

P-value 
< 0.05 

P-value 
< 0.05 

P-value 
< 0.05 



,.:... 

1f. whole animal 

Source of 
Variation df MS F P-value 

Between metals 2 28428.71 35104 <0.05 
error 6 80.98 
Total 8 

Appendix 2. Summary of ANOVA between the metals and 
bioaccumulation of metals in various tissues at sublethal (10% of lethal 
concentration) studies. 

2a. hepatopancreas 

Source of 
Variation 

Between metals 
error 
Total 

2b. gills 

Source of 

df 
2 
6 
8 

MS 
5251779 
613.18 

Variation df MS 
Between metals 2 8223.5 

error 6 37.12 
Total 8 

2c. muscle 

Source of 

F P-value 
8564.77 < 0.05 

F P-value 
221.49 <0.05 

Variation df MS F P-value 
Between metals 2 2883.26 525.81 

error 6 5.48 
Total 8 

2d. tail 

Source of 
Variation 

Between metals 
error 
Total 

df MS 
2 5432.64 
6 50.42 

11 

F 
107.74 

< 0.05 

P-value 
< 0.05 



2e. exoskeleton 

Source of 
Variation df MS F P-value 

Between metals 2 214.42 22.67 < 0.05 
error 6 9.45 
Total 8 

2f. whole animal 

Source of 
Variation df MS F P-value 

Between metals 2 4572.62 247.61 < 0.05 
error 6 18.46 
Total 8 

I 

'r 
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Appendix 3. Summary of ANOVA between the metals and 
bioaccumulation of metals in various tissues at Sublethal levels (20% of 
lethal concentration) studies 

3a. hepatopancreas 

Source of Variation 
Between metals 

error 
Total 

3b. gills 

Source of Variation 
Between metals 

error 
Total 

3c. muscle 

Source of Variation 
Between metals 

error 
Total 

3d. tail 

Source of Variation 
Between metals 

error 
Total 

3e. exoskeleton 

Source of Variation 
Between metals 

error 
Total 

3f. whole animal 
Source of Variation 

Between metals 
error 
Total 

df MS F P-value 
2 23280766 27168 < 0.05 
6 856.91 
8 

df 
2 
6 
8 

df 
2 
6 
8 

df 
2 
6 
8 

df 
2 
6 
8 

df 
2 
6 
8 

\\. 

MS F P-value 
16453.19 286.78 

57.37 
< 0.05 

MS F P-value 
5409.47 

13.67 

MS 
10332.7 
26.30 

395.66 < 0.05 

F P-value 
392.75 < 0.05 

MS F P-value 
1167.46 177.76 

6.56 
< 0.05 

MS F P-value 
20181 .89 691 .97 < 0.05 

29.16 



~ 

'( 

Appendix 4. Summary of ANOVA between variations of biochemical 
composition of different organs when exposed to lethal concentration of 
copper. cadmium and zinc. 

4a. protein in hepatopancreas 

Source of 
Variation df MS F P-value 
Between metals 2 3.22 8.67 < 0.05 
error 6 0.37 
Total 8 

4b. carbohydrate in hepatopancreas 

Source of 
Variation df MS F P-value 
Between metals 2 0.43 14.24 < 0.05 
error 6 0.03 
Total 8 

4c. lipid in hepatopancreas 

Source of 
Variation df MS F P-value 
Between metals 2 7.55 3.70 >0.05 
error 6 2.04 
Total 8 

4d. protein in gills 

Source of 
Variation df MS F P-value 
Between metals 2 0.16 0.12 > 0.05 
error 6 1.37 
Total 8 

\ 



4e. carbohydrate in gills 

Source of 
Variation 
Between metals 
error 
Total 

4f. lipid in gills 

Source of 
Variation 
Between metals 

error 
Total 

4g . protein in muscle 

Source of 
Variation 
Between metals 
error 
Tota l 

df 
2 
6 
8 

df 
2 
6 
8 

df 

2 
6 
8 

4h. carbohydrate in muscle 

Source of 
Variation 
Between metals 
error 
Total 

4i. lipid in muscle 

Source of 
Variation 
Between metals 
error 
Total 

df 
2 
6 
8 

df 
2 
6 
8 

"1 

MS 
0.01 

0.003 

MS 
0.028 
0.009 

MS 
7.27 
1.39 

MS 
0.081 
0.034 

MS 
0.11 
0.15 

F P-value 
4 .784 > 0.05 

F P-value 
3.154 >0.05 

F P-value 
5.19 < 0.05 

F P-value 
2.33 > 0.05 

F P-value 
0.71 > 0.05 



Appendix 5. Summary of ANOVA between variations of biochemical 
composition of different organs when exposed to 10% of LC50 levels of 
copper. cadmium and zinc. 

Sa. protein of the hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 2.51 3.48 > 0.05 
error 6 0.72 
Total 8 

5b. carbohydrate in hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 0.48 11 .78 < 0.05 
error 6 0.04 

'"' Total 8 

5c. lipid in hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 1.66 3.56 > 0.05 
error 6 0.47 
Total 8 

5d . protein in gills 

Source of Variation df MS F P-value 
~ 

, 
Between metals 2 10.41 26.15 < 0.05 
error 6 0.40 
Total 8 

5e. carbohydrate in gills 

Source of Variation df MS F P-value 
Between metals 2 0.04 13.27 < 0.05 
error 6 0.00 
Total 8 



Sf. lipid in gills 

Source of Variation df MS F P-value 
Between metals 2 0.02 3.40 > 0.05 
error 6 0.01 
Total 8 

Sg. protein in muscle 

Source of Variation df MS F P-value 
Between metals 2 6.57 11 .28 < 0.05 
error 6 0.58 
Total 8 

5h. carbohydrate in muscle 

Source of Variation df MS F P-value 
~ Between metals 2 0.01 1.37 > 0.05 

error 6 0.01 
Total 8 

5i. lipid in muscle 

Source of Variation df MS F P-value 
Between metals 2 1.80 2.55 > 0.05 
error 6 0.71 
Total 8 



Appendix 6. Summary of ANOVA between variations of biochemical 
composition of different organs when exposed to 20% LCso levels of 
copper, cadmium and zinc. 

6a. protein in hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 8.22 13.34 < 0.05 
error 6 0.62 
Total 8 

6b. carbohydrate in hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 1.11 27.95 < 0.05 
error 6 0.04 

~ Total 8 

6c. lipid in hepatopancreas 

Source of Variation df MS F P-value 
Between metals 2 2.59 4.58 >0.05 
error 6 0.57 
Total 8 

6d. protein in gills 

Source of Variation df MS F P-value 

-{ Between metals 2 12.22 56.02 < 0.05 
error 6 0.22 
Total 8 

6e. carbohydrate in gills 

Source of Variation df MS F P-value 
Between metals 2 0.08 1.84 >0.05 
error 6 0.05 
Total 8 

• ,.. 
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6f. lipid in gills 

Source of Variation df MS F P-value 
Between metals 2 0.01 1.85 >0.05 
error 6 0.00 
Total 8 

6g. protein in muscle 

Source of Variation df MS F P-value 
Between metals 2 10.55 16.63 < 0.05 
error 6 0.63 
Total 8 

6h. carbohydrate in muscle 

Source of Variation df MS F P-value 
Between metals 2 0.03 7.90 < 0.05 
error 6 0.00 
Total 8 

6i. Lipid in muscle 

Source of Variation df MS F P-value 
Between metals 2 0.25 2.87 >0.05 
error 6 0.09 
Total 8 
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