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INTRODUCfION 

Marine fisheries is an important sector in India and contributes 1.2 percent to the 

nation's Gross Domestic Production. It earns a foreign exchange worth 41,500 million 

rupees. The current marine fi sh production in the country is 2.4 mi ll ion tonnes which is 

about 4 times the production in the early fifties . This accounts for a contribution of 3 

percent of the world marine fish production and India is one among the top 10 fish 

producing countries. India has a coastline of 8,129 Kilometers. About 5 million people 

li ving in the coastal areas are engaged in fishing and other related activities for thei r 

livelihood. Fishing in marine fisheries sector is carried out by about 1.8 lakh non­

mOlOrised traditional fishing crafts, 32,000 motorized traditional crafts and 47,000 

mechanized vesse ls. 

Among the maritime states, Kerala has a prominent place with regard to marine 

fi sh· production in the country which contributes to almost 25% of the total marine fish 

production though the total coast line covered by the state is only 590 Kms which is 

about one-tenth of the Indian coast line. The state has two major fi shing harbours at 

Cochin and Sakthikulangara and about 220 landing centers distributed over 304 fi shing 

villages. In the year 1996, total marine fi sh production from the state was 5.72 lakh 

tonnes which accounts for 23.62 % of the total marine fish production in the country. 

During the period 1987-96 Kerala accounted for an average landings of 5.45 lakh tonnes 

which is about 25.29 % of the average production in the country during this period. The 

marine fish production in the country, during this period, varied between 1.65 million 
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tonnes (in 1987) and 2.42 million tonnes (in 1996) with an average of 2.16 million 

tonnes. The contribution from Kerala during this period ranged between 3.03 lakh tonnes 

(in 1987) and 5.72 lakh tonnes ( in 1996). In this period the percentage contribution by 

the state towards marine fish production in the country was maximum in the year 1990 

which is 30.94% and the minimum observed was 18.39% in the year 1987. 

Among different marine fishery resources that contribute towards total marine 

fish landings in Kerala, oil sardine (Sardine/la longiceps) and Indian mackerel 

(Rastreliger kanagurta) are the two prominent species. In the year 1996, the contribution 

by mackerel is about 1.28 lakh tonnes which is 22.45% of the total landings in the state 

and that by oil sardine was about 30,000 tonnes which is 5.35% of the state total. During 

the period 1987-% these two species on an average accounted for about 25.29% of the 

landings in the state. Average landings of oil sardine in this period was 72,493 tonnes 

which is 13.29"10 of the average annual landings in the state and the average landings of 

mackerel in this period was 68,747 tonnes which is 12.61 % of the average annual 

landings in Kerala. Other major contributors, based on their average landings during this 

period are Penaeid prawns (9.90%), Perches (9.60%), Carangids (9.00%), Anchovies 

(6.89%), Cephalopodes (3.33%), Lesser sardines (3 .32%), Soles (3 .05%), Tunas (3 .01%), 

Sciaenid5 (2.24%), Saurida and Saurus (2.07%), Ribbon fi sh (1.81 %) and Seer fish 

(1.1 9%). 

Forecasting of marine fi sh production is very much essential for proper planning. 

Fluctuation in marine fi sh production affect the processing industry, export earnings, 
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employment and income to fishermen community, marketing and cost of marine fi sh 

products. Advance information about future production will help in proper planning, 

storage, distribution and to take necessary measures according to the situation. Since 

many of the marine fish species depend each other due to factors like prey-predator 

relation, competing for a common food resource and influenced by a common 

environmental condition, it is always desirable to know about the inter-relations that exist 

between landings of different species. Marine fish landings observed over a period of 

time can be treated as a time series process generated by a mechanism and can be studied 

in this context to see the trend in landings, inter-relations among landings of different 

species, periodicity in the landings etc. , using available time series techniques. Apart 

form this, by exploiting these factors time series models can be used to fit landings data 

and can further be used to forecast future values with more precision. 

Time series analysis is a branch of statistics which can help in resolving the above 

problems by treating marine fish production as a time series process generated over time 

and examining them for secular trend, cyclical or periodic behaviour and other kinds of 

fluctuations using the tools available in time series analysis. Once these are identified, a 

time series model can be formulated which can be used for forecasting. Marine fi sh 

production statistics that are generated over time depend on past values and is influenced 

by seasonal and irregular kind of fluctuations. By analysing it as a time series thi s 

dependency can be exploited to develop a suitable time series model. Since it is 

composed of unknown irregular fluctuations, which are not deterministic in nature, (a 

deterministic model is not suitable for modelling marine fi sh landings time series) a 
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stochastic time series model is most appropriate for modelling marine fi sh landings time 

senes. 

A model using which we are able to calculate the probability that a future 

value of the series is lying between two specified limits is termed as a stochastic model. 

In thi s contest, a time series is considered as a stochastic process and a sample or 

consecutive values of the time seri es is considered as a realization of the stochastic 

process that generated the time series. An important class of stochastic models that are 

widely used to represent time series is the stationary models which assume that the 

stochastic process that generate the time series remains in equilibrium about a constant 

mean level. A non-stationary process does not have any natural mean. A stochastic 

process is said to be strictly stationary if its properties are unaffected by change of time 

origin. A sequence of random variables {a,} is called a white noise series if these are 

random drawi ngs from a fi xed distribution with zero mean and constant variance. The 

kind of stochastic models considered for time series analysis are based on the concept 

that a process in which successive values are high ly dependent can be regarded as 

generated from a series of independent shocks, at. which are white noise. If a white noise 

process {a,} is transformed into a stochastic process {z.} by a weighted sum- of past 

values so that z, = I' + a, + 'I' ,a,_, + 'I' 2a,_2 +- .. , then it is called a linear filtering. Using 

the back shift operator B notation, where B operates on the time series {a,} such that 

B* a, = a,_*, for values of k = 1,2,·· we can write the above equation as 

z, =I'+a, +'I',Ba, +'I'2B2a,+·.· 
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= f1 + 'I'(8)a, 

where '1'( B) = I + '1'18 + 'I' 282 + .. . which is a polynomial in the back shi ft operator 8 

and is known as the transfer function of the filter. If the sequence of weights in the 

transfer function are finite or infinite and convergent then the filter is said to be stable and 

the generated stochastic process {z.} is said to be stationary. When the sequence of 

weights {'I' ,} is infinite and not converging then the process {z.} is non-stationary. For a 

stationary process the parameter ~ will be the mean about which the process varies and 

for a non-stationary process it is only a reference point for the level of the process. 

The most poflular class of stationary type of stochastic model used for time series 

modelling is the Autoregressive Integrated Moving Average (ARIMA) model introduced 

by Box and Jenkins (1976). This class includes, autoregressive models, moving average 

models, random walk models, autoregressive moving average models, integrated models 

and seasonal models. In the first chapter univariate seasonal ARIMA models are used to 

fit quarterly landings of selected marine fi sh species/groups in Kerala. The inter-relations 

between landings are examined in the second chapter through cross correlation analysis 

and by modelling selected groups together using Vector Autoregressive models which is 

the multivariate version of the univariate autoregressive models. In the third chapter 

vector autoregressive moving average models are used as an alternative to higher order 

vector autoregressive models. In the fourth chapter the relationship between marine fish 

landings and environmental variables is examined by using data on environmental 

variables recorded at Cochin and monthly landings of marine fishes at Cochin Fisheries 

Harbour. This was carried out through cross correlation analysis and by fitting vector 
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autoregressive models with envi ronmental variables as exogenous vector series and 

marine fish landings as output vector series. In the fifth chapter a method of finding 

relation between time series was developed using canonical analysis and path 

coefficients. Also the properties of moving sums of different types of univariate time 

series are examined in this chapter. 

In all chapters, except for the first, where ever computations were involved 

necessary computer softwares were developed in C language. An exhaustive list of the 

softwares developed for the study is given at the end. Tables and charts are given in 

appendix of each chapter. 
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CIlAPTER-1 

Univariate ARJMA modelling of marine fish landings in Kerala. 

Introduction: 

In univariate autoregressive model, the current value of a process is expressed as a 

linear aggregate of past values of the series along with a random shock. If by {z,} , we 

mean a stationary process to represent a time series sequence and {z,} is the process 

which is the deviation from a central value 11, the mean of the process, then an 

autoregressive model of order p, denoted by AR(P), takes the form 

z, = ¢IZ,-I + ¢lZ,_l +- . +¢ pz,-p + &, . Here {&,} is a sequence of random shocks which 

are assumed to be independentl y and identically distributed with expectation zero and 

constant vari ance a l. Parameters of this model are ( P' ¢I '¢l ," ', ¢ p,a
l

) . Using the back 

shift operator notation we can write the AR(P) model as 

Z, =¢IIJi, +¢lBlz,+"+¢pBPz, +&, 

= (¢IB+¢lBl+"'+¢p BP)z, +&, 

That is ¢( B)z, =&, where ¢(B, =I-¢IB-¢lBl-"'-¢pBP isa polynomial of degree 

p in the back shift operator B. By considering the linear filter representation of the above 

AR(P) model the condition for stationarity of the process can be deri ved in terms of the 

roots of the characteristic equation ¢( B) = O. This condi tion is that all the roots of the p'" 

degree polynomial equation ¢(B) = 0 are more than one in absolute terms. 

Another popular representation of a time series is using moving average models. 

In thi s model the deviations of Z, are represented by a li near combination of a finite 
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number of previous random shocks. The expression for a moving average model of order 

q , MA(q) model, is 

I, = a, -B,a,_, -B,([,_, - ···-B.a,_q 

= B (8)a, 

where 8(8) = 1- B,8 - B,8'-·· ·-B. 8 · IS a q'h degree polynomial in the backshift 

operator 8. Since the linear filter format of this model is the same and it contain only 

finite number of terms, a moving average model is always stationary. Using the inverse 

function ;r(8) = B-' (8), the linear process Z; = B (8)a, can have the infinite 

c 

autoregressi\·e representation 1r(8Jz; = a, where 1r(8)= L 1r
J 

8J . This process IS 

) -0 

invertible when the sequence of weights 1rJ converge. The required condition for this is 

that the roots of the characteristic polynomial equation B(8) = 0 lie out side the unit 

circle and il is the condition for invertibility of a MA(q) model. 

The modd that combines the above two kinds of models is the mixed 

autoregressi\"e moving average (ARMA) model. The autoregressive moving average 

model with p autoregressive terms and q moving average terms is represented by 

ARMA(p,q) and its mathematical expression is, 

This can be written as 

¢(B)y, = B(B}a, 
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where ¢(8) = 1- ¢, 8 - ¢, 8 ' - ... -¢ p8 P is a polynomial in the back shift operator B of 

degree p and 0(8)= I-O,8-0,B 2 _···O.B· is a polynomial in B of degree q. The 

condition for stationarity of the model is the same as that for an AR(P) model and the 

condi tion for invertibility of the model is the same of an MA(q) model. Hence the 

conditions are that the roots of polynomials ¢(B) and 0(8) lie out side the unit circle. In 

most of the practical situations, the observed time seri es show non-stationary behaviour 

and do not vary about a constant mean. In such situations it may be possible to represent 

the series by an ARMA model with a generalized AR operator polynomial, say rp(B) for 

which one or more roots are unity so that it can be factorized as rp(8) = ¢(8)(1- 8)J 

where ¢(B) is a polynomial in B with all its roots out side the unit circle. Box and Jenkins 

(1976) introduced a class of non-stationary models by integrating ARMA models with 

provision for the representation for unit root non-stationarity. This model permits 

violation of the stationarity condition by allowing some roots to lie on the unit circle. 

These models are termed as autoregressive integrated moving average (ARlMA) models. 

If there are d roots that fall on the unit circle, then the model representation is 

¢(8XI- B)J y, = O(B}a, 

This is equivalent (0 transforming the original series into another series by successively 

differencing it d times and then representing the ultimate differenced series by an 

ARMA(p,q) model. The parameter d is termed as the order of differencing and p and q 

are respectively the order of autoregressive and moving average terms in the model. 

Cressie (1988} had shown that differencing a series d times will remove a polynomial 



( 

10 

trend of degree d existing in the time series which may be the cause for non-stalionarity 

in the series. 

The general seasonal ARIMA model with AR order p, MA order q, order of 

differencing d, seasonality s, seasonal AR order P, seasonal MA order Q and order of 

seasonal differencing D is represented by ARlMA(p,d,qXP,D,Q)s and its expression is 

rp( B' )¢( B)'l"'l:'y, = r + 0(B ' )lI(B)a, 

where 'l=(I- B), 'l , =(I -B ' ) , ¢(B}=J-¢,B-···-¢pBP 

rp(B '} = l-rp ,B·'-···-rp,.B '", lI(B) = l -lI,B-···-lI. B· 

and 0(B"') = 1-0;B'-···-0uB"J which are polynomials In B. The conditions for 

stationarity and invertibility of the differenced series 'l"'l .~ y, is that the roots of all 

these polynomials lie out side the unit circle. 

Review of literature 

Antony Raja ( J 973) studied oi l sardine fi shery and related it to rainfall, atrosia 

and availability of juveniles in July-September. Jensen ( 1976) examined the 

autocorrelation structure of Atlantic menhaden catch and used a second order 

autoregressive model for prediction of menhaden catch. Pierce (1979) developed an R­

square that measures the explanatory power of a time series regression model relative to 

that of past values of dependent variable. He considered the innovation variance of the 

dependent variable as the variance to be explained by the regression model. 

Bhattacharyya (1979) modified the Box-Jenkins univariate time series model to 
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incorporate intervention effects for a case study on effectiveness of seat belt legislation on 

the Queens land road toll through intervention analysis. In a second approach he 

considered a casual model with a proxy explanatory variable and ARMA error. Using this 

model he could quantify the long run legislative effect as a specific level of the 

explanatory variable to be a reduction of 46% in road deaths. Van Winkle el.ai.(1979) 

examined the stripped bass commercial fisheries data of Atlantic coast for periodicity in 

the appearance of dominant year-classes through autocorrelation and spectral analysis. 

Godolphin (1980) proposed a method for testing the order of an ARMA model 

based on serial correlations of residuals which has advantage in terms of its sensitivity in 

discriminating between alternative models. Mendelssohn (1980) used Box-Jenkins 

models to forecast fi shery dynamics. Newbold (1980) eStablished that the Lagrange 

multiplier test with an ARMA(p+k,q) model and a test based on k residual 

autocorrelations are equivalent for testing the adequacy of a fitted ARMA model. Noble 

(1980) analyzed mackerel landings in India for three decades and found a set pattern of 

recurring ups in and around the confluence of two decades and downs in the middle of 

once decade. He suspected the presence of a ten-year cycle in the mackerel fishery . 

Pearlman (1980) obtained the likelihood function of an ARMA process using Kalman 

filtering and have shown that this method is more efficient compared to other methods 

when the order of the moving average part is more than 5. Poskin and Tremayne (1980) 

developed a procedure for the diagnostic checking of ARMA models as an extension of 

score multiplier test for testing ARMA(p,q) process against ARMA(p+r,q+s) model. 
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Saila el . af. (I <}80) analyzed monthly average of per day catch of rock lobster from New 

Zealand using monthly averages, harmonic regression and ARIMA models and found 

ARIMA models most suitable for short term forecasts. 

Kedem and Siud (1981) proposed a test statistic, as an application of higher order 

crossing to test the goodness of fit of an ARMA model and compared it with the Box­

Pierce portmanteau statistic. Mi lhoj (1981) proposed a goodness of fit statistic for time 

series models as a frequency domain analog of the Box-Pierce portmanteau statistic and 

its asymptotic properties were compared with the portmanteau test. Stocker and Hilborn 

(1981) considered stock production models and time series models for short term 

forecasting of marine fish stocks. Woodward and Gray (I981) introduced the concept of 

generalized partial autocorrelation function and discussed its usefulness in ARMA model 

identification. They compared the S-array method and Box-Jenkins procedure of model 

identification. Campbell (1982) proposed a recursion for M-estimatcs for the parameters 

of a finite order autoregressive process through stochastic approximation methods. 

Harvey and Mckenzie (1982) presented an algorithm for finite sample prediction from 

ARIMA process based on Kalman filter. Hannan and Rissanan (1982) suggested a 

recursive estimation procedure for ARMA order. This method involved estimation of the 

innovations by fitting a long autoregression to the data and then a series of regressions of 

the observations on the estimates of innovations. They established asymptotic properties 

of the estimates under very general conditions. Godolphin and Gooijer (1982) developed 

an iterative procedure for solving the likelihood equations for estimation of parameters of 
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a Gaussian moving average process by expressing the estimator of each parameter as a 

linear combination of a suitably large set of sample serial correlations. Anderson (1982) 

made an empirical examination of Box-Jenkins procedure of forecasting which consists 

of data transformation, model identification, parameter estimation and diagnostic 

checking. Tiao and Tsay (1983) investigated the consistency properties of least square 

estimates of AR parameters in ARMA models and obtained consistent estimates of orders 

of autoregression for a given model. 

Potsher (1983) developed a stepwise testing procedure usmg Lagrangian 

multiplier test to determine the order of an ARMA process. Taniguchi (1983) have shown 

that an appropriate modification of the ML and quasi ML estimators of Gaussian ARMA 

process are second order asymptotically efficient. He used the degree of concentration of 

sampling distribution, up to second order, as a measure of efficiency. McLeod and Sales 

(I 983J developed an algorithm for calculation of approximate likel ihood of ARMA and 

multiplicative seasonal ARMA model that is more efficient for the regular non-seasonal 

ARMA model. Clarke (1983) presented an algorithm that enables diagnostic checking for 

the adequacy of an invertible ARMA model for a given sample time series. Godolphin 

and Unwin (1983) presented a simple procedure for deriving the covariance matrix for the 

ML estimators of a Gaussian ARMA process. 

Melard (1984) developed a fast algorithm to compute the exact likelihood 

function of a stationary ARMA process as an improved version of Pearlman's (1980) 

method with the quick recursion switching suggested by Gardner el. 01. (1980). This 
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program is efficient both in terms of computing time and amount of storage. McLeod 

(1984) presented a duality theorem and its properties with application to multiplicative 

seasonal ARMA models. These applications include a method for calculating covariance 

matrix of estimated parameters, formula for variances of residual autocorrelations and 

distribution of inverse partial autocorrelations. Hannan and Kavalieris (1984) developed 

an estimation method for an ARMA system including the estimation of orders as a 

modification of the method proposed by Hannan and Rissanen (1982). Kohn and Ansely 

( 1984) used Kalman filtering for a pure seasonal moving average model and have shown 

that considerable computational savings can be achieved by using a result of Ansley 

(1979). Godolphin (1984). described a simple procedure for obtaining the estimator of 

parameters of an ARMA process that was derived from ML procedure assuming 

Gaussian residuals and two simplifying assumptions. Abraham and Ladolter(1984) 

investigated the usefulness of inverse autocorrelations as a model identification tool for 

time series models. Through simulation they established that the inverse autocorrelations 

are less powerful than the partial autocorrelations for an autoregressive process. Said 

(1984) proposed a test for unit roots in ARMA models of unknown order based on an 

approximation of ARMA by an autoregressive process. Solo (1984) derived a Lagrangian 

multiplier test for testing the order of differencing in ARlMA models and provided a 

numerical illustration. Tsay (1984) proposed a unified approach for the tentative 

specification of order of stationary and non-stationary ARMA models and presented an 

iterative regression procedure to produce consistent estimates of autoregreSsive 

parameters. Based on these estimates he defined an extended sample autocorrelation 

function and used it for order determination that eliminates the need to determine the 
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order of differencing to produce stationarity In modeling a time senes. Davies and 

Petruccell (1984) have shown that the general partial autocorrelation that has been used as 

a tool for order identification in ARMA models has unstable behavior when applied to 

time series of moderate length and its use in determining moving average order is very 

limited. Dickey et. al. (1984) have computed percentiles of distributions for time series 

that have a unit root at seasonal lag by Monte Carlo integration for finite samples and by 

analytic techniques and Monte Carlo integration for the limit case. 

Hallin et. al. (1985) proposed a class of linear serial rank statistics for lesting 

white noise against . alternatives of ARMA serial dependency and provided efficiency 

propenies of the asymptotically most efficient score generating functions. Jensen (1985) 

analyzed the catch and catch per unit effon data for Atlantic menhaden and Gulf 

menhaden through autocorrelation analysis to test for time lags and to develop forecasting 

models. Srinath and Datta (1985} used ARIMA models for forecasting marine products 

expon from India and found that the forecasts made using these models were close to the 

actual values. Tsay and Tiao (1985) derived a canonical analysis for time series 

modelling using the second order moment structure of time series models. They proposed 

a canonical correlation approach for order determination in ARMA models that can 

handle both stationary and non-stationary processes. Franke (1985) proposed an 

algorithm for recursive calculation of parameters of an ARMA process generalizing the 

recursions of Levinson (1946) and Durbin (1960). Poskitt (1986) presented an 

identification criterion for model selection in the context of general class of parametric 



t6 

time series models that is asymptotically equivalent to a Bayes decision rule and 

considered the special case of ARMA order determination. Ljung (1986) developed a 

portmanteau statistic fo r testing adequacy of an estimated ARMA model based on 

autocorrelations of residuals. Hannan el. al. (1986) considered the estimation of 

parameters for a scalar linear system with rational transfer function and proposed a 

computational scheme using Givens transfer function which economize the three-stage 

recursive algorithm of Hannan and Rissanen. Bustos and Yohai (1986) proposed two 

classes of robust estimates for ARMA models one based on residual autocovariance 

estimates and the other based on truncated residual autocovariances. These estimates 

were compared with least square, M and GM estimates. 

Box el. al. (1987) suggested a method for estimating the trend of a multiplicative 

seasonal ARlMA-model as a component of the models forecast function which is a linear 

combination of roots of the AR operator that are associated with trend. Holden (1987) 

developed a general model that leads to ARMA models for Poisson distributed variates 

and applied it to data on aircraft hijacking attempts. Kreiss (1987) proved locally 

asymptotic normality for ARMA processes and constructed locally asymptotic minimax 

estimators for the parameters of the model that will achieve the smallest possible 

covariance matrix asymptotically. Masarotto (1987) provided estimates of ARMA 

parameters that are consistent at the nominal Gaussian model and are insensitive to 

outliers. Misra and Uthe (1987) applied time trends analysis to contaminant levels in 

Canadian Atlantic cod and illustrated the use of MANOCOV A for time series trends 

J 
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investigation. Poskitt and Tremayne (1987) applied selection criteria for order 

determination in linear time series models via posterior odds ratios and by applying the 

concept of grades of evidence proposed by Jeffreys (1961). Poskitt (1987) again proposed 

a modification to the order selection strategy for ARMA models proposed by Hannan and 

Rissanen that eliminate the bias and involves the use of alternate model selection 

criterion. Wei (1987) considered the asymptotic performance of least square predictors of 

regression models and applied these results to non-stationary autoregressive time series. 

He constructed a statistic, to show how many times a non-stationary time series should be 

differenced in order to obtain a stationary time series. Hannan and Poskitt (1988) 

discussed about regression procedures for the estimation of parameters in ARMA models 

to provide initial estimates for iterative maximization of Gaussian likelihood. Brockett 

el. al.(1988} developed a test procedure based on estimated bispectrum values to test 

whether a sample time series is generated by a linear process. Cressie (1988) have shown 

that the amount of differencing d in an ARlMA(p,d,q) model can be read from a sequence 

of graphs based on the concept of generalized covariances known as variograms. Shaman 

and Stine (1988) presented a simple expression for the bias of autoregressive coefficients 

in least square and Yule-Walker estimators with unknown finite order. 

Crafts el. al. (1989) constructed a new index of industrial production for Britain 

for the years 1700-1913 and using a structural time series model estimated by Kalman 

filter the index was decomposed into trend and cyclic components. Hall (1989) proposed 

a new test procedure for testing unit roots in a time series with moving average 
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innovations that is based on an instrumental variable estimator. Hemerly and Davis 

(1989) discussed about the problem of order determination for AR models and have 

shown that order selection based on Rissanen' s predictive least square principle is 

strongly consistent when the series is generated by an AR process with given upper 

bound to the order of the process. Knight (1989) have seen that the estimate of order of an 

AR model chosen to minimize Akaike's information criterion is weakly consistent. 

Hurvich and Tsai (1989) derived a bias correction to the Akaike's information criterion 

Ale for regression and AR time series models that are of particular use when sample size 

is small. This method is asymptotically efficient and was found better thlin other 

asymptotic methods and its application to ARMA models and nonstationary models were 

discussed . Potscher (1989) developed a sufficient condition for strong consistency of 

estimators of order of a general nonstationary autoregressive model based on Ale 

min imization criterion. Stergiou (1989) analyzed monthly catches of pilchard from Greek 

waters using autoregressive integrated moving average models and identified two models 

fo r describing the dynamics of the fi shery and forecasting up to 12 months ahead. 

Hurvich el . a/.( 1990) proposed a new estimator AIel of Kullback-Leibler 

information for Gaussian autoregressive model selection in small samples. Kreiss (1990} 

studied the problem of testing linear hypothesis about the parameter vector of an 

autoregressive model with finite order and developed asymptotically optimal statistical 

tests. Pukkila el . al. (1990) proposed a powerful method of determining order of a 

ARMA(p,q) model based on an AR order determination criterion and on linear estimation 
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methods. Feam and Maris (1991) used Box-lenkins approach to design and control 

algorithm for feed back loop controlling the addition of dried gluten to bread making 

flour in a flour mill. Guilkey and Schmidt (1991 ) considered the tests of null hypothesis 

of a unit root in time series against the alternative that the series is level stationary. 

Hurvich and Tsai (1991) stud ied the bias in Ale information cri terion and its bias 

corrected version Alee for selection of regression and autoregressive models. Kavalieris 

(1991) introduced an information theoretic order estimation procedure for estimation of 

parameters and model orders in an ARMA system and pointed out that the Hannan and 

Rissanen's (1982) method may over estimate the model orders. Li (1991 b) considered the 

problem to decide whether both regular and seasonal differencing or just one of them 

would suffice to transform a series into stationary. He provided a Lagrange multiplier test 

and obtained the large sample representation of the test statistic in terms of integrals of 

Wiener process. Noble and Sathianandan (1991) used autoregressive integrated moving 

average models to study the trend in all India mackerel catches. Mi lls and Mills (l992) 

examined the seasonal patterns and components of quarterly economic time series and 

found that seasonal ity is much smaller in prices and interest rates than outputs and its 

components. 

Ahn (1993) considered a nonstationary time series that can accommodate 

deterministic and stochastic trends and developed a test statistic for testing stochastic 

trend based on Lagrange multiplier principle. Galbraith and Walsh (1994) examined a 

non-maximum likelihood estimator for parameters of an MA model derived directly from 

the coefficient of an approximating AR model. Monti (1994) proposed a test of goodness 



20 

of fit for time series models based on squared residual partial autocorrelations that is 

asymptotically chisquare. Ng and Perron (1995) analyzed the choice of the truncation lag 

for the Said-Dickey test for the presence of unit root in general ARMA model and have 

shown that the deterministic relationship between the truncation lag and sample size is 

dominated by data dependent rules that take sample information into account. 

Materials and Methods 

Quarterwise total marine fish landings, quarterwise landings of selected species 

and species groups in Kerala during the period 1960-96 was used in this study to find 

suitable univariate s!;asonal time series models belonging to the popular class of ARlMA 

models. The selection of species and species groups were made based on their 

commercial importance and their contribution towards total landings in the state. The 

necessary data for the study were collected from the "National Marine Living Resources 

Data Center" of the Central Marine Fisheries Research Institute at Cochin, KeraJa. Other 

than total marine fish landings the species and species groups selected for the study were 

oil sardine (Sardinella longiceps), Indian mackerel (Restralliegur kanaguta), anchovies, 

lesser sardines, penaeid prawns, thressocles, ribbon fishes and tuna. 

For estimation of parameters of the model the "trends" module in SPSS software 

was used. The algorithm used in this module for ARIMA estimation is the one given by 

Melard (l984). This is a fast algorithm for calculating exact likelihood of a stationary 

ARMA model under the assumption that the innovations are independently and 
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identically distributed as N(o,cr')and it uses a modified Kalman filter recursion based 

on a state-space representation of the model. For the iteration in the algorithm the 

parameter accuracy was fixed as 0.001 , minimum reduction in residual sum of squares 

allowed was 0.00 I percent, maximum value for the Marquardat constant was chosen as 

lOx 10' and the maximum number of iterations was fixed as 50. Testing of the suitability 

of an estimated model was carried out by a x'statistic, Q provided in Ljung and Box 

(1978) based on the autocorrelations of residuals given by 

• 
Q = T(T + 2)Llr.' I(T -k) .-, 

where r. is the autQcorrlation of lag k of the residuals and this will have (m-p-q) degrees 

of freedom where p and q are the orders of the model fitted. 

According to the method of Box-Jenkins the autocorrelation function (ac!} 

approaches zero linearly for a stationary time series. But in practice when we examine the 

act such a clear picture will not be seen in the plot of autocorrelation functions of the 

original and differenced series. Cressie (1988) developed a graphical procedure based on 

variograms for estimating d, the order of differencing to be applied on a nonseasonal time 

series to make the series stationary. His method is based on variograms which are 

functions characterising the second order dependence properties of a time series. He 

presented three quantities semivariogram, linvariogram and quadvariogram, which are 

respectively based on 1 J, 12 and 13 processes. An 1 d process "is an intrinsic random 

function of order (d-l) . Suppose Z = (Z, .. ",Z, )' are observations at time points , -
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{II : i = I," ', n}, X an nx d matrix with i'h row (I,ll/ ,.· ·, It')and A a vector of size n 

called a generalized increment vector of order d such that X~ = 0 then a process 

n 

{Z, : I ~ O} is an ld process when LAIZ
"
", u ~ 0 is second order stationary for any 

i_I 

{II: i = I" ", n} and any generalized increment vector A.. Semivariogram of a non-seasonal 

time series {l ,} denoted by y(h) is defined as E(l'+h - l,} = 2y(h}. The relation 

between semivariogram and autocovariance of the time series is y(h) = C(O) - C(h}so 

that for a time series with negligible dependence between data far apart the asymptote of 

the semivariogram will be the variance of the time series. A time series for which 

E(l,) = I.l and E(Z'+h - l,) = 2y(h) is called intrinsically stationary time series and for 

such a time series the unbiased estimate of semivariogram is 

II-h 

y(h) =tL(Z"h-ZYI(n- h), for h=I, 2, ... 
1-' 

where n is the sample size and h is the lag. The linvariogram for lag h, denoted by y,(h}, 

of a time series is defined as 

h _ {h-' a(j) })h y,( )- L2 ·(" I) 
j= ' J J + 

for h=2,3, ... . 

where a(h) = Var(hZI - (h + I)ZI., + ZI.h.') and y, (h) is estimated by using the formula 

• { h-' aU) }) y,(h)= L . . h forh=2,~, ... 
R(h, 2 J(} + I) 

a(h)= L(hZ
" 
-(h+I)Z,//M(h) , 

R(h) 

R(h)={(i , j,l) : (tI,l j, I,)=(i,i+ l,i+h+l ) or (i,i-I,i-h-I)} 
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and M(h) is the number of di stinct triplets in R(h) . The quadvariogram for lag h, denoted 

by Y 2 (h), is defined as 

[

h. 2 1 /, 
Y2( h} =6 ~ {(h- j - I}l3(j)}-;.{4 j(j + IXj +2)}Jj h) 

where P(hJ= Var(-h(h + I) Z, + 2h(h+ 2)Z,., -(h+ 2Xh+ 1)2,., + 2Z, ••• ,). 

The estimate of quadvariogram is given by 

~(h) = L (- h(h + I)Z,; + 2h(h + 2}Z' j - (h + I)(h + 2)Z" + 2Z,. )2/ L I and 
R(~ R(h) 

.-

R(h) = {(i,j,l,m}: (1" l j ,I, ,1m ) = (i,i + I, i + 2,i + h + 2) or (i,i - I, i - 2,i - h - 2) }. 

The degree of differencing d required to achieve stationarity of a non-seasonal 

time series can be found by looking at the plots of the scaled versions of semivariogram, 

linvariogram and quadvariogram, the scaling quantities being the estimated variances of 

the processes {Z,}, {VZ, land {V' Z,} respectively. The leveling out of the semivariogram 

is an indication that d=O for the time series. A comparison of the leveling out of the 

estimated semivariogram can be made with its expected values. If the initial leveling out 

occurs for the scaled semivariogram then its expected value is given by e(h) =/ which is 

independent of the lag and its standard error is approximately equal to (1.35)/,Jn where n 

is the sample size. The graph of the scaled linvariogram levels out or not is an indicat~on 

of whether d=/ or d=2. When the initial leveling out occurs for the scaled linvariogram 
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then d= I with expected value for the scaled linvariogram for lag h is given by 

e(h) = X - X h and its standard error is approximately equal to (O.l5)/,;n . Similarly, if 

the initial !e"eling out occurs for the scaled quadvariogram then it is an indication that 

d=2 or d=3 . When this occurs the expected value of the scaled quadvariogram for lag h is 

given by e(h) = y,; -Xh - X h1 + X h3 ' The standard error of the quadvariogram is 

approximately equal to (0.09}/,;n . The standard errors of the three variograms are 

independent of the lag h for ;yj!> h !> ~ .To examine the leveling out of the 

variograms, the observed variograms can be checked to see whether they fall in the 

confidence band, e(h) ± 2SE , for the above range of values of lag h. 

The method proposed by Box and Jenkins for identification of orders of a time 

senes model is based on the properties of autocorrelation funciton (aef) and partial 

autocorrelat ion function (paef) of the time series. For a stationary time series {Z,} with 

mean 11 the autocorrelation at lag k denoted by P. IS defined as 

T-' 
p, = £[(Z, - 11)(Z,_, - 11») and its estimate is given by p, = I (Z, - 2)(Z", - 2) . The ,., 

aeJ , {p,;k = 0,1,2,"'} of a Moving average process of order q (MA(q) process) will have 

the property that p, = 0 Jor k = q + I,q + 2,. ·· which is known as the cutoff property at 

lag q. Hence if the sample aeJofa time series has a cutoff behavior at a finite lag q then 

.the generating process can be considered as an MA(q ) process. The aeJ of an AR process 
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or a mixed ARMA process gradually tails off to zero. For a time series if the sample acf 

{P.; k = 0.1.2.·· ·} is such that we can find a positive integer q so that 

Pi E[-Za/ U(.O,). z.y, u (p,») for i =q+l.q+2 .. ·· where U(p,) = .!..(1+2Ip;) 
/2 2 T j_' 

and Z is the critical· value of the standard normal variate then we can regard the process as 

a moving average process of order q. The conditional correlation between Z, and Z ... 

given the intermediate values Z,., .. · ·.Z"._, is called partial autocorrelation at lag k for 

the series {Z,} and it is denoted by ¢ .. . The sequence of values {¢ .. ;k = 0.1.2 .. ··} is 

known as the paef of the time series. The paef of a pure autoregressive process of order p 

(AR(P) process) will have the property that ¢ .. = 0 for k = p + I. P + 2 .. ·· . That is the 

paef of an AR(P) process will cutoff after lagp. If the paef of a sample time series is such 

that we can .find a positive integer p so that ~ .. E [- za/ .!... za/ .!..) for k = P + I.p + 2 .. · · 
F> T / 2 T 

then we consider the sample as a realization for an AR(P) process. This method of 

identification is not usefu l for a mixed ARMA model when neither p nor q is zero. For 

such models the aef will consist of a mixture of damped exponential and/or damped sine 

waves after the q-p lags and the paef will consist of a mixture of damped exponential 

and/or damped sine waves after the p-q lags. In general the graphs of Gef and paef would 

not yield any unique values of p and q for a mixed ARMA model. 

An alternative method of identification of orders of an ARMA model is to use 

criterion selection where the orders p and q by minimizing a quantity that is a function of 
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the estimate of white noise variance and the orders. Among this methods the popular 

criteria are one proposed by Akaike (1972~ known as AIC criterion and the other is 

Bayesian Information criterion proposed by Schewatz, known as SBC. The AIC criterion 

for a mixed ARMA process is defined as AIC(p,q}= In({j~.,) + 2(p + q}/T where (j~., 

is the maximum likelihood estimate of the innovation variance when the orders of the 

model are p and q respectively. The SBC criterion IS given as 

BIC(p,q) = In({j~ .• ) + (p + q} In(T)/T . 

Results 

1.1. Tot.1 Marine Fish landings 

Quarterwise total marine fish landings in Kerala during 1960-96 period was used to 

identify and estimate a suitable univariate autoregressive moving average model. The 

maximum annual landings observed during this period was 6,62,890 tonnes (t) in the 

year 1990 and the minimum observed was 1,92,470 t in 1962. The average of total marine 

fish landings during this period is 3,395,770 t with a coefficient of variation (CV) of 

29.49 %. The average landings during the period 1960-80 (first phase) was 3,38,181 t ( 

with CV 19.8 %) and that during the period 1981-96 (second phase) was 4,71 ,356 t (with 

CV 26.5%). This shows an increase in landings of about 39.4% in the second phase 

compared to the first. 

The average of total landings in the first quarter for the period 1960-96 was 

76,8281 (CV=3S.9%), that for the second quarter was 64,4201 (CV=47.9%), 
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corresponding value for the third quarter was 1,23,3351 (CY=43.5%) and for the fourth 

quarter it was 1,31,1871 ( with 28.6% CY). The minimum and maximum values of 

landings in this period for the first quarter were 33,7551 in 1%0 and 1,59,0791 in 1971. 

The corresponding values for the second quarter were 12,7381 in 1962 and 1,31,5771 in 

1990, for the third quarter the values were 34,4801 in 1962 and 2,23,4741 in 1994 and for 

the fourth quarter these values were 59,5511 in 1980 and 2,20,5511 in 1989. 

As an initial step towards model building for the quarterwise total marine fish 

landings in the state, to study the patterns existing in the autocorrelation function (aej) 

and partial autocorr~lation function (paej) , the values of these functions were computed 

up to lag 36 fo r the original data, the data generated by first order regular difference, 

seasonally differenced. data and for the data generated by applying both regular and 

seasonal differences of order one and it is presented in table. I. I. Autocorrelations of the 

original series showed highly significant values at lags that are mUltiple of four and the 

strength of autocorrelations was found decreasing as the lag increases. The maximum 

autocorrelation observed for this series was 0.702 at lag 4. The data being quarterwise 

landings this is an indication of seasonality of period 4 present in the data. Partial 

autocorrelations were significant and high up to lag 5 for the original data. For the 

seasonally differenced data the acfwas highly significant at lags I and 4 and the behavior 

of the paef was also similar. Interestingly, when the original data were subjected to 

simple first order differencing its aef showed very highly significant (maximum -0.728 

for lag 2) pattern at lags that are multiples of 2 with the sign of autocorrelation changing 

alternatively. Partial autocorrelations of this series were significant only at lags 2,3,4,7 

, 



28 

and 14. When the series was subjected to both seasonal and simple differencing each of 

order one, the GeJ and paeJ of the resultant series were found significant at lags I and 4. 

But this analysis does not show any pattern helpful for identification of orders of a 

suitable ARl~ IA model apart from showing that the data is seasonal and a suitable 

seasonal model may give better approximation for the generating process. 

To examme whether the seasonally di fferenced senes IS stationary or not 

variograms were computed up to lag 70 using the seasonally differenced data and the 

scaled variograms are shown in fig.!.!.!. From the plots of the scaled versions of 

semivariogram (y), linvariogram (y(l)) and quadvariogram (y(2}) up to lag 70, it can be 

seen that y( I) leveled at around 0.5 and y(2} leveled out around 0.2 both after lag 6. The 

scaled semivariogram fluctuated between 0.584 and 1.330, scaled linvariogram ranged 

between 0306 and 0.515 and the scaled quadvariogram ranged between 0.115 and 0.265. 

The expected value and standard error (SE) for the scaled semivariogram were 1.0 and 

0.1125 and many values fall out side the !.O ± 2.0 SE level. Standard errors for the 

scaled lin and quad variograms were 0.0125 and 0.0075 respectively. This indicates that 

first order differencing will be required to make the seasonally differenced series 

stationary. Hence in the general univariate seasonal ARlMA(p,d,q)(P,D,\!)s type model 

the values of d and D were both taken as I. Since the aeJ and paeJ does not give any clear 

idea about the orders of the model the alternative approach using the AIC and SBC 

criterion were used for model identification. 
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The order parameters of the model ARIMA(P,d,q)(P,D,Q)s are p, d, q, P, D and 

Q in which d and D were fixed as I based on the earlier analysis. For estimating the 

remaining order parameters Ale and SBe values were calculated along with log 

likelihood and standard error, after fitting each model from a set of 318 different models 

corresponding to different values of the order parameters taking values p,q = 0, I , ... ,5 and 

P,Q = 0,1,2. The minimum Ale value observed was 3332.89 for the model 

ARlMA(O, I,2)(O, I, I)4 with log likelihood value -1663.44 and standard error 27019.49, 

the maximum observed value of Ale was 3407.58 for the model ARlMA(I,I,O)(O, I,O)4 

with log likelihood -1 702.79 and standard error 36026.12. The minimum value of SBe 

obseryed was 3332.89 and it also was corresponding to the model ARlMA(O,I,2)(O,I,I)4 . 

The maximum value observed for SBe was 3405 .14 corresponding to the model 

ARlMA(3, I,O)(O, I,0)4 with log likelihood -1699.57 and standard error 35459.97. Since 

both these criterion suggested the same model ARlMA(O, I,2)(O, I,I) as the suitable 

representation for the total marine fish landings time series it was selected as the required 

model. 

The iteration process in the estimation of this process was terminated after 9 

iterations when the change in all the parameter estimates were less than 0.001. The final 

estimates of parameters of the model areB, = 0.434490 (standard error 0.0763, p < 0.001), 

B, = 0.436495 (standard error 0.0796, p < 0.001 ) and 0 , = 0.715598 (standard error 

0.0706, p < 0.001). Autocorrelations up to lag 36 were calculated for the residual series 

generated by usi ng the estimated model and was examined for their significance. Almost 
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all the autocorrelations were non-significant except that at lag 12 with the value -0.127 

which is not high. To test the suitabil ity of the estimated model, Box-Ljung "I: statistic 

was computed using 36 autocorrelations of the residuals and its value is 26.376 which is 

not significant (p=0.88}. The estimate of residual variance is 730053532. Hence the fitted 

model is suitable to represent the series. Since there are no autoregressive terms in the 

model the model is stationary. The characteristic polynomial for the moving average part 

is (1- 0.43449OB - 0.436495B 2
) and its roots are 1.0972 and -2.0998. Since these roots 

fall out side the unit circle it satisfies the condition for invertibility of the model. The 

characteristic polynomial corresponding to the seasonal moving average part in the model 

is (1- 0.71 5598B4 
} . and the absolute value of the roots of this polynomial is 1.3974 

which again lies out side the unit circle. Hence the model estimated is invertible. The 

original series and the fitted values using the estimated model are shown in fig.I . I.2. The 

algebraic form of the final estimated model is 

(1 - B)(I- B')2, = (1- 0.715598 B')(I-0.434490 B -0.436495 B! )c, 

1.2. Inten·ention model for total marine fish landings 

By the introduction of crafts fitted with outboard engines in late eighties in Kerala 

a prominent change in the landings was expected. To examine whether this has reall y 

caused any significant change in total marine fish landings an intervention analysis was 

carried out. As a first step towards this, using the data prior to this period (1960-87) a 

suitable ARIMA model was fitted. Autocorrelations and partial autocorrelations of the 

original series, differenced series, seasonally differenced series and the series with both 

the kinds of differencing are given in table.I.2. The patterns of aef and paef for this data 
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also showed seasonality but failed to give any clear indication regarding orders of a 

suitable model. Hence. criterion selection based on Ale and SBe was used to select 

orders of a seasonal ARlMA model. Among the 315 different models attempted for 

values of regular orders P.q = 0.1 •...• 5; seasonal orders p.Q = 0. 1. ,2 the model 

ARlMA(O,l,2XO.l.l)4 gave minimum values for both Ale (2488.33) and SBe 

(2496.35}. Maximum values of Ale and SBe criterion were 2558.41 for 

ARlMA(! ,I ,0)(0,1.1)4 and 2564.62 for ARlMA(3,1 ,0)(0, I ,0)4. The model 

ARfMA(0,1 ,2)(0,1,1)4 was then selected and the parameters were estimated as before. 

The estimation algorithm tenninated after 7 iterations when the change in the parameter 

estimates were less)han 0.001%. The estimates of the parameters were 9 1 = 0.440870 

(standard error 0.0909. p < O .OO~), ~ = 0.525322 (standard error 0.0907. p < 0.001) and 

01 = 0.742818 (standard error 0:0820, p < 0.001). The log likelihood for these estimates 

was -124t.16 and the estimate of residual variance was 662719054. The characteristic 

polynomial for moving average tenn is (1- 0.440870B - 0.525322B2
) and it has 1.0225 

and -1.8617 as its roots which fall out side the unit circle limit. Roots of the seasonal 

moving average polynomial (1- 0.742818B4
) have absolute value equal to 1.3462, 

which also lies out side the unit circle limit indicating that the estimated model is 

invertible. To examine the suitability of the fitted model, residuals were computed using 

the fitted model and acJofthe residual series up to lag 36 were calculated. The maximum 

value for the residual acJwas -0.124 which is not significant. The Box-Ljung x2value 

computed using residual acJup to lag 36 is 21.635 which is not significant (p=O.972). 

'. 
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Hence the fitted model is a good approximation for the process generating this time 

senes. 

This fitted model was then used for intervention analysis. For this an auxiliary 

variate was generated with value 0 for the periods befo re intervention (from 1960 to 

1987) and the variable was assigned the value I for the intervention period. This new 

variable was then included as a regression variable in the already estimated model , which 

is similar to inclusion of a step function in the model, and the model parameters were 

then re-estimated. The new estimates of model parameters are 8, = 0.50440 (standard 

error 0.14397, p<;O.OOI), 91 = 0.48883 (standard error 0.10474, p < 0.001), 

0 1 = 0.70057 (standard error 0.06919, p < 0.001 ) and the estimate of the coefficient for 

the aux iliary variable was b=53770.4339 (standard error 14163 .89, p < 0.001). The 

estimate of standard error was 25592.47, log likelihood corresponding to these estimates 

was -1656.84 and the estimate of residual variance was 654974673 . This indicates that by 

inclusion of an intervention term from 1988 onwards there is a reduction of about 10.28% 

in the residual variance. The observed landings and the fitted values according to the 

intervention model are plotted in fig. 1.2. 1. From the estimate of the coefficient of the 

auxiliary variable we can infer that on an average there is an increase of about 53,7701 in 

the total marine fish landings by the introduction 01 the new crafts fitted with outboard 

engines into the fishery. The algebraic form of the estimated intervention model with X 

representing the auxiliary variable is 

(1- B)(I- B')2, = 53770.43385X + (1- 0.50440B - 0.48883B' )(I - 0.70057 B' )c, 



33 

1.3. Oil sardine landings 

Oil sardine (Sardinella longiceps) is one among the important marine fish species 

that contributes maximum towards the marine fish landings in Kerala. During the period 

1960-96 the contribution by oil sardine towards total marine fi sh landings in the state 

reached 71.6% in the year 1968. Fluctuations in the landings of thi s species over years is 

very high so that the minimum contribution by this species came to even less than I % in 

the year 1994. It is believed that there is a cyclical behaviour in the landings of this 

species with a periodicity of II years (Sathianandan and Alagaraja, 1998). The maximum 

observed annual landings of oil sardine during this period was 2,47,048 tonnes in 1968 

and the minimum Observed was 1,554 tonnes in the year 1994. 

Quarterwise landings during 1960-96 was used to develop a suitable time series 

model for the landings of oi l sardine. Average catch and coefficient of variability for 

different quarters in this period are 32,8681 (CV=67.7%) for the first quarter, 12,5941 

(CV=74.4%) fo r the second quarter, 21 ,7501 (CV=80.8%) for the third quarter and 

55,3581 (CV = 69.3%) for the fourth quarter. During this period the maximum observed 

catch in the first quarter was 92,4241 in 1965, that in the second quarter was 37,4621 in 

1991 , for the third quarter this value was 74,6711 in 1989 and for the last quarter the 

maximum was 1,47,8211 in 1960. An initial analysis was carried out by computing ac/ 

and pac/for the actual series, for the series with regular difference, seasonally differenced 

series and for the series by applying both regular and seasonal difference and these are 

given in table.IJ. 
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The ae! of original data have shown highly significant values at almost all lags 

that are multiples of two. The maximum observed ae! was 0.567 at lag 4. Partial 

autocorrelations of this series was found significant up to lag 8 with a maximum of 0..434 

at lag 4. The ae! of the series generated by a regular first order difference of the original 

series also showed highly significant values fo r all lags which are multiples of 2, the 

maximum being 0.619 at lag 4. Partial autocorrelations of the differenced series have 

significant values up to lag 7 wi th geometric decay as lag increases and the maximum 

pac! value observed was -0.608 at lag 2. The behavior of the original and di fferenced 

series were not similar to that of a stationary series and the series being quarterly data 

having higher autocorrelations fo r lags which are multiples of 4 is seasonal. A seasonal 

differencing of first order may be required to reduce the series into a stationary seri es and 

a seasonal ARlMA model may be a better model to represent the series. The seasonall y 

differenced series have significant ae! at lags I, 4, II , IS, 19, 20 and 23 and the 

maximum is 0.379 at lag 1. The pae!ofthis series were significant at lags 1, 4, II , 19 and 

24 with a maximum of 0.379 at lag I. Though the ae! and pac! of the seasonally 

differenced seri es behaves like that of a stationary series these functions did not give any 

conclusion regarding the orders of the model to be fitted . The ae! of the series generated 

by applying both regular and seasonal differencing on the original series have significant 

values at lags I, 4, IS, 18 19 and 23 with max imum value -0.434 at lag 4 and its pac! 

were significant at lags I, 2, 4, 5, 8, 12 and 24 with maximum value -0.443 at lag 4. 

To ascertain the need for a regular differencing of the seasonally differenced data 

variograms were computed using the seasonally differenced data and the standardized 
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quantities of the semi, lin and quad vanograrns are gtven In fig.I.3.1. The scaled 

semiyariogram computed for this data was found to fluctuate between (}.6o.6 and 1.343 

and many of the values fall out side the expected range of 1.0. ± 2 SE for a stationary 

series where SE = 0..112S. The scaled linvariogram ranged between (}.3o.7 and (}.So.3 and 

it was found to level out after lag 8 at around (}.5(). The behavior of the quad variogram 

was also similar and it fluctuated between o.. IIS and (}.2S9 and was found to level out 

around (}.20. The standard errors for scaled lin and quad variograms were 0.0125 and 

0.0075 respectively. This suggests that a first order differencing of the seasonally 

differenced data will ensure stationarity. Accordingly the seasonal model, 

ARlMA(p,d.q)(P,D,Q)s, was attempted to fit by fixing the values of d and D as I with 

seasonality s = 4 . Since the analysis using aef and paef of the original and transformed 

series does not give any valuable conclusion regarding the orders of a suitable model, 

criterion selection based on AIC and SBC were used to estimate the model orders. 

Seasonal ARlMA(p,d,q)(P,D,Q)s for different values of p,q=o., I, .. . ,S; P,Q=o., 1,2; 

d=O, I and D~ I were initially fitted and the AIC and SBC criterion were computed. With 

~o, among 3 fS different models attempted, the minimum AlC value observed was 

3262.43 for the model ARlMA(I,O,O)(O,I,I)4 with log likelihood -1629.22 and the 

maximum AIC value was 3307.32 for the model ARlMA(2,0,3)(0, I ,0)4 with log 

likel ihood -1648.66. The model ARlMA(I ,O,O)(O,I, I)4 also gave the minimum SBC 

value 3268.37. Maximum SBC value was 3323.63 corresponding to the model 

ARlMA(5,0,5)(2, 1,2)4 with log likelihood value -1627.03. For ~l the model 
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corresponding to minimum Ale value of 3248.81 among the 314 different models 

attempted was ARlMA(I,I,I)(I,I,I) with log likel ihood -1620.41. The minimum SBe 

value observed was 3259.45 for the model ARlMA(0, 1,2XO, I, I)4 and log likelihood of 

the model was -1622.29. The maximum Ale value observed was 3325.42 for 

ARlMA(1 , I ,OXO, I ,0)4 with log likelihood -1661.71. 

The model ARIMA(I , I, I)( I , I , I)4 was estimated and the estimation algorithm 

was terminated after II iterations when the change in the parameter estimates were less 

than 0.00 I. Final estimates of parameters of the model are ~ I = 0.455945 (standard error 

0.0839, p < 0.001); 91 = 0.999856 (standard error 4.1409, p > 0.80), $1 = 0.1 39765 

(standard error 0.1158, p > 0.20) and e I = 0.795725 (standard error 0.0808, p < 0.00 1). 

The maximum correlation found between the parameter estimates was 0.6407 between 

91 and $1' Log likelihood value corresponding to this estimates of the parameters was -

16200.41 , Ale value was 3248.81 and SBe value was 3260.67. The estimate of residual 

standard error was 19779.71. The characteristic polynomial corresponding to the regular 

AR term in the model is (I - 0.455945x) with root 2.1932, and that corresponding to the 

seasonal AR term is (1- O. I 39765x') with absolute value of the roots equal to 7.1548. 

Since all these roots fall out side the unit circle limit the estimated model is stationary. 

The characteristic polynomial corresponding to the regular MA term is (1- 0.999856x) 

with root 1.0001 and that for the seasonal MA term is (1 - 0.795725x}with absolute value 

of the roots equal to 1.2567. Though the roots of the seasonal MA polynomial lie out 

side the unit circle, the root of the regular MA polynomial is very close to the unit circle 
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boundary for invertibility of the model. Hence the estimated model is not strictl y 

invertible. Residual series generated by using the estimated model were used to examine 

the suitability of the fitted model. Autocorrelations were computed up to lag 36 for the 

residual series and the maximum value observed was --{).160 at lag 19 and it is the only 

significant autocorrelation. The value of Sox-Ljung X 1 calculated using 36 

autocorrelations of the residuals series is 28.510 which is not significant (p=0.809). 

For the model ARlMA(0,1,2)(0,1,1)4 which corresponds to the minimum SSC 

value the iteration process in the estimation concluded after 30 iterations when the 

percentage reductio!! in residual sum of squares was less than 0.00 I. Final est imates of 

the model parameters are B, = 0.548735 (standard error 0.1010, P < 0.00 I), 

. . 
B, = 0.439810 (standard error 0.0899, p < 0.001) and 0 , = 0.729457 (standard error 

0.0720, p < 0.001). Estimate of residual standard error was 20015 .50, log likelihood was -

1622.28, AIC value was 3250.56 and SSC value was 3259.45. Characteristic polynomial 

corresponding to the regular MA term is (1-0 .548735 x- 0.4398l0x' ) having roots 

1.010 and -2.251 out of which one root is close to the unit circle boundary. The 

characteristic polynomial for seasonal MA term is (1 - 0.729457 x') and it has 1.371 as 

the absolute value of the roots and hence all its roots fall in the region out side the unit 

circle. Since one of the roots of the regular MA polynomial is close to the unit circle 

region the estimated model is not strictly invertible. Since there is no AR term in the 

model the model is stationary. Analysis of the residuals generated using the estimated 

model revealed significant values for the residual ael at lags 4 and 19 maximum being 
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0.174 at lag 4. The Box-Ljung X 2 calculated using ae! of the residuals up to lag 36 was 

42.005 which is not significant (p = 0.227). 

Since these two models are not strictly invertible the model 

ARJMA(I ,0,OXO,I,I)4 which yielded minimum values for both AIC and SBC when d= 0 

was also estimated and examined. For this model the estimation process was terminated 

after 5 iterations when the reduction in the residual sum of squares was found less than 

0.001 percent. Final estimates of the parameters are tP, = 0.466848 (standard error 0.0757, 

p<0.00 I) and 8, = 0.732283 (standard error 0.0621 , p < 0.00 I). The characteristic 

polynomial for the AR term is (I-0.466848x)with root 2.142 which is outside the unit 

circle limit so that the estimated model is stationary. The characteristic polynomial 

corresponding to the seasonal MA part is(l-0.732283x') and the absolute value of its 

roots is 1.36 which again is outside the unit circle and hence the model is invertible also. 

Estimate of residual standard error corresponding to this model was 19746.96 and log 

likel ihood value was -1629.22. The ae! of residual series generated using the estimated 

model have significant values at lags II , 19 and 20 with maximum -0.172 at lag II . The 

Box-Ljung X 2 calculated using 36 autocorrelations of the residuals series is 36.46 which 

is not significant (p=0.447). There was no significant correlation between the estimates 

of the parameters. Compared to the earlier models this model is strictly stationary and 

invertible and the residual standard error is comparatively less for this model. Hence this 

model was chosen as the final model for this time series and plot of observed catch and 
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its expected vales as per the model is given in fig . I.3 .2. The estimated model can be 

expressed as 

(1- B' )(1- 0.466848 B)l, = (1- 0.732283 B') &, 

1.4. Indian mackerel landings 

During the period 1960·96 the average annual landings of mackerel in Kerala was 

35,244 tonnes with a coefficient of variation of88.21 %. This on an average is about 8.91 

% of the total marine fi sh landings in the state during this period. The maximum and 

minimum landings of mackerel during this period were 1,28,411 tonnes in 1996 and 3599 

tonnes in 1969 respectively. The average landings during the period 1960-80 was 25,011 

tonnes (with CY 81.1 %) and that during 1981-96 period was 48,675 tonnes (with CY 

76.24%). The maximum percentage contribution by this species towards total landings in 

Kerala was 24.07% in the year 1963 and the minimum was 1.04% in 1968. The average 

landings of thi s species in the first quarter during 1960-96 was 6,285 t (CY= 13 7.1 %), that 

for the second quarter was 5,905 t (CY=108.65%), for the third quarter the value was 

10,559 t (CY=144.14%) and in the fourth quarter this value was 12,496 t (CY=98.9"Io). 

The maximum and minimum landings in the first quarter during this period were 53,50 I t 

in 197 1 and 333 t in 1969 respectively. For the second quarter these values are 29,967 t in 

1971 and 14 t in 1968. During this period in the third quarter the minimum observed 

catch was 199 t in 1975 and the maximum was 67,887 t in 1994. For the fourth quarter 

these values were 49,828 t in 1989 and 1,346 t in 1979. The time series data on 

quarterwise landings of thi s species show high variation at different periods. During the 

last parI of the series variation is very high and the series show an increasing trend with 
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high fluctuations . Hence to. reduce the variability in the data it was transformed by using 

natural legarithms and the transfermed series was used to. find a suitable time series 

medel. 

The aef and paef up to. lag 36 were cemputed fer the transfermed series, its first 

difference, seasonal difference and fer the series generated by applying beth regular and 

seasenal difference which is given in table. 1.4. Fer the transfermed series the maximum 

aefebserved was 0.499 at lag 4 and the maximum ebservedpaefwas 0.443 at lag I. Fer 

this series aef were feund significant at lags I, 3, 4, 5, 7, 8, 9, 12, 20, 24 and 28 and paef 

were feund signific3!lt at lags 1,3, and 4. Fer the series generated by a regular difference 

ef the leg transfermed data the aef were significant at all lags which are multiples ef two. 

with a maximum ef -0.473 at lag 2. The paef ef this seri es were significant at lags 1, 2, 3 

and 10 with maximum at lag 2 which is -0.544. Fer the series generated by a seasenal 

difference eforder I, with seasenality 4, the aefwere significant at lags 1,4 and 8 with a 

maximum efO.286 at lag I and itspaefwere significant at lags 1, 4, 8 and 12 with -0.315 

as the maximum at lag 4. The a maximum ef ae! ef the series ebtained by applying both 

seasenal and regular difference en the transfermed data have significant values at lags I, 

2,3,4, 6,21 and 33 with maximum value -0.327 at lag I. The max imum ebserved pac! ef 

this series was -0.388 at lag 4 and it has significant values at lags 1,2, 3, 4, 5, 8,20 and 

22. The analysis ef the series by using ae! and pac! dees net give any clue regarding the 

erder ef the precess generating this series but gives seme indicatiens regarding 

seasenality in the data as shewn by the ae! and pac! ef the seasenally differenced data. 
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Hence a seasonal ARlMA model may suit the series for which the orders are to be 

determined by other methods like minimum AlC and SBC criterion. 

The log transformed series on quarterwise landings of mackerel was seasonally 

differenced and used to compute the variograms up to lag 70 to examine the requirement 

of a regular differencing. The scaled variograms and their confidence limit under the 

hypothesis of stationarity are shown in fig.I.4.I. The scaled semivariogram ranged 

between 0.718 and 1.245, scaled linvariogram ranged between 0.329 and 0.492 and the 

scaled quadvariogram was found to range between 0.111 and 0.246. The standard errors 

for scaled semi, lin and quad variograms under stationarity assumption were 0.1125, 

0.0125 and 0'.0075 respectively. For the scaled semivariogram only 2 values out of 70 at 

lags I and 4 were found to fall out side the confidence region and the scaled I in and quad 

variograms leveled out after few initial lags and all points fall within the confidence 

limits there after. Since most of the points are within the confidence limit for the semi 

variogram it is an indication that no regular differencing is required to make the series 

stationary. Based on this analysis the order of regular differencing was taken as zero and 

that for the seasonal differencing was taken as I in the seasonal type model 

ARlMA(p,d,qXP,D;Q)s for which d=O and IFI. 

To determine the suitable orders of the seasonal ARlMA model, for values of 

p,q=O, I , ... ,5; P,{FO, 1,2 ; d=O, D= I the AIC and SBC criterion were computed by 

estimating the model using log transformed data. Out of the 315 different models 

estimated the model ARlMA(3,O,OX2, I ,2)4 was found to have minimum AlC value 
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which was 443.23 and the model corresponding to the minimum SBe value 455.20 was 

ARlMA(1 ,0,0)(0,1 ,1)4. The maximum Ale value obtained was 489.76 for the model 

AIUMA(3,0,0)(0,1,0)4 and the maximum SBe value obtained was 503.87 for the model 

ARlMA(3,O,2)(1,1,0)4. The estimate of standard error and log likelihood for the model 

corresponding to minimum Ale was 1.0782 and -213 .6 1 respectively and for the model 

that gave maximum Ale value these quantities were respectively 103065 and -240.88. For 

the modehvith minimum SBe value these estimates were 1.1145 and -220.14 and for the 

mode~ with maximum SBe value the estimates were 1.2624 and -234.54. 

Using the log transformed time series of quarterwise landings of mackerel the 

model selected based on minimum Ale criterion ARlMA(3,0,0)(2 ,1,2)4 was estimated. 

The estimation algorithm terminated after 9 iterations when the reduction in residual sum 

of squares was less than 0.00 I percent. Final estimates of these parameters are 

(p, = 0..431122 (standard error 0.0841, p<O.OO I), (p, = -0.084324 (standard error 0.0945, 

p>0037), (PJ = 0.254399 (standard error 0.0917, p<O.OI }, $, =0.901061 (standard error 

0.1559, p<O.OO t), $ , = -0.28.8687 (standard error 0.1058, p<O.O I), 0 , = 1.63951 0 

(standard error (}.1497, p<O.OOI} and 0 , =-0.767463 (standard error 0.1238, p<O.OOt ). 

The estimate of <1>, was found to have high correlation with the estimates of 0 , (0.7%) 

and 0, (0.790) and also the estimates 0 , and 0, were highly correlated (r=-0.970). The 

characteristic polynomial corresponding to the regular AR term is (1- 0.431122 x + 

0.084324 x> -0.254399 x') and its roots are 1.3153, -0.4919+ 1.6573; and -0.4919-1.6573; 

(absolute value 1.7288). For the seasonal AR term the characteristic polynomial is ( 1-
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0.90 I 061 x' + 0.288687 x') and the absolute value of its roots is 1.1680. Since all the 

roots of both the regular and seasonal AR characteristic polynomials fall out side the unit 

circle the estimated model is stationary. The characteristic polynomial corresponding to 

the seasonal MA term is (1- 1.639510 x' + 0.767463 x') and the absolute value of its roots 

is 1.0336. Though these roots are outside the unit circle bound<rry region it is very close. 

Using the estimated model the residual series was generated and ael up to lag 36 were 

computed for the residual series. None of the ael values were significant and the 

maximum observed aelfor residuals was -0.143 at lag 20. Box-Ljung X 2 calculated using 

36 ael of the residuals series up to lag 36 was 19.941 which is not significant (p=O.986). 

For the model ARlMA(I ,0,0)(0,1,1)4 NC estimated for the log transformed 

quarterwise landings of mackerel, which correspond to the minimum SBC value, the 

estimation algorithm terminated after 4 iterations when the change in residual sum of 

squares was found less than 0.00 I percent. Final estimates of parameters of the model are 

¢, = 0.41 5719 (standard error 0.0766, p<O.OOI ) and 0, = 0.726612 (standard error 

0.0630, p<O.OO I). The characteristic polynomial for the AR term is (1- 0.415719 x) with 

root 2.4055 which falls out side the unit circle region and hence the estimated model is 

stationary. For the seasonal MA term the characteristic polynomial is (1- 0.726612 x') 

with 1.0831 as the absolute value for the roots which also falls outside the unit circle so 

that the estimated model is invertible also. Residual series was generated with this model 

and the ael up to lag 36 were computed for the residuals . All the ael values were found 

non significant maximum being -0.141 at lag 14. The Box-Ljung x2 calculated using ael 
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up to lag 36 of the residu<ll s series was 28.2<} which was not significant (p=0.817). This 

model is parsimonious compared to the first and it is stationary and invertible. Hence this 

model was chosen as the final model for this time series and plot of observed and 

expected catch is given in fig . 1.4.2. The algebraic expression for the estimated model is 

(1- 0.4157198Xl- 8 ' )2, = (l-0.7266l2 8')c, 

\.5. Anchovies landings 

The average annual landings of anchovies during 1960-96 was 20,697 tonnes with 

a coefficient of variation of 74.88%. During this period, on an average this group 

contributed about 5.2% towards total landings in the state. The maximum landings by 

anchovies was 55,0421 in the year 1983 and the minimum was 2,7181 in I %5. During 

I 960-8Q. period the average landings of anchovies was 10,1071 (CV=41.87%) and the 

average during the period 1981-96 was 34,5961 (CV=40.0%). The percentage 

contribution by this group was maximum in the year 1983 (14.27%) and it was minimum 

in the year 1965 (0.80%). The average landings of anchovies in different quarters during 

1960-96 period were 1,6521 in first quarter (CV=87.4%), 4,1541 in second quarter 

(CV=116.67%), 7,2641 in the third quarter (CV=98.9%) and 7,6271 in the fourth quarter 

(CV=80.4%). The percentage landings in the four quarters during the period under study 

on an average were 7.98%, 20.07%, 35.10% and 36.85% respectively. In the time series 

of quarterwise landings of anchovies the variability in data is very high during the last 

few years. Hence a togarithmic transformation was applied to stabilize the variability in 

data. 
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The ac! and pac! up to lag 36 were calculated for the log transformed quarterwise 

landings, its regular difference, its seasonal difference wi th seasonali ty 4 and for the 

series generated by applying both regular and seasonal difference to the log transformed 

series which is presented in table 1.5 . The ac! of the log transforms series have significant 

and high values at lags which are multiples of 4 showing the behaviour of seasonal time 

series with seasonality 4. The pac! of this series has high and significant values at lags I , 

3, 4, 8, 20 and 28. The highest observed acf vlue was 0.624 at lag 4 and the highest 

observed pac! value was 0.520 at lag 4. The acf of the series generated by a regular 

difference of the log transformed series were significant and high at all lags that are 

multiples of 2 with a maximum of 0.474 at lag 4 and the pac! of this series were 

significant at lags I, 2, 3, 7, 19 and 27 with maximum of -0.549 at lag 3. For the series 

obtained by a seasonal difference of the log transformed series the ac! were significant at 

lags 4, 13 and 17 with 0.370 as the maximum at lag 4. The pacfwere significant at lags 4, 

8, 16 and 24 with -0.386 as the maximum at lag 4. This is an ind ication that even the 

seasonally di fferenced series is not fully free from seasonality present in the series and a 

seasonal model will suit better for thi s series. When both regular and seasonal differences 

were applied to the log transformed series both the ac!and pac!of the resulting series had 

significant values at many lags and it does not show any identifiable pattern. The 

maximum observed acf for this series was -0.468 at lag I and the highest pacf obse.rved 

was also -0.468 at lag I. The above analysis failed to give any conclusion regarding the 

orders of a suitable model, and hence criterion selection based on maximum values of 

AIC and SBC was adopted for selection of suitable model. To examine further about the 

requirement of regular difference variogram analysis was carried out using the series 
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generated by seasonal difference of the log transformed series and fig. 1.5. 1. show plots of 

different scaled variograms along with expected values and confidence limits. The scaled 

semivariogram fluctuated between 0.723 and 1.380 but only 4 values out of 70 were 

found to fall outside the confidence limits. Scaled lin and quad variograms leveled out 

after certain lags and are very close to the expected values there after. Scaled 

linvariogram fluctuated between 0.368 and 0.523 with a standard error of 0.0125 and the 

scaled quad variogram ranged between 0.123 and 0.267 with a standard error of 0.0(}75. 

This suggests that regular differencing of the series is not necessary and the series can be 

considered as stationary . 

Based on these results Ale and SBe criterion were used to identify a suitable 

seasonal model of the type ARlMA (P.d.q}(P.D.Q)s for the log transformed quarterwise 

landings of anchovies with d = 0 and D = I. For values of p.q = O. 1 •...• 5; P.Q=O. I. 2; 

estimation was carried out and the Ale and SBC criterion were computed for 315 

different models. The model corresponding to the minimum Ale value 366.44 was 

ARlMA(4.0,0)( I. l .2)4 and that corresponding to the minimum SBe value 379.54 was 

ARlMA(I .0. I)(O. I. l)4 with corresponding log likelihood values -176.22 and -182.32 

respectively. The maximum observed values for Ale and SBe criterion were 418.78 for 

ARlMA(3.0.0)(o-.I .0)4 and 435.32 for the model ARlMA(4.0.5)(I. I.2)4 respectively. 

These two models corresponding to minimum AIC and SBe values were estimated and 

compared for their suitability. 
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For the model ARIMA (4,0,0) (1 ,1,2) 4 the estimation algorithm terminated after 

13 iterations when the decrease in residual sum of squares was less than 0.00 I percent. 

Final estimates of the parameters in the model are ¢, = 0.188095 (standard error 0.0732, 

p<0.05), ¢, =-0.073838 (standard error 0.0775, p>0.3), ¢J =0.251373 (standard error 

0.0726, p<O.OOI), ¢, = 0.570424 (standard error 0.1431, p<O.OOI), <1>, =0.395996 

(standard error 0.1692, p<0.05), B, = 1.762684 (standard error .0.1292, p<O.OO I) and 

B, =-0.7950.38 (standard error 0.1257, p<O.OOI). The SBe value was 387.23 and the 

estimate of residual standard error was 0.8226. The polynomial corresponding to the 

regular AR terms in the model is (1 -0.188095 x + 0.073838 x' - 0.251373 x'- 0.570424 x') 

and its roots are 1.0202, -1.3781 , -0.0414+ 1.1159i and -0.0414-1.1 159i. All these roots 

fall outside the unit ci rcl e region which is the required condition for stationarity of the 

model. Roots of the seasonal AR polynomial (1 - 0.395996 x') have 1.2606 as the absolute 

value for its roots, so that these roots also fall out side the non-stationarity region. Hence 

the estimated model is stationary. The seasonal MA polynomial (1-1.762684 x' + 

0.795038 i) has 1.0291 as the absolute value for its roots so that these roots also fall 

outside the unit circle region for non-invertibility and hence the model estimated is 

invertible. When the correlation between the estimates were examined it was found 

maximum between 0, and 0, and there is high correlation between ¢, and ¢,' ¢ J and 

¢. , <1> , and 0, and also between <1>, and ¢, . To examine the suitability of the estimated 

model residuals were calculated based on this model and acfup to lag 36 were computed. 

The maximum observed residual acf value was -0.156 which is not sign ificant. Box-
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Ljung x' value calculated uSing residual ae! up to lag 36 was 30.73 which IS not 

significant (p=0.717). Hence the estimated model IS a suitable approximation to the 

senes. 

For the model based on SBC criterion, ARlMA( I ,0, I )(0, 1,1)4 for log transformed 

quarterly anchovies landings, the estimation algorithm terminated after 9 iteration when 

the reduction in residual sum of squares was found less than 0.00 1 %. Final estimate of 

parameters of the above model are ¢, 0.991353 (standard error 0.0270, p<O.OO I), 

il, = 0.8569 t4 (standard error 0.0553, p<O.OO I) and 0, = 0.959118 (standard error 

0.0836, p<O.OOI). The maximum likelihood corresponding to this model is -1 82.32 and 

the estimate of residual standard error was 0.8439. The characteristic polynomial 

corresponding to the regular AR term in the model is (1- 0.991353 x) and its root is 

1.0087 which is close to the unit circle boundary region. The characteristic polynomial 

corresponding to the MA term is (1- 0.856914 x) with root 1.1670 and is well outside the 

unit circle region for non-invertibility. But for the characteristic polynomial for the 

seasonal MA term (1- 0.959118 x'), the absolute value of its roots is 1.0105 which again 

is close to the boundary region for non-invertibility. There is high correlation between the 

estimates of ¢, and (J, which is 0.764 and ¢, and B, are also significantly correlated. 

Residual analysis was carried out by computing ael up to lag 36 for the residual series 

generated using the estimated model. The maximum value observed for the residual ael 

was -0.172 at lag 9 which is significant. The Box-Ljung X' value based on 36 

autocorrelations of the residual was 49.02 which is not significant (p=O.078). When the 
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two models were compared, the one based on minimum AIC criterion, 

ARJMA(4,0,OXI,12)4 was found to fit better than the one based on SBC for the reasons 

that it has resulted in smaller residual variance, none of the residual autocorrelations were 

significant and the Box-Ljung Z' value is comparatively small and not at all significant. 

Plot of the observed catches of anchovies and expected catch computed based on the 

estimated model is shown in fig.I .5.2. The algebraic form of the final estimated model is 

(1- 0.395996B')(I- 0. I 88095B + 0.073838B' - 0.25 1373B' - 0.570424B')2, 

= (1-1.762684B' + 0.795038B')£, 

1.6. Lesser sardine landings 

During 1960-96 period Lesser sardines on an average accounted for about 3.83 
." 

percent of the total marine fish landings in Kerala. The maximum contribution by lesser 

sardines in this period was 13.92 % in the year 1973 and minimum was 0.76 % in 1985. 

The average landings by this group during this period was 15,2631 with a coefficient of 

variation of 80.55%. The minimum observed annual landings of lesser sardines was 

2,4731 in 1985 and the maximum was 62,4211 in 1973. During 1%0-80 period the 

average landings by this group was 16,4791 (CV=82.03%) which is about 4.87% of the 

total landings and during 1c}81-96 period the average landings was 13,6671 (CV=75.06%} 

which is about 2.9"10 of the total landings in this period. The average landings by this 

group during I %0-96 in different quarters were 2,8181 in the first quarter (CV=c}5.74%), 

1,9851 in the second quarter (CV=89.87%), 3,1131 in the third quarter (CV=141.37%) and 

7,3471 in the fourth quarter (CV=112.45%). The average quarterwise percentage 

distribution of landings of lesser sardines in this period were 18.46%, 13 .00%, 20.40% 

and 48.14% respectively for first, second , third and fourth quarter. In the time series of 
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quarterwise landings of lesser sardines there is very high fluctuation in the middle and 

later stages of the period under study. Hence a transformation of the series was made by 

natural logarithm before analysing the series. 

The aef and paef up to lag 36 were computed fo r the log transformed quarterwise 

landings of lesser sardines, its regular difference, its seasonal difference and fo r the series 

obtained by applying both regular and seasonal differences, which is presented in 

table. 1.6. For the log transformed series the aef were significant at lags I, 3, 4, 8, 14, 16, 

21 and 29 with a maximum of 0.488 at lag 4. The paef of this series were significant at 

lags 1, 4 and 8, the maximum being 0.452 at lag 4. This is an indication that the time 

series is seasonal with seasonality 4. For the series obtained as regular difference of the 

log transformed series aef were significant at many lags with out any clear pattern and the 

maximum observed was 0.453 at lag 8. The paef of this series were found significant at 

lags I, 2, 3, and 7 with - 0.535 as the maximum at lag 4. For the seasonall y differenced 

series the aefwas found significant only at lag 4 at which the autocorrelation is -0.424. 

The paef of this series were significant at lags 4, 12 and 19 the maximum being -0.458 at 

lag 4. For the seri es obtai ned by applying both regular and seasonal differences on the log 

transformed series aefwere significant at lags 1, 3 and 4 with a maximum of -0.506 at lag 

4. The paef of this series have significant values at lags 1, 2, 4 and 5 with maximum -

0.431 at lag 1. Even though there is no clear pattern visible in the ael and paef of these 

series for model identification, they indicated that a seasonal model will fit better for the 

series because the seasonally differenced series is also not free from significant aef and 

paef values at lag 4 and its multiples. 
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Scaled variograms were computed USIng the seasonally differenced log 

transfonned quarterwise landings of lesser sardines and these are plotted along with 

expected values and ± 2SE limits in fig . I.6.1. The standard errors for the scaled 

variograms were 0.1125, 0.0125 and 0.0075 respectively for semi, lin and quad 

variograrns. The scaled variogram was found to fluctuate between 0.734 and 1.409, with 

some points falling outside the confidence limit even at higher lags. The scaled 

linvariogram was found to level out around the expected values after a few initial lags so 

also the scaled quadvariogram. The scaled linvariogram was found to range between 

0.357 and 0.517 an~ the scaled quad variogram was found to vary between 0.121 and 

0.263. The leveling of the scaled lin and quad variograms and the fluctuation of semi 

variograrn even at higher lags indicate the need for a regular differencing of the 

deseasonalized series. Hence, for the estimation of a seasonal model for the series, the 

regular difference order parameter was taken as I. 

Among different models for values of p,q = 0, I, ... ,5; P, Q = 0, 1,2; d, D = I the 

model that yielded the minimum AIC value 382.25was ARlMA(5,1 ,0)(0,1 ,2)4, and that 

corresponding to the minimum SBC value 393.48 was ARlMA(O, I ,1)(0,1,1)4. These 

models were estimated and checked for their suitability. For ARlMA (5,1 ,0) (0,1,2)4 

model the estimation algorithm stopped after 12 iterations when the reduction in residual 

sum of squares was less than 0.00-1%. Final estimates of the parameters in the model are 

(P, = -0.727988 (standard error 0.0831, p<O.OOI), (p, =-0.455917(standard error 0.0982, 
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p<O.OOI), ¢l = -OJ02575 (standard error 0.1117, p<0.008), ¢, = 0.608445 (standard 

error 0.1068, p<0.008), ¢, = 0.237267 (standard error 0.8956, p<O.OI), 0, = 1.764207 

(standard error 0.0807, p<O.OOI ) and 0, = -0.784631 (standard error 0.0769, p<O.OOI ). 

Some of these estimates were highly correlated and the maximum correlation was -0.979 

between 0, and 0" next being 0.929 between ¢, and ¢ 4 . The log likelihood 

corresponding to these estimates was -184.13, SBC value was 402.99 and the estimate of 

residual standard error was 0.8622. The characteristic polynomial for the regular AR 

terms is (I +0.727988x + 0.455917x ' + OJ02575xl -0.608445x' - 0.237267x') and its 

roots are 1.4 t69, -1.0268, -2.8442, (-0.0551 + 1.0077i) and (-0.0551-1.0077i) . 
. -

Characteristic polynomial corresponding to the seasonal MA term in the model is 

(1-0.764207 x· +0.7846311 x') and 1.0308 is the absolute value of its roots which is out 

side the unit circle boundary so that the model estimated is invertible. The ael up to lag 

36 were computed for the residual series generated using the estimated model and the 

maximum observed ael value was 0.183 at lag 6 which is the only significant value. The 

value of Box-Ljung X' statistic computed using aelof residuals up to lag 36 was 31.875 

which is not significant (p= 0.665}. 

For the second model ARlMA(O,I , I)(O, I,I)4 which yield the minimum SBC 

value, the estimation process was concluded after 5 iterations when the reduction in 

residual sum of squares was lass than 0.001 %. Final estimate of parameters in the model 

are 8, = 0.750384 (standard error 0.6177, p<O.OOI) and 0, = 0.790039 (standard error 
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0.5953 , p<0.001). There do not exist any significant correlation between B, and 8, . Log 

likelihood corresponding to this estimated model was -l91.55. Characteristic polynomial 

for the regular MA term is (1-0.7S0384x)and its root is 1.3327 and it lies out side the 

unit circle. The characteristic polynomial for the seasonal MA term tS 

(1- 0.790039 x' ) and thc absolute value of its roots is 1.2658. These roots also lie outside 

the unit circle boundary for non-invertibility and hence this model is invertible. The 

maximum value of Gef observed for the residual series generated using the estimated 

model was -0-.162 at lag 29 and it was not significant. The Box-Ljung X' calculated 

based on Gel of residuals up to lag 36 was 40.50 which is not significant (p=0.278). This 

model have the desired properties of stationarity and invertibility compared the other 

three models and is parsimonious. Thus this model was chosen as the suitable model to 

represent the time series on quarterwise landings of lesser sardines in Kerala. The 

observed catch and its expected value according to the estimated model are plotted 

fig .l.6.2. The algebraic form of the estimated model is 

(1- B' )(1- B)Z, = (1-0.790039 B' )(1 "': 0.750384 B)&, 

1.7. Penaeid Prawns landings 

During the period 1960-96 the average percentage contribution by penaeid prawns 

towards total marine fish landings in Kerala was 10.39% with a maximum of 18.91 % in 

1973 and a minimum of 3.69% in 1960. Average annual landings of penaeid prawns was 

40,4181 with a coefficient of variation of about 41.81 %. The maximum observed annual 

catch of this group during this period was 84,7701 in 1973 and the minimum observed 
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was 12,798t in 1960. The average annual landings during 1960-80 period was 37,0271 

(CV=48.58%) and that during 198 1-96 was 44,869t (CV=3 1.59%). Quarterly average of 

penaeid prawn landings during 1960-% period were 6,6731 in the first quarter 

(CV=57.55%), 10,6721 in the second quarter (CV=59.69%), 17 ,090t in the third quarter 

(CV=65.66%) and 5,982t in the fourth quarter (CV=60.15%). On an average the 

percentage of landings by penaeid prawns in different quarters were 16.51 % in first 

quarter, 26.41% in the second quarter, 42.28% in the third quarter and 14.80% in the 

fourth quarter. Since there is high fluctuation to some extent in landings during the 

middle of the period log transformation was applied to reduce variabiliry and the 

transformed series was used for analysis. 

The acf and pacf up to lag 36 were computed for the log transformed series, its 

regular difference, seasonal difference and for the series obtained by applying both 

regul ar and seasonal differences and it is shown in table. 1.7. For the series without any 

differencing, the acfwere significant at all lags that are multiples of 4 and also at lags I, 

3, and 30 with a maximum of 0.546 at lag 4. Its pacfwere significant at lags 1,3,4 and 8 

with a max imum of 0.499 also at lag 4. This clearly is an indication that the series is 

seasonal with seasonality 4. The differenced series have more number of significant 

values for the acf especially at lags that are multiples of 4, the maximum being 0.516 at 

lag 4. The magnitude of autocorrelation was found to increase for the series obtained by 

applying a regular difference. The pacfofthe differenced series have significant values at 

lags I , 2, 3 and 7 with -0.624 as the maximum at lag 3. For the series obtained as a 

seasonal difference of the log transformed series, the only significant acf value was -
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0.368 at lag 4 and the only significant pacfwas 0.379 also at lag 4. This indicates that 

mere a first order seasonal differencing is enough to simplify the acf structure of the 

series. Since there still exist significant acf and pacf at lag 4, a seasonal model will suit 

better for the series. When both regular and seasonal differences were applied to the 

series, the acf and pacf were found significant at more number of lags. The acf were 

significant at lags I , 3, 4, 6 and 25 with a maximum of -D.421 at lag I and significant 

pacf were at lags I , 2, 4, 5 and 8 maximum being -D.421 at lag I. The analysis using acf 

and pacf suggested that a seasonal ARlMA model with seasonality 4 would be a better 

model to represent the log transformed quarterwise landings of Penaeid prawns. 

Variograms. were computed usmg the seasonally differenced log transformed 

series and the scaled semi variogram was found to vary between 0.62 I and 1.363 . Only 

very few points fall outside the confidence limits for semi variogram and the lin and quad 

variograms level out after a few initial lags. The scaled linvarogram was found to vary in 

the range 0.356 to 0.493 and the scaled quadvariogram fluctuated between O. I 19 and 

0.246. Plots of the scaled variograms are given in the fig . 1.7. I. This suggests that there is 

no necessity for a regular differencing for the series. Based on this analysis seasonal 

ARlMA models were attempted for the series with out any regular differencing and with 

a seasonal differencing of seasonality 4. For estimaion of the orders criterion selection 

based on AIC and SBC were used. Seasonal ARlMA model of the form ARlMA(p,d,q), 

(P,D,Q)s were initially fitted for different values of p,q=O, I,,,., 5; P,Q= 0, 1,2; d=O and 

D= I using the log transformed quarterwise landings of penaeid prawns. The values of 

AIC and SBC were obtained for 315 such models and the minimum AlC value observed 
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was 272.41 for ARlMA(0,0,4)(2, 1,2)4 and the minimum SBe value was 279.83 for 

ARlMA(O,O.1 )(0,1,1 )4. The maximum Ale value observed was 312.45 for 

ARlMA(3,0.0)(0,1,0)4 and the maximum SBe value observed was 329.45 for 

ARlMA(5,0,5)(2, I ,2)4 . The two models corresponding to the minimum values of Ale 

and SBe were estimated and compared. 

For the model ARlMA(0,0,4)(2,1 ,2)4, the estimation algorithm terminated after 

22 iterations when the change in the estimate of parameters were found to be less than 

0.001 . Final estimate of parameters in the model are 0, = -0. 177829 (standard error 

19.6694, p>O.99) 01 = -0.080378 (standard error 16.1 927, p>0.99), 

OJ = -O.098269"(standard error 17.7724, p>0.99), O. = 0.804199 (standard error 15.8694, 

p>O.95), $ , = 1.917048 (standard error 0.0421, P "'0.0), $ 1 = -0.997742 (standard error 

0.0408, 0, =-1.891 108 (standard error 0.3041 , and 

0
1 

= -0.968287 (standard error 0.3017, p<0.002). The estimates of all the moving 

average parameters were found to be non-significant due to high estimates of their 

standard errors and these estimates were found to be highly correlated to each other. High 

correlation was also seen between the estimates of moving average parameters and 

seasonal AR and seasonal MA parameters. To see whether the estimated model posses 

stationary and invertibility properties, roots of characteristic polynomials were computed. 

The characteristic polynomial corresponding to the regular MA term is 

(I + 0.177829 x + 0.0803 780Xl + 0.098269 x J 
- 0.804199 x') and its roots are 1.1627, -
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1.00002, (-0.02()3+ 1.0339i)- and (-0.o-20-3-l.0339i) (absolute value 1.034 I}. Hence some 

of the roots are close to the unit circle boundary for non-invertibility, and hence the 

model can not be considered as strictly non-invertible. Roots of the seasonal AR 

polynomial (1-1.917048x· +0.997742x'}have 1.0003 as its absolute value and hence 

these roots are close to the unit ci rcle boundary for stationarity of the model. Hence the 

mode~ can not be considered strictly as stationary. The characteristic polynomia} for the 

seasonal MA terms in the model is (I + 1.8911 08x' + 0.968287x')and the absolute value 

of its Foots 1.0040 is close to the unit circle boundary. The estimate of residual standard 

error corresponding to this model was 0.5726, log likdihood was -128.20 and SBe value 

was 296.17. Residual analysis was carried out by computing residual Gel up to lag 36 

using the residual series generated based on the estimated model. None of these residual 

Gel were signi!1cant and the maximum was 0.117 at lag 6. Box-Ljung Xl value based on 

Gel up to lag 36 of the residuals was 17.168 which is not significant (p>0.99). Though 

the residual analysis showed acceptance of the estimated model it is not preferable since 

it does not posses properties of stationarity and invertibility, and also due to high standard 

error for some of the estimates. 

For the second model ARIMA(O,O,I )(0,1,1)4 the estimation algorithm concluded 

after 4 iterations when the percentage reduction in residual sum of squares was found less 

than 0.00 L The final estimate of parameters of the model are 0, = -0.184908 (standard 

error 0.0830, p<O.03)- and e, = 0.61 8036 (standard error 0.0704, p<O.OOI). The 

polynomial corresponding to the regular MA terms of the model is (I + ().. I 84908 x) and 
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its root is -5.408-1 which falls outside the unit circle boundary for non-invert ibi lity. Roots 

of the seasonal MA polynomial (1- O·.6l80'36x·) have 1.1278 as its absolute value so that 

these roots also faB outside the unit circle. Hence the model is invert ible and stationary 

since there are no autoregressive terms· in the model. The aefup to lag 36 were computed 

for the residual series generated based on the esti mated model and all· were found non­

significant. The maximum observed for the residual aef was 0.137 at lag 6 and it is not 

significant. Using the aefup to lag 36 of the residuals the Box-Ljung Xl computed was 

20.240 which is not significant (p=0.984). and hence the model can be used as an 

approximation for the generating series. Using this estimated model expected landings 

were computed for the original series and it is shown in fig . 1.7.2. along with observed 

landings. The algebraic form of the final estimated model is 

(1- 8' )2, = (1-0.618036it)(1 +0. I 8.4908B)&, 

1.8. Tuna land ings 

During the period I %(}-%, the average annual landings of Tuna in Kerala was 

8,3361 with a coefficient of variation of 82.7%. This on an average is about 1.96% of the 

total landings in the state. During this period the maximum tuna landings observed was 

32,6151 in the year 1990 (4.9-2 % of total landings) and the minimum landings of Tuna 

observed was 7231 (0.38% of total landings) in the year 1962. The minimum percentage 

contribution by Tuna towards the total landings in the state was 0.31 % in 1969. During 

1960-80 period, the average landings of l una was 4,5131 (CV=88.1 %) and the average 

landings in 198-1-% period was 13,3531 (CV=50.12%). This showed a fourfold increase 

in the landings of Tuna during recent past. For time series modelling of Tuna landings, 



quarterwise landings during 1960-96 period was used. During this period the average 

landings of Tuna in different quarters were 1,3371 in the first quarter (CV=85.94%}, 

2,7621 in the second quarter (CV=90.62%), 1,6301 in the third quarter (CV=113.56%) and 

2,6071 in the fourth quarter (CV=l25.51%}. The average percentage contribution by 

different quarters towards the annual landings of Tuna were 16.04%, 33 .13%, 19.56% 

and 31 .27% respectively for the four quarters. When the time series of quarterwise 

landings of Tuna were examined by plotting the variability in the series was found to be 

high in the later periods and a logarithmic transformation was carried out to reduce this 

variability before it is subjected to analysis for modelling. 

Autocorrelations and partial autocorrelations calculated for the log transformed 

series on quarterwise landings of Tuna, its seasonal difference, its regular difference and 

both the kind of differences are given in table. 1.8. Among the ac! calculated up. to lag 36 

for the log transformed series almost all values were significant except those at lags 23, 

27,33, 34 and 35 and the maximum was 0.737 at lag 4. The pac! of this series was found 

significant at lags 1,2,3, 4, 8,9, 12 and 19 with 0.579 as the maximum at lag 4. At lags 

that are multiples of 4, ac! were high compared to other lags which is an indication that 

the series is seasonal with seasonality 4. The non-dying characteristic of ac! is an 

indicator of non-stationarity in the series and a regular differencing of the series may be 

required to make the series stationary . When the log transformed series was subjected to 

regular differenc>ng, the ac! of the resulting series was also found to have highly 

significant values at most of the lags especially at lags which are multiples of two. The 

highest value of ac! for this series was Q.559 at I'ag 12. The pac! of this series was found 
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significant at lags I, 2, 3, 7, to, II and 18 with 0.62 I as the maximum at lag 3. For the 

series obtained by a seasonal differencing of log transformed data the only significant aef 

was -0.440 at lag 4 and its paef were significant at lags 4, 7, 8, 15 and 20. Maximum 

value of paef observed for this series was -0.450 at lag 4. Thi s clearly indicate that there 

is some amount of seasonality left even after the application of a seasonal differencing 

and hence a seasonal ARlMA model will be a better choice for modelling the series_ 

When both regular and seasonal differencing were applied to the log transformed series, 

the aef of the resulting series was found significant at lags I, 3 and 4 and its paef was 

found· significant at lags 1,2,4, 5, 6, 8, 10 and 14. The strength of the paefwas found to 

decrease for higher lags and the maximum values observed for both aef and paef of this 

series was -0.482 at lag I . 

Using the series generated by a seasonal difference of the log transformed series 

on quarterwise landings of Tuna, variograms were computed up to lag 70 and plots of 

these variograms is given in fig.!.8.!. The scaled lin and quad variograrns leveled out 

after a few initial lags and the scaled semi variogram was found to fluctuate between 

0.720 and 1.454. A few points of the semivariogram were found to fall outside the 2 

standard error limits. The scaled lin variograrn ranged between 0.373 and 0.497 and all 

points after leveling out were within the ± 2SE limits. The scaled quadvariograrn ranged 

between 0, I 23 and 0.245 and after leveling out all points were found to fall within the 

limits. This suggests that a regular differencing is required to make the series stationary 

and accordingly D was fixed as I. 
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Selection of the suitable seasonal ARIMA model was based on Ale and SBe 

criterion. For this purpose 315 different modets for values of P.q=O. I! 2 •...• 5; p.Q = o. I. 

2; d= I and D=I were initially estimated and these criterion were computed. The model 

corresponding to the minimum Ale value of 336.49 was ARlMA(2.1.4XO.I . I)4 and that 

corresponding to the minimum SBe value 344.66 was ARlMA(O. I. I)(O. I.I)4 . The 

maximum Ale value observed was 439.88 for ARlMA( I. I.O)(O.I.I)4 and the maximum 

SBe value was 442.85 for the model ARlMA( I. I.0)(0.1.0)4. The two models that 

correspond to the minimum values of Ale and SBC were finally estimated and compared 

for their properties. 

For the minimum Ale model ARlMA(2. 1 .4)(0.1.1 )4. the estimation algorithm 

concluded after 14 iterations when the change in parameter estimates were found less 

than· 0.00 I. Final estimate of parameters of this model are ¢, = 0. 111320 (standard error 

0.2722. p<O.OOI). ¢, = -0.980845 (standard error 0.0206. p<O.OOI). 8, = 0.928317 

(standard error 2.2337. p>0.678). B, = -1.097043 (standard error 24.4780. p>0.96). 

ill = 0.724822 (standard error 16.6682. p>0:96). 8, = 0.045721 (standard error 1.0552 1. 

p>0.96), and 8, = 0.874686 (standard error 0.0646, p < 0.001). To examine whether thi s 

model satisfy the conditions for stationarity and invertibil ity, the roots of the 

characteristic polynomials were computed. Roots of the characteristic AR polynomial 

(I-0.111320x + 0.980845x') are (0.0567+ 1.0081 i) and (0.0567-1.008 Ii) and their 

absolute value is 1.0097 which is close to the unit circle boundary for stationarity. Hence 

the model is not strictly stationary. The characteristic polynomial corresponding to the 



62 

regular MA tenns.is (J-0.9-28Jt7x +1.097043x l -0:724822x' -O.04572lx')with roots 

1.2634, -17.3113, (0.0973+0.99530 and (0.0973-0.9953i} (absolute value is 1.0000(6). 

Two roots of this polynomial fall almost on the unit circle and hence the model does not 

possess invertibility property. Roots of the characteristic polynomial (1- 0.874686 x') for 

the seasonal MA tenn has absolute value 1.0340 and hence these roots are also close to 

the boundary region for invertibility. All together this model can not be accept~d because 

the model is neither stationary nor invertible. Also most of the estimated coefficients are 

highly correlated especially the moving average coefficients, and the estimates of 

moving average coefficients have high standard errors as a result of which these 

coefficients are non-significant. 

for the model ARlMA(O, 1 , I ,)(0,1 ,I ,)4 the estimation algorithm concluded after 5 

iterations. Final estimates of parameters of the model are B, = 0.825934 (standard error 

0.0531 , p<O.OOI) and e, = 0.744906 (standard error 0.0622, p<O.OOI). Characteristic 

polynomial for the regular MA tenn is (J-0.825934x)with root 1.2108. The 

characteristic polynomial for the seasonal MA tenn is(I-0.744906x')and the absolute 

value of its roots is 1.0764. Since both these roots fall outside the unit circle boundary for 

non-invertibility, the estimated model is invertible. The model is stationary because there 

is no AR tenn in the model. Residual standard error corresponding to this model was 

0.7711, log likelihood was -167.37 and Ale value was 338.73. Residual series were 

generated for this series using the estimated model and ael up to lag 36 were computed 

for the residuals. The maximum observed residual ael was -0.161 at lag 19 and it is not 
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significant. Box-Ljung X' calculated based on residual act up to lag 36 is 32.731 which is 

not significant (p=(}.625). This suggests acceptance of the estimated model ARlMA 

(0, I, I )(0, I, 1)4 as a good approximation to the generating series. The observed catch and 

catch predicted using the estimated model are shown in fig.I.8.2 . The algebraic form of 

the estimated model is 

(1- B' XI- B'ji, = (1- (}.825934BXI- 0.7449068'~, 

1.9. Thrissocles landings 

The average contribution by this species group towards total landings in the state 

during \960-96 was 0.62% with a maximum of 1.37% in the year 1992 and the minimum 

was O.:B% in 1961.-The average annual landings by Thrissocles during this period was 

2,5871 (CV=69.89"1o) with a maximum 0[1,6761 in 1972 and a minimum of 6301 in 1961 . 

During the initial 1960-80 period the average landings was 1 ,8431 (CV=48.4%) and 

during the last 1981-96 period the average landings was 3,5641 (CV=61.67%). The 

average quarterwise landings during 1960-96 period was 3831 in first quarter 

(CV=121.67%), 5371 in the second quarter (CV=108.19"1o), 10601 in the third quarter 

(CV=72.17%) and 6081 in the last quarter (CV=t21.55%J. The quarterwise percentage 

distribution of thrissocles landings on an average were 14.80%, 20.75%, 40.96% and 

23.49% respectively for the four quarters. There is a slight upward trend in the landings 

of Thrissocles and the variability in the last few years are high. Hence a transformation of 

the series by natural logarithms was carried out before estimating a suitable model. 
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An initial analysis was carried out by computing aef and paef for the ori ginal log 

transformed series, its regular difference, seasonal difference and both regular and 

seasonal difference and these are given in table.I.9. For the log transformed series. the aef 

were significant at many fags including the lags which are multiples of 4 and the 

mal<imum aefvalue was 0-.50.7 at lag 4. The paef of this series have signi fi cant val ues at 

lags 1,3, 4, Sand 16 with maximum (}.37o. at lag 4. This clearly indicates that there exists 

seasonality in the data and seasonal differencing of the log transfomled series is necessary 

to remove seasonality in the data. When the log transformed quarterwise landings series 

was subjected to regular differencing the resulting series had significant aefat all lags that 

are mUltiples of 2, and the maximum value observed was 0..434 at lag 16. The pacf of this 

series was found significant at lags 1, 2, 3, 7 and 15 wi th -0..50.8 as the maximum at lag 2. 

For the series generated by a seasonal difference of log transformed series the aef was 

significant at lags 4 and 16 with a maximum of -0..443 at lag 4 and its pacf was 

significant at lags 4, 8 and 12 with a maximum of -0..460. at lag 4. Since there exists 

significant aef at lags that are multiples of 4 for the seasonally differenced series a 

seasonal model- will suit better for this series. The aef of the series obtained by applying 

both regular and seasonal differencing to the log transformed series have significant 

values at lags I, 3, 4, 5, 12 and 16 with a maximum value of -0..533 at lag 4 and its paef 

had significant values at lags 1, 2,4,8 and 16 with a maximum of - 0..479 at lag 4. Tbis 

analysis failed to give any conclusion regarding orders of the seasonal model and hence 

criterion selection was used to identify a suitable seasonal ARlMA model. 
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Since there is a linear upward trend seen in the series, it may be required to apply 

a regular difTerence along with seasonal difTerence. To ascertain this variograms were 

calculated using the series generated by a seasonal difTerence of log transformed series 

and plot of the scaled values of semivariogram, linvariogram and quadvariogram are 

given in I1g.l.9: I. along with respecti ve expected values and confidence limits. The 

scaled semivariogram was found to fluctuate between 0.651 and 1.433 and some of the 

values are found to lie outside the confidence limits including some at higher lag. The 

scaled linvarigram was fou nd to vary between 0.35c} and 0.529 and the scaled 

quadvariogram ranged between 0.122 and 0:267. The scaled linvariogram and scaled 

quadvariogram were found to level out at around 0.4 and 0.2 respectively. Hence it 

suggests that a regular differencing will make the series stationary. 

To estimate orders of the general seasonal type model ARJMA(p,d,q)(P,D-,Q)s 

with difTerent values of p,q; O, I, .. . , 5; P,Q;O, I ,2; D== I; cF I and s=4 leading to 315 

difTerent models, were fitted and the Ale and SBe criterion were computed. Among 

these models the one which gave the minimum Ale value 402.14 was 

AIUMA(I ,I, I)( I, I,2)4 and minimum SBe value 412.62 was obtai ned for the model 

ARlMA(O,I,I)(O,I , I)4. The maximum Ale and SBe values obtained were respectively 

507.41 and 510.38 both the values correspond to the same model ARJMA(I , I ,0)(0,1 ,0)4. 

For the model ARJMA( 1,1 ,1)( 1,1,2)4 the iteration of the estimation algorithm stopped 

after 5 iterations when the change in the parameters estimates were found less than 0-.00 I. 

Final estimates of parameters in the model are ¢, ; 0.209237 (standard error o..0c}81, 
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p<O.05), 8, = 0.9-12306 (standard error 0.0490, p<(}.OOI}, (I>, = -0.998765 (standard error 

0.0221, p<O.OO I), 0, = -0.161557 (standard error 0.139 1, p>0.20) and 

0 l = 0:8117fY2 (standard error 0.1283, p<O.OO I). The log likelihood corresponding to 

these estimates of the model was -I 96.Q.7 and SBe value was 416.96. The characteristic 

polynomial for the AR term is (1- 0.209237x)and its root is 4.7793 . The polynomial 

corresponding to the seasonal AR term is (I +0.998765x' )and the absolute value of its 

roots is }.OOO3. Since these roots are close to the boundary of non-stationary region, the 

model is not strictly stationary. The polynomial corresponding to the MA term is 

(1- 0.9t2306x) with 1.0961 as its root. The seasonal MA polynomial for the model is 

(I + 0.161 557 x' - 0.8117fY2 x') and its roots have 1.0497 and 1.0037 as absolute value. 

So the model is not strictly invertible. The estimated standard error for the residuals is 

0.9313. Using the estimated model residuals and the aef of residuals up to lag 36 were 

computed. The maximum observed residual aef was 0.1 73 at lag 17 that is not significant. 

The Box-Ljung X' calculated using residual aef up to lag 36 was 29.406 which is not 

significant (p=0.773). 

For the model ARIMA(O, I, I XO, I, I ,)4 the estimation algorithm stopped after 8 

iterations when the change in the estimates of parameters were less than 0.001 . Final 

estimates of the parameters of the model' are (}, = 0.834907 (standard error 0.0504, 

p<O.OOI) and 0, = 0.860635 (standard error 0.0534, p<O.OO I). The characteristic 

polynomial for the MA term is (1- 0.834907 x) and its root is 1.1977. For the seasonal 
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MA term the characteristic polynomial is (I-O.860635x') and its roots have absolute 

value 1.0382. Log likelihood corresponding to this estimate of parameters was -201.35, 

SBC value was 412.69 and standard error of the residuals was 0.9694. Among lhe 

residual ael computed up to lag 36, only one at lag 16 with value 0.264 was found 

significant. The Box-Ljung X' value was 42.563 when calculated using residual ac/ up to 

lag 36 which is not significant (p=0.209). 

Among these two models the model ARlMA( 1,1,1)( 1, 1,2)4 was preferred for the 

reasons that the residual acf were non-significant, loglikelihood is comparatively high and 

the residual variance was low. The observed values of the time series on thri ssocle 

landings and the expected catch accord ing to this fitted model are shown in fig . 1..9.2. The 

mathematical expression for the fitted models is 

(1- E' )(1- E)(I + 0.998765 E')(I - 0.209237 E) l., 

= (I +0.161557 B' -0.8 11702E')( I- 0.91 2306B)&, 

1.10. Ribbon Fish landings 

The average annual landings of Ribbon fi sh in the state during 1960-96 period 

was about 10,7691 (CV=75.23%). This is about 2.82% of the total landings in the state 

during this period. The minimum annual landings by this species was 1691 in 1964 and 

the maximum landings observed was 30,192 1 in 1974. During the period 1960-80 the 

average annual landings was t 1,2851 (CV=81.75%} and during 1981-% period the 

average was 10,0911 (CV=63.35%). which are respecti vely about 3.34% and 2.14% of the 

total marine fi sh landings in the state during these two phases. Quarten.vise average 
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annual landings of this species during I %0.-96 period for the four quarters are 3551 

(3.30%), 16101 (14.95%), 62741 (58.26%) and 25291 (23.49"10) respecti vely. 

Since the quarterwise landings of ribbon fishes showed high fluctuations it was 

transformed by natural logarithms before analysis. An initial autocorrelation analysis was 

carried out on the transformed series. The aef and paef up to lag 36 were computed for 

the log transformed series, its regular difference, seasonal difference and for the series 

obtained by applying both regular and seasonal difference and is given in the table. I.! O. 

The acfat all even lags were significant for the non-differenced series with a maximum of 

0.579 at lag 4. The paef of this series were significant at lags I, 2, 3, 4 and 7 with a 

maximum of 0.427 at lag 4. For the regular differenced series also the aefat all even lags 

were highly significant with more intensity and the maximum value was -0.583 at lag 2. 

For the seasonally differenced series the aefwere significant at lags 1,4, II and 12 with 

-00333 as the maximum at lag 4 and significantpaeffound for this series were at lags I, 

4, 5, 8 and 12 with -003 14 as the maximum at lag 4. For the series obtained by applying 

both regular and seasonal difference to the log transformed series the significant aef were 

at lags 1,4,5 and 7 andpacfwere significant at lags 1,4,8, 12 and 13. The max imum aef 

observed for this series was -0.452 at lag 4 and the maximum poe! observed was -0.503 

also at lag 4. These results indicate that the quarterly landings of ribbon fishes show 

seasonal behavior with seasonality 4. Hence a seasonal ARIMA model with seasonal 

differencing parameter D=t will suit better for this series. 
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To examine the necessity of a regular differencing the scaled variograms up to lag 

70 were computed using the seasonally differenced log transformed series and plots of 

scaled values of semi, lin and quad varigrams with respecti ve confidence limits are shown 

in figure . 1.10. I. The scaled semivariogram fluctuated between 0.700 and 1.351 , scaled 

linvariogram varied between 0.34 1 and 0.5 ~4 and the scaled quadvariogram varied 

between 0.122 and 0.264. Both the scaled linvariogram and scaled quadvariogram leveled 

out after few initial lags and there after all the points were found very close to the 

expected values and they fal]. within the ± 2SE limits. For the scaled semivariogram very 

few points in the initial stage were found to fall out side the ± 2SE limits. Hence it is not 

necessary to apply aregular differencing on this series to make it stationary. 

To select a suitable order for the seasonal ARlMA model for this series the Ale 

and SBe order selection criterion were computed for different values of the order 

parameters p,q : 0,1, . .. ,5; P,Q : 0, 1,2; tf=O and lF l by fitting models for different 

combinations of order parameters. The minimum Ale value observed was 533.33 for the 

model ARlMA(I,O,I)(O,I,I)4 and the maximum observed Ale value was 587.02 for 

ARlMA(I,0,1)(0, 1,0)4. Minimum SBe value observed was 539.97 for 

ARlMA( I ,0,0)(0, I, 1)4 and maximum observed SBe value was 595.31 for 

ARIMA(3,0,OXO,1 ,0)4. These two models corresponding to minimum values of Ale and 

SBe were estimated and compared. For the model ARlMA(I,O, I)(O, I, I)4 the estimation 

algorithm conduced after 6 iterations when the reduction in residual sum of squares was 

less than 0.001%. The final estimates of parameters of the model are ¢, : 0.731783 
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(standard error 0.1205, p<O.OO I ), 8, =0.359239 (standard error 0.0249, p < 0.05) and 

E>, =0.781891 (standard error 0.0606, p < O.OOI ). The characteristic polynomial 

corresponding to the AR term is (I - 0.731783 x) and its root is 1.3665 that lies outside 

the unit circle boundary for non-stationarity. The characteristic MA polynomial 

(1- 0.359239 x) has 2.7837 as its root that falls outside the unit circle boundary for non­

invertibility. The characteristic polynomial corresponding to the seasonal MA term of the 

model is (1-0.781891 x')and the absolute value of its root is 1.0634 which again is 

outside the unit circle. Hence the estimated model is both stationary and invertible. 

Among the parameter estimates maximum correlation was found between ¢, and 8, 

which is 0.872. Residual analysis was carried out for the model by computing the residual 

sequence, residual variance and residual autocorrelations. The estimate of residual 

standard error was 1.5070 and the log likelihood was - 263 .66. Among the Gef calculated 

up to lag 36 for the residual series the maximum was 0.132 at lag 7 that is not significant. 

Using the residual Gefup to lag 36 the calculated value of the Box-Ljung Xl statistic was 

24.846 which is not significant (p=0.9 19). Hence the estimated model fits well for the 

seri es. 

For the second model ARlMA( I ,O,OXO, I, 1}4 selected based on minimum SBe 

criterion, the estimation algorithm stopped after 4 iterations when the reduction in 

residual sum of squares was found less than 0.00 I %. Final estimates of parameters in the 

model are ¢, = 0.455929 (standard error 0.0749, p<O.OO I) and E>, = 0.762475 (standard 

error 0.058.8, p<O.OO I ). The characteristic polynomial corresponding to the AR term in 
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the model is (1- 0.455929 x) and its root 2.1,933 fall s outside the unit circle region for 

non-stationarity. The characteristic polynomial for the seasonal MA term in the model is 

(I - 0.762475 x') and its roots have 1.3 1 ~5 as the abso lute value, so that these roots fall 

outside the unit circle region for non-invertibility. Hence the estimated model is both 

stationary and invertible. No significant correlation was found between the estimates of 

these parameters. Residual acf up to lag 36 computed for the residual series generated 

based on the estimated model have 0.152 as the highest value at lag 7 and it is not 

significant. The estimate of residual standard error was 1.51 55 and log likelihood 

corresponding to these estimates was -265.02. The Box-Ljung X' calculated based on 

residual acfup to lag 36 was 26.903 is not significant ( p = 0.864). Hence this model can 

also be used as an approximation to the generating series. Anyhow, the first model has 

lesser \'alue for the Box-Ljung X' and the highest autocorrelation of residuals is the least 

for this model. Hence the first model was taken as the suitable model for this time series. 

The observed landings and expected landings according to the estimated model are 

plotted in fig. I. I 0.2. The algebraic form of the estimated model is 

(I - 8 ')(1_ 0.73 I 783 8 ) Z, = (1 - 0.78.18918' )(1- OJ59239 8)&, 

Discussion 

For the time series on quarterwise total marine fish landings, the seasonal ARlMA 

model fi tted can be expanded to get the expression 

(Z, -z,_,}=(z,_,-z,_,)+&, -0.434490&<-1 -0.436495&,_, 

- 0.715598 &,_. + OJ I 0920 &,_, + 0.3 12355 &H 
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In thi s model the difference in landings for two successive years of a quarter is obtained 

as ~he similar difference for the immediate preceding quarter with additional terms for 

error correction using residuals up to lag 6. In the time series data used for estimating the 

above model there were some values which exceeded the 20 limits. These values 

correspond to the first quarter of 1971, fourth quarter of 1989, second quarter of 1990 and 

first quarter of 1991. These data points could be outliers and may affect the parameter 

estimates of the model and forecasts. It was observed that when the effect of these 

suspected outliers were Aullified by replacing them with respective quarterly averages, 

there was a reduction of about 5% in the total variation. Forecasts of landings and their 

standard errors were calculated using the estimated model for different quarters in 1997 

and 1998. These are given in table. I. I I. The maximum difference between forecasted and 

observed landings was for the third quarter of 1997. This difference was 2.63 times the 

standard error of the forecast and about 61 .85 % of the observed landings. 

For the time series on quarterwise landings of oi l sardine the seasonal model 

estimated can be written as 

Ci, - z,_,) = 0.466848 (Z' _I - z,_,) + li, - 0.732283 li,_. 

This model indicate that the difference in landings of a quarter in two successive years is 

proportional to a similar difference for the preceding quarter with additional error 

correction terms using residuals up to lag 4. In the data used for fitting the model there 

were few values that could be outliers ·as they exceeded the 20 limit. These values were 

for the fourth quarter of 1960, fourth quarter of 1964, first quarter of 1965, third quarter 
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of 1966, third and fourth quarter of 1968, first quarter of 1971, third quarter of 1989, third 

quarter of 1990 and third quarter of 199t . When the effect of these suspected outliers 

were nullified by replacing them with the respective quarterly averages, a reduction in the 

variance of the sample series up to 38% was observed. Forecasts of quarterly landings 

for the years 1997 and 1998 were made using this model and these are given in 

table . I. I t . along with standard errors of forecasts. The maximum difference between the 

observed and forecasted values was 21,350 tonnes for the first quarter of 1997. This was 

about 1.08 times the standard error of the forecast and it comes to about 73% of the 

observed catch. 

The model estimated for the time series on quarterwise landings of mackerel can 

be written in the form 

(I, -I,_,)= 0.415719-(I,_,-IH J+&, -0.726612&,_, 

This model also indicate that the difference in landings between the same quarter of two 

successive years is proportional to a similar difference with the preceding quarters. The 

model also had a term for error correction using residual at lag 4. In the sample series on 

mackerel landings used for estimating the model there were few data points that are to be 

suspected as outliers as they fall out side the 20 limits. These values were for first and 

second quarters of 1971, fourth quarter of 1989, fourth quarter of 1990, third quarter of 

1994 and second and third quarters of 1996. A reduction in the variance of the sample 

data up to 60% was obtained when these values were replaced with respective quarterly 

averages . Using the estimated model, quarterwise landings were predicted for 1997 and 
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1998 and these are given in table. I. I I. along with standard errors of forecasts. The 

maximum difference between forecasted and observed landings was about 14,800 tonnes 

in the first quarter of 1997. This was about 1.71 times the standard error of the forecast 

and was about 65.67% of the observed landings. 

The modd fined for anchovies landings can be expanded to get the expression 

Z, = 0.188095z,_, - 0.073838 z,_, + 0.25 1373 z,_, + 1.900232 z,_. -0.262580 z,_, 
+ 0.103078.z,_, - 0.350916 z,_, -1.099970 z,_. + 0.074485 z,_, -0.029239 Z'_IO 

+ 0.099452- Z'_II + 0.199675 Z'_ 12 + E, - 0.762684 E,_. 

According to this expression the landings in a particular quarter depend on landings in 

earlier quarters even up to three years back. In the sample data on quarterwise landings of 

anchovies also there were few values that exceeded the 20 limit of the series which could 

be outliers . These values were corresponding to the landings in third and fourth quarter of 

1983. third quarter of 1984, third quarter of 198.8, second quarter of 1989, fourth quarter 

of 1991, third quarter of 1992 and second quarter of 1993. It was found that when the 

effects of these points were nullified by replacing these values with respective quarterly 

averages the total variation in the sample series reduced by about 55%. Forecasts were 

made for different quarters of 1'997 and 1998 using the estimated model and the 

maximum difference between the observed and forecasted values was about 8,400 tonnes. 

This difference comes to about 0.60 times the standard error of the forecast and it is 

about 107% of the observed landings. The forecasts and standard errors are given 111 

table. L1 L 
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The estimated model for lesser sardine can be brought to the form, 

(z, - z,_,} = (Z'_I - Z'_l} + &, - 0.750384 &,_1 - 0.790039 &,_. + 0.592833 &,-l 

According to this model the difference in landings in a specified quarter of two 

successive years is obtained as a similar difference fo r the preceding quarter with terms 

for error correction involving residuals up to lag 5. In the sample series on quarterwise 

landings of lesser sardines used for estimating this model few values were above the 2cr 

limit. These values could be outliers and they correspond to the landings in third and 

fourth quarter of 1973, third quarter of 1974, second quarter of 1975, third quarter .of 

1976 and first quarter of 199 1. The reduction in the variance of the series was about 70% 

when these values were replaced with respective quarterly averages. Predicted values of 

quarterwise landings for the years 1997 and 1998, computed using this model are given in 

table. I. I I. along with standard errors of forecasts . The maximum difference between 

forecasted and observed values was 8,600 tonnes for the fourth quarter of 1998. This was 

about 0.98 times the standard error of the forecast and comes to about 53.63 % of the 

observed land ings. 

For the time series on quarterwise landings of penaeid prawns the estimated 

model takes the form 

(z, - z,_.) = &, - 0.184908 &,_1 - 0.6 t8036 &,_, - 0.114280 &,-l 

The relation explained by this model is that the difference in landings between the same 

quarter in successive years can be obtained using residuals of past values up to lag 5. In 

the time series data used to estimate this model there were few observations exceeding 
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the 20 limits and these observations could be outliers. These values correspond to third 

quarter of 1973, third quarter of 1975, fourth quarter of 1988, second quarter of 1989, 

first quarter of 1990, fourth quarter of !-991 , first quarter of 1992 and second quarter of 

1994. The effects of these observations were examined by replacing them with respective 

quarterly averages and this caused a reduction of about 47% in the variance of the sample 

series. Forecasts of landings were made using the estimated model for different quarters 

in 1997 and 1998 and these are given in table. I. I I. along with standard errors. The 

difference between observed and forecasted values was maximum for the first quarter of 

1997 which is about 7,900 tonnes. This difference was 1.42 times the standard error of 

the forecast and it amounts to 46.69% of the observed landings. 

The seasonal ARIMA model fitted to the time series on quarterwise landings of 

Tuna can be written as 

(i, - z,_J) = (Z' _I - Z,_5) + &, - 0.825934 &, _1 - 0.744906 &, _. + 0.615243 &'_5 

This model indicate that the difference between landings of the same quarter in two 

successive years is obtained as a similar difference for the previous quarter with terms for 

error correction using residuals up to lag 5. It was found that in the sample series used for 

estimating this model few values exceed the 20 limits and these values could be outliers. 

These values were corresponding to the first quarter of 1976, first quarter of 1979, second 

quarter of 1980, third and fourth quarter of 1990, third quarter of 1994 and first quarter of 

1996. When these suspected outliers were replaced with the respective quarterly averages, 

the variance of the sample series was reduced by 62%. Using the estimated model 
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forecasts of Tuna landings were made for different quarters in 1997 and 1998. These 

forecasts and their standard errors are given in table. I . I I. The difference between 

forecasts and observed values was maximum for the fourth quarter of 1998, which was 

about 1,400 tonnes. This difference was O.3J times the standard error of the forecast and 

15.55% of the observed landings. 

For the time series on quarterwise landings of Thrissocles the model estimated 

can be brought to the form 

I, = 1.209237 I,_, - 0.209237 I' _2 + (}.OO 1235 2,_, - 0.0014932,_5 + 0.00258 2, __ 

+ 0.998765 2,_8 -1 .207744 2,_9 + 0.208979 2,_10 + [;, - 0.91 2306 [;,_1 

+ 0.161557 &,_. - 0.147389 [;,_5 - 0.811703 [;,_. + 0.740522 [;,_9 

From thi s expression it can be seen that the values of thi s series at a time point depend on 

past values even up to lag 10. The dependence was more on its own past values and 

residuals at lags I, 8 and 9. In the sample data used for estimation of this model some 

values were found to fall out side the 2cr limits which could be outliers. These values 

were for the third quarter of 1976, fourth quarter of 1988, third quarter of 1992, first 

quarter of 1993, first and second quarter of 1994, first and second quarter of 1995 and 

fourth quarter of 1996. When these values were replaced with respective quarterly 

averages the variance of the series reduced by · 48%. Forecasts of quarterwise landings 

were made for the years 1997 and 1998. using the estimated model and these are given in 

table. I . I I . along with standard errors of forecasts. The difference between observed and 

forecasted values was maximum for the first quarter of 1998 and this was about B60 
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tonnes. The difference in forecast was L05 times the standard error of the forecast and 

was about 52% of the observed value . 

The expression for estimated model for the time series on Ribbonfish landings is 

(z, - z,_.) = 0.731783 (z--, - ZH) + c, - 0.359239 c--' - 0.781891 c,_. 

This indicate that the difference in landings of a certain quarter in two successive years is 

proportional to a similar difference for the previous quarter and the model' has error 

correction terms using residuals up to lag 4. Here also the sample data had few values 

exceeding the 2cr limits that could be outliers. These values were for second quarter of 

1965, second quarter of 1966, first quarter of 1967, fourth quarter of 1971 , third quarter 

of 1973, third quarter of 1974, third quarter of 1979, first quarter of 1994 and fourth 

quarter of 1996. When the effect of these suspected outliers were nullified by replacing 

them with respective quarterly averages, the total variation in the sample series reduced 

by about 47%. The estimated model was used to forecast landings in different quarters of 

1997 and 1998 and these are given in table. I. I I . along with standard errors of forecasts. 

The maximum difference found between observed and forecasted values was 8,485 

tonnes for the third quarter of 1998. This difference was about 1.27 times the standard 

error of forecast and about 70% of the observed landings. 

It is evident from these studies that in each of these univariate time series models 

the influence of outliers is of great concern as they badly affect the estimate of parameters 

and forecasts based on the estimated model. It is necessary to detect outliers present in the 
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sample data before analysis and use appropriate techniques to deal with the probtem of 

outl iers while modelling such time series data. The outlier problem itself is a major topic 

in time series analysis and is beyond the scope of the present study. 



Appendix-I (Tables and Charts) 

Table.!.!. Autocorrelations and pa rtial autocorrelations computed fo r the time series 
on Total Marine Fish landings in Kerala ( I96O-96t- (i) original series (ii) first order 
difference (iii) seasonal diffe rence and (iv} both regular and seasonal difference 

Autocorrelation Partial Autocorrelation 

Lag . Ii) Iii) liii) liv) Lag (I) (ii) (iii) (iv) 

1 0.384 -0.092 0.412 -0.221 1 0:384 -0.092 0.412 -0.221 
2 -0.133 -0.728 0.091 -0.137 2 -0.329 -0.742 -0.095 -0.195 ' 
3 0.263 -0.016 -0.050 0.146 3 0.601 -0.452 . -0.063 : 0.073 ' 
4 0.702 0.710 -0.343 -0.450 4 0.412 0.192 -0.353 -0.464 
5 0.249 -0.056 -0.133 0.105 5 -0.232 -0.053 0.201 -0.087 
6 -0.157 -0.623 -0.048 0.082 6 0.043 -0.151 -0.083 -0.120 
7 0.215 -0.012 -0.061 -0.053 7 0.117 -0.232 -0.036 0.003 
8 0.613 0.665 -0.022 0.049 8 0.165 (U12 -0.150 · -0.231 
9 0.187 -0.074 -0.038 -0.001 9 -0.152 -0.100 0.066 -0.034 

10 -0.175 -0.576 -0.056 0.Q75 10 0.050 -0.080 -0.087 0.055 
11 0.181 0.033 -0.161 -0.091 11 0.033 -0.075 . -0.203 -0.088 
12 0.517 0.593 -0.149 -0.060 12 0.007 0.017 -0.076 -0.185 
13 0.118 -0.095 -0.071 0.018 13 -0.070 -0.080 0.021 -0.096 
14 -0.185 -0.569 -0.018 -0.117 14 0.044 -0.219 . -0.018 -0.148 
15 0.218 0.105 0.156 0.165 15 0.176 -0.044 0.054 · -0.001 
16 0.506 0.564 . 0.127 -0.035 16 -Q..022 -0.045 -0.073 · -0.234 
17 0.093 -0.113 0.139 0.070 17 -0.010 -0.005 0.150 0.080 
18 -0.196 -0.492 0.089 0.160 18 -0.034 0.081 -0.090 0.087 
19 0.147 0.079 -0.133 -0215 19 -0.097 -0.025 -0.152 -0.054 
20 0.403 0.534 -0.089 0.065 20 -0.007 0.145 0.001 -0.056 
21 0.001 -0.167 -0.119 -0.064 21 -0.128 -0.106 -0.032 -0.012 
22 -0.223 -0.511 -0.10C -0.138 22 0.086 -0.135 -0.044 -0.044 
23 0.188 0.167 0.069 0.203 23 0.115 -0.041 -0.018 0.019 
24 0.397 0.501 0.002 -0.097 24 -0.032 -0.063 -0.069 -0.145 
25 -0.018 -0.166 0.048 0.019 25 0.005 0.031 0.082 -0.013 
26 -0.238 -0.465 0.086 0.016 26 -0.057 -0.015 0.014 -0.166 
27 0.131 0.135 0.113 0.012 27 -0.045 -0.062 0.176 0.105 
28 0.343 0.500 0.103 CU39 28 0.044 0.037 ' -0.064 0:067 . 
29 -0.076 -0.183 -0052 -0.142 29 -0.112 -0.016 -0.070 0.011 
30 -0.280 -0.413 -0.045 0.059 30 -0.022 0.175 -0.009 0.032 
31 0.036 0.118 -0.115 -0.084 31 -Q..242 -0.035 -0.066 0.007 
32 0.232 0.418 -0083 -0,105 32 0.020 -0.035 -0.028 -0.036 
33 -0.111 -0.137 0.069 0.175 33 -0.001 -0.028 0.021 -0.028 . 
34 -0.291 -0.375 0.018 -0.039 34 0.009 -0.029 0.026 0.014 
35 0.010 0.127 0.022 0.039 35 0.028 0.001 -0.017 0.041 
36 0.175 0.396 -0.012 0.059 36 -0.013 0.028 -0.036 0.022 



11 

Table. 1.2. Auloeor rela lions and parlial auloeorrela lions com puled for Ihe lime series 
on Tola l Marine Fish landings in Kera la (1960-8.7) - (i} original series (ii} flrsl orde r 
di fference (iii) seasona l difference and (iv) both regula r and seasonal difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (ii) (iii) (iv) Lag (i) (ii) (iii) (iv) 

1 0.192 -0.079 0.379 -0.170 1 0.192 -0.079 0.379 -0.170 
2 -0.488 -0.737 0.003 ' -0.177 2 -0.544 -0.748 . -0.164 -0.212 
3 0.029 0.017 -0.126 0'.140 3 0.409 -0.330 -0.079 0.073 · 
4 0.546 0.637 -0.414 -0.452 4 0.227 0.082 -0.398 -0.485 
5 0.021 -0:045 ·0.159 0.100 5 -0.184 -0.047 0.191 -0.022 
6 -0.447 -0.593 ·0.036 0.076 6 -0.050 -0.222 -0.145 -0.180 
7 0.028 0.003 -0.023 -0.041 7 0.103 -0.263 . 0.005 0.047 · 
8 0.515 0.621 0.027 0.085 8 0.196 0.095 -0.190 -0.226 . 
9 -0:005 -0.068 -0.030 -0.070 ' 9 -0.177 -0.125 0.044 -0.037 

10 -0.425 -0.538 -0.002 . 0.130 10 ' 0.049 -0.056 -0.053 0.073 
11 , 0.017 0.029 -0,131 -0.081 11 -0.026 -0.156 -0.227 -0.OS3 
12 0.435 0.540 -0.152 ·0.103 12 0.085 0.011 -0.096 -0.124 
13 -0.024 · -0.055 -0.060 0.049 13 -0.084 -0.056 -0.074 -0.12-7 
14 -0.402 -0.552 -0.003 · -0.124 14 -0.007 -0.239 0.036 -0.081 
15 0.104 0.082 0.175 0.135 15 . 0.199 ·0.079 . -0.001 -0.003 
16 0.494 0:530 0.167 0.004 16 : 0.045 -0.113 -0.040 -0.174 
17 0.026 -0.045 0.179 . 0.091 17 0.100 0.076 0.157 0.165 
18 -0.381 -0.488 0.082 · 0.118 . 18 -0.097 0.000 -0.089 0.039 
19 0.010 0.038 -0:140 -0.2-02 19 -0.010 0.025 -0.076 · 0.008 . 
2-0 0.370 0.519 -0.OS5 0.069 2-0 -0.036 0.195 -0.004 -0.016 
21 -0.116 -0.136 -0.135 -0.094 21 -0.225 -0.130 -0.043 -0.002-
2-2- -0.407 -0.494 -0.OS2 -0.084 22 0.107 -0.008 0.003 0.033 
23 0.098 0.146 0.057 0.200 2-3 -0.006 -0.036 -0.082 0.044 
24 0.379 0.469 -0.035 -0.121 24 0.014 0.038 -0.064 -0.069 
25 -0.100 -0.120 0.029 0.015 25 -0.033 0.057 0.020 -0:035 
26 -0.394 -0.456 0.056 0.010 . 26 -0.047 -0.006 0.043 -0.096 
27 0.058 0.089 0.079 0.024 27 0.019 ·0.036 0.118 0.169 
28 0.374 0.506 0.051 0.111 28 0.032 0.094 -0.109 0.001 . 
29 -0.132 -0.159 -0.096 -0.141 29 -0.093 -0.001 -0.031 0.010 
30 -0.395 -0.42-1 -0.071 0.068 30 -0.015 0.155 -0.043 0.034 
31 0.024 0.099 · -0.12-8 -0.103 31 -0.180 -0.019 -0.107 -0.036 
32 0.311 0.416 : -0.065 -0.122 32 O.OOS 0.004 -0.058 -0.106 
33 -0.093 -0.118 0.137 0.204 · 33 -0.036 -0.083 · 0.057 -0.051 
34 -0.320 -0.381 0.089 0.004 34 0.087 -0.026 0.016 0.096 
35 0.078 0.135 0.064 0.018 35 0.028 0.025 -0.071 -0.029 ' 
36 0284 0.381 0.025 0.066 36 -0.010 -0.023 0.012 0.031 



111 

Table.1.3. Autocorrelations and partial autocorrelations computed for the time 
series on Oil sardine landings in Keral. (1960-96) - (i} original series (ii, first order 
difference (iii}seaso".1 difference and (iv) both regu lar and seasona l difference. 

Autocorrelation Partial Autocorrelation 

Lag (i) (iii (iii) (ivl Lag (i) (ii) (iii) (iv) 

1 0.310 -0.156 0.379 -0.227 1 0.310 -0.156 0.379 -0.227 
2 -0.168 -0.569 0.058 -0.132 2 -0.292 -0.608 -0.100 -0.193 
3 0 .139 -0.072 -0.082 0.147 3 (U59 , -0.502 -0.080 0.074 
4 0.567 0.619 -0.360 -0.434 4 0.434 0.181 -0.347 -0.443 
5 0.131 -0.076 -0.146 0.027 5 -0.245 · -0.072 0.151 -0.191 
6 -0.210 -0.455 0.024 0.156 6 0.005 -0.133 0.033 -0.060 · 
7 0.072 -0.082 0.003 -0.034 7 ' 0.065 -0.270 -0.065 0.022 
8 0.477 0-.580 Q.035 0.012 8 0.205 0.107 -0.095 -0.202 
9 0.080 -0.028 0.0-42 0.115 9 -0.162 0.030 0.074 0.020 

10 -0.284 -0.460 -0.096 -0.026 10 -0.091 -0.081 -0.114 0.067 
11 -0.01 7 -0.085 -0.201 -0.123 11 0-.021 . -0.136 -0.200 -0.076 
12 0.375 0,555 -0.145 -0,010 12 0.062 0.073 -0.039 -0.178 ' 
13 0.0-0-4 -0.058 -0.088 -0.019 13 -0.137 -0,094 0.027 -0.032 , 
14 -0.291 -0.458 -0.010 -0.117 14 0.0-40 -0.185 -0.058 -0.161 , 
15 0.0-42 -0.021 0.186 0.20-3 15 0.146 -0.114 0.0-85 0.019 , 
16 0.406 0.561 0.084 0.044 16 0.068 0.080 -0.099 -0.051 
17 0.001 -0.085 -0.045 -0.070 17 -0.114 -0.058 . -0.076 -0.006 ' 
18 -0.291 -0.370 -0.056 0.191 18 0.022 0.126 -0.065 0.116 
19 -0.070 -0.071 -0.283 -0.240 19 -0.163 -0.022 -0.242 -0.131 
20 0.269 0.456 -0.182 -0.0-45 20 -0.001 -0.017 -0.01 7 -0.036 
21 -0.028 -0074 -0.0-30 0,019 . 21 -0.012 -0.128 -0.082 -0.137 
22 -0.236 -0,368 0.067 -0,045 22 0.105 -0.161 0.056 0.015 
23 0.068 0.023 0.197 0.218 23 0.167 . 0.008 -0.0-49 0.105 
24 0.349 0.428 0.067 -0.128 24 -0.008 -0.067 -0.174 -0.216 
25 0.037 -0.049 0.082 0.080 25 0.083 0.052 0.145 0.016 
26 -0.212 -0.358 0.025 0.006 26 -0-.035 0.015 -0.015 0.021 , 
27 0.035 -0.051 -0.023 -0.096 2:7 -0.015 -0.125 -0.024 0.078 
28 0.360 0.484 0.005 ' 0.057 28 0,133 0.145 -0.109 -0.101 
29 0.019 -0.099 -0.001 -0,0-40 29 -0.145 -0.0-46 0.052 0.032 
30 -0.193 -0.342 0.0-30 -0',010 30 0061 0.062 -0.054 0.063 
31 0.059 -0.008 0,050 0,042 31 -0.061 -0.018 -0.075 -0.00-4 
32 0.342 0.436 0.031 0,021 32 0.0-40 ' 0.013 -0.021 -0.0-42 
33 0.013 -0.088 0,003 O.Q11 33 -0.008 -0.009 0.018 0.0-0-4 
34 -0.2:06 -0.302 -0.0-46 -0.02:1 34 0.016 0.005 0.001 0.0-49 
35 -0.003 -0.034 -0.0-41 0.015 35 0.005 0.015 -0.040 0.077 
36 0.261 0.372 -0.0-48 -0.023 36 -0.028 ' -0.0-40 -0.087 -0.038 



IV 

Table. 1.4. Autocorrelations and partial autocorrelations computed for the time 
series on Mackerel landings in Kerala (1960-96 log transformed) - (i) original series 
(ii) first order difference (iii) seasonal difference and (iv) both regular and seasonal 
difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (Ii) (iii) (iv) . Lag (I) (i1) (iii) (iv) 

1 0.443 -0.215 0.286 -0.327 1 0.443 -0.215 0.286 -0.327 
2 0.125 -0.473 0.032 -0.186 2 -0.088 -0.544 -0.055 -0.328 
3 0.327 0.032 0.052 0.232 3 0.383 -0.361 0.063 0.055 
4 0.499 0.350 -0.255 -0.366 4 0.286 -0.043 -0.315 -0.388 
5 0.277 -0.023 -0.040 0.065 5 -0.028 -0.003 0.162 -0.191 
6 0.085 -0.252 0.083 0.250 6 -0.058 -0.054 0.028 0.019 
7 0.175 -0.034 -0.150 -0.134 7 -0.002 -0.120 -0.170 0.033 
8 0.309 0.246 ' -0.199 -0.157 8 0.080 0.014 -0.229 -0.323 
9 0.163 0.046 -0.023 0.118 9 -0.055 0.072 0.150 -0.173 

10 -0.039 -0.331 -0.016 -0.035 10 -0.124 -0.197 0.040 -0.064 
11 0.133 0.057 0.036 0.071 11 0.151 -0.057 -0.049 0.080 
12 0.244 0.306 -0.008 0.071 12 0.011 0.093 -0.208 -0.116 
13 0.015 -0.076 , -0.149 -0.108 13 -0.135 0.033 -0.023 -0.103 
14 -0.135 -0.310 . -0.139 -0.075 14 ' -0.079 -0,106 -0.034 -0.121 
15 0.057 0.048 -0.016 0.062 . 15 0.055 -0.140 0.008 -0.010 
16 0.206 0.252 0.017 0.064 16 0.105 -0.103 -0.104 -0.022 
17 0.076 0.030 -0.048 -0.033 17 0.071 0.016 -0.102 -0.084 
18 -0.093 -0.241 -0.062 0.069 18 -0.041 -0.004 -0.049 0.019 
19 0.008 -0.067 -0.172 -0.096 19 -0,018 -0.076 -0.152 -0.006 
20 0.183 0.208 -0.149 -0.149 . 20 0.047 -0.108 -0.149 -0,217 
21 0.124 0,080 0.091 0.190 21 0.082 -0.033 0.076 -0,078 
22 -0.025 -0.271 0.059 -0.068 22 0.006 -0,171 -0.045 -0,170 
23 0.136 0.015 0.117 0.040 23 0.158 -0.087 0.072 -0.010 
24 0,270 0.294 0.123 0.102 24 0.057 0.090 -0.080 -0,061 
25 0.075 -0.099 -0.017 -0.116 25 -0.119 -0.031 -0025 -0.002 
26 -0.004 -0.156 0.012 -0.018 26 0.015 0.104 -0.084 -0.094 
27 0.092 -0.023 0.065 0.059 27 -0.119 -0.071 0.009 -0.072 
28 0.214 0.216 0,036 -0.004 28 0.056 -0.015 -0005 -0.053 
29 ' 0.086 -0.038 0.011 -0.043 29 -0.012 -0.114 -0.011 -0.067 
30 0.009 -0.055 0.047 0.105 30 0.100 0.153 0.010 0.039 
31 -0.007 -0.113 -0.062 -0.113 31 -0.172 0.028 -0.098 -0.035 
32 0.105 0.116 -0.016 -0.065 . 32 -0.041 -0.046 -0.029 -0.142 
33 0.082 0.095 0.124 0.176 33 0.039 -0.007 0.096 0.019 
34 -0.035 -0.109 0.006 -0.076 34 -0.001 0.012 -0.065 -0.023 
35 -0.037 -0.034 -0.004 -0.003 . 35 -0.026 0.046 -0.021 -0.013 
36 0.005 0.092 -0.005 0.099 36 -0.038 0.065 -0.041 0.027 



v 

Table.J.S. AUlocorrelalions and partial autocorrelations computed for the time series 
on Anchovies landings in Kerala (1960-96 log transformed) - (i) original series· (ii) 
first order difference (iii) seasonal difference and (iv) both regular and seasonal 
difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (ii) (iii) (iv) Lag (i) (ii) (iii) (iv) 

1 0.334 -0.331 0.061 -0.468 1 0.334 -0.331 0.061 -0.468 
2 ' 0.122 -0.326 , 0,015 -0,058 2 0.012 -0.490 0.011 -0.355 
3 0.350 -0.048 0,096 0.280 3 0.345 -0,549 0.094 0.112 
4 0.624 0.474 -0,370 -0.428 4 0,520 0.016 -0.386 -0.335 
5 0.275 -0.139 -0.024 0.195 5 0.009 0.028 0.039 -0.166 
6 0.106 -0.271 -0.035 -0.029 ' 6 -0.051 -0.064 -0.047 -0.238 
7 0.284 -0.043 -0.018 0.014 7 -0.010 -0.247 0.084 ' 0.051 
8 0.533 0.425 -0.021 0.085 8 0.217 0.027 -0,208 -0.029 
9 0.215 -0.161 -0.172 -0.161 9 -0.047 -0.055 -0.163 -0.142 

10 0.092 -0.200 -0.038 0.063 10 -0.003 -0.026 -0.058 -0.204 
11 0.250 -0.025 -0,020 0,042 11 -0.019 -0.126 0.049 0.005 
12 0.446 0.280 -0,087 -0,196 12 0.089 -0.158 -0.163 -0,259 
13 0.250 -0.041 0.213 0.247 13 0.111 -0.051 0.140 -0.033 
14 0.114 -0.173 0.058 -0,084 14 0.027 -0,006 -0.042 -0.157 
15 0.2-19 -0.053 0.060 0,076 15 -0.025 -0.073 0.121 ' 0.237 
16 0.404 0.32-9 -0.061 0.031 16 0.043 0.144 -0.305 0.005 
17 0.133 -0.173 -0.230 -0,239 17 -0.175 -0.066 -0.101 . -0.109 
18 0.088 -0.060 0.033 0.243 18 0.018 0.076 0.009 -0.013 
19 0.150 -0.157 -0.146 -0.206 19 -0.103 -0.246 -0.046 -0.003 
20 0.405 0.333 0.047 0,020 20 0.226 -0.089 -0.085 -0.110 
21 0.183 -0.062 0.164 0.177 21 0.047 -0.044 0.019 -0.100 
22 0.061 -0.168 -0.041 -0.193 22 0.001 -0.106 0.025 -0.128 
23 0.171 -0.053 0.147 0.188 23 0.012 -0.062 0.149 0.171 
24 0.357 0.314 -0.037 -0.065 24 -0.010 0.039 ' -0.189 0.022 
25 0.128 -0.100 -0.095 -0.077 25 -0.054 . 0,074 -0.065 0.042 
26 0.038 -0.114 0.006 0.112 26 -0.067 0.127 -0.129 -0.049 
27 0.076 -0.185 -0.123 -0.170 27 -0.164 -0.212 0.005 -0.002 
28 0.383 0.397 0.069 0.096 28 0.207 -0.051 ' -0.083 -0.135 
29 0.158 -0.046 . 0.103 0.089 29 0.045 -0.051 0.110 -0.029 
30 -0.007 -0.206 -0.040 -0.105 30 0.053 ' -0.009 -0.017 0.021 
31 0.086 -0.111 0.013 0.056 31 -0.028 -0.091 -0.009 0,003 
32 0.356 0.380 -0.031 -0.031 32 0.066 0.083 -0.039 0.003 
33 0.095 -0.114 -0.032 -0.027 33 -0.148 -0.004 0.004 0.055 
34 -0.015 -0.157 0.034 0.016 34 -0.058 -0.008 -0.078 -0.009 
35 0.088 -0.097 . 0.050 -0.031 35 -0.018 -0.003 0.035 0.009 
36 0.333 0.388 0.123 0.115 36 0.022 0.0261 -0.024 -0.048 



VI 

Table. 1.6. Aulocorrelalions and partial autocorrelalions computed for Ihe lime series 
on Lesser sardine landings in Kerala (1960-96 log Iransformed) - (i) original ser'es (ii) 
lirst order difference (iii) seasonal difference and (iv) both regular and season. I 
difference 

Autocorrelation Partial Autocorrelation 

lag (i) (ii) (iii) (Iv) lag (i) (ii) (iii) (iv) 

1 0.190 -0.425 0.156 -0.431 1 0.190 -0.425 0.156 -0.431 
2 0.075 -0.145 0.060 -0.060 2 0.040 -0.397 0.037 -0.302 
3 0.187 -0.115 0.071 0.293 3 0.172 -0.535 0.058 . 0.175 
4 0.488 0.450 -0.424 -0.506 4 0.452 0.055 -0.458 -0.410 
5 0.057 -0.240 -0.054 0.144 5 -0.114 -0.032 0.105 . -0.287 
6 0.019 -0.077 0078 0.157 6 -0.037 -0.041 0.139 -0.064 
7 0.115 -0.125 -0.057 -0.163 7 -0.012 -0.279 -0.021 . 0.051 
8 0.417 0.453 · 0.093 0.127 8 0.263 0.118 -0.149 -0.131 
9 -0.023 -0.213 0.019 0.034 9 -0.122 0.144 0.025 -0.061 

10 -0.107 -0.191 -0.114 -0.140 10 -0.161 -0.093 -0.006 -0.032 
11 0.115 0.045 -0.013 0.125 11 0.068 -0.045 -0.025 0.095 
12 0.253 0.312 -0.137 -0.067 12 0.010 0.032 -0.193 -0.058 
13 -0.117 -0.225 -0.120 -0.089 13 -0.079 -0.019 -0.049 -0.135 
14 -0.114 -0.140 0.003 0.064 14 -0.036 -0.125 0.015 -0.161 
15 0.112 0.064 0.055 . 0.040 15 0.069 -0.142 0.128 0.098 
16 0.226 0.275 0.041 -0.036 16 0.086 -0.028 -0.123 -0.002 
17 -0.103 -0.188 0.089 0.101 . 17 ' -0.018 -0.010 -0.006 -0.003 
18 -0.120 -0.118 -0.005 -0.103 18 -0.033 0.048 -0.012 -0.176 
19 0.048 0.037 0.032 0.003 19 -0.099 -0.070 0.193 0.064 
20 0.152 0.269 0.034 0.087 ' 20 0.034 0.034 -0.063 0.148 
21 -0.183 -0.222 -0.088 -0.065 21 -0.071 0.008 -0.160 0.123 
22 -0.148 -0.042 -0.080 0.009 22 . -0.050 0.116 -0.153 -0.141 
23 -0.052 -0.005 -0.097 0.038 23 -0.173 -0.049 0.085 0.025 
24 0.050 0.201 -0.139 -0.176 24 . -0.017 -0.136 -0.101 -0.101 
25 -0.165 -0.175 0.071 0.124 25 0.087 -0.118 0.033 0.073 
26 -0.091 0.021 0.070 0.013 26 0.073 0.032 -0.088 -0.138 
27 -0.057 -0.067 0.040 -0.021 27 -0.071 -0.101 0.118 0.059 
28 0.082 0.277 0.053 0.119 28 0.061 0.054 -0.085 0.029 
29 -0.220 -0.261 -0.116 -0.108 29 -0.080 -0.054 -0.056 0.130 
30 -0.098 0.069 -0.092 -0.005 30 0.026 0.095 -0.135 -0.066 
31 -0.092 -0.099 -0.092 -0.044 31 -0.113 -0.071 0.003 -0.124 
32 0.069 0.244 -0.008 0.037 32 0.051 -0.024 0.050 0.021 
33 -0.162 -0.221 0.031 -0.058 33 -0.006 -0.093 -0.050 0.026 
34 -0.028 0.089 0.127 0.052 34 0.068 -0.030 -0.024 -0.110 
35 -0.034 -0.068 0.172 0.083 35 0.017 0.044 0.146 -0.007 
36 0.059 0.182 0.054 -0.036 36 -0.065 -0.026 0.010 0.076 



VII 

Table. 1.7. Aulocorrelalions and parlial aulocorrelalions com puled for Ihe lime 
series on Penaeid prawn landings in Kerala (1960-96 log Iransformed)-
(i) original series (ii) firsl order difference (ii i} seasonal difference and (iv) bolh 
regular and seasonal difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (ii) (iii) (iv) Lag (i) (ii) (iii) (iv) 

1 0.207 -0.342 0.097 -0.421 1 0.207 -0.342 0.097 -0.421 
2 -0.038 -0.281 -0.046 -0.108 2 -0.084 -0.450 -0.056 -0.347 
3 0.183 -0.146 0.015 0.241 3 0.219 -0.624 0.025 0.046 
4 0.546 0.516 -0.368 -0.399 4 0.499 -0.054 -0.379 -0.390 
5 0.146 -0.137 -0.011 0.119 5 -0.020 -0.094 0.086 -0.275 
6 0.004 -0.140 0.124 0.190 6 0.035 0.042 0.079 -0.059 
7 0.074 -0.218 -0.084 -0.159 7 -0.098 -0.231 . -0.091 -0.030 
8 0.461 0.463 -0.015 -0.002 8 0.264 0.104 -0.148 -0.244 
9 0.105 -0.107 0.053 0.071 9 -0.092 0.041 0.098 -0.172 

10 -0.056 -0.176 -0.002 -0.084 10 -0.038 -0.063 0.077 -0.089 
11 0.087 -0.112 0.090 0.110 11 0.043 -0.055 0.020 0.043 
12 0.394 0.412 -0.013 -0.047 . 12 0.104 0.150 -0.124 -0.148 
13 0.043 -0.143 -0.031 ·0.002 13 -0.070 0.093 0.074 -0.037 
14 -0.079 -0.158 -0.047 0.023 14 -0.053 0.023 -0.022 0.028 
15 0.038 -0.131 -0.108 -0.029 15 -0.019 -0.126 -0.099 0.082 
16 0.374 0.441 -0.097 -0.042 16 0.139 0.093 -0.171 -0.128 
17 0.015 -0.161 -0.014 0.031 17 -0.087 . -0.038 0.048 -0.073 
18 -0.086 -0.182 0.008 -0.047 18 0.027 -0.109 0.013 -0.095 
19 0.118 -0.077 0.121 0.039 19 0.128 -0.115 0.062 -0.045 
20 0.390 0.430 0.152 0.122 20 0.117 0.061 0.034 0.033 
21 -0.003 -0.177 -0.047 -0.157 21 -0.062 0.007 -0.043 -0.100 
22 -0.114 -0.153 0.030 0.103 22 -0.080 0.013 0.072 0.029 
23 0.031 -0.070 -0.062 ·0.053 23 -0.075 0.050 -0.036 -0.022 
24 0.238 0.308 -0.055 ·0.098 24 -0.131 -0.087 0.020 -0098 
25 0.006 -0.034 0.132 0.204 25 0.049 0.083 0.104 0.045 
26 -0.156 -0.205 -0.046 -0.143 26 -0.088 -0.029 -0.044 -0.057 
27 -0.007 -0.057 0.031 0.044 27 0.027 0.048 0.072 0.059 
28 0.211 0.324 0.019 0.021 28 -0.030 0.083 -0.042 -0.066 
29 -0.075 -0.111 -0.019 -0.043 29 -0.067 -0.002 0.085 0.082 
30 -0.188 -0.154 0.032 0.070 30 -0.039 0.015 -0.059 0.111 
31 -0.030 -0.029 -0.063 -0.044 31 -0.052 -0.042 -0.104 0.025 · 
32 0.148 0.309 -0.074 0.002 32 0.006 0.087 -0.040 0.051 
33 -0.148 -0.146 -0.097 -0015 33 -0.110 -0.026 -0.080 0.032 
34 -0.232 -0.176 -0.100 -0.057 34 -0.022 -0.113 -0.084 -0.035 
35 -0.015 0.031 0.019 0.032 35 0.067 -0.017 -0.007 -0.104 
36 0.130 0.276 0.070 0.051 36 -0.013 -0.083 0.062 -0.030 
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Table. 1.8. Autocorrelations and partial autocorrelations computed for the time series 
on Tuna landings in Kerala (1960-96 log transformed) - (i) original scries (ii) first 
order difference (iii) seasonal difference and (iv) both regular and seasonal difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (ii) (iii) (iv) Lag (i) (ii) (iii) (iv) 

1 0.481 -0.550 0.056 -0.482 1 0.481 -0.550 0.056 -0.482 
2 0.532 0.099 0.021 -0.041 2 0.391 -0.292 0.018 -0.356 
3 0.476 -0.305 0.060 0.288 3 0.203 -0.621 0.058 0.134 
4 0.737 0.543 -0.440 -0.438 4 0.579 0.005 -0.450 -0.319 
5 0.440 -0.357 -0.110 0.085 5 -0.045 -0.087 -0.067 -0.365 
6 0.511 0.137 0.061 0.075 6 0.054 -0.008 0.110 -0.340 
7 0.440 -0.327 0.090 0.061 7 -0.012 -0.340 0.193 0.126 
8 0.713 0.503 0.004 -0.111 8 0.334 -0.083 -0.265 -0.186 
9 0.465 -0.235 0.119 0.158 9 0.077 0.118 0.027 -0.112 

10 {}.452 0.090 -0.064 -0.071 10 -{}.136 0.218 -0.016 -0.180 
11 0.352 -0.398 -0.111 -0.105 11 -0.219 -0.194 0.076 -0.003 
12 0.664 0.559 0.039 0.109 12 0.195 0.033 -0.091 -0.146 
13 0.398 -0.293 -0.009 -0.066 13 -0.037 -0.031 0.059 -0.107 
14 0.435 0.144 0.061 -0.025 14 0.031 0.118 0.037 -0.252 
15 0.319 -0.375 0.179 0.163 15 -0.137 -0.048 0.211 0.103 
16 0.595 0.500 -0.011 -{}.114 16 0.029 0.024 -0.137 -0.116 
17 0.349 -0.243 0.011 0.021 17 -0.064 0.057 0.077 -0.017 
18 0.355 0.159 -0.003 0.084 18 -0.089 0.192 -0.014 -0.045 
19 0.205 -0.450 -0.174 -0.144 19 -0.183 -0 .068 0.017 0.148 
20 0.513 0.518 -0.075 · 0.G25 20 0.062 0.042 -0.189 -0.093 
21 0.287 -0.232 -0.020 0.039 21 -0.057 -0.011 0.046 0.014 
22 0.301 0.135 -0.039 -0.042 22 -0.009 -0.010 -0.059 -0.068 
23 0.175 -0.403 0.016 -0.019 23 -0.019 -0.111 0.021 0.030 
24 0.462 0.501 0.108 0.150 24 0.083 -0.024 -0.078 0.009 
25 0.225 -0.241 -0.083 -0.102 25 -0.040 -0.039 -0.059 0.070 
26 0.243 0.148 -0.084 -0.062 26 -0.024 -0.048 -0.136 -0.147 
27 0.105 -0.369 0.032 0.076 27 -0.015 -0.022 0.083 -0.143 
28 0.352 0.382 0.006 . -0.050 28 -0.034 -0.122 0.094 -0.064 
29 0.199 -0.155 0.071 -0.010 29 0.069 -0.069 0.029 -0.014 
30 0.208 0.185 0.161 0.156 30 0.017 0.035 -0.020 0.053 
31 0.029 -0.386 -0.045 -0.067 31 -0.078 0.156 -0.087 -0.014 
32 0.254 0.320 -0.127 -0.120 32 -0.163 -0.051 -0.033 -0.167 
33 0.142 -0.089 0.019 0.155 33 0.070 0.031 0.134 -0.018 
34 0.121 0.120 -0.127 -0.161 34 -0.010 -0.062 -0.006 -0.024 
35 -0.020 · -0.358 0.030 0.073 35 0.070 0.049 0.004 0.092 
36 0.211 0.342 0.052 . 0.077 36 -0.050 0.043 -0.123 -0.019 
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Table. 1.9. Autocorrelalions and partial autocorrelations computed ror the time series 
on Thrissocles landings in Korala (1960-96 log transformed) - (i) original series (ii) 
first order difference (iii) seasonal difference and (iv) both regular and seasonal 
difference 

Autocorrelation Partial Autocorrelation 

Lag (i) (ii) liii) (iv) Lag Ii) Iii) (iii) (iv) 

1 0.351 -0.275 0.163 -0.428 1 0.351 -0.275 0.163 -0.428 
2 0.054 -0.394 0.046 -0.037 2 -0.079 -0.508 0.020 -0.270 
3 0.283 0.007 0.017 0.245 3 0.333 -0.431 0.007 0.144 
4 0.507 0.354 -0.443 -0.533 4 0.370 -0.054 -D.460 -0.479 
5 0.254 -0.028 -0.004 0.292 5 0.012 0.022 0.180 -0.139 
6 0.033 -0.302 -0.035 0.016 6 -D.070 -0.134 -0.049 -0.076 
7 0.208 -0.055 -0.106 -0.104 7 0.072 -0.280 -0.074 0.041 
8 0.441 0.386 0.007 0.129 8 0.206 0.017 -0.231 -0.221 
9 0.159 -0.067 -0.087 -0.104 9 -0.113 -0.043 0.056 -0.080 . 

10 -0.009 -0.269 -0.025 -0.006 10 -0.026 -0.101 -0.039 -0.086 
11 0.171 0.015 0.028 0.169 11 0.025 -0.113 -0.031 0.207 
12 0.334 0.290 -0.179 -0.190 12 0.062 0.004 -D.366 -0.191 
13 0.122 -0.047 -0.067 -0004 13 -0.030 -0.008 0.015 -0.198 
14 -0.028 -0.253 · 0.052 0.049 14 -0.022 -0.077 0.086 -0.175 
15 0.154 -0.081 0.084 -0.126 15 0.051 -0.291 0.135 0.006 
16 0.428 0.434 0.300 0.216 16 0.259 0.030 -0.021 -0.035 
17 0.149 -0.035 0.163 0.033 17 -0.044 0.086 0.064 0.072 
18 -0.096 -0.299 -0.024 -0.049 18 -0.131 0.070 -0.041 0.086 
19 0.054 -0.036 -0.123 -D.024 19 -D.113 -0.017 -0.103 0.001 
20 0.247 0.334 -0.177 -0.133 20 -0.047 0.074 -0.069 -0.142 
21 0.022 -0.067 -0.034 0.088 21 -0.115 -0.031 0.105 0.057 
22 -D.138 -D.273 -0.023 -0.004 22 -D.027 -0.111 -0.058 0.012 
23 0.076 0.035 0.016 0.005 23 0.100 -0.029 -0.025 -0.016 
24 0.235 0.344 0.048 0.137 24 0.029 0.126 -0.011 0.100 
25 -0.052 -0.129 -0.137 -0.182 25 -0.103 0.014 -0.131 . -0.012 
26 -0.146 -0.251 -0.038 0.028 26 0.040 -0.031 -0.049 -0.053 
27 0.066 0.079 0.006 0.083 27 0.041 0.005 0.007 -0.021 
28 0.182 0.219 -0.096 -0.141 28 0.011 -0.097 -0.026 -0.011 
29 0.012 -0.025 0.064 0.113 29 0.096 0.022 -0.001 0.001 
30 -0.120 -0.251 0.022 -0.039 30 -0.022 -0.006 -0.046 0.016 
31 0.072 0.005 0.035 -0.065 31 0.006 -0.028 -0.039 -0.034 
32 0.234 0.298 0.161 0.123 32 0.024 -0.010 0.001 -D.032 
33 0.01 3 -0.050 0.071 -0.013 33 -0.025 -0.015 0.050 0.053 
34 -0.128 -0.227 0.019 -0.036 34 -0.026 -0.031 -0.051 -0.079 
35 0.018 0.030 0.016 0.084 35 -D.007 0.013 0.095 0.046 
36 0.118 0.226 -0.124 -0.161 36 -0.048 0.035 -0.050 -0.022 
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Table. 1.1 O. Autocorrelations and partial autocorrelations computed ror the time 
series on Ribbonfish landings in Kerala (1960-96 log transrormed) -
(i) original series (ii} first order difference (iii) seasonal dirrerence and (iv) both 
regular and seasonal dirrerence. . 

Autocorrelation Partial Autocorrelation 

Lag (I) (Ii) (iii) (iv) Lag (i) (ii) (iii) (iv) 

1 0.348 -0.160 0.297 -0.364 1 0.348 -0.160 0.297 -0.364 
2 -0.094 -0.583 0.119 0.014 2 -0.245 -0.624 0.034 -0.136 
3 0.222 -0.048 -0.074 0.048 3 0.422 -0.502 -0.130 0.004 
4 0.597 0.578 -0.333 -0.452 4 0.427 0.070 -0.314 -0.503 
5 0.214 0.028 0.031 0.265 5 -0.135 0.107 0.272 -0.143 
6 -0.184 -0.571 0.005 -0.083 6 -0.157 -0.242 -0.014 -0.148 
7 0.159 0.021 0.105 0.198 7 0.192 -0.085 0.030 0.159 
8 0.460 0.516 -0.058 -0.067 8 0.050 0.103 -0.275 -0.224 
9 0.078 -0.001 -0.129 -0.063 9 -0.158 0.053 0.073 -0.070 

10 -0.293 -0.500 -0.107 0.106 10 -0.141 -0.051 -0.061 · 0.036 
11 -0.005 -0.063 -0.238 -0.136 11 -0.041 -0.187 -0.165 0.127 · 
12 0.351 0.530 -0.196 -0.021 12 0.110 -0.002 -0.310 -0.291 
13 0.022 0.020 -0.127 0.002 13 -0.051 -0.006 0.067 -0.161 
14 -0.323 -0.525 -0.057 -0.072 14 -0.053 -0.203 -0.011 -0.198 
15 0.016 -0.045 0.107 0.120 ' 15 0.148 -0.219 0.075 0.058 
16 0.390 ' 0.548 0.111 0.092 16 0.170 0.013 -0.151 -0.071 
17 0.052 0.041 0.009 0.001 17 -0.053 0.015 -0.035 0.009 
18 -0.327 -0.477 -0.082 -0.028 18 -0.081 0.079 -0.104 -0.092 
19 -0.075 -0.122 -0.134 -0.122 19 -0.133 -0.096 -0.001 0.026 
20 0.322 0.490 -0.035 0.014 20 · 0.053 -0.092 -0.111 -0.045 
21 0.088 0.076 0.039 -0.006 21 0.080 -0.080 -0.035 -0.001 
22 -0.225 -0.408 0.126 0.065 22 0.079 0.020 -0.044 -0.090 
23 -0.014 -0.101 0.113 0.077 23 -0.038 -0.028 0.014 0.041 
24 0.320 0.404 . 0.031 -0.085 24 0.030 -0.078 -0.078 -0.083 
25 0.118 0.104 0.058 0.036 25 0.076 -0.064 0.053 0.026 
26 -0.202 -0.365 0.000 -0.029 26 0.050 0.074 -0.046 -0.042 
27 -0.036 -0.148 -0.009 -0.045 27 -0.082 -0.029 -0.011 0.013 
28 0.317 0.405 0.030 0.022 . 28 0.026 0.011 -0.021 -0.088 
29 0.133 0.105 0.038 -0.047 29 -0.021 -0.021 0.072 -0.017 
30 -0.178 -0.348 0.116 0.096 30 0.026 0.025 0.037 0.064 
31 -0.041 -0.143 0.069 -0.015 31 -0.050 0.024 -0.055 0.035 
32 0.292 0.386 0.047 0.032 32 0.003 0.074 0.002 -0.041 
33 0.097 0.136 -0.028 -0.002 33 -0.072 0.049 0.039 -0.028 
34 -0.259 -0.403 -0.090 -0.1 22 34 -0.027 -0.079 0.049 -0.010 
35 -0.104 -0.126 0.028 0.079 35 0.045 -0.005 0.075 0.081 
36 0.217 0.366 -0.003 -0.011 36 -0.034 0.041 -0.018 0.053 
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Table.1.I1. Forecasts and standard errors ror the dirrerent seasonal AR IMA 
models fitted to marine fish landings in Kerala. 

51. Species! 
Model Year Quarter Forecast 

Standa rd 
No. Group error 

I Total landi ngs ARlMA(O, I ,2XO, I, 1)4 I 100879 27020 

1997 II 112168 31041 

III 214978 31236 

IV 164947 31430 

I 100224 33356 

1998 II 114601 34263 

III 217412 34554 

IV 167381 34843 

2 Total landings ARlMA(O, I ,2XO, I, 1)4 I 97351 25656 

(with intervension) 1997 II 107720 28686 

III 211433 28686 
- IV 160565 28687 

I 93681 29798 

II 108202 30090 
1998 

III 211915 30091 

IV 161048 30091 

3 Oil sardine ARIMA( I ,0,0)(0, 1, 1)4 I 8836 19747 

1997 II 5666 21793 

III 12325 22214 

IV 14884 22304 

I 10436 23157 

II 6413 23338 
1998 

III 12674 23378 

IV 15047 23386 

4 Mackerel ARlMA(I ,O,O)(O, I, 1)4 I 7740 8663 

(log transformed) 1997 II 141 92 17203 

III 33794 41480 

IV 22439 27602 

I 6298 8037 

II 13027 16725 
1998 

III 32611 41911 

IV 22109 284 19 
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Table.!. I!. continued 

SI. Species! Model Year Quarter Forecast 
Standard 

No. Group error 

5 Anchovies ARIMA(4,O,O)( 1,1,2)4 I 2771 2279 
(log transformed} II 6770 5666 -

1997 
III 11499 9632 ' 
IV 16343 14036 
I 2757 2462 
II 8188 7369 

1998 
III 14407 12974 
IV 16439 15058 

6 Lesser sardines ARIMA(O,I, IXO,I, I)4 I 1237 1131 
(log transformed) II 883 832 

1997 
III 955 927 
IV 7706 7677 
I 1197 1294 
II 855 954 

1998 III 924 1063 
IV 7456 8814 

7 Penaeid ARIMA(O,O,I )(0,1,1)4 I 9072 5604 
prawns 

(log transformed) 1997 II 13813 8678 
III 18658 11722 
IV 6629 4164 
I 8968 6018 
II 13813 9289 

1998 III 18658 12548 
IV 6629 4458 

8 Tu na ARIMA(O,I ,1 )(0,1,1)4 I 2218 1710 
(log transformed) II 4489 3513 

1997 III 3683 2924 
IV 4572 3682 
I 2276 1982 
II 4607 4086 

1998 III 3780 3412 
IV 4693 4309 
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Table.l . l l . continued 

51. Species! Model Year Quarter Forecast 
Standard 

No. Group error 

9 Thrissoc les ARIMA( I , I, IX I, I ,2)4 I 1696 1587 
(log transformed) II 1090 1063 

1997 III 2124 2095 
IV 972 965 
I 1269 1298 
II 1803 1864 

1998 III 2308 2402 
IV 1972 2067 

10 Ribbon fishes ARIMA( I ,0, I )(0, I, 1)4 I 504 759 
(log transformed) II 961 1546 

1997 III 4419 7334 
IV 5068 8548 
I 358 635 
II 749 1345 

1998 III 3680 6655 
IV 4433 8044 



E 
o 
'­
OJ 
o 

' L: 
o 
> 
'0 
Q) 

o 
() 

Vl 

• 
o 

1.4 - • 
Semivariopem 
Linvariogram 
Quadvariogram 
Expected ~1l1ues 
Confidence limiUj 

1.2 

1.0 

• 
":'" ....... . ............ .. . 

• 
• 

• 

• • • •• 

•• • 
• 
• 

• 
••• 

••• 

• 
• • 

• 
. .... . . .•.•. . • •.•.•.••.• . •• . •.• .••. • . • •• • . • .•............. iI ' - . . 

• • • 
•• •• • .' • • • 

• 
••• • •• • 

• • 

• 
• 

• • • • • • 

• 
• • • 

• • • 
• 

0.8 -:. .... .......... .. .. ...... • ... . . ... ... .. .... . .... .. . . .. .. .... '.' ..... . . . .. . ... . .. . . . . . .• .. . ......... . . 

• 

0.6 ~ 

Q 
0 Q P Q 0 Q 0 .0 0.0.0 0.0 0.0 0.0 0 0 0 ·0 0 ·0 0 -0 0 -0 0<> 00 Q.oG 00 0-0 0-0 0 ' 0 0'0 0'0 0'0 0'0 0'0 OlJ'O :n'A" 

0 0 0 00 ... 
0° ,- ' .. .. ..... . .. . .. . .................. . .. . . . .... .. .. ......... . ... . .... . ........ . . . . 

0.4 f- 00 .. ... . 

Q 

0.2 
j y. .... .. .... .. .... ........ .. ........ ....................... .. 
U 0.0 

I I I , 

10 20 30 40 50 60 
La g 

Fig.1 .1 .1 . Plot of scaled variograms for the seasonally differenced total 
marine fish landings with 2 standard error limits. 
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Fig.1.1.2. Plot of observed and fitted values of quarterwise 
total marine fish landings in Kerala during 1960-96 using 
the model ARIMA(0 ,1,2)(0,1,1)4. 
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Fig.1.2.1. Plot of observed and fitted values of quarterwise 
total marine fish landings in Kerala during 1960-96 using 
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Fig.1 .3.1 . Plot of scaled variograms for the seasonally differenced 
oil sardine landings with :2 standard error limits. 
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Fig .1.3 .2. Plot of Observed and fitted values Of quarterwise 
landings of oil sardine in Kerala during 1960-96 using the 
model ARIMA(1,O,O)(O,1,1)4. 
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Fig.1 .4.1 . Plot of scaled variograms for the seasonally differenced and 
log transforMed mackerel landings with 2 standard error limits. 
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Fig.1.4.2. Plot of observed and fitted values of quarterwise 
landings of mackerel in Kerala during 196b-96 using the 
model ARIMA(1,O,O)(O,1,1)4 on logarithm of catch . 
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Fig.1 .5.1 . Plot of scaled variograms for the seasonall y differenced and 
log transformed anchovies landings with 2 standard error limits. 
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Fig.1 .6.1 . Plot of scaled variograms for the seasonally differenced and 
log transformed lesser sard ine landings with 2 standard error limits. 
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Fig.1 .7.1 . Plot of scaled variograms for the seasonally differenced and 
log transformed penaeid prawn landings with 2 standard error limits. 
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25 
Catch ( x '000 t ) 

-- Observed -- Fitted 
l-20 

15 f-

10 l-

II 

5 l-

II A 

~f "", lI ~V1. Vi v ~ \ tc JA I if I o V~ ~Jv ~ 
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 

Sequence number 

Fig.1.10.2.Plot of observed and fitted values of quarter wise 
landings of Ribbonfisnes in Kerala dur ing 1960-96 using the 
model ARIMA(1 ,0 ,1)(0,1,1)4 on logarithm of catch. 



CHAPTER-2. 

Vector Autoregressive modelling of marine fish landings in Kerala. 

Introduction: 

The major two reasons for analysing and modelling of more than one time series 

sequences together. known as multiple time series. are (i) to understand the dynamic 

relationships among the different time series components and (ii) to improve the accuracy 

of forecasts of one series by utilizing the information about that series contained in all 

other time series. Suppose there are k time series components {Z,,},{Z,,} .. ··. {Z,,} for 

1 = O. ± I. ± 2. ··· at equally spaced time intervals. We can represent these components by 

a vector Z, =(Z".Z" .. ··.Z.,)' which we call as a vector of time series. A vector time 

series process {Z,} is strictly stationary if the probability distribution of the random 

vectors (Z" . Z" .... . Z",)" and (Z".,. z"., ..... Z, •• ,)" are the same for arbitrary times 

1 I' 12 .. . . . 1 •• all lags I = O. ± I. ± 2. . .. and all n. That is the probability distribution of 

observations from a stationary process is invariant with respect to shi fts in time. For all 

such series £( Z, ) = fl for all t where fl = (fll • fll ... .. fl k ) . is the mean vector for the 

series and £[(Z, - fl)(Z,.,- flY] = r(/) is known as the cross covariance matrix of lag I 

for 1= O. ± I •. .. and r(/) will depend only on the lag I when the series is stat ionary. If 

Y = diag(y II (0,. y 22 (0) .. ·· • y II (0)) where y ii (0) is the variance of the ,"h component 

series {Zi, }. then p(/) = y - '!I, r(I)Y-y, is the cross correlation matrix at lag I. For a 

stationary vector process. the structure of the cross-covariance and cross correlation 
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matrices provide a useful summary of information on aspects of dynamic inter relations 

among the component series of the process. 

A stationary vector time series {Z,} with k components can be modeled by a 

vector autoregressive model of order p denoted by VAR(P), and its expression is 

Z, = <1>, Z,_, + .. . + <I> p z,_p + &, . 

This can be written as 

<I>(B) z, = &, 

where <I>(B)=I-<I>,\B-·· ·-<I>pBP is a matrix polynomial in the back shift operator B, 

Z, = Z, - Ji , Ji is the mean vector of the series, <1>" <1>,,"', <I> pare k x k parameter 

matrices, &, = (&" ,"',&,, ), are independently and identically distributed random 

innovation vectors having zero mean and constant covariance matrix L. 

In the present study vector autoregressive models were attempted to fit using the 

quarter wise landings of selected marine fish species/species groups in Kerala. The 

selection of the species/groups for the analysis was made based on their commercial 

importance, their contribution towards the total landings in the state and biological 

aspects like food and feeding habits, prey-predator relation etc. The species and 'groups 

selected for the study are oil sardine, mackerel, anchovies, lesser sardines, ribbon fishes, 

catfish, tuna, penaeid prawns, seer fish and elasmobranchs. Since the model used is not a 

seasonal type model and the these time series sequences are quarterly data, the original 

data were transformed before analysis by taking a 4 point moving total of the logarithm 
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and then the \·ariances standardi zed to unity. Taking the 4 point moving sum will have 

the added advantages other than removing the seasonality present in the data that it will 

reduce the ill effects of outliers if any present in the data. Also the moving sum will 

represent yearly values as it contains values from all the four quarters. 

Oil sardine (Sardinel/a longiceps) and mackerel (Restralliger Iwnagllrta) are the 

two important species that contributes maximum towards the total marine fish landings in 

Kerala. They compete each other for food, both being plankton feeders and migrate to the 

inshore waters during the same season. Sharks, seer fish and ribbon fish are predators 

common to both oil sardine and mackerel. Flagillaria oceanica has been considered as 

favorite food of oil sardine. Other items of food are copepods, dinoflagellates, ostracods, 

larval prawns. larval bivalves, fish eggs and blue green algae. Juveniles of oil sardine 

feed on planktonic crustaceans like copepods. Dolphins and sharks are known active 

predators of oi l sardine. Sardinel/a spp. is a common food of seer fishes (s. commerson 

and S. gllttotllS) and adults of ribbon fish also feed on Sardinel/a. Copepods, molluscan 

larvae, fish eggs and larvae are the major zooplankters in mackerel 's food. Post larvae (5-

6mm) of mackerel are herbivorous feeding on diatoms and algae and its juveniles 

(25mm) are omnivorous feeding on all available organisms in plankton. Adults of 

mackerel (35-224mm) are carnivorous feeding on larval and juvenile fish. Major 

predators of mackerel are sharks, seer fish (s. guttatlls), ribbon fi sh and porpoise. 

Major specIes of lesser sardine are Sardinel/a jllssiell, Sardinel/a jimbriata, 

Sardinel/a albel/a, and Sardinel/a sirm. Lesser sardines are also a plankton feeder with 
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preference fo r zooplanklOnic organisms like diatoms, copepods, dinoflagelltes, larvel 

bivalves, young prawns, prawn larvae of Aceles and Alpheids, decapods and post larvae 

of anchoviella. Juveniles of lesser sardines feed on phytoplanktonic organisms. Common 

predators of lesser sardine are seer fishes and Sciaenids. 

Imponant species belonging to anchovies group are Sto/ephorus indicus, S. devisi, 

S. waitei and S. bataviensis. Lesser sardines feed on post larvae of anchovies. Juveniles 

of ribbon fi shes feed on larvae of anchovies. Adults of ribbon fishes feed on Stolephorus 

spp. Catfishes, seer fish (s. gUllatus) and tuna (Auxis thazard) also feed on anchovies. 

Juveniles of ribbon fish feed on copepods, other crustaceans, prawn and fish 

larvae. Common items of food for juveniles are calanoid copepods, larvae of anchovies, 

juveniles of c1upeoids and carangids. Adults of ribbon fishes feed on crustaceans, 

Stolephorus, Thrissocles, Sphyraenea, Hemiramphus, Gardinella, Leiognanthus, octopus 

and squilla. 

Seer fi sh (Scamberamurlls commerson, S. gullatus and S. linealaills) are 

carnivorous, feeding occasionally on prawns and squids. Since gill rakers are rudimentary 

and few even during younger stages they are forced to feed on larger organisms. Major 

food items of seer fish are anchovies, Sardinella spp, mackerel, Thrissocles spp., 

Sciaenids, Acetes, Saurida spp., Trichurus spp., Dussumiera spp. Leiognathus spp., 

carangids, c1upeoids, perches, decapods, Lactarius, Sphyraena spp., diodontids, eel 

larvae, Chirocentrus, Monocanthus and tuna. 
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Important species of tuna are Auxis !hazard, Katsuwonus pelamis, Euthynnus 

ajfinis, Thunnlls orientalis, Thunnus obesus, and Thunnlls tongol. They feed mainly on 

fishes, cephalopods and crustaceans. Anchovies and leiognathus are the major fish prey 

of Axuis tha:ard. Stomatopods, cephalopods, larval and juvenile reef fishes are major 

foods of K. pelamis. Squids, cuttle fish, pteropods, anchovies, carangids, stomatopod 

larvae and penaeid prawns are the food items of Euthynnlls ajfinis. Predators of Auxis 

thazard are sail fishes, barracudas, seer fish and dolphins. Large sharks and marlins 

predate on oceanic skipjack and Euthynnus ajfinis. Whales, dolphins, spear fishes and 

large tunas predate on Thunnus orientalis. Many carnivorous fishes predate on juveniles 

of big-eye tunas. 

Major species belonging to the group penaeid prawns are Penaeus indicus, 

P.monodon, P. semisulcatus, Parapenaeopsis styli/era and Metapenaeus dobsoni. P. 

indiClis is omnivorous and bottom feeder. Diatoms, planktonic algae and bits of seaweed 

are the vegetable feed and cope pods, ostracods, amphipods, larval crustaceans, molluscan 

larvae and polychates are the animal matter in its food . Crustaceans form the main food 

item of P. //Ionodon and P. semisulcallIs. Other foods are molluscan, parts of fish, 

polychates and vegetable matter. M. dobsoni feed on diatoms and other minute plant and 

animal organisms. Penaeid prawns are food of Euthynnus ajfinis (Tuna}. Young ones of 

Megalaspis cordyla (Carangidae) feed on young prawns. 
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Species belonging to Carangids are Megalaspis cordyla, Decapterus russel/i, 

Threadfin (Alectis indica), Carangoides malabaricus and Caranx carangus. Young ones 

of M. cordyla feed on post-larval fish, young prawns and other crustaceans and adults 

feed on c\upeiod fi sh and crustaceans. Juveniles of D. russel/i feed on acetes, copepods 

and other curstaceans and adults mostly feed on c\upeiod fish, diatoms, copepods and 

other crustaceans. Stomatopode larvae, other crustaceans and polychaete worms are food 

of C. caranglls. Food of C. malabaricus is crustaceans and fishes. 

Catfishes are predacious, carnivorous and often carrion eaters. They feed mainly 

on fish and crustaceans. Their diet consists of anchovies, Coilia spp., sciaenids, eel 

elvers, Trichiurus spp., Bregmaceros spp. and Chirocentrus spp. They also eat penaeid 

prawns and are voracious bottom feeders. 

Review of literature: 

Whittl e (1963) generalized the fitting of AR schemes of successively increasing 

order to that of multivariate autoregressions and for schemes with rational spectral 

densities. He showed that the AR fitted through Yule-Walker relations has stability 

properties which holds in multivariate case also. Priestley ( 1964) considered the analysis 

of two-dimensional stationary processes. He explained the general considerations for 

spectral analysis of two-dimensional data and detection of signals, amplitude and 

frequency estimation for points of discontinuities, estimation of autocovariance spectrum 

etc. Clearbout (1966) gave a spectral factorization of multiple time series. He has shown 

how polynomials with matrix coefficients can be factorized and how to apply this to the 
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factorization of a known rational spectral density matrix . Hannan (1967) described a 

technique for estimating coefficient matrices in the regression of vector time series to 

lagged values of a second vector time series. This technique was based on computation of 

spectra and cross-spectra. Brillinger (1969) examined the asymptotic properties of second 

order spectral estimates of stationary vector time series. He derived expressions for first 

and second order moments and asymptotic distributions of matrix of second order 

periodograms, matrix of sample spectral measurements, matrix of sample spectral 

densities and matrix of covariances. 

Nicholls (I 977)· used Tensor products to show that in the case of vector linear time 

series models the estimates obtained by the application of Newton-Raphson procedure 

are identical to those derived by him (1976) and hence the estimates so obtained are 

asymptotically normal and efficient. MacNeill (1977) discussed tests for determining the 

presence of common periodicities in components of a multiple time series. He obtained 

di stributional results for white noise, independent normal series. Box and Tiao (1977) 

proposed a canonical transformation of a vector AR process and ordered the components 

of the transformed process from least to most predictable. According to them the least 

predictable components can reflect stable contemporaneous relationships among the 

original variables and the most predictable components represents the dynamic growth 

characteristics of the series. Baillie (I 979} derived the asymptotic mean squared error of 

multi -step prediction error of a vector AR process. He also derived results for regression 

models with autoregressive errors where the set of exogenous variables follow a V AR 

process. Troutman (1979) examined properties of a periodic AR process by considering a 
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rel ated stationary multivariate AR process. Hsiao (1979) suggested a sequential 

procedure based on FPE criterion and Grangers concept of causality to fit multiple 

autoregressions. This allows each variable to enter with different time lag and also 

provides a powerful test for exogenity or causality. He demonstrated this by using 

Canadian money and income data. 

Obrien (1980) proposed a procedure for testing the hypothesis that a sequence of 

vector valued random variables are mutually independent and he found that the test 

statistic as a close approximation to F distribution. Abraham (1980) presented a general 

model to encapsulate interventions in multiple time series and discussed the estimation of 

model parameters. Yamamoto (1981) gave a simple formula for multi period predictions 

of multivariate autoregressive moving average models as a function of suitably defined 

parameter matrices and observation vector. Tiao and Box (1981) proposed an approach to 

the modelling and analysis of mUltiple time series that consisted of tentative 

specification, estimation and diagnostic checking. Geweke (1981) compared tests of 

independence of two covariance stationary multivariate time series and had shown that 

the approximate slopes of regression tests are at least as great as those based on residuals 

of univariate ARIMA models. Thisted and Wecker (1981) provided some principles for 

shrinkage estimators and they examined estimation and prediction of multiple time series 

through shrinkage estimators and applied the results to the problem of demand estimation 

in an inventory control setting. Poskitt (1982) considered the development and 

application of diagnostic checks for vector linear time series models and developed a test 
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procedure based on Lagrangian multiplier principle and its di stribution. Portmanteau tests 

for model adequacy were also examined by him. 

Sakai (1983} had shown that the autocovariance matrices of a stati onary multivariate 

time series could be uniquely characterized by a sequence of normalized partial 

autocorrelation matrices having singular values less than unity. Reinsel (1983) introduced 

methods for modelling multivariate AR time series in terms of a smaller number of index 

series that were chosen to provide complete summary. He discussed maximum likelihood 

method of estimation, asymptotic properties of the estimators of the coefficients that 

determine the index variable and the corresponding AR coefficients. Geweke (1984) 

provided measures for linear dependence and feed back for two multiple time series 

conditional on a third. Estimates of these measures provided by him are straight forward . 

Li (1985) derived the asymptotic distribution of residual autocorrelations in multivariate 

autoregressive index models and discussed about a general ization of the classical 

portmanteau statistic for checking model adequacy. Velu el. al. (1986) investigated 

reduced rank coefficient models for mUltiple time series. He studied multivariate AR 

processes that have a structure to that of classical multivariate reduced rank regression 

and derived estimation methods. Koch and Yang (1986) developed a method for testing 

the independence of two time series that account for a pattern in the cross correlation 

function. Pena and Box (1987) described how to identify hidden factors in multivariate 

time series processes. They developed a methodology for the identification of the number 

of factors and to buitd a simplifying transformation to represent the series using eigen 

vectors of the covariance matrices. Hannan (1987) considered the problem of 
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approx imating the structure of a stationary vector time senes by rational transfer 

functions. He discussed the structure and co-ordination of such systems together with 

some deterministic approximation theory. He also gave algorithms for real time 

calculation of the estimates. 

Ahen and Reinsel (1988) considered nested reduced rank AR models in order to 

simpli fy and provide a more detai led description about the structure of the multivariate 

time series and to reduce parameters in time series modelling. They suggested a canonicai 

variable transformation that produces simpler structure in the model and illustrated how 

different components of the vector series depend on past lagged values. Ahn (1988) 

deri ved the asymptotic distribution with structured parameterization, which is a form 

employed in multi variate time series modelling to achieve parsimony. Eakin (1988) 

considered estimation and testing of vector AR coefficients in panel data and applied the 

technique to analyze the dynamic relationships between wages and hours worked in two 

samples of American males. Fountis and Dickey (1989) developed a test procedure based 

on the largest eigen val ue of the matrix equation used to determine stationarity of a 

mult iple AR time series. Li and Hui (1989) proposed a robust estimation procedure for 

multiple time series models by robustifying the residual autocovariances in the estimation 

equation. They derived asymptotic distribution of these estimators and a portmanteau 

statistic for diagnostic checking. Roy (I 989) gave a proof of the asymptotic joint 

normality of finite set of serial correlations of a multivariate second order stationary time 

series. He derived a formula for the asymptotic covariance between two serial 

correlations. Liang and Zeger (1989) proposed a logistic model for multivariate binary 
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time series and used it to describe a Markovian model for tbe vector of time series. 

Thompson el . af. (1989) used parametric curves to approximate tbe annual age-specific 

fertility rate and a multivariate time series model to forecast tbe curve parameters, tbat 

yield forecasts of future fertility curves. They used tbese forecasted fertility curves to 

compute age-specific fertility rate forecasts. Ali (1989) presented a modified test statistic 

to test autocorrelations and randomness in multiple time series. He obtained tbese 

statistics when tbe means and covariances in tbe standardization were replaced by tbe 

exact means and covariances and under tbe assumption tbat tbe time series is Gaussian. 

Degerine (1999) suggested a definition for partial autocorrelation function for a 

multivariate stationary time series through a canonical analysis of forward and backward 

innovations. Tsay and Tiao (1990) considered tbe asymptotic properties of a non­

stationary multivariate time series witb characteristic roots on tbe unit circle. He derived 

the limiting distributions of certain statistics tbat are useful in understanding a non­

stationary process and used it to establish tbe consistency properties of ordinary least 

square estimates of various autoregressions of vector processes. Stergiou (1991) used 

vector autoregressions to describe and forecast sardine anchovy complex in tbe eastern 

Mediterranean. Using a VAR(6) model witb two variables he could explain 98% and 

72% of variability in tbe catches of anchovy and sardines respectively. Grubb (1992) 

analyzed an index of montbly price of flour at three cities in US using multivariate time 

series models to explore tbe relationships between tbem and to discover tbe structure 

responsible for tbeir movements. Based on tbe metbod suggested by Tsay and Tiao tbey 

fitted a V AR(I) model for tbe data. 
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Materials and Methods: 

In general for a stationary autoregressive model of order p, that is VAR(P) model, 

the auto and cross correlations will decay gradually to zero as the lag increases. Often 

models of low orders provide adequate approximations. Sample estimate of elements of 

the lag 1 cross correlation matrix based on a sample of size T is computed as 

T·' 

I(Zj, -Z; )(Z}(",) -2) 

where Ii is the sample mean of the i" component series. The sample cross 

correlations can be used to identify low order vector moving average models. For a large 

sample size T, under white noise assumption, Pij(l) ' s are expected to be distributed as 

normal deviate with mean zero and approximate variance Yr and this property was used 

to test the significance of individual sample cross correlations. Also, we can form a 

sequence of matrices for diff~rent lags 0.1.2 .... with the sign ' +' or ' . ' or '.' at the (iJ)lh 

location of the f' matrix if Pij (l) > Yrr or P>j (l)<-Yrr or - Yrr SPij (l)S Yrr 

respectively and these matrices can be used as a useful tool for the identification of a 

small order VMA(q) model. Under white noise assumption to test the combined 

significance of the elements of sample cross-correlation matrix p(/) for different lags I, 

the X' stati stic defines as X!, = T' (T -I) ·'lr{p(7)p(Or' p(7i p(or l
) having i? degrees of 

freedom was used . 
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The conditions required for sta tionarity of a VAR(p) model can be brought out by 

considering an equivalent VAR(I) representation (Reinsel. 1993). By repeated 

substitution for z" z, .·· ·. z, in the VAR(I) model z, = $ z,_, + c" the model can be 

restructured into the form 

H 

Z, = (I + $ + $ 1 + .. . + $'-') p + $' Zo + L $ ' Co-. 

;·0 

Hence the process vectors Z,.Z, ,. ·· .Z, are uniquely determined by Zo the initial value 

of the process and the sequence of innovation vectors. If all eigen values of $ have 

modulus less than unity. then the process {Z,} is a well defined stochastic process and Z, 

~ 

can be expressed as Z, = /) + L $iEt-i for t = O.±I.±2,. ·· where /) = (1 - $r'll. This 
;=0 

condition is equivalent to det(I - $x) 7c 0 for I~:s l. Hence the condition for 

stability/stationarity of a VAR(I) process is that the roots of the determinental equation 

det(l - $x) = 0 have all its roots out side the unit circle or equivalently all the eigen 

values of $ are less than one in absolute value. The general VAR(P) model 

Z, =" + $ , Z,_, + ... + $p Z,_p + c, can be brought to an equivalent VAR(I) model of a kp 

'7 = (p ' .0' ,. ·· .0) . y, = (c; .0· .. ·· .0) ' which are column vectors of length kp and $ is a 

kpx kp square matrix given by 
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<DI <D2 <D
p

_
1 <Dp 

I 0 0 0 

<D = 0 0 0 

0 0 0 

Based on this representation of VAR(P) model the condition for stationarity of the model 

is that all eigen values of the above matrix have modules value less than unity. 

Equivalently de/(l- <Dx) .. 0 for Izl ~ I. Since de/{l - <Dx) = del(1 - <Dlx-... -<Dpx P ) the 

condi tion for stationarity of the VAR(P} model is that the determinantal polynomial 

del(l - <Dlx-···-<Dpx P ) = 0 have all its roots out side the unit circle. 

In terms of the back shift operator B, the VAR(P) model can be written as 
• 

"" 
\(I (B) = <D( Br l so that \(I(B)<D(B) = I and \(I(B) = I \(I j Bj. Operating this function 

)=0 

on the V AR(p) model gives, \(I ( B)<D( B)2, = \(I ( B)f! + \(I (B)~, which reduces to 

"" "" 
2 , = \(I ( B)f! + \(I(B)~ / . But \(I(B) f! = I \(I j B j f! = (I \(I j )f! because B j f! = f!. If we 

j =O 1=0 

oc "" 

write Ii = I IjI 1 then we can write the VAR(P) model as 2/ = Ii + I IV j~/_j which can 
1~ ~O 

exists only when the sequence {\(I j } converges which is the condition for invertibility of 

the process. The relation between these coefficient matrices and parameter matrices can 
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be obtained by expanding \jI (B) (/) ( B) = I and then equating coefficients of powers of B, 

Similar to the univariate case the covariance matrices of a VAR(P) model sati sfy 

the following Yule-Walker relations. 

p 

ru) = I ru - j)(/)~ for 1 = 1,2,· ·· 
1= 1 

I' 

with r(O) = I r( - j)(/) ~ + L where L = E( E,E;). These equations for 1=0, I , ... ,p can 
1= 1 

be used to calculate the theoretical cross-covanance matrices r(l) in terms of the 

parameter matrices (/), ,, " , ct>p and L of the VAR(P) model. Conversely, the estimates of 

the parameter matrices can be calculated using the estimates of cross-covariance 

matrix with r(i -'j)as its (ij)'h block element. Then the solution f~r ct> is obtained as 

In the present study the parameter matrices of VAR(P) models are estimated by 

generalized least square method (Reinsel 1993). The vector AR(P) model 

, 
(Z,- ~) = Ict>1(Z'_J -~)+ E, can be expressed as (Z,-~)=ct>(p) X,+E, where 

J" 



p 

model is Z, =0+ I <!lJZ'_j +E , 
j-I 
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p 

with 0 = (I + I <!lJ)p 
j - I 

and the model can be rewritten 

sample size and n = T-p, then define an n x k matrices Z = (ZP+I, ··, Zr) · and 

E =(Ep+I, ... Er)· . Let X be a matrix of order n x (Pk+ l ) with its I'" row as 

Z;.P = (I , Z;_I' "' ' Z;_p ) for I = P + I,"' ,T . Then we have the relation Y = XB +E which 

is in the general form of a multivariate linear model and can be solved for B as 

B = (X'Xr l X· Y. The estimate of innovation dispersion matrix L is obtained as 

r 
Sm = IE,E, and 

- p-

c' = Z, -" - I <!l j Z'_J' For large 
l= p .. 1 

. Ja l 

sample sizes under stationarity and Gaussian assumption the approximate large sample 

distribution of ~ which is the estimate of ~ = vec(<!l(p) is N(~,i: ~s{r'xt) and this 

property was used to compute the standard errors of the estimates and for further testing. 

For the selection of the order parameter p of vector autoregressive models 

different order selection criteria are used. If E(p) is the maximum likelihood estimator of 

the innovation dispersion matrix L obtained by fitting a VAR(P) model to the data, then 

the Final Prediction Error criterion ( FPE criterion) is given by 

FPE(p) = (T + kp + I)' del(E(p»' The information criterion introduced by Akike IS 
T-kp- I 

Ie - 2 10g(moximized likelihood) 2 
defined by A , = T + r where T is the sample size and r 
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is the number of parameters estimated for the model and it is approximated as 

AIC, '" 10g(I~, i) + ~ + c where E, is the maximum likelihood estimate of the innovation 

dispersion matrix Land c is a constant. Since there are (pe + k ) parameters in the case 

of a general VAR(P) model the minimum AIC criterion used was calculated by 

AIC(p) = In ~EIP)I~ 2(pe + k)/T . Other two criteria used are the Baysean information 

criterion BIC suggested by Schwarz's (also known as SC criterion) and the HQ criterion 

. 1- h r log(T ) proposed by Hannan and Qunin. These are given defined as BIC, = log( L'I' + T 

and HQ, = logqE,i) + 2r log~og(T)} . In the case of a general VAR(p) model these 

criterion were calculated using the formula HQ(p) = In ~~IP)I)+ 2ln{ln(T)Xpk 2 + k )/T 

and SC(p) = In~EIP)I)+ In(TXpe + k)/T respectively. The orders that yield minimum 

value for these cri teria were selected as the suitable order for the model. 

A likelihood ratio test was used for testing the null hypothesis Ho: <P ,_.+, = 0 of 

the VAR(P) model against H, : <P p_I+' '" 0 given that <P p-.. 2 = ... = <P p = 0 and the test 

statistic is ALR(i) = 1InIE(p-i)l- lnIE(p-i+1 ) where E(p)denote the maximum 

likelihood estimate of L when a V AR(P) model was fitted to the vector time series of 

length T. This test statistic has an asymptotic .. ! distribution with i? degrees of freedom. 
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A vector time series sequence {y,} with k components can be represented by a 

suitable vector autoregressive model of order m and as a solution of the Yule-Walker 

equations 

In 

r(l) = 2:r(l- j) <I>j .. for 1= I, .. ·, m 
}=I 

we can estimate the coefficient matrices <l>lm .. ··'<I> .. m by approximating the vector time 

series by a VAR(P) model. The coefficient matrix <l>m .. is then known as partial 

autoregressive matrix of lag m. The sequence of partial autoregressive matrices <I> mm for 

I = I.. ", m has the characteristic property that if the process is a vector AR process of 

order p, then <I> pp = <I> p and <I> mm = 0 for all m > p so that these matrices will have the 

cut off property which is useful at the identification stage. To test for the order of a VAR 

model based on the partial autoregression matrices by testing Ho: <1> ", = 0, the Wald 

stati stic is approx imately equal to 

and it wi ll ha\'e an approximate X' with k' degrees of freedom. An asymptotically 

equi valent likelihood ratio test (LR test) statistic for thi s test is 

Mm =-[N-lIIk-l- t l log(U,, ) 

,. 
where N = T -III , U m = ISmI/IS,,_,1 and S. = I /,i; is the residual sum of squares 

1= ,"+1 

matrix. 
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For a vector time series sequence {Y,} based on k elements. the partial crass 

carrelalian between the vectors y, and Y, -m given the in between vectors Y' - I .. ·· .Y'- m+1 

is the cross correlation matrix between the elements of vectors y, and Y,-m' after 

adjustment of both for their dependence on the elements of intervening vectors 

Y,_I' " ' ,Y' -m+1 and it is denoted by P~. For a stationary vector process. the parti al cross 

correlation matrix Pm can be approximated as foll ows. Consider the error vector Um, 

resulting from approximating the process by a V AR model of order (m- I) . given by 

m- I 

U m, = Y, - L <Il j (m- I)Y,- j = Y, - <Il ; m_ I )~m_ I ), (' _ I ) 
j =1 

Similarly by considering a backward VAR model of order (Ill-I) as 

we can obtain the backward AR coefficient matrices <Il;lm- Il ... ·.<Il;m-IXm-l) as a so lution 

from the set of equations 

m- I 
f(-/ ) = If(j-I)<Il:lm_l) for 1= 1 ... ·.(m -l) 

j =1 

and the backward error vectors U:.,_m can be obtained as 

m- I . ~ . .. 
U m.t - m == Y, - m - ~ CI> J(m- I)Y, - m+j == Y, - m - <l>(m_ I)Ym_ I.I _1 

j= 1 

Partial cross correlation matrix at lag m is then defined as 

_ • _ -1/2 • , -1/2 
p .. - Corr(U.,, _ ... U .. ) - V.(m) E(U.,_~U .. ,)V(III) 
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where V,(m) = diag('(,, _I )' V(m) = diag(Lm _I), 

11,-1 

Lm _1 = Cov(Um,) = r(O) - L r( - j)(/>~("_I ) , 
)01 

~-I 

L:,_I = Cov(U;,,_m ) = r(O) - L r(m - j)(/>~,,-jxm-I) and 
j - 1 

where r im_I) = (r'(l),.··, r'(m - I))' and r ;m_,) = (r(m- I),.··, reI))'. Under VAR(P) 

model assumption, the elements of sample partial cross correlation matrix Pm are 

approximately normally distributed with zero means and variances l/T for m > p and 

this property was used to test their significance. 

The partial canonical correlation at lag m of a stationary vector time series 

process {y, }, with k elements, denoted by I ?! PI (m) ?! PI (m) ?! .. . ?! p, (m), are the 

canonical correlation between vectors y, and y, __ after adjusting for the dependence of 

these variables on the intervening values y'_I'· · ,YI-m+I' Hence these are the canonical 

correlations between the residual series U m.' and U;:,I_m' The squared partial canonical 

correlations p,l(m) are the eigen values of the matrix 

- (/> - (/>' 
- ttl", ",Iff 
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, I 0 0 0 0 ~;\ 

~~~ ~ ·\U\· <- • ~ loS\' 
8 <1>, <1>, <I> p_' <1>, < ... ... f '! 1.'C. 

~I~ ' : 
,. ) 

0 I, 0 0 0 .. :.:~ , ~ .~ 

B = c-·, ,. . , l\nO\a) 
0 0 I, 0 0 ~,,- ., - j\~ . 

~ . . '1-r,C" 
G0cn .· 

, 0 0 0 I, 0 

The matrices If', for i = 0, I, · ·· can be calculated recurssively using the relation 

<1>, "',_, 

where "'. = I and "', = 0 for i < O. 

Results: 

2. I. VAR modelling of oil sardine. mackerel, anchovies and lesser sardine 

Quanerwise landings of oil sardine, mackerel , anchovies and lesser sardines 

during 1960-96 were used to estimate a suitable vector autoregressive model of 

appropriate order. These series were initially transformed by taking a 4 point moving sum 

of natural logarithm of quanerwise landings and then divided by corresponding standard 

deviations to standardize the variance. All the four species/groups are competitors for the 

same food all being mainly feeding on plankton. As a preliminary analysis, to examine 

the inter relations between the series, cross-correlations up to lag 24 and the covariance 

matrix S were computed for this vector time series. The cross correlation matrices are 

shown in table 2.1.1. and their significance is indicated using the notations suggested by 

Tiao and Box ( 198 I) in brackets. 
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The maximum cross correlation observed at lag 0, was 0.509 between mackerel 

and anchovies. At lag 0, the cross correlation between oi I sardine and anchovies was -

0.412 which is also high. Cross correlation between oi l sardine and mackerel were 

significant at all lags from 0 to 8. The maximum cross correlations between these two 

species obsernd were -0.382 at lag 4 and -0.534 at lag - 12. Between oil sardine and 

anchovies, the maximum cross correlation observed were -0.412 at lag 0 and -0.633 at 

lag -10. Between oil sardine and lesser sardine maximum cross correlation observed was 

0.223 at lag -4 and other significant cross correlations were at lags - 8 and -2. Between 

mackerel and anchovies the highest cross correlations found were 0.509 at lag 0 and 

0.598 at lag - 2. Among the significant cross correlations between mackerel and lesser 

sardines the maximum observed value was 0.238 at lag 10. Significant cross correlations 

between anchovies and lesser sardines were at lags 11 ,12 and 13 with maximum of -

0.185 at lags II and 12 and other significant cross correlations were for lags - 15 to - 24 

with a maximum of -0.316 at lag 24. To test the combined significant of these cross 

correlation matrices at different lags the combined signi ficance X 2 statistic with 16 

degrees of freedom were computed and these are given in lable.2.1.2. From Ihis table it 

can be seen that the combined significance x2 values are significant for all lags both at 

5% and I % levels of significance, which shows that there is significant inter relations 

between the landings of these species even at higher lags. 

Partial cross correlations up to lag 16 were calculated for this vector time series 

and their significance were tested. The partial cross correlation matrices along with the 

significance of elements in bracket are shown in the table.2.IJ . From the partial cross 
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correlation matrices it was seen that there is significant partial cross correlation between 

the landi ngs of oil sard ine, mackerel and anchovies at lags I and -I but no significant 

partial cross correlation was found between the landings of these species with that of 

lesser sardine. The partial cross correlation between oil sardine and mackerel were found 

significant at lags -2, -I , I and 15 . Oil sardine landings were fOllnd to have significant 

partial cross correlation wi th that of anchovies at lags -4, - I and I. The only significant 

partial cross correlation between the landings of oil sardine and lesser sardi ne was at lag 

5. Mackerel landings had signi fi cant partial cross correl ation with the landings of 

anchovies at lags -9 and -6. There was no significant partial cross correlation between the 

landings of mackerel and lesser sardine. The onl y significant part ial cross correlation 

between the landings of anchovies and lesser sardine was at lag -12. 

The squared partial canonical correlation coefficients up to lag 10 were calculated 

for the vector time series consisting of transformed landings of these four species along 

with the LR test statistic , which is a X' wi th 16 degrees of freedom, for testing the 

significance of partial canonical correlati ons. These are given in table.2 .IA. The partial 

canonical correlations at lags 1,2,4,5 and 8 were found significant fo r this vector time 

senes. 

To select a suitable vector autoregressive model for the vector time series 

different minimization criteria were computed by estimating the residual di spersion 

matrices for different VAR(P) models for p = 0, 1, ···· · ·, 10 . The estimate of residual 

dispersion determinant and the values of different criteria for different values of the order 
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parameter p are given in table.2.1.5. As the order of the model is increased, it was found 

thai the FP£ and AIC criterion values were going on decreasing. The I-1Q criterion was 

found to have least values for orders 2 and 5 and th r. SC criterion have minimum value 

for order 2. Hence VAR(2) was tentatively fixed as the suitable model for the series. 

A computer software was developed in C for the estimation of parameters of 

VAR(p) models, the source which is given in Appendix-I. Using this software the 

constant vectorS, coefficient matrices <1>" <1>2 and the innovation dispersion matrix L 

which are the parameters of the VAR(2) model, y, = S + <I>,y,_, + <l> 2Y,_2 + c, identified 

for the series. were estimated. The estimates of the parameter matrices and the standard 

errors of the elements of the matrices were made and it is given below. 

J = (1.1824 0.8430 0.6068 1.9616)' ,S£(8) = (0.4810 0.5652 0.5647 0.7290) 

1.3958 - 0.0206 

0.0951 1.2156 
<1>, = 

- 0.1550 0.0629 

0.1105 - 0.0216 

0.1884 - 0.0082 () ,SEeD, = 
1.0348 - 0.0653 

- 0.0021 - 0.1 038 0.0448 1.1 040 

0.0720 0.0658 0.0693 0.0553 

0.0846 0_0774 0.081 5 0.0649 

0.0845 0.0773 0.0814 0_0649 

0.1091 0.0998 0.1051 0.0838 

[

-0.4971 

- - 0.1303 
CD = 

l 0.1436 

- 0.0459 

0.0082 - 0.1576 

- 0.3233 - 0.1359 

- 0.0542 - 0.0994 

0.0889 - 0.0646 

0.0459] [ 0.0718 
- 0.0026 SE(eD )= 0.0844 

0.0708 l 0.0843 

- 0.2067 0.1088 

0_0654 0.0706 

0.0769 0.0829 

0.0768 0.0829 

0.0991 0.1070 

0.0551 ] 
0.0647 

0.0647 

0.0835 

[ 

0.0675 

_ -0.0008 
E= 

0.0024 

0.0131 

- 0.0008 

0.0932 

0.0021 

0.0114 

0.0024 

0.0021 

0.0930 

0.0035 

0.0131 ] 
0.0114 

0.0035 

0.1550 
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Among the elements of the constant vector r5 the first and last elements were 

found to be significant. In <1> , all diagonal elements and the element in the second row 

and third column were the only significant estimates. Significant elemenls of <1>, were the 

diagonal elements except the third diagonal element and Ihe element in its first row and 

th ird column. Hence the estimated model suggests that the landings of anchovies is 

significantly influenced by the lagged landings of oi l sardine. To exanline whether the 

estimated model satisfy the necessary stationary condilions eigen values of the VAR(l) 

equivalent characteristic matrix were evaluated for the model and these are given in 

table.2 .1.6. II was found that all the eigen values of the characteristic matri x have 

absolute value less than unity and hence the estimated model is stationary. To examine 

the suitability of the fitted VAR model residual analysis was carried out by computing the 

cross corre lation matrices of the residual series for lags I = I,· · · ,24 and their combined 

significance were tested by calculating the appropriate / statistics with 16 degrees of 

freedom. The values of these X2 statistics for different lags are given in table .2. 1.2. 

Among ind ividual residual cross correlations it was fou nd that 5 out of the 16 cross 

correlations at lags 3 and 4 were significant and only very few va lues were significant at 

all other lags. By examining the estimate of innovation di spersion matrix, it was found 

that thi s model could explain 93% of variations in oil sardine landings, 91 % each of the 

variations in mackerel and anchovies landings and 84% of the variations in lesser sardine 

landings. Observed values, forecasts made by the fitted V AR(2) model and standard error 

of forecasts are given in table.2 .6.1. for clifferent quarter of 1997 and 1998. Original 

forecasts obtained through retransforrnation are given in table.2.6.6. 
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2.2. VAR modelling with landings of anchovies, lesser sardine, Ribbon Fish and Catfish, 

Quartcrll'ise landings of anchovies, lesser sardines, ribbon fi sh and catfish in 

Kerala during the period 1960-96 were used to fit a suitable vector autoregressive model 

after transforming these seri es by taking a 4 point moving sum of natural log of landings 

and then standardized by dividing each time series by respective standard deviations. 

Among these four groups of marine fi shes, anchovies and lesser sard ine being plankton 

feede rs compete each other fo r food and the other two groups prey up on anchovies and 

lesser sardines. The cross correlation matri ces calculated for this vector time series are 

given in table.2.2.1. 

From the cross correlation matrices it was seen that cross correlations between all 

these series were significant at lag zero except for that between anchovies and lesser 

sard ine series. The maximum cross correlati on observed at lag zero was -{).424 between 

anchovies and cat fi shes. Anchovies series was found to have sign ificant negative cross 

correlation with catfishes series at lags - 8 to 24 and the maximum cross correlation 

observed was --{),600 at lag 13. Cross correlations of anchovies series with ribbon fi sh 

series were negative and significant for the lags from -24 to II and the highest cross 

correlation was 0.347 at lag - II. Between lesser sardine and ribbon fish series cross 

correlations were fo und to be significant and positive at lags - II to 10. The maxi mum 

cross correlation between thi s two series was 0,352 at lag -{) . Lesser sardine series was 

found to have significant positive cross correlations with catfish series at lags - 8 to 10 

and 18 to 24. The maximum cross correlation between these series was 0.335 at lag 24. 

Significant posi tive cross correlations were found between ribbon fish and catfish series 

at lags - 8 to 4 and the max imum value was 0.199 at lag - 5. Out of the 384 elements in 



107 

Ihe cross correlalion matrices of different lags 206 were found to be significant. The . 

combined significance of cross correlation matrices at lags 0, I, . .. ,24 were tested by 

computing the combined significance Xl with 16 degrees of freedom and these are given 

in the table.2.2.2. It was found that these Xl values are highly significant for all the lags 

from 0 to 24. This shows thai there is considerable inter relation at different lags between 

these series. 

Since the cross correlations at different lags will not be free from Ihe influence of 

in-between values, partial cross correlation malrices were also computed up to lag 16 for 

this time series. Parti al cross correlation matrices of different lags for this veClor time 

series are given in table .2.2.3 . indicating the significance of its elements using standard 

notations. It was found that at lag I all the partial· cross correlations are significant expect 

for that between anchovies and lesser sardines and the maximum was -0.441 between 

anchovies and catfishes. Between anchovies and ribbon fi shes the partial cross 

correlations were significant at lags 1,-1,-2,-3 and - 13 with maximum of 0.3 12 at lag -I. 

At lag -3 the partial cross correlation was negative and at all other significant lags it was 

positive. Between anchovies and lesser sardines partial cross correlations were negative 

and significant at lags 8 and - 15 with a maximum of - 0.243 at lag 8. Partial cross 

correlation between anchovies and catfishes were significant and negative at lags I, - I 

and 16. The maximum parti al cross correlation between these two groups was -0.441 at 

lag I. Lesser sardines had significant partial cross correlation with ribbon fi shes at lags I 

and - I both being positive with maximum of 0.250 at lag - I. Lesser sardines and 

catfishes had significant and positive partial cross correlations at lags I, - I and 15 with 

0.227 as the maximum at lag I. Ribbon fi shes and catfi shes had significant and positive 
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partial cross correlations at lags I, -I and 9 with maximum of 0.247 at lag 9. Out of256 

elements in the partial cross correlation matrices for lags 1 to 16 of this vector time series 

33 elements were found significant. Squared partial canonical correlations up to lag 10 

were also computed for this vector time series and it is given in table.2.2.4. It was found 

that except for lags 3, 4 and 7 these canonical correlations were significant at all lags. 

Selection of an appropriate order of the required VAR model for the vector time 

series consisting transformed landings of anchovies, lesser sard ine, ribbon fish and 

catfish was carried out by computing FPE, Ale, HQ and se order selection criteria by 

estimating different VAR(P) models for values of p = I,. ·· ,I 0 and it is given in 

table.2.2.5 . The FPE criterion was found to have a decreasing nature as the order of the 

model is increased so that the minimum FPE was corresponding to the model VAR(10). 

The Ale criterion also behaved in a similar manner and its minimum value was 

corresponding to the model VAR( I 0). The minimum value for I-IQ criterion was for the 

model VAR(2) and the se criterion had the minimum value for VAR(I) model. These 

two models were then estimated and compared for final selection. 

The expression for the VAR(2) model is y, = Ii + <I> ,y--, + <I> ,y,_, + e, and its 

parameter matrices are Ii, <1>" <1> , and L, where L is the di spersion matrix for the 

innovation series {e,} . The estimates of parameters and their standard errors are given 

below. 

J = (0.8239. 1.4387, - 0.3973, 0.61 80} , SEttY) = (0.4882, 0.63 19, 0.5123, 0.3159)' 
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1.0225 - 0.0835 -0. 1093 - 0.0062 0.0815 0.0636 0.0727 0.1264 

0.0447 1.0943 - 0.0648 0.1948 0.1055 0.0824 0.0941 0.1636 
<1> , = 

-0.1312 -0.0713 1.2619 0.0171 
' S£«(I>,) = 

0.0855 0.0668 0.0763 0.1327 

0.0420 0.0198 0.0221 1.16 17 0.0527 0.0412 0.0470 0.0818 

-0.1001 0.0677 0. 1613 - 0.0122 0.0823 0.0635 0.0732 0.1265 

-0.0682 -0.2164 0.1180 -0.1973 0.1065 0.0822 0.0947 0.1637 
<1> , = 

0.19 18 0.0808 - 0.3739 0.0214 
,S£(<I>,) = 

0.0864 0.0666 0.0768 0.1327 

-0.0943 - 0.0148 - 0.0037 - 0.2061 0.0533 0.0411 0.0474 0.0818 

0.0914 - 0.0004 0.0058 -0.0077 

-0.0004 0.1532 0.0168 0.0003 
L= 

0.0058 0.0168 0.1007 0.0091 

.-0.0077 0.0003 0.0091 0.0383 

The signi ficance of elements of the coefficient matrices were tested usmg 

Students '[' and it was found that only the diagonal elements are significant in cD, and in 

cD, all diagonal elements and the elements at posi tions (1 ,3) and (3,1) are significant. 

Stationarity of the estimated model was tested by computing the eigen values of the 

V AR( I) equivalent characteristic matrix generated using the estimates of the AR 

coeffic ient matrices and these are given in table.2 .2.6. From the table it can be seen that 

the absolute value of all the eight eigen values are less than unity which is the required 

condition for stationarity of the model. Hence the estimated model is stationary . To 

examine the suitability of the fitted VAR model, the residual analysis was carried out by 

computing the innovation vectors based on the fitted model and then calculating the cross 

correlation matrices up to lag 24 for the series of innovation vectors. The combined 

significance of these cross correlation matrices were tested using the approximate x.' with 

16 degrees of freedom and these values are given in the table.2.2.2. Among these x.' for 

the residuals those at lags 4, 18 and 22 were found significant. Out of386 elements of the 
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cross correlation matrices of residuals 25 were found significant. This model could 

explain 90.86% of the variations in anchovies series, 84.68% of the variations in lesser 

sardine series, 89.93% of the variations in ribbon fish series and 96.17% of the variations 

in catfish series. 

The V AR( I) model is y, = 0 + <I>,y,_, +., and the estimates of parameter vector 

o and parameter matrices <1>, and I with standard errors of elements of these vector and 

matrices are given below. 

.5= (0.6570, 1.1179, 0.1221, 0.5198}, SE(.5) = (0.4872, 0.6357, 0.5442, 0.3167)' 

0.9404 -0.016.5 0.0320 -0.0027 0.Q317 0.0270 0.0298 0.0314 

- 0.Of82 0.9011 0.0445 0.0026 0.0414 0.0352 0.0389 0.0409 
<1> , = 

0.0244 -0.0080 0.9259 0.0165 
' SE(<I> , ) = 

0.0354 0.0302 0.0333 0.0350 

- 0.0502 0.0066 0.0159 0.9668 0.0260 0.0176 0.0194 0.0204 

0.0963 -0.0002 -0.0023 -0.0073 

- 0.0002 0.1640 0.0085 0.0031 
L= 

-0.0023 0.0085 0.1202 0.0074 

-0.0073 0.0031 0.0074 0.0407 

Among the elements of the parameter matrices all elements of ,) are non-

significant and in $, all diagonal elements and element in position (4, 1) are significant. 

Stationarity of the estimated model was tested by calculating the eigen values of $ , and 

it was found that all the eign values have modulus less than unity so that the estimated 

model is stationary. The eigen values are given in table.2.2 .6. Using this model residual 

vectors were evaluated and cross correlation matrices up to lag 24 were calculated for the 

residual vector series. Among 384 elements of these matrices 28 elements were found to 

be significant. Combined significance of the elements of the residual cross correlation 
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matrices were tested by calculating the X' with 16 degrees of freedom and these are 

given in table.2.2.2. It was found that these X' stati stics were significant for lags I, 4, 6, 

13 and 22. The estimated VAR(I) model could explain 90.37% of variations in anchovies 

series, 83.60% of variations in lesser sardine series, 87.98% of variations in ribbon fi sh 

series and 95.93% of variations in catfish series. When the two models VAR(I) and 

V AR(2) fitted for this vector time series were compared, it was found that the V AR(2) 

model behaves better in terms of its capability to explain the variations in the component 

series and the significance of residual cross correlation matrices. Hence VAR(2) model 

was chosen as the best vector model to represent thi s vector time series. Quarterwise 

forecasts and standard errors of forecasts along with observed values for 1997 and 1998 

are gIven In table.2.6.2. Original re-transforrned values of the forecasts are given in 

table.2.6.6. 

2.3. VAR modelling of mackerel. anchovies, tuna and penaeid prawns. 

Time series data on quarterwise landings of mackerel, anchovies, tuna and 

penaeid prawns in Kerela during the period 1960-96 were initially transformed by taking 

a 4 point moving sum of natural log and then standardized by dividing each series with 

corresponding standard deviations. Mackerel , anchovies and penaeid prawns are plankton 

feeders and they compete each other for food where as tuna predate on these three group 

of marine species. The vector lime series consisting of transformed landings of these 

species were then used 10 fit a sui table vector autoregressive model. Cross correlation 

matrices up to lag 24 were computed for this sample vector lime series and these are 

given in table.2.3.1. 
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It was fo und from the cross correlation matrices that the cross correlations between 

these four species were positive at all lags and out of 384 elements in these matrices 353 

were significant. At lag zero, there was significant, high and positive cross correlation 

between all the species and the maximum was 0.754 between anchovies and tuna series. 

Cross correlations between the landings of these two groups were positive, significant 

and high at all lags from -24 to 24 and the minimum cross correlation was 0.329 at lag 

24. Between mackerel and anchovies series also the cross correlations were significant at 

all lags with 0.598 as the maximum cross correlation at lag - 12 and the minimum was 

O. I 83 at lag 24. Between mackerel and tuna cross correlations at all lags from -24 to 24 

were signifi cant and the maximum cross correlation was 0.566 at lag 0 and minimum was 

O. I 89 at lag 24. Cross correlations between mackerel and penaeid prawns were found to 

be significant at lags from -24 to 16 and the maximum cross correlation observed was 

0.597 at lag -7. Cross correlati ons between anchovies and penaeid prawns were 

significant at all lags except at lag 24. The highest observed cross correlation between 

them was 0.593 at lag -3. Between tuna and penaeid prawns the cross correlations were 

significant at lags from - 24 to 15 with a maximum of 0.675 at lag 7. The combined 

signi fi cance of these cross correlation matrices were tested by computing the appropriate 

X 1 statistic with 16 degrees of freedom and these are given in table.2.3.2. All these 

X' values were found to be highly significant and hence there is significant inter-relation 

between di fferent series considered in the vector time series. 

To examine the independent lagged correlations that exist between component series 

belonging to the vector time series, the partial cross correlation matrices up to lag 16 
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were also computed and these matrices are given In table.2.3.3. indicating the 

significance of individual elements of the partial cross correlation matrices. Out of the 

256 elements in the partial cross correlation matrices 39 were found signi ficant. Partial 

cross correlations at lag I were found to be significant, high and positive between all the 

four series. The maximum partial cross correlation observed at thi s lag was 0.761 for the 

anchovies series with that of tuna. Between mackerel and anchovies series the part ial 

cross correlations found significant are at lags I, -I , -6, -9, -1 3 and 14. At lags I, -I , -6 

and -9 these partial cross correlations were positive and for other significant lags these 

were negati,·e. Partial cross correlations between mackerel and tuna found significant 

were for lags I, -I and -5 and all these partial cross correlations were positive. Mackerel 

series had significant partial cross correlations with penaeid prawn series at lags I, -I , -3, 

-7 and - 13 and all these values except that at lag - 13 were positive. The partial cross 

correlations of anchovies series with tuna series that were found significant are for lags I 

and - I and these cross correlations were positive. The partial cross correlations that were 

found significant for the anchovies series with the penaeid prawn series were for lags I, 

-I , -4, -8 , and - 10 out of which those at lags I, -I and - 10 were positive. Partial cross 

correlations that were found significant between tuna and penaeid prawn series are for 

lags 1. -I , -2. -4 and - 9. Among these significant values those at lags I, -I and -2 were 

positive and the rest negative. 

For selection of the appropriate vector autoregressive model for this vector time 

series the FPE , AIC, HQ and SC order selection criteria were calculated for different 

values of the order parameter p = 0, I, " ' , I 0 by estimating the residual dispersion matrix 
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for different models and the values of these criteria for different models are given in 

table .2.3.4. 11 was found that both the FPE and AIC criterion values go on decreasing as 

the order is increased so that they suggest V AR( I 0) as a suitable model. The HQ criterion 

has minimum value for the VAR(6) model and VAR(I) model yielded the next 

minimum. For the SC criterion the minimum value was corresponding to the VAR( I) 

model. Hence V AR( I) was selected as the suitable model by considering parsimony and 

the HQ and SC criteria. 

The expression for the V AR( I) model is y, = 8 + ¢ ,y,_, + E, with parameter vector 8 

and parameter matrices ¢ , and L where L is the dispersion matrix for the independent 

and identically distributed innovation series {E,}. These parameters were estimated and 

the estimated vector and matrices and their standard errors are given below. 

J = (- 0.753 1. 0.3099, - 0.3981, 2.0793), SE(J) = (0.5069, 0.4 778,0.3307, 0.5545)' 

0.9196 0.0771 - 0.0546 0.0550 0.0338 0.0445 0.0435 0.0323 

-0.018~ 0.8862 0.0831 0.0220 0.0318 0.0419 0.0410 0.D305 
<1> , = 

0.0176 0.0617 0.9196 0.0100 
' SE(<I> ,) = 

0.0220 0.0290 0.0284 0.021 1 

-0.0196 0.0243 0.0544 0.8697 0.fr370 0.0487 0.0476 0.0354 

0. t060 0.0040 0.0181 -0.0134 

0.0040 0.0942 - 0.0036 0.0243 
L = 

0.018 1 - 0.0036 0.0451 - 0.0160 

- 0.0134 0.0243 - 0.0 160 0.1268 

In these estimates the last element of the constant vector J was significant and 

other elements were non-significant. In the coefficient matrix $ " all diagonal elements 

and the elements in position (2,3) and (3,2) were significant. To examine whether the 

estimated V AR( I) model is stationary or not, eigen val ues of the estimated parameter 
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matrix <1>, was evaluated and these are given in table.2.3.6. Since all these eigen values 

have absolute value less than unity, it satisfies the required stationary condition and hence 

the estimated model is stationary. Using the estimated model the residual series were 

generated and cross correlation matrices up to lag 24 were calculated for the residual 

series. Out of 384 elements of these matrices only 33 clements were found significant. To 

test the combined significance of the residual cross correlation matrices the approximate 

X' statistic with 16 degrees of freedom were calculated for different lags and these are 

given in table.2.3.S. These statistics were significant for lags I, 4, 6, 8, 13 and 19. The 

estimated model could explain 89.40% of variations in mackerel landings, 90.58% of the 

variations in anchovi.es landings, 95.49% of the variations in tuna landings and 87.32% of 

the variations in penaeid prawns landings. Observed values, forecasts and standard errors 

of forecasts computed using the estimated V AR( I) model are given in table.2.6.3 for 

different quarters of 1997 and 1998. Original values of forecasled obtainged through 

retransformation are given in table.2.6.6. 

2.4. VAR modelling with the landings of oil sardine, anchovies, tuna and penaeid prawns. 

Time series data on quarterwise landings of oil sardine, anchovies, tuna and 

penaeid prawns in Kerala during the period 1960-96 was initially transformed by taking a 

4 point moving sum of natural logarithm of the landings and then standardized by 

dividing with corresponding standard deviations. The vector time series consisting of 

transformed landings of these four marine species/groups was then used to fit a suitable 

vector autoregressive model. Cross correlation matrices up to lag 24 were calculated for 

this sample vector time series and these are given in table.2.4. 1. Among these 
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species/groups tuna is the only carnivorous type of species group feeding on young ones 

of the other three where as the other species/groups are plankton feeders and compete 

each other for the same food resources. 

From the cross correlation matrices it was found that at lag zero the maximum 

cross correlation was 0.754 between anchovies and tuna landings. Oil sardine series was 

found to have significant cross correlations with anchovies at lags from - 24 to 9 and also 

at lag 21 . The maximum cross correlation between these two series was - 0.633 for lag 

-10 and all the significant cross correlations were negative. Oil sardine and tuna series 

had significant cross correlations between them at lags from -24 to 15 with a maximum 

of - 0.505 at lag 18 and all the significant cross correlations were negative. The 

significant cross correlations of oi l sardine series with penaeid prawns series were all 

negative and these are for lags from - 24 to 6. The maximum cross correlation observed 

between these two series was -0.413 at lag -I. Out of 384 elements in these cross 

correlation matrices 3 I 5 elements were found to be significant. Combined significance of 

the cross correlation matrices were tested using the approximate X' with 16 degrees of 

freedom values which for different lags are given in table.2.4.2. It was found that for all 

lags these X' values are highly significant. 

Partial cross correlations up to lag 16 were also computed for thi s vector lime 

series and these are given in table.2.4.3. In these partial cross correlation matrices 39 

elements out of a total of 256 elements were found to be significant. The maximum 

partial cross correlation observed was 0.761 at lag I between anchovies and tuna series. 
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Significant partial cross correlations that the oil sardine series had wi th anchovies series 

were -0.397 at lag I and -0.420 at lag -I. Oil sardine and tuna series had significant 

partial cross correlations at lags I, -1 ,2,5, 13 and 15 with -0.374 as the maximum which 

is at lag - I. Significant partial cross correlations of oil sardine series with penaeid prawn 

series were I. -I, -3 and -12 with maximum partial cross correlalion of -0.413 at lag - I. 

Squared partial canonical correlations were also calculated fo r different lags using this 

vector tiine series data and these are given in table.2.4.4. along with the LR statistic for 

testing their significance. From the table it can be seen that these Xl values are 

significant for all lags from I to 9 except for that at lag 3. These analysis evidently show 

that there exist strong inter-relation between the series considered in the vector which can 

be exploited by modelling them together using vector time series models. 

For identification of a sui table VAR model for this vector time series data, the 

different order selection criteria namely FPE, AIC, HQ and SC were calculated by 

estimating the residual dispersion matrix for different values of the order parameter 

p = I, 2,··· ,10 and these are given in table.2.4.5. From the table it was found that the 

FPE and AIC criteria does not yield any suitable order as these criteria were found to go 

on decrease as the order is increased. The HQ criterion had minimum value for p =5 and 

the SC criterion had minimum value for p=l. But both HQ and SC criterion had second 

least values for p=2. Based on these results three models namely, VAR(l), VAR(2) and 

V AR(5) were considered for estimation and final selection was made based on their 

properties. 
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For the VAR(I) model y, =o+<I>,y,_, +1:, the estimates of parameter vector t5 , 

parameter matrix <1>" innovation dispersion matrix L and the standard errors of their 

elements were 

J = (1.3549, 0.3452, - 0.5359, 2.0756)' , S£(J) = (0.6469, 0.6519, 0.4513, 0.7575)' 

0.9311 -0.0001 - 0.0358 -0.0264 0.0284 0.0420 0.0388 0.0305 

- 0.005 I 0.8827 0.0754 0.0191 0.0286 0.0423 0.0391 0.0307 
<1> , = 

0.0100 0.0655 0.9274 0.0155 
S£(<I> , ) = 

0.0198 0.0293 0.0271 0.0213 

- 0.0025 0.02 13 0.0462 0.8668 0.0332 0.0491 0.0454 0.0357 

0.0929 -0.0013 0.0122 - 0.0157 

i:= 
- 0.0013 0.0943 -0.0038 0.0246 

0.0122 -0.0038 0.0452 - 0.0161 

- 0.0157 0.0246 -0.0 161 0.1272 

The significant elements of estimates of parameter matrices were, the last element 

of constant vector g and all diagonal elements and the element in position (3 ,2) of <P, . 

Eigen .values of the coefficient matrix cD, are given in table.2.4 .6. The absolute value of 

all the eigen values were less than unity and hence the estimated V AR(l) model is 

stationary . Combined significance of the residual cross correlation matrices up to lag 24 

were tested using X' with 16 degrees of freedom and those found significant were for 

lags I , 4, 6 and 19. These X' values are given in table.2.4.2. Out of a total of 384 

elements in the residual cross correlation matrices 25 elements were found significant. 

The estimated VAR( I) model could explain 90.71 % of variations in oil sardine landings, 

90.57% of variations in anchovies landings, 95.48% of variations in tuna landings and 

87.28% of variations in penaeid prawn landings. 
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The estimates of parameter vector <5, parameter matrices C!>" C!> , and the 

innovation dispersion matrix r for the V AR(2) model with the expression 

y, = <5 + C!> ,y,_, + C!> ,Y,_, + li, and standard errors of the estimates were 

J = (1.4690.0.3532,-0.63 18,2.2002)', SE(J) = (0.5586,0.6430,0.4416,0.7490), 

1.3893 0.1355 -0.0094 -0.0752 0.0724 0.0717 0.1052 0.0627 

- 0.IH5 1.0256 0.0103 - 0.0909 0.0834 0.0825 0.1210 0.0722 
C!>, = 

0.1507 0.0573 0.9446 - 0.0450 
' SE(c!> , ) = 

0.0573 0.0567 0.083 1 0.0496 

-0.2IH 0.0018 0.1873 1.0064 0.0971 0.096 1 0.14 10 0.0841 

- 0.4857 - 0.1658 -0.0172 0.0682 0.0714 0.0730 0. 1040 0.061 1 

0 . 1~9) -0.1645 0.0819 0.11 17 0.0822 0.0840 0.1197 0.0703 
C!>,= 

-0.1~6) 0.0086 - 0.0249 0.0707 
' SE(c!> , ) = 

0.0564 0.0577 0.0822 0.0483 

0.218) 0.0281 -0. 1419 - 0.1535 0.0957 0.0978 0.1395 0.0819 

0.0672 0.0028 0.0045 - 0.0049 

L= 
0.0028 0.0890 - 0.0021 0.0231 

0 .00~ 5 - 0.0021 0.0420 - 0.0116 

- 0.0049 0.0231 - 0.0116 0.1208 

Signi ficant elements in the estimate of parameters of the V AR(2) model were, 

first and last elements of <5 , diagonal elements and elements in positions (3, 1) and (4, I) 

of $ , and elements in positions ( I , I), (1,2), (3, I) and (3 ,4) of $ ,. The estimated model 

was stationary as the absolute values of all the eigen values of the characteristic VAR(I) 

eq ui valent matrix were less than unity. The egien values of the characteri stic matrix are 

given in table .2.4 .6. For the residual cross correlation matrices up to lag 24 computed for 

thi s model. the combined sign ifi cance X' statistic were found significant for lags 3, 4, 6, 

19 and 2 1. The values of the X' statistic for different lags are given in table.2.4 .2. Among 

384 elements in these residual cross correlation matrices 28 elements were found 

signi fi cant. The estimated VAR(2) model explained 93.28% of the variations in oil 
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sardine landings, 91.10% of variations in anchovies landings, 95 .80% of variations in 

tuna landings and 87.92% of variations in penaeid prawn landings. 

The expression for the vector autoregressive model of order 5, VAR(5) is 

y, = IS + <\) ,)" ., + <\) ,y,. , + <\) JY, . J + <\).y, . • + <\) ,y,. , + c, wi th parameters, the constant 

vector IS, coefficient matrices <\)" <\) " <\))' <\)" <\) , and innovation dispersion matrix L . 

Estimates of these parameters and their standard errors were made and these are given 

below. 

J = (1 .2038, 0.1332, - 1.0425, 1.8105)', S£(J) = (0.5598, 0.6376,0.4223.0.7825)' 

1.2890 0.1108 - 0.0698 - 0.0802 0.0786 0.0692 0.0977 0.0553 

I ~0. 1575 1.0813 - 0.0452 - 0.0854 0.0895 0.0788 0.1112 0.0630 
<\) - , S£(<D,l = 

, - 0.0605 0.0045 0.9657 - 0.0524 0.0592 0.0522 0.0737 0.0417 

- 0.25 73 0.0546 - 0.0119 1.0579 0.1098 0.0967 0.1365 0.0773 

- 0.24 77 -0.1292 - 0.0156 - 0.0162 0.1254 0.0972 0.1326 0.08 13 

<D , = I 
0.2346 - 0.0680 0.3475 0.1037 0.1428 0.1107 0.1510 0.0926 

-0.0775 0.1305 - 0.0019 0.0880 
,S£(<D, ) = 

0.0946 0.0733 0.1000 0.0613 

0.3451 - 0.0022 - 0.0511 - 0.2578 0.1753 0.1358 0.1853 0.1137 

[ 0"';' 0.0'" 0.0099 0" "] [0 "" 0.09" O. "'. "'02'] • 0.0352 0.0330 - 0.3806 0.0849 • 0.1471 0.1083 0.1513 0.0940 
<D) = ,S£(<D)= 

0.1432 - 0.090 1 0.0264 - 0.1153 0.0974 0.0718 0.1002 0.0613 

- 0.2252 0.0455 - 0.0223 0.1787 0. 1805 0.1330 0.1857 0.1154 

[-0"" -0.00;0 0.' ". -0.0"'] [0. ""0 0.0932 O. "" 0.0"'] 
• -0.1403 -0.5088 0.3284 - 0.0145 • 0.1458 0.1062 0.1522 0.0942 

(I> = SE(<D ) = 
• - 0.1899 - 0.0478 - 0.5099 0.0952' 4 0.0966 0.0703 0.1008 0.0624 

0.2698 - 0.0855 0.2977 - 0.4498 0.1789 0.1303 0.1868 0.1156 
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0.3211 -0.1234 - 0.0466 0.057 1 0.0805 0.0700 0.0940 0.0578 
0.0194 0.3473 - 0.1827 -0.0605 0.0917 0.0797 0.1071 0.0658 

<1>, = 
0.0776 0.0506 0.4495 0.0334 

' S£(<I>,) = 
0.0607 0.0528 0.0709 0.0436 

- 0.1572 - 0.0080 - 0.1995 0.3823 0.1125 0.0978 0.1314 0.0807 

0.0513 -0.0017 0.0039 - 0.0086 

i: = 
- 0.0017 0.0665 0.00 10 0.0160 

0.0039 0.0010 0.0292 -0.0058 

-0.0086 0.0160 -0.0058 0.1002 

Among the parameter estimates three elements of the conslant vector li were 

significant. The significant elements in the esti mates of coefficient matrices were, all 

diagonal elements and the element in position (4, I) of <1>, ; elements in positions (1,1), 

(2,3), (4 ,1), (4 ,4) of ci> , ; element in position (2,3) of ci>J; elements in positions (1,1), 

(2,2), (2,3 ), (3, 1), (3,3) and (4,4) of ci>, ; all the diagonal elements of ci>" Eigen values of 

the characteristic VAR(I) equivalent matrix were evaluated to examine whether the 

model is stationary or not and these are given in table.2.4.6. All the 20 eigen values were 

found to have absolute value less than unity and hence the estimated VAR(5) model is 

stationary. Suitability of thi s model was tested by evaluating the residual vectors and their 

cross correlations up to lag 24. Out of 384 elements in the residual cross correlation 

matrices only 17 elements were found to be significant. Combined significance of the 

residual cross correlation matrices were tested by calculating the X' with 16 degrees of 

freedom fo r different lags and these are given in table.2.4.2. These X' values were fou nd 

to be significant for lags 8, 19 and 21. The VAR(5) model fitted to the vector time series 

was found to explain 94.87%, 93 .35%, 97.08% and 89.98% respectively of the variations 

in the component series belonging to the vector time series studied. 
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By comparing these three models for their properties it was seen that though 

VAR(5) model has more number of parameters it behaves better than the other two 

models in terms of lesser number of significant cross correlations, both for the individual 

elements of residual cross correlation matrices and thei r combined significance. Also it is 

capable of explaining the variations in the component series more efficiently than other 

models. Hence this model was selected as the final model for representing thi s vector 

time series. Quarterwise forecasts and observed values for 1997 and 1998 along with 

standard errors of forecasts are given in table.2 .6.4. Original re-transformed values of 

fo recasts are given in table.2.6.6. 

2.5. VAR modelling with landings of elasmobranchs. oil sardine. mackerel and seer fish . 

Time series data on quarterwise landings of these species/groups in Kerala during 

1960-96 period were initially subjected to transformation by taking a 4 point moving sum 

of natural logarithm of the landings and then standardized by dividing each series with 

corresponding standard deviations. Among these species/groups oil sardine and mackerel 

compete each other fo r the same food resources both being plankton feeders. 

Elasmobranchs and seer fi shes are carnivorous type of fishes and they predate on oil 

sardine and mackerel. The vector time series consisting of transformed landings of 

elasmobranchs, oil sardine, mackerel and seer fishes were then used for the analysis. 

Cross correlation matrices up to lag 24 were calculated for the vector time series and it is 

given in table .2.5.1 . Out of 384 elements in the cross correlation matrices 271 elements 

were found to be significant. For testing the combined significance of elements of cross 

correlation matrices the X' statistic with 16 degrees of freedom were calculated for each 
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lag and it is given In table.2.5.2. All these X' stati stics were found to be highly 

significant which indicate that the component series are well inter-related. 

The maximum cross correlation observed at lag zero was 0.421 between mackerel 

and seer fish series. Among all the elements of these cross correlation matrices the 

maximum value observed was 0.504 which corresponds to the cross correlation of seer 

fish series with that of mackerel for lag - 9. Elasmobranchs had positive and significant 

cross correlations with oil sardine at lags -24 to -17 and - 7 to 22. The maximum cross 

correlation between these two was 0.315 at lags -3 and 6. Cross correlations of 

elasmobranchs series with mackerel series were found to be significant and negative for 

lags - 24 to -16, -7 to - 2 and 0 to 17, the maximum cross correlation being -0.382 at lag 

5. Significant cross correlations of elasmobranchs series with that of seer fish were for 

lags - 24 to -I and these cross correlations were negative. The maximum cross 

correlation observed between these two groups was -0.398 at lag - 12. Oil sardine series 

have significant cross correlations with that of mackerel at algs -24 to 12 and all these 

cross correlations were negative. The maximum cross correlation observed between oil 

sardine and mackerel series was -0.382 at lag 4. Cross correlations of oil sardine with 

seer fishes were found to be negative and significant at lags - 24 to 10 and the maximum 

cross correlation observed between them was -0.454 at lag -7. Mackerel series was 

found to have significant and positive cross correlation with seer fi sh series at all lags and 

the maximum of these cross correlations was 0.504 for lag - 9. 
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Part ial cross correlation matrices up to lag 16 were also computed for this vector 

times series and these matrices are given in table.2.5 .3. In these 16 partial cross 

correlation matrices 34 elements were found to be significant out of a total of 256 

elements and 14 of the signifi cant ones belong to lag I partial cross correlation matrix. 

Significant partial cross correlations of elasmobranchs with oil sardine were for lags - 10, 

'-1 and I with a maximum of 0.264 at lag -I. All these parti al cross correlations were 

positive. Elasmobranchs and mackerel series had negative and significant partial cross 

correlations for lags -7, -2 , I, 2 maximum being -0.204 for lag I. Partial cross 

correlati ons of elasmobranchs with seer fi sh were negative and significant for lags -7, -I 

and 8 wi th -0.186 as the maximum at lag - I. At lags -2, -I , I and 9 the partial cross 

correlation of oi l sardine with mackerel were significant and the maximum was -0.354 

for lag I. Oil sardine and seer fish seri es had significant partial cross correlations at lags ­

I, I and 7. The maxi mum partial cross correlation between them was - 0.348 at lag - I. 

Significant values of the partial cross correlations between mackerel and seer fish seri es 

were fou nd fo r lags I and - I, the maximum being 0.418 at lag - I. Squared partial 

canonical correlations up to lag 10 were also computed for this sample vector time series 

and these are given in table.2 .5.4. along with the LR statistic for testing the significance 

of these partial canonical correlations. It was found that the LR statistic which is a X' 

with 16 degrees of freedom were significant for lags 1, 2, 5, 7 and 9. These analysis show 

that there exist strong inter-relation between the components of the vector time series 

considered. 
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For selection of a sui table order for the VAR model to be fitted for this vector 

time series. Ihe FPE, AIC, HQ and SC order selection criteria were calculated by 

estimating the residual dispersion matrix for different values of the order parameter 

p = I, 2, ·· ·.1 0. The values of these criteria for different values of the order parameter are 

given in table.2.5.5 . From the table it was seen that the FPE and AIC criterion values 

keep on decreasing as the order of the model is increased and hence these two criteria do 

not yield any su itable model. For both the HQ and SC criterion the minimum values of 

the cri terion were corresponding to the value of the order parameter p = 2 so that 

V AR(2) model was taken as the suitable model to represent this vector time series. The 

parameters g, <1>" <1> , and L of the VAR(2) model having the expression 

y, = 8 + <I> ,y,_, + <I>,y, _, + c, were estimated and these estimates are given below along 

with standard errors of each parameter estimates. 

if = (4.7990. 0.7564, 2.1302, - 0.2324)', S£(if) = ( 1.17 I 6,0.6609, 0.7476, 0.6 151) 

1.1 6~0 -0.0239 0.21 16 - 0.1492 0.0803 0.126 1 0.1172 0.1589 

- 0.0~38 1.3883 - 0.0375 0.1751 0.0453 0.07 11 0.0661 0.0896 
<1> , = 

0.1381 0.1308 1.2025 -0.2406 
; S£(<I>,) = 

0.0512 0.0805 0.0748 0.1014 

0.1162 0.1365 -0.0546 1.0567 0.0422 0.0662 0.0615 0.0834 

[_O)W 0.0867 - 0.2 167 0.0980 0.0791 0.1269 0.1 173 0.1599 

, 0.0680 - 0.4852 0.0162 - 0.2 136 0.0446 0.0716 0.0662 0.0902 
<I> - , S£(<I> , ) = 

1 - - 0.188 1 - 0.1667 -0.3063 0.2757 0.0505 0.08 10 0.0749 0. 1020 

-0.0900 - 0.1619 0.0775 - 0.1025 0.0415 0.0666 0.0616 0.0839 

[ 0.2002 -0.0098 - 0.0032 

002"] , - 0.0098 0.0667 0.0062 -0.0042 
I: = 

- 0.0032 0.0062 0.0854 0.0102 

0.0267 -0.0044 0.0102 0.0578 
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When the estimates of elements of the parameter matrices were tested using their 

respecti ve standard errors it was found that in the estimate of the constant vector J the 

first and third elements were significant. All the diagonal elements and elements in 

positions (3 ,1), (3,4), (4,1) and (4,2) were found significant in the estimate of first 

coefficient matri x <1> ,. In <1> , also all the diagonal elements were found significant. Other - . 

significant elements of <1>, were those in positions (3,1), (3,2), (3 ,4), (4,1) and (4 ,2). To 

test the stationarity of the estimated model eigen values of the V AR( I) equivalent 

characteristic matrix were calculated which are given in table.2.5.6. All the eight eigen 

values were found to have absolute value less than unity which is the required condition 

for stationarity of the model. Hence the estimated VAR(2) model is stationary. To 

examine the adequacy of the fitted model the residual vector series were evaluated using 

the estimated V AR(2) model and cross correlation matrices up to lag 24 were calculated 

for the residual vector series. Among the elements of the residual cross correlation 

matrices only 19 elements out of a total of 384 elements were significant. The combined 

significance of these residual cross correlation matrices were tested using X' with 16 

degrees of freedom. The computed values of this X' for different lags are given in 

table.2.5.2. These combined significance X' statistics were found to be significant for 

lags3, 4, 11 ,12 and 14. The estimated VAR(2) model could explain 79.06% of the 

variations in elasmobrancs landings, 93.4 I % of the variations in oil sardine landings, 

91.47% of the variations in mackerel landings and 94.23% of the variations in seer fi sh 

landings. Using the fitted V AR(2) model, quarterwise forecasts were made and these are 

given in table.2.6.5. along with observed values and standard errors of forecasts. The 

original forecasts obtained through retralitlfijj.Jij~ion are given in table.2.6.6. 
U BI/ All Y 

<r."h,-.- _ 
C')nrr .I' .~ ':\ -,.~ . 
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Discussion 

From the V AR(2) model fitted to the vector time seri es consisting of transformed 

landings of oil sardine, mackerel , anchovies and lesser sardines we arrive at the 

individual models for these series as, 

),,, '; 1.1824 + 1.3958 y, .. _, - 0.0206 hH + 0.11 05 h,-, - 0.0216 Y' J-' 

- 0.4971 YU-1 + 0.0082 YV-1 - 0.1576 Y)J-1 + 0.0459 Y' J-1 +." 

)'~ , = 0.8430 + 0.0951 Y, .H + 1.2 156 Yv-, + 0.1884 Y).H - 0.0082 Y.J-, 

- 0.1303 Y'J -1 - 0.3233 Y,J-, - 0.1359 Y)J-1 - 0.0026 Y'J-1 +." 

Y;, = 0.6068 - 0.1550 Y'J-' + 0.0629 Yl.o -' + 1.0348 Y'J-' - 0.0653 Y'''_' 

+ 0.1436 Y'J -1 - 0.0542 YV -1 - 0.0994 Y).,-l + 0.0708 Y'J-1 +., , 

and )'" = I. 96 16 - 0.0021 y .. ,_, - 0.1 038 Yl.o -' + 0.0448 Y3.I-' + 1. 1040 Y ... _, 

- 0.0459 YU-l + 0.0889 Yl.o-l - 0.0646 Y'., -l - 0.2067 Y'.,-l +., . 

The significant coefficients in the niodel for oi l sardine series were for Y,,-, , 

YU-1 and Y;)-l' Here Y .. ,_, and Y'J-1 correspond to the lagged values of oil sardine series 

itself and Y;,-l corresponds to the lagged value of the series on anchovies. Hence there is 

signi fi can! influence of anchovies series on that of oil sardine series at lag 2. Also, the oil 

sardine seri es was autocorrelated up to lag 2. Among the coefficients of the model for the 

mackerel series, the significant ones were for YlJ-" y ) .. _, and Y'.,-l in which Y,
J
-, and 

Yl.o-1 are the lagged values of mackerel series and Y,,_, is lagged value of the series on 

anchovies. Hence the time series on mackerel landings significantly depend on its own 

past up to lag 2 and also on the series on anchovies with lag I. In the model derived for 

the series on anchovies the only coefficient found significant was that for Y).,_, . Thus the 
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time series corresponding to the landings of anchovies mainly depend on its own past at 

lag I and the other three series does not have any significant influence on this series. In 

the model for lesser sardine series the coefficients found significant were for y',_1 and 

y,,_,. Hence this model suggests that the series on lesser sardine landings depend on its 

own past up to lag 2 and the other three series does not have any significant effect on the 

lesser sardine landings series. 

The influence of each components of the vector time series on other components 

were studied by excluding one series at a time from the V AR(2) model and recalculating 

the model parameters and innovation dispersion matrix. When the mackerel series was 

excluded from the model the estimate of residual variance of oi l sardine increased only 

by O. I 5%. When the series on anchovies was excluded from the model there was an 

increase of 4.44% in the residual variance of oil sardine series and the increase was 

1.19% when lesser sardine series was excluded from the model. Hence compared to 

mackerel and lesser sardines, the series that was capable of explaining some portion of 

the variation in oil sardine landings was the anchovies series. A similar analysis for the 

mackerel landings revealed that the increase in the estimate of its residual variance was 

2.25% when oi l sardine was excluded from the model, 4.94 % when anchovies was 

excluded from the model and O. I I % when lesser sardine was excluded from the model. 

Here also the presence of the series on anchovies in the model was more effective in 

explaining the variations in mackerel landings. The influence of oil sardine on mackerel 

landings was quite high compared to that of lesser sardines. In the case of the series on 

anchovies similar analysis showed that the increase in the estimate of residual variance 

were 2.37%, 0.54% and 0.86% respectively when the series on oil sardine, mackerel and 
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lesser sardine were excluded from the model. This shows that oil sardine series had 

comparati"e1y high influence on the variations in anchovies series. In the case of lesser 

sardine lhat the percentage increase in the estimate of its residual variance were 1.16 %, 

0.77 % and 0.39 % respectively when the series on oi l sardine, mackerel and anchovies 

were removed. 

Individual models for the component series on landings of anchovies, lesser 

sardines, ribbon fi shes and catfishes derived from the estimated V AR(2} model are given 

below. 

Y" = 0.8239 + 1.0225 Yl.'-I - 0.0835 Y1J-I - 0.1093 Y)J -I - 0.0062 Y.J-I 

- 0.1 00 I Y,-, -l + 0.0677 h,-l + 0.1613 Y)J-1 - 0.0 122 y",-1 + c, 

Y1> = 1.438'7 + 0.0447 Y'J-' + 1.0943 hH - 0.0648 h,-I + 0.1948 Y ... _I 

- 0.0682 YI.H -0.2164 Y1J-1 +0.1180 h'_1 -0. 1973 Y.J-1 +C, 

Y), = -0.3937 - 0.131 2 Y, .. _, - 0.0713 Y1J-1 + 1.2619 h'-I + 0.0171 Y.J-I 

+ 0.1918 YI., -l + 0.0808 YV -1 - 0.3739 h '-l + 0.0214 Y . .. -1 + c, 

y" = 0.6180 + 0.0420 Y, .. _, + 0.0 198 Y1J-1 + 0.0221 Y)J -I + 1.1617 Y.J-I 

- 0.0943 Y'J-1 - 0.0 148 h,-l - 0.0037 Y)J-1 - 0.2061 Y.J -1 + c, 

In this set, the coefficients found significant in the model for anchovies were for 

that of Y'-' _I' Y" -l and h'-l' This indicate that the series on ribbon fish landings had 

significant positive effect on the landings of anchovies with lag 2. In the model 

corresponding to lesser sardine landings, the significant coefficients were for Y1J -1 and 

Y1J -1' Thus the series on landings of lesser sardines significantly depend on its own past 

up to lag 2 and the other three series does not have any significant effect on lesser sardine 

landings . In the model for ribbon fi sh landings the coefficients found significant were for 
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13.'-1' Y,.,-2 and Y, /-2' Hence apart from the dependence on its own past up to lag 2, the 

landings of ribbon fi shes had significant and positive dependence on the landings of 

anchovies with lag 2. The model corresponding to the catfish series had significant 

coefficients for Y.1 _1 and Y, .1-2 ' So the catfish landings series depend mainly on its own 

past up to lag 2 and other series does not have any significant effect on catfish landi ngs. 

Influence of individual components of the vector time series on others were also 

examined by excluding components one at a time and then examining the change in the 

residual variances. Percentage increase in the residual variance of the series on anchovies 

were 0.33%, 4.60% and 1.31 % respectively when the series on catfishes, ribbon fish and 

lesser sardines were excluded from the model. Similar values for the series on lesser 

sardines were 1.04%, 1.89"10 and 0.39% respectively after excluding series on catfishes, 

ribbon fishes and anchovies. When the series on landings of catfishes, lesser sardines and 

anchovies were excluded from the model, the percentage increase in residual variance of 

the series on ribbon fish landings were 0.79%, 0.99% and 4.47% respectively. The 

percentage increase in the residual variance of catfish landings series by excluding the 

series on landings of ribbon fishes, lesser sardines and anchovies form the model were 

0.26%, 0.26% and 5.38% respectively. This analysis showed that ribbon fish landings 

had maximum influence on anchovies and lesser sardine landings and the series on 

anchovies had maximum influence on ribbon fish and catfish landings. 

From the V AR( I) model estimated for the vector time series consisting of 

landings of mackerel, anchovies, tuna and penaeid prawns as components, we obtain the 

individual models for the components as, 

Y" = -0.7531 + 0.9196 YU-I + 0.0771 Y •. <-> - 0.0546 Y'/ _I + 0.0550 Y •.• _I + G" 
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y" = 0.3099 - 0,0182 y,.,_, + 0.8862 Y, ... , + 0.0831 13.,_, + 0.0220. Y. J-, + c" 

y" =-0.3981+0.0176 y,,_, + 0.0617 Yv-, +O.9196YJ,,_,+0.0100y,,_, + C" 

and y" = 2.0793 - 0.0196 y ,-,_, + 0.0243 y'J-' + 0.0544 13.,_, + 0.8697 y'J-! + c,. 

In the model for the series on mackerel the only significant coefficient was of 

y'J-" Significant coefficients in the model corresponding to anchovies series were 

for Yv-, and y'J-" Hence the mackerel series are autocorrelated and other series did not 

have any significant effect on mackerel series. The series on anchovies had significant 

dependence on the series on landings of tuna in addition to its dependence on its own past 

values. In the mode! corresponding to the landings of tuna the coefficients found 

significant were for Yv -, and 13., -, . Thus the series on landings of tuna depend on that of 

anchovies and it is autocorrelated. The coefficient found signifi cant in the model for 

penaeid prawns was for y. H . This indicates that all other components of the vector time 

series does not have any significant effect on landings by penaeid prawns. When the three 

components, corresponding to anchovies, tuna and penaeid prawns were excluded, one at 

a time, from the estimated V AR(I) model, the residual variance of mackerel series 

increased by 1.98%, 1.04% and 1.98% respectively. Similarly, when the series 

corresponding to landings of mackerel, tuna and penaied prawns were excluded from the 

model the percentage increase in the residual variance of anchovies series were 0.32%, 

2.76% and 0.32% respectively. By excluding the series corresponding to the landings of 

mackerel, anchovies and penaeid prawns, the percentage increase observed in the residual 

variance of tuna series were 0.44%, 3.10% and 0.22% respectively. Similar values for the 

penaeid prawn series were 0.16%, 0.32% and 0.87% respectively when the series 
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excluded were mackerel , anchovies and tuna. From this analysis we find that the series on 

land ings of anchovies and penaeid prawns had almost equal effects on the mackerel 

series. The series on tuna landings had maximum influence on the anchovies landings and 

the anchovies series had maximum influence on tuna series. Tuna series had 

comparatively higher influence on the series for penae id prawns. 

From the VAR(5) model fi tted for the vector time series consisting of landings of 

oil sard ine, anchovies, tuna and penaeid prawns as components we obtain models for the 

components as. 

y" = 1.2038 + 1.2890 y , .. _, + 0. 11 08 Yv-, - 0.0698 YJ.,-, - 0.0802 Y' .>-I 

- 0.2477 Y')-2 - 0.1292 Y2)-2 - 0.0 156 YJ .. -2 - 0.0162 Y.)-2 

+ 0.0452 Y,)-J + 0.0546 h ,-J + 0.0099 YJ.,-J + 0. 111 6 Y.)-J 

- 0.4944 Y, .. _. - 0.0050 Y2)-' + 0.1284 YJ)-' - 0.0496 Y' )_' 

+ 0.32 11 Y' ) - l - 0.1234 Y2)-l - 0.0466 YJ) - l + 0.0571 Y.)-l + c, 

Y2, = 0.2332 - 0.1575 Y ... _, + 1.081 3 Yv-, - 0.0452 YJ)-' - 0.0854 Y.)_, 

+ 0.2346 Y ... -2 - 0.0680 Y2)-2 + 0.3475 YJ)-2 + 0.1037 Y' )-2 

+ 0.0352 Y,)-J + 0.0330 h'-J - 0.3806 YJ)-J + 0.0849 Y.)-J 

- 0.1403 Y,) _. -0.5088 h,-. + 0.3284 YJ)-. - 0.0145 Y.)_. 

+0.0194 Y ') -l +0.3473 YV_l - 0.1827 Y J) - l - 0.0605 Y.)-l +C, 

YJ, = - 1.0425 + 0.0605 Y ... _, + 0.0045 Y2 .. -' + 0.9657 YJ,- , - 0.0524 Y.) _, 

- 0.0775 Y' )-2 + 0.1305 h '-2 - 0.001 9 YJJ-2 + 0.0880 Y. )-2 

+ 0.1432 Y,,-J - 0.0901 Y, )-J + 0.0264 YJ,-J - 0.11 53 Y ... -J 

- 0.1899 Y ... _. - 0.0478 h ,-. - 0.5099 YJ.,-, + 0.0952 Y. J - . 

+ 0.0776 Y'J-l + 0.0506 h ,-l + 0.4495 YJ,-l + 0.0334 Y.J-l + c, 
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Y" = 1.8 I 05 - 0.2573 y,.I_' + 0.0546 Y,.I-I - 0.01 1913.,_, + 1.0579 y,.I_' 

+ 0.3452 Y,.,-2 - 0.0022 Y2.I -' - 0.05 I I Y,.,-, - 0.2578 y,.I_' 

- 0.2252 YI.t -3 + 0.0455 Y' .I -3 - 0.0223 Y3.1 -3 + O. I 787 Y. I-3 

+ 0.2698 YI.t-4 - 0.0855 Y,.1-4 + 0.2977 Y3.,-. - 0.4498 Y,"_, 

- O. I 572 YI.i-l - 0.0080 Y",-l - 0, I 995 h ,-l + 0.3823 Y"-l + li, 

In the model for oil sardine series, the coefficients found significant were for 

YI.t -" Y I.,-2 ' Y,,_ . and Y' /-l ' Significant coefficients in the model for the anchovies series 

were for Y2J-.' Y3.1-" Y3.<-3' Y2.I-" Y3.1-4 and Y'" -l ' The coefficients found significant in 

the model for tuna series were for Y3/-" YI., _" Y3,i-. and Y3.1-l' In the model for the 

senes on penaeid prawns the significant coefficients were for 

Y", _" Y4 .1-I' Y,.,_" Y'"-2> Y,, _. and Y.I -l · From these results we see that all the four 

series significantl y depend on their own past values up to lag 5, The series on tuna 

landings had significant influence on the anchovies series at lags 2, 3 and 4. Oil sardine 

series had signi ficant influence on tuna landings with lag 4 and penaeid prawn series was 

also influenced by oil sardine series at lags I and 2. Percentage increase in the residual 

variance of oil sardine series were 10.53%, 1.95% and 5.65% when series on landings of 

anchovies, lUna and penaeid prawns respectively were excluded from the V AR(5) model. 

The percentage increase observed in the residual variance of anchovies series were 

3.61 %, 10.68% and 5.56% respectively by excluding series on landings of oil sardine, 

tuna and penaeili prawns. In the case of series on tuna landings, the percentage increase 

observed in its residual variance by excluding series on landings of oil sard ine, anchovies 

and penaeid prawns from the model were 4.79%, 5.82% and 10.62% respectively. 

Percentage increase in the residual variance of penaeid prawns series were 5. I 9%,0.30% 

and 1.30% respectively when series on landings of oil sardine, anchovies and tuna were 
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excluded from the model. These results revealed that the maximum effect on the oil 

sardine series was by the series on anchovies landings and that on anchovies series was 

by tuna landings series. Maximum effect on tuna series was by penaeid prawn series and 

on penaeid prawn series the maximum effect was due to the series on oil sardine 

landings. 

From the V AR(2) model fitted to the vector time series with series on landings of 

elasmobranchs, oil sardine, mackerel and seer fish as components, the individual models 

for these components were obtained as, 

y" = 4.7990 + 1.1640 Y'J-' - 0.0239 YJ.H + 0.2116 Y1J-1 - 0.1492 Y.J-I 

-0.3741 Y,.,-l +0.0867 Y,J -2 - 0.2167 h '-l +0.0980 Y'.H +C, 

y" = 0.7564 - 0.0438 YIJ-I + 1.3883 Y,J-I - 0.0375 Y1J-1 + 0.1751 Y'J-I 

+0.0680 YI.,-l -0.4852 Y2J- l +0.0162 hH - 0.2136 Y..'-2 .. C, 

Y), = 2.1302+0.1382 YIJ-I + 0.1308 Y,J-I + 1.2025 h '-I - 0.2406 Y. J-I 

- 0.1881 Y'J-l - 0.1667 Y2J-l - 0.3063 Yl.,-l + 0.2757 Y'J-l + c, 

y" = -0.2324 + 0.1162 Y'J- ' + 0.1365 Y2J-1 - 0.0546 h,-I + 1.0567 Y' J- I 

- 0.0900 YI.,-l - 0.1619 YV-2 + 0.0775 Yl)-l - 0.1 025 Y.J-l 

Significant coefficients in the model for the elasmobranchs series were for Y' J-' 

and Y'.<-2 . In the model for oil sardine series the significant coefficients were for 

YV-I> YJ.'-l and Y.J-l · The coefficients found significant in the model corresponding to 

mackerel series were for YI.,_I' Y1J-I> Y.J-I> YIJ-l' Y2J-l' Y1J-l and Y.J-l . In the model 

for the series on seer fi sh landings, the significant coefficients were for YIJ-I ' Y2J-I' 

Y' .I_I' Y,.<-l and Y,J-,· From these results it was found that the series on landings of 

elasmobranchs, oil sardine and mackerel are autocorrelated up to lag 2 where as the series 
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on landings of seer fishes depend on its own past values up to lag I only. Also, the oil 

sardine landings were significantly influenced by the series on landings of seer fi shes 

with lag 2. The series on landings of mackerel had significant dependence on that of 

elasmobranchs and seer fishes at lags I and 2. Oil sardine series also had significant 

influence on landings of mackerel with lag 2. The series on landings of seer fish had 

significant dependence on that of elasmobranchs and oil sardine at lags I and 2. The 

percentage increase observed in the residual variance of elasmobranchs series by 

excluding one each of the series on oil sardine, mackerel and seer fi sh from the VAR(2) 

model were 1.62%,2.38% and 1.38% respectively. In a similar manner, by excluding one 

series each at a time from the vector model, among series on elasmobranchs, mackerel 

and seer fish, the percentage increase in residual variance of oil sardine series were 

1.95%, 0.60% and 4.80% respectively. The percentage increase observed in the residual 

variance of mackerel series by excluding series on ealsmobranchs, oil sardine and seer 

fi sh were 10.19%,3.51 % and 5.50% respectively. Similar values for seer fish .series were 

5.36%, 4.33% and 1.38%, when the series on elasmobranchs, oil sardine and mackerel 

respectively were excluded from the model. Thus, it was found that mackerel series had 

comparatively higher influence on the landings of elasmobranchs. The series on oil 

sardine landings had comparatively high dependence on the series on seer fish landings. 

The influence of series on elasmobranchs on mackerel landings was almost double that of 

seer fish series and three times that of oil sardine series. The series on landings of 

elasmobranchs and oil sardine had comparatively higher influence on the landings of seer 

fishes. 
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Appendix-II [fables) 

Table.2.1.1 . Cross correlation matrices of the vector time series composed of transformed 
landings of oil sardine, mackerel, anchovies and lesser sardines. The notation '(+)' 
indicates positive and significant, '( -J' indicates negative and significant and '(.) indicates 
not signi ficance. 

[ 

1.000(+) -0.350(-) -0.412(-) 0.115(.): 
- 0.350(-) 1.000(+) 0.509(+) -0.027(·) 

C(O)= -0.412(-) 0.509(+) 1.000(+) -0.077(·) 

0.115(·) - 0.027(·) -0.077(·) 1.000(+) 

[ 

0.852(+) -0.268(-) - 0.366(-) 0.004(·) 1 
-oJ34( -) 0.826(+) 0.443(+) -0.025(·) 

C(2) = -0.437(-) 0522(+) 0.887(+) -0.0720 

0.186(+) -0.047(·) -0.077(·) 0.800(+) 

[ 

0597(+) -0.382(- ) -0312(-) -0.046(·) 1 
-OJOI{-) 0.623{+) 0394(+) 0.03 1(·) 

C(4) = -0.480(-) 0.488(+) 0.751(+) -0.105(·) 

0.223( +) -0.089(·) -0.0720 0548(+) 

[ 

0.375(+) -0.346(-) -0163(-) -o.OOI{·) 1 
-0.296(- ) 0.47.5(+) 0366(+) 0.127(·) 

C(6) = -0551{-) 0.492{+) 0.679(+) -0.147(·) 

0121(+) -0.096(·) -0.085(-) 0.454{+) 

[ 

0.180(+) -0185(- ) -0111 (-) 0.037{.)] 
-0317(-) 0314{+) 0378{+) 0.199(+) 

C(8) -
-0.609(-) 0535(+) 0.614(+) -0.147(·) 

0.168(+) -0.103(·) -0.115(·) 0355(+) 

[ 

0.026(·) -0.220(-) -0.156(·) o 043(·) j 
C(IO) = -OJ42(-) 0118{+) 0.409(+) 0:238(+) 

-0.633(-) 0582(+) 0568(+) -0.160(·) 

0.112(·) -0.095(·) -o.l12{·) 0122(+ 

[-<" •• ) -" ,,-) ~''") "") 1 -0354(-) 0.138(·) 0.412{+) 0126(+) 
C(12) = 

-0.616(-) 0598(+) 0546(+) -0.185(-) 

0.047{·) -0.069{-) -0.101(·) O.l2I{-) 

[-0" '" -<>m() 
-0.153(·) 

'"'«) ] -0326(-) 0.086(·) 0.385(+) 0.229(+) 
C(14) = -0535(-) 0563(+) 0521(+) -0.149(·) 

-0.01 40 -0.073(·) -0.140(·) 0.0890 

[ ~"".) -<>~" -0.1 47{·) 
Om,) 1 -03 19(-) 0.088(-) 0.345(+) 0.213(+) 

C(16) = 
-0.431(-) 0.485(+) 0.459(+) -0.094(·) 

-0.019(·) -0.066() -0.230(-) 0.068(·) 

[ 

0.948(+) -0354(-) -0.397(-) 0.059(·) 1 
C(I) = -0.343(-) 0.929(+) 0.476(+) -0.029(·) 

-0.420( -) 0524(+) 0.946(+) -0.07 10 

0.151(·) -0.027(·) -0.079(·) 0.911(+) 

[ 

0.732(+) -0380(-) -0338(-) -0.030(·) 1 
-0319(-) 0.726(+) 0.414{+) -o.OO4{.) 

C(3) = -0.453(-) 0501(+) 0.826(+) -0.087{.) 

0.213{+) -0.07 1(·) -0.075(·) 0.679(+) 

[ 

0.483(+) -o369{-) -0184{-) -0.032{·) 1 
C{5) _ -0.295(-) 0547(+) 0376(+) 0.083{·) 

-0518(-) 0.482(+) 0.713(+) -0.l27{·) 

0.231(+) -0.096(.) -o.077{·) 0.496(+) 

[ 

0172(+) -0314(-) -0135(-) 0.016(·) 1 
- 0303(-) 0.388(+) 0365(+) 0.1 64{·) 

C(7) = -0583{-) 0519(+) 0.645(+) -0.139(.) 

0.195(+) -O.lO4{·) -0.105(·) 0399{+) 

[ 

0.0970 -0.249(-) -o.l81{-) 0.044{·) J 
C(9) = -OJ27{ -) 0.263(+) 0.395( +) 0222{ +) 

-0.626(-) 0561(+) 0584{+) -O.ISI{·) 

0.141(·) -0.097(·) -0.11 6(-) 0191{+) 

[

-0.027(.) -0.196(-) -O.l49{·) 0.050(.)] 

-0.35 1{ -) 0.177(+) 0.416(+) 0.236( +) 
C( II) = 

-0.630(-) 0588(+) 0557{ +) -o.l85{ -) 

0.080(·) -0.081(·) -0.098(·) 0.171{+) [-') ~''') ~".) ,"".) 1 
-OJ43(-) 0.103(·) 0.405(+) 0129( + } 

C 13 -
( ) - -0582(-) 0589{+) 0544{+) -O.l7I{-) 

0.013(·) -0.079(·) -0.112(·) 0.095{·) 

[ -<>, '") -<>.~( J - 0.147(-) '""() 1 -0.317(-) 0.087(·) 0.357{+) 0128(+) 
C(15) -

0.491(+) -0.111(·) -0.481(-) 0525(+) 

. -0.0 19(·) -0.068(·) -o.l91{-) 0.084(·) 

[ ~"') -<>.000() ~,"'.) '''.)] 
-o.332{ -) 0.083(·) 0.324(+) 0.164(·) 

C(17) = 
-0.393(-) 0.448(+) 0.432(+) -0.094(·) 

-0.00 1(·) -0.047(·) -0.268(-) 0.044(·) 
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Table.2. 1.1. Continued 

[ "''''' , ,,, •. , -''''0 M'" .'] [-"" , '''., -.mo .~.'] 
-0340(-) 0.085(·) 0313() 0.1060 -0.338(-) 0.091(·) 0.315(+) 0.047(·) 

C(l8) = -0359(-) 0.4 19(+) 0.425(+) -0.0870 
C(19) = 

- 0.332(-) 0.410(+) 0.41 5(+) - 0.0890 

0.018(·) -0.028(·) -0293(-) 0.002(·) 0.Q280 -0.010(-) -0295(-) -0..043(·) 

[-'" ""., "'''''' ,,>0, '] [ "'''., '.0' ~''''-, """'.'] - 0.327( -) 0..1170 0..294(+) -0..00 1(·) -03 16(-) 0.157(·) 0.269(+) - 0..0.30( ·) 
C(20) = C(21) = 

- 0304(-) 0..410(+) 0..416(+) -0..0810 -0279( -) 0.406(+) 0..412(+) - 0..060(.) 

0..048(·) 0..0. 12(·) -0.299(-) - 0..0940 0..0.57(·) 0..0. 17(·) -0.304(-) -0..147(·) 

[ ."., "''l' ~ ',"-' ""l'] [ ~" OOOO{' .. "" ., , .. "., ] 
-0.309(-) 0..180(+) 0..24J( +) 0..0.590 - 0.297(-) 0..194(+) 0..211(+) -0..0.80(·) 

C(22) = C(23) = 
-0.265(- ) 0..409(+) 0..398(+) -0..045(-) - 0..256(- ) 0..408(+) 0.391(+) -0..492(·) 

0.067(·) 0.014(·) -oJ09(-) - 0..181(-) 0.078(·) 0..0090 - 0..316( -) -0..201(-) 

[ "'., -0..0.2 1(-) 

~m" ""'] [ ,.00 
-0350. -0.412 

"" ] -0.272(-) 0..1 96(+) 0.183(+) -o..I ll() - 0.350 1.000 0.509 - 0..0.27 
C(24) = s = 

-0.242(-) 0.394(+) 0364(+) - 0.066(.) -0..412 0..509 1.000 -0..0.77 

0..0.86(·) -o.o. l6( ) -0.30.7(-) -0.20.2(-) 0.1 15 -0..027 -0.0.77 1.000 

Table.2.1.2. The X 2 statistic for testing combined significance of cross 
correlation matrices calculated for the original and residual series of 
VAR(2) model using the vector time series of transformed landings of 
oi l sardine, mackerel, anchovies and lesser sardines. 

x'statistic x'statistic 

Original Residual Original Residual 
Lag senes senes Lag senes senes 

I 496. 18 4.26 13 163 .85 21.37 
2 393.66 11 .07 14 154.74 22.27 
3 299.55 33 .57 15 140.70 17.89 
4 212.29 74.85 16 130.05 29.42 
5 173 .33 12.28 17 120.24 26.28 
6 146.85 31.30 18 111.02 18.78 
7 128.67 14.36 19 104.94 23 .99 
8 127.42 18.82 20 97.02 35.26 
9 133.50 10.6 1 2 1 90. 15 23.68 

10 144.91 25.86 22 87.36 15.06 
11 156.1 0 21.28 23 84.60 23.96 
12 162.86 27.92 24 76.2 1 19.42 
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Table.2.1.3. Partial cross correlation matrices for the vector time series of transformed 
landings of oil sardine mackerel anchovies and lesser sardines. , , [ , ... , -0.354(-) -0.397(-) .. ,,' ] r -0.454(-) - 0.110(·) 0.152(·) ~.,., ] 
• -0.343(-) 0.929(+) 0.476(+) - 0.029(·) • 0.006(·) - 0.280(-) -0.024(-) 0.036(·) 
p( l) = -0.420(-) 0.524(+) 0.946(+) -0.0710 P(2)= l -0.126(.) -0.104(-) -0.066(·) -0.0620 

0.151(·) -0.027(·) - 0.079(·) 0.9 11(+) 0.036(·) -0.128(·) 0.021(·) - 0. I 59(·) 

["'"" 
0.029(·) -0.101(·) 

"~'] 
[ -,,,,,., 0.032(·) -0.026(·) ~."'., ] 

• 0.053(·) 0.0050 0.02 1(·) 0.091(·) • - 0.008(·) - O. I 50(·) 0.067(·) 0.073(·) 
1'(3)= 0.019() -0.078(·) - 0.075() -0.111(-) p(4)= -0.190(-) o. 119(·) -0.172(-) - 0.079(·) 

-0.026() 0.002(·) 0.004(·) - 0.108(·) - 0.079(-) 0.034(·) -0.0050 - O. I 34(·) 

[ '.m,., 0.102(·) -0.016(·) "",. '] [ -""l-l -0.075(·) 0.074(.) 

~." ] · -0.169(- ) 0.163(·) -0.0 11(·) 0.1210 · -0.016(-) -0.159(·) 0.048(·) - 0.049(-) 
p(5) = -0.144(.) O. I 22( ) 0.307(+) -0.070(·) p(6) = _ 0.030(.) 0.167(+) -0.033(·) -0.058(·) 

0.078(·) 0.090(·) -0.106(·) 0.434( +) -0.043(·) -0.057(·) 0.030(·) -0.0930 

[ -. , .. , 0.093(-) '.00>, ~"""] [ ~ ' ~' 
-0.04 1(·) -0.136(·) 

• "'I' ] • -0.069(·) -0.107(·) 0.053(-) 0.08 1(·) • -0.082(-) 0.016(-) 0.162(·) 0.0420 
P(7) = 0.017() 0.0940 0.023(·) O. I 17(·) p(8) = _ 0.070(-) - 0.046(·) -0.122(·) -0.228(-) 

-0.010(·) -0.045() -0.134(·) -0.160(·) 0.000(-) 0. 145(·) 0.094(·) -0.064() 

[ , .. , 0.084(·) 0.122() ~.", ] [ -.m, -0.126(·) -0.083(-) 

~M'l • -0.100(·) 0.093(·) - 0.036(·) - 0.028(·) . - O. I 36(-) -0.094(·) 0.0370 -0.032(·) 
p(9) = _ 0.058(.) 0.301(+) 0.13 1(·) - 0.069(·) p(lO) = -0.02 1(.) - 0.020(·) 0. 130(-) -0. 143(·) 

0.074(·) 0.043(·) -00220 0.048(-) -0.062() -0.133(·) 0.067(·) -0.065(·) 

[ ~.Ol" 0.083(-) -0.03 1(·) 

~''''] [~~' 
-0.005(·) 0.037(·) 

'~' l • 0.030(·) - 0.054(·) - 0.045(·) -0.16 1(·) • - 0.063(·) 0.022(·) 0.066(·) 0.072(·) 
p(1 I) = _ 0.005(.) P( 12)-

o. I 00(-) 0.052(·) 0.034(·) - 0.04 1(·) - 0.0 19(·) - 0.009(·) 0.036(-) 

-0.100(·) 0.058(·) - 0.040(-) - 0.078(-) 0.003(·) 0.057(·) -0.1 70(- ) 0.050(·) 

[~ '~' 
0.144() - 0.006(-) 

-'~"l [~~. ' 0.060(·) 0.102(·) 

~·"l • 0.139(·) 0.028(·) 0.000(·) O. I 52(·) • -0.134(·) - 0.059(·) -0.136(·) - 0.029(·) 
p(13) = 0.153(.) -0.0150 0.048(·) O. I 34(·) p(14) = 0.084(.) - 0.165(-) -0.095(·) - 0.090(·) 

0.092(·) -0.135(·) -0.016(·) 0.049(·) - 0.002(·) O. I 5( ·) - 0.098(·) -0.014(·) 

[ ~"" 0.174(+) 0.026() .... , I [ ."'" 0.043(· ) -0.093(·) 

'~"l · -0. 144(·) 0.105(·) 0.024(·) - 0.036(·) • -0. 136( ·) - 0.054(·) 0.16 1(·) - 0.060(-) 
p(15) = 0.012( ) - 0.060(·) - 0.008(·) 0.003(·) p(16)= - 0. 141(-) 0.127(·) - 0.058(·) -0.109(·) 

0.162(·) -0.033(-) - 0.154(·) - 0.043(·) 0.023(·) 0.106(·) 0.074(·) -0.150(·) 
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Table.2.1.4. Calculated values of squared partial canonical 
correlations and test statistic for the vector time series of 
transformed landings of oil sardine, mackerel , anchovies 
and lesser sardines. 

Squared Partial Canonical Correlation LR 
Lag (i) (ii) (iii) (iv) Statistic 

1 0.9304 0.8491 0.8290 0.7898 1142.97 
2 0.2780 O.Onl 0.0293 0.0105 66.93 
3 0.0697 0.0359 0.0058 0.0000 16.62 
4 0.1504 0.0284 0.0127 0.0014 29.87 
5 0.2568 0.1045 0.0915 0.0154 75.19 
6 0.1087 0.0484 0.0106 0.0000 25.43 
7 0.0596 0.0389 0.0233 0.0027 18.47 
8 0.1148 0.0713 0.0219 0.0112 33 .25 
9 0.131 9 0.0232 · 0.0119 0.0010 25.79 

10 0.1059 0.0451 0.0032 0.0021 23.70 

Table.2.1.5 . Computed values of different order selection criteria 
for the vector time .series of transformed landings of oil sardine, 
mackerel, anchovies and lesser sardines. 

p III FPE AIC HQ SC 
1 0.000 154 0.000165" -8.5606 -8.4271 -8.2321 
2 0.000088 0.000100 -8.8942 -8.6273 -8.2373 
3 0.000076 0.000091 -8.8171 -8.4167 -7.8317 
4 0.000061 0.000077 -8.8271 -8.2932 -7.5132 
5 0.000030 0.000040 -9.3262 -8.6588 -7.6838 
6 0.000024 0.000034 -9.3254 -8.5246 -7.3546 
7 0.000019 0.000028 -9.3443 -8.4100 -7.0450 
8 0.000013 0.00002} -9.4747 -8.4070 -6.8470 
9 0.000009 0.000016 -9.5884 -8.3872 -6.6322 
10 0.000009 0.000013 -9.6390 -8.3043 -6.3543 
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Table.2.1.6. Eigen values of the charecteristic 
matrix of the V AR(2) model estimated for the 
vector time series of transformed landings of oi l 
sardine, mackerel, anchovies and lesser sardines. 
No. Real Imagina ry Absolute 

Part Part va lue 
1 0.1987 -0.1072 0.2258 
2 0.1987 0.1072 0.2258 
, 

0.3315 0.0000 0.3316 J 

4 0.923 7 0.0000 0.9237 
5 0.7993 0.0000 0.7993 
6 0.6796 -0.0258 0.6801 
7 0.6796 0.0258 0.6801 
8 0.9389 0.0000 0.9389 

Table.2.2.1. Cross correlation matrices of the vector time series of transformed landings 
of anchovies, lesser sardines, ribbon fish and catfish . 

[ '""',' -0.0770 0.309(+) 

. ''''.'] [ ... ,' -0.071( ·) 0.297(+) .''''.'] -0.077(·) 1.000(+) 0.229(+) 0.229(+) -0.0790 0.911(+) 0.210(+) 0.227(+) 
C(O)- C(I)= 0.312(+) 0.309(+) 0.229(+) 1.000(+) 0.189(+) 0.250( +) 0.928(+) 0. 198(+) 

-0.424(-) 0.229(+) 0.189(+) 1.000(+ ) - 0.384(-) 0.217( +) 0.192(+) 0.963(+) 

[ .. ,,' -0.073(·) OJOI( +) .'.'.'] [ '"',' -0.087( ·) 0310(+) .''''<-1] -0.0770 0.800(+) 0.200( +) 0.238(+) - 0.075( ·) 0.679(+) 0.189(+) 0.247(+) 
C(2)- C(3)= 0.347(+) 0.338(+) 0.274(+) 0.816(+) 0.195(+) O.lO5( +) 0.693(+) 0.187(+) 

-0.346(-) 0.198(+) 0.197(+) 0.916(+) -0.318(-) 0.179(+) 0.198(+) 0.869(+) 

[ '''''' - 0.105(·) 0.298(+) .,m,.,] [ •. "',' -0. 127( ·) 0188(+) .'."'.'] -0.0720 0.548( +) 0.200(+) 0.249( +) - 0.0770 0.496( +) 0.223(+) 0.252( +) 
C(4)- C(5) -

0.337(+) 0.329(+) 0.585(+) 0.172(+) 0.314(+) 0.349( +) 0.518(+) 0.160(·) 

-0.287(-) 0. 170(+) 0.198(+) 0.820(+) -0.264(-) 0.167(+) 0.199(+) 0.782(+) 

[ '''.,' - 0.147(·) 0.277(+) ."".'] [ ,.,,' - 0.139(·) 0163(+) ."".'] -0.085(·) 0.454(+) 0.243(+) 0.242(+) - 0. 105(·) O.J99( +) 0.263(+) 0.228(+) 
C(6)- C(7)-

0.280(+) 0.352(+) 0.446(+) 0.145(·) 0.259(+) 0.340(+) 0.364(+) 0.1310 

-0.238(-) 0.171(+) 0.197(+) 0.742(+) -0.208(-) 0.172(+) 0.186(+) 0.701(+) 

[ .. ",' -0.1470 0.247(+) .. ," .'] [ ""'" - 0.1 51(·) 0.224(+) ."".'] -0.115(·) 0.355(+) 0.26C(+) 0.218(+) - 0. 116(-) 0.291(+) 0.241(+) 0.199(+) 
C(8)- C(9) -

0.251(+) 0.322(+) 0.266(+) 0.121(·) - 0.247(+) 0.297(+) 0.174(+) 0.123(-) 

-0. 184(-) 0.170(+) 0.173(+) 0.667(+) - 0.156(·) 0.162(·) 0.161(·) 0.634(+) 

[ '''',' -0.160(·) 0.199(+) 

. "",.,] [ "",' -0. 185(-) 0.168(+) 

. ""'.'] - 0.1120 0122(+) 0.200(+) 0.175(+) - 0.098(-) 0.171(+) 0.141(·) 0.146(·) 
C( IO)= C(lI)= 

0.246(+) 0.257(+) 0.101(·) 0.124(·) 0.245(+) 0.200(+) 0.046(·) 0.123(·) 

-0. 1300 0.148(·) 0.139(·) 0.608(+) -0.103() 0.1400 0.128(·) 0.579(+) 

[ "",' -0.185(-) 0.145(·) .. '''.'] [ "",' -0. 171(-) 0. 128(·) 

. ""'.'] -0. 1010 0.121(·) 0.076(·) 0.11 3(·) - 0.112(·) 0.095(·) 0.007(·) 0.096(·) 
C(12) = 0.232(+) C(13) = 

0.128(·) 0.0220 0.123(-) 0.233( +) 0.053(·) 0.017(·) 0.118(-) 

-0.073(·) 0.133(·) 0.1220 0.542(+) -0.047(·) 0.123(·) 0.121(·) 0.500(+) 
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Table 2 2 I Continued ... . 
( 0.521(+) -0. 1490 0.099(-) .''''''] [ """'1 -0.1110 0.06110 ."'"H] l -0. 1400 0.089( ·) - 0.042(-) 0.09 10 - 0.191(-) 0.01140 - 0.079(·) 0.1070 

C(1 4) = C(l5) = 
0.239(+ ) 0.0000 0.0230 0.11110 0.250(+) -0.0111(·) 0.0310 0.11 6(-) 

-0.024(·) 0.126(·) 0.128(-) 0.456(+) - 0.0010 0.129(·) 0.1350 0.4 111(+) 

[ ""'.1 -0.094(·) 0.035(·) .""'.,] [ ".",.1 - 0.094(·) 0.0020 ."',,.,] - 0.230(-) 0.0611(·) -0.11 0(-) 0.132(·) - 0.2611(-) 0.0440 -0.130(·) 0.161(·) 
C 16 - C(17) = 

( ) - 0.271(+) -0.026( ·) 0.025(·) 0.100(·) 0.273(+) -0.0111(·) 0.006(·) 0.07 10 

0.01116(·) 0.123(·) 0.1400 0.3117(+) 0.033(-) o 123(·) 0.141(·) 0.361(+) 

[ "",., - 0.087( ·) - 0.0250 .'"'1-1] [ "·""1 - 0.01190 - 0.0500 ."",.,] -0.293(-) 0.0020 -0.149( ·) 0.1811(+) -0.295(- ) - 0.043(-) - 0.155(·) 0.199(+) 
C(III) = 0.265( +) 

C 19 -
-0.0110 -0.0050 0.03 1(·) () - 0.247( +) -0.0220 0.005(-) -0.0200 

0.040(·) 0.107(·) 0.143(·) 0.336(+) 0.0400 0.080(·) 0.142(·) 0.310(+) 

[ ""., - 0.081( ·) -0.0750 .".",.,] [ '''''1 - 0.060(·) - 0. 102(·) 
. "., ,,- '] 

- 0 299(-) -0.094( ·) -0. 131(·) 0.215(+) - 0.304(- ) - 0.1470 - 0.105(·) 0.239(+) 
C(20) = . C( 21) = 

0.223(+) - 0.0200 0.0370 - 0.0630 0.216(+) - 0.030(·) 0.0711(·) -0. 107(·) 

0.042( ·) 0.063(·) 0. 141(·) 0.282(+) 0.043(-) 0.045(·) 0.143(·) 0.254(+) 

[ ""., -0.045(·) - 0.126(·) ."",.,] [ """'1 - 0.0490 -0.137(·) ."""'] - 0309(-) -0. 1111(-) -0.064( ·) 0.261(+) - 0.3 16(-) - 0.20 1(- ) -0.0 19( ·) 0.299(+) 
C(22) = . C(23) = 

0.226(+) -0.046( ·) 0.11 20 - 0.141(·) 0.243( +) -0.033(·) 0.1211(·) - 0.153(·) 

0.049(-) 0.031(·) 0.1470 0.224(+) 0.049(·) 0.036(-) 0.147(·) 0.197(+) 

[ '",' -0.066( ·) - 0. 140(·) 

. ".'"".'] [ ,~ -0077 
".m ."m] 

- 0.307(- ) - 0.202(- ) 0.0 10( ·) 0.336(+) -0.077 1000 0.229 0.229 
C(24) = s= 

0.249(+) - 0.024(·) 0. 1310 - 0.165(-) 0309 0.229 1.000 0.189 

0.0511(·) 0.0370 0.1470 0.165(·) - 0.424 0.229 0.1119 1.000 

Table.2.2.2. The / statistic for testing combined significance of cross correlation 
matrices calculated for the original series and residual series of V AR( 1) and V AR(2) 
models using the vector time series of transformed landings of anchovies, lesser 
sardines, ribbon fish and catfish. 

, . . 
[ stallsllc X' statistic 

Original Residual series of Original Residual series of 

Lag senes VAR(2) VAR(I) Lag . senes VAR(2) VAR( I) 

I 497.82 2.49 39.87 13 133.24 24.24 28.54 

2 397.87 11.45 13.17 14 127.21 16.28 19.75 
, 

314.55 25.65 15.14 15 125.62 19.7 1 14.78 j 

4 249.68 83 .82 73.74 16 125.45 14.00 18.78 
5 224.81 10.78 7.86 17 120.96 19.34 21.03 
6 205.03 26. 14 26.50 18 113 .68 29.4 1 24.74 
7 186.4 1 21.52 16.97 19 102.3 1 24.20 21.28 
8 175.27 10.84 13.20 20 96.19 11 .69 14.56 
9 167.64 18.88 18.29 21 98.70 13.34 16.30 

10 160.68 12.89 18.65 22 104.78 38.99 36.04 
1 1 152.69 20.65 22.30 23 11 1.00 18.53 18.92 
12 141.69 16.72 18.97 24 112.17 19.94 21.97 
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Table.2.2.3. Partial cross correlation matrices for the vector time series oftransforrned 
landings of anchovies lesser sardines, ribbon fi sh and catfish. , 

[ " .... , -0.071(·) ".m,., -""'-'] [-""'" 
-0.058{-) 0 138(-) -".,,,, ] 

· I _ - 0.079(-) 0.911(+) 0.210(+) 0.227(+) · 0.0 16(·) - 0. 173(-) 0.046(·) 0.121(·) 

p() - 0.312(+) 0.250(+) 0.928(+) 0.198(+) P(2): 0.204(+) 0.057(·) -0.34 1(-) - 0.070(·) 

-0.384(-) 0.217(+) 0.192(+) 0.963(+) 0.0 13(·) - 0.0720 0.023(·) - 0.140(·) 

["0" - 0.095(·) 0.039(·) -""'" ] [-" ""-, - 0.043( ·) - 0.156(·) -"."'" ] 
• 0.0010 - 0.123(·) -0.039(·) - 0.043(·) • -0.03;(·) - 0.131(·) 0.154(·) -0.046(·) 
p(3): -0.181(-) 0.099(·) - 0.066(-) 0.006(·) p(4): -0.088(-) 0000(·) 0.004(·) 0.023( ·) 

-0.0820 0.006(·) - 0.044(·) 0.007(·) 0.054(·) 0.081(·) -0.00 1(·) - 0.0440 

[ "",., -0.059(·) 0.105(·) -"=" ] [ "ro,» - 0.043() 0.066(·) 
- " ",., ] 

• - 0.053(·) 0.439(+) 0.0420 0.009(·) • - 0.003(·) - 0.094(·) -0.012(·) - 0.039(·) 
p(5): -0.051(.) 0.0870 0. 147(·) 0.085(·) p(6): 0.093(.) -0.061(·) -0.281(-) - 0.073(·) 

-0.0520 0.0570 0.026(·) 0.169(+) 0.109(·) 0.004(·) - 0.018(·) - 0.089( ·) 

[ ".00" 0.1320 0.029(·) "." ] [-"om, - 0.243(-) - 0.092(·) -"000' ] • -0.11 6(·) - 0.228( -) -0.001(·) - 0.047(·) · 0.091(·) - 0.036( ·) - 0.07 1(·) - 0002(·) 

P(7): -0.018(.) 0.0220 -0.110(·) 0.046(·) P(8): 0.071(.) 0067(·) - 0.162(·) 0. 11 0(·) 

- 0.020(·) - 0.048( ·) -0.106(-) 0.006(·) - 0.039(·) 0.042(·) 0.019(·) 0.079(·) 

[ ". ,,,, -0.017(·) 0.032() -".0>,., ] [ ". ,."., - 0.109(·) 0.104(·) 

- """, ] • - 0.033(·) 0.037!-l - 0.005(·) -0.0770 • 0.096(·) -0.123() - 0.1 55(·) - 0. 100(·) 
p(9): _ 0.069(.) P( IO)-

- 0.061(·) 0.0770 0.247(+) 0.140(·) - 0.158(·) - 0.158(·) - 0.074( ·) 

0.065(·) - 0.051(·) 0.051() 0.036(·) 0.00 1(·) - 0.007(·) -0.1 56(·) 0.070( ·) 

["m,., "."", ".", -" ."'] [ "~ ' """, " . .", -" '"<'] • - 0.059() -0.0740 -0.098(·) -0.046(·) • 12 _ -0.0770 -00270 -0.0130 0.018(·) 
p(lI) : p( )- - 0.103( ·) 0.099(-) 0.097(·) 0.132(·) 0.015(-) -0.074(·) - 0.0450 0080(·) 

0.036( ·) 0.058() 0.1140 - 0.0970 0.03 1(·) 0.099(-) 0.0300 - 0.050(·) 

[ ".'"<' 0.156(·) 0.086(·) -"."'" ] [-" "" 0.003(·) -0.1110 "." ] · 13 _ -0.0110 0.105(·) 0.004(·) 0.14 10 - 0.065(·) 001 20 0.084( ·) 0.Q25( ·) 
·(14) -

p( ) - 0.186(+) 0.0620 0. 162(·) 0. 151(·) P - 0.005(·) 0. 153(-) -0.171(-) 0.086(·) 

- 0.024(-) -0.049(·) 0.033(·) - 0.057(·) - 0.0 I 0(-) 0.072(-) -0.032() -0.072(-) 

[ " .~" 0.0560 0.023(·) -" ""., ] [-",",., - 0.110(·) - 0.054(·) 

-" ""-'] - 0.239(-) 0.0 16(·) - 0.009(·) 0.204(+) · 0.054(·) - 0.109(-) - 0.052() 0.069(·) 
P(15): 0.006() 0.166(·) -0.1020 0.104(·) p(l6): 0.007( .) -0.0 17(·) -0. 190(-) 0.024(·) 

0.055(·) 0.019(·) 0.026(·) 0.067(·) - 0.0220 - 0. 124(·) - 0.0020 0.031(·) 
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Table.2.2.4. Calculated values of squared partial canonical 
correlations fo r the vector time series of transformed landings of 
anchovies, lesser sard ines, ribbon fish and catfish. 

Squared partial canonical correlation LR 
Lag (i) (ii) (iii) (iv) Statistic 

I 0.9356 0.9057 0.8280 0.7402 1190.75 
2 0.2191 0.0823 0.0315 0.0000 52.96 
3 0.0617 0.0300 0.0044 0.0002 14.31 
4 0.0691 0.0562- 0.0052 0.0034 20.02 
5 0.2133 0.0922 0.0593 0.0087 58:96 
6 0.1 239 0.041 1 0.0120 0.0020 27.31 
7 0.0871 0.0302 0.0040 0.0000 18.24 
8 0.1201 0.0478 0.01 I3 0.0010 27.47 
9 0.1109 0.0389 0.0012 0.0004 23.02 

10 0.1557 0.0420 0'<H37 0.0001 32.77 

Table.2.2.5. Computed values of different order selection criteria 
for the vector time ·series of transformed landings of anchovies, 
lesser sardines, ribbon fish and catfish. 

p lEI FPE AIC HQ SC 
I 0.000075 0.000080 -9.2773 -9.1 438 -8.9488 
2 0.000051 0.000057 -9.4493 -9. 1824 -8.7924 
3 0.000046 0.000055 -9.3342 -8.9338 -8.3488 
4 0.000039 0.000049 -9.2738 -8.7399 -7.9599 
5 0.000021 0.000029 -9.6522 -8.9849 -8.0099 
6 0.000016 0.000023 -9.6980 -8.8972 -7.7272 
7 0.000012 0.000018 -9.7701 -8.8358 -7.4708 
8 0.000010 0.000016 -9.7 168 -8.6491 -7.0891 
9 0.000008 0.000013 -9.7728 -8.57 16 -6.8166 
10 0.000005 0.000009 -9.9618 -8.6271 -6.6771 
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Table.2.2.6. Eigen values of the characteristic matrices of the V AR(I) and 
V AR(2) models estimateo for the vector time series of transformed landings of 
anchovies lesser sardines, ribbon fish and catfish. , 

V AR(2) model V AR(I) model 

Real Imaginary Absol ute Real Imaginary Absolute 
No. part part value part part value 

1 -0.0 181 0.0000 0.0181 0.9665 -0.0078 0.9665 

2 0.2342 -0.0818 0.248 1 0.9665 0.0078 0.9665 
, 

0.2342 0.0818 0.248 1 0.8878 0.0000 0.8878 J 

4 0.652 1 -0.2350 0.6932 0.9135 0.0000 - 0.9135 

5 0.652 1 0.2350 0.6932 

6 0.8600 0.0000 0.8600 

7 0.9630 -0.0140 0.963 1 

8 0.9630 0.0140 0.9631 

Table.2.3. 1. Cross correlation matrices of the vector time series of transformed landings 
of mackerel. anchovies, tuna and penaeid prawns -

['""'" '.'00(" """1 ''''''1 ["'''''' """ '·""1 """'j C(O) = 0.509(+) 1.000(+) 0.754(+) 0.584(+) C(I)= -0.524(+) 0.946(+) 0.761(+) 0.556(+) 

0.566(+) 0.754(+) 1.000(+) 0.483(+) 0.535(+) 0.743(+) 0.969(+) 0.474(+) 

0.4 16(+) 0.584(+) 0.483(+) J.(IOO( +) 0.450(+) 0.570(+) 0.493(+) 0.886(+) 

r·"'" 'M"I .~".' ." ""j [,."'" '''',' "''''''1 '''''''j 0.522(+) 0.887(+) 0.767(+) 0.529(+) 0.50 1(+) 0.826(+) 0.764(+) 0.497(+) 
C(2)= C(3)= 

0.5 12(+) 0.737(+) 0.937(+) 0.461(+) 0.495(+) 0.72 1(+) 0.903(+) 0.455(+) 

0.483(+) 0.577(+) 0.5 19(+) 0.764(+) 0.527(+) 0.593(+) 0.546(+) 0.665(+) 

[,.,"'' ""'.1 '''',' """j ['~"" '''',' '.~"I .n",] 0.488(+) 0.75 1(+) 0.757(+) 0.45 1(+) C(5)= 0.482(+) 0.713(+) 0.749(+) 0.427(+) 
C(4)= 

0.482(+) O. 709( +) 0.870(+) 0.449(+) 0.494(+) 0.688(+) 0.859(+) 0.432(+) 

0.573(+) 0.577(+) 0.601(+) 0.561(+) 0.592(+) 0.565(+) 0.646(+) 0.539(+) 

"".1 ""'" ''''''1 '''''''] [""" ,."'" ",,,., '''''''j 
C(6)= 

0.492(+) 0.679(+) 0.726(+) 0.4 17(+) C(7)= 0.519(+) 0.645(+) 0.702(+) 0.417(+) 

0.507(+) 0.667(+) 0.854(+) 0.403(+) 0.5 J3( +) 0.663(+) 0.842(+) 0.365(+) 

0.593(+) 0.550(+) 0.660(+) 0.5 12(+) 0.597(+) 0.510(+) 0.675(+) 0.456(+) 

[,.""" .""., '"'',' """] ['."'" """ ""., ." .. '] 0.535(+) 0.6 14(+) 0.675(+) 0.41 8(+) C(9)= 0.561(+) 0.584(+) 0.645(+) 0.418(+) 
C(8)= 

0.520(+) 0.664(+) 0.825(+) 0.329(+) 0.5 19(+) 0.672(+) 0.804(+) 0.310(+) 

0.567(+) 0.468(+) 0.66J( +) 0.417(+) 0.530(+) 0.433(+) 0.627(+) 0.39J( +) 

['"'''' 0"",., .",., """] [0 ""., ." •. , .M", """'] 0.582(+) 0.568(+) 0.626(+) 0.4 15(+) C(II)= 0.588(+) 0.557(+) 0.611(+) 0.401(+) 
C(IO) = 

0.514(+) 0.676(+) 0.777(+) 0.299(+) 0.5 18(+) 0.664(+) 0.757(+) 0.292(+) 

0.495(+) 0.402(+) 0.612(+) 0.379(+) 0.451(+) 0.387(+) 0.589(+) 0.369(+) 
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Table.2.3. I. Continued 
( 0.138(·1 0.4 12(+) 0.428(+) 0.328(+)] 

lO.598(+1 0.546(+) 0.590(+) 0.375(+) 
C( I ')-

- - 0.511(+) 0.643(+) 0.740(+) 0.275(+) 

0.451(+) 0.390(+) 0.574(+) 0.333(+) 

C( 14) = . . 

[

0.086(.) 0.385(+) 0.396(+) 0.272(+)] 
o 563(+) 0.521(+) 0.554(+) 0 320(+) 

0.494( +) 0.585(+) 0.70 1(+) 0.212(+) 

0.439(+) 0.405(+) 0.569(+) 0.271(+) 

[

0.088(.) 0.345(+ ) 0.379(+) 0.196(+)] 
0.485( +) 0.459(+) 0.523(+) 0.285(+) 

C(16)= 
0.466(+) 0.560(+) 0.644(+) 0. 155(·) 

0.379(+) 0.431(+) 0.554(+) 0.274(+) 

[:'~18~) ~:~~~: ~ ~:~:~: ~ :'~50~~)] 
C(l8) = 

0.43 8(+) 0.540(+) 0.579(+) 0.131(·) 

0.324(+) 0.423(+) 0.5 15(+) 0.292(+) 

[ 

0.1 17(·) 0.294(+) 0.302l +) 0.033(-)] 
0.4 10(+) 0.4 16(+) 0.428(+) 0.226(+) 

C(20) = 
0.395(+) 0.506(+) 0.526(+) 0.108(·) 

0.305(+) 0.350(+ ) 0.455(+) 0.245(+) 

0.180(+) 0.243(+) 0.249(+) -0.034(.)] 

0 409(+) 0.398(+) 0.362(+) 0.203(+) 
C(22) = . 

0.341(+) 0.493(+) 0.481(+) 0.069(-) 

0.303(+) 0.248(+) 0.4 10(+) 0. 123(·) 

[

0. 196(+) 0.183(+ ) 0. 189(+) - 0.117(.)] 

C(24) = 0.394(+) 0.368(+) 0.329(+) 0.144(·) 
0.293(+ ) 0.496(+) 0.431(+) 0.053(·) 

0.328(+) 0. 171(+) 0.376(+) 0.056(-) 

x 

[

0103(.) 0.405(+) 0.407(+) 0.3 12(+)] 

0.~89(+) 0.544(+) 0.573(+) 0.348(+) 

C(13)= 0.506(+) 0.615(+) 0.722(+) 0.246(+) 

0.458(+) 0.402(+) 0.578(+) 0.298(+} 

[

0.087(.) 0.357(+) 0.393(+) 0.234(+)] 

C(l5) = 0.525(+) 0.491(+) 0.533(+) 0.296(+) 

0.477(+) 0.569(+) 0.676(+) 0.179(+) 

0.422( +) 0.419(+) 0.564(+) 0.255(+) 

[

0.0830 0.324(+) 0.363(+) 0. 150(.)] 
0.448(+) 0.432(+) 0.509(+) 0.267(+) 

C(17) = 0.452(+) 0.550(+) 0.611(+) 0. 143(·) 

0.336( +) 0.435(+) 0.536(+) 0.288(+) 

[

009 1(.) 0.3 15(+) 0.324(+) 0.0620] 
O.~ I O(+) 0.415(+) 0.46 1(+) 0.240(+) 

C(19)= 0.419(+) 0.524(+) 0.550(+) 0. 11 70 

0.315(+) 0.387(+) 0.487(+) 0.285(+) 

[

0.157(.) 0.269(+) 0.282(+) _0004(.)] 

C(2 1) = 0.406(+) 0.412(+) 0.390(+) 0.; 13(+) 

0.368(+) 0.493(+) 0.505(+) 0.085(·) 

0.305(+) 0.296(+) 0.428(+) 0. 175(+) 

[

0.194(+) 0.211(+) 0.214(+) -0 070(.)] 

C(23) = 0.408(+) 0.391(+) 0.342(+) 0: 175( +) 
0.3 18(+) 0.497(+) 0.457(+) 0.063(·) 

0.3 11(+) 0.2 15(+) 0.394(+) 0.085(·) 

[

1.000 0.509 0.566 0.416] 
S _ 0.509 1.000 0.754 0.584 

0.566 0.754 1.000 0.483 

0.4 16 0.584 0.483 1.000 
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Table.2.3 .2. The / statistic for testing combined significance of cross correlation 
matrices calculated for the ori ginal series and residual series of V AR( I) model using the 
vector time series of transformed landings of of mackerel , anchovies, tuna and penaeid 
prawns. 

x'stati stic x'statistic 
Original Residual Original Residual 

Lag senes senes Lag senes senes 
I 464.14 29.29 13 166.46 30.61 
2 345.69 18.30 14 157.57 20.95 
3 262.64 18.96 15 145.15 15.09 
4 196.45 76.77 16 132.57 16.02 
5 176.14 23.83 17 122.42 22.45 
6 162.05 33.67 18 11 2.89 20.82 
7 152.77 12.22 19 106.97 41.09 
8 150.11 26.54 20 97.09 20.37 
9 152.25 25.62 21 97.24 21.80 

10 159.71 22.92 22 106.32 23. 11 
\I 160.97 15.86 23 11 2.62 19.62 
12 164.02 18.52 24 121.29 13.50 

Table.2.3.3. Partial cross correlation matrices for the vector time series of transformed 
landings of mackerel, anchovies, tuna and penaeid prawns. 

~ 

[' .'" ,." •• , '."0.' ",..': [ -'''' -, -'.",,<, 0.0100 

-'~O'l · 0.524(+) 0.946(+) 0.761(+) 0.556(+) • - 0.0820 - 0.094(·) 0.046(·) -0.0100 
p(l) : 

p(2): 0.046(.) 0.076() 0.535(+ ) 0.743(+) 0.969(+) 0.474(+) - 0.062(·) - 0.026(·) 

0.4 50(+) 0.570(+) 0.493(+) 0.886(+) 0.0650 . 0. 166() 0.168(+) -0.113(·) 

[ '.~" '""'" ,. "., - ' .m '" ] [""" 
0.027(·) - 0.056() ""'] .• - 0.076(·) - 0.092(·) - 0.057(·) - 0.054(·) • 0.1090 - 0.246(- ) - 0.006() -0.109(·) 

p(»: • p(4): 0.0 15(.) 0.086(·) -0.0140) - 0.0 10( ·) -0.004() -0.1>5(·) -0.054(·) 0.051(·) 

0. 176(+) 0.0840 0.0630 0.018() 0.0800 - 0.212(-) 0.302(+ ) -0.1340 [' ""., -,~" ,.'" , -''"'' I [- ,." •. , ,.~., 0.096() 

'~"] .• 0.083(·) 0.303(+) 0.015(·) 0.094(·) • 0.184(+) -0.0480 -0. 116() 0.056() 
pI»): 0290(+) -0.09 1(-) 0.408(+) -0.066(·) p(6): 0.026(.) 0.0750 0.118(·) - 0.086() 

0.0570 0.0830 0.039() 0.110(+) 0.0980 - 0.01 1(·) - 0.071(·) -0.0920 

r-O
.
IOI

(.) ,~., -'MO' -'~"] [- ,m '" ,. '''<' - 0.078(·) 

"'>'] · 0.030(·) - 0.006(·) - 0.063( ·) 0.074(·) - 0 036(·) -0.105() 0.0030 - 0.035() 
p(7): _ O.OO4{) 0. 1250 - 0.137(·) - 0.057(·) .0(8): _ 0:035() 0.124() -0. 180(-) 0.0020 

~ 0. 175(+) -0.149{) 0.100(·) - 0.126() -0.125() -0.189(-) 0.0 18(·) - 0.041(·) 

[ ""I' 
- 0.003(-) -0.1020 ''''] [-''''-' - 0.040(·) - 0.127(·) 

'M"I • 0.218(+) 0.102(·) 0.026(·) 0. 160(·) • 10 _ -0.075(·) 0.115() 0.01 10 0.040(·) 
p(9): _ 0.026(.) 0.015() 0.065(·) - 0.004(·) p( )- 0.017(·) - 0.026(·) 0.0 10() - 0.009() 

- 0.023(-) 0.037(-) - 0.257(- ) 0. 137(·) - 0.080() 0.182(+) 0.015(·) 0.020() 



xii 

Table 2 3.3. Continued .. 
( - 0.153(·1 - 0.039(·) - 0.087(·) -0''' '] [- oro" -0"" 0.082(·) 

p(1I)= l 
0.047(·) 0.038(·) 0.03 1(·) - 0.018(·) • -0.003(·) - 0. 174(-) - 0.139(·) 

0.072(·) - 0.065(·) 0.00 1(·) -0.0050 p(12)= -0.047(.) 0.035(.) - 0.048(·) 

0.086(-) - 0.005(·) -0.0620 - 0.083(·) 0.125(·) -0.098(·) 0.101(·) 

[ oro" - 0..,'" -0_"" -0_""] [- '"'" -''''H - 0.052(·) 

• - 0.173( -) 0.05 10 - 0.0840 - 0.008(-) • - 0.092(-) -0.197(-) - 0.054(·) 
p(1 3) = p(l4) = 

0.128(·) - 0.055(·) - 0.032(·) - 0.029(-) -0. 143(-) -0.145(-) -0. 107(·) 

- 0.17 1( - ) 0.070(-) - 0.023(·) 0.0270 0.0 130 -0.111(·) 0.0450 

- 0.062(·) - 0.024(·) - 0.026(·) oro,,] [-0'" ' 0.1440 -0.087(·) 

.0(15) = 
- 0.086(·) - 0.058(·) - 0.1 40(·) 0.064(·) · 0. 1050 

p(16)= 0.079(.) 
-0.0 110 0.032(·) 

0.041(·) 0.088(·) - 0.034(·) - 0.066(·) 0.086() - 0.0540 

0.0530 0.144(·) 0.020(·) 0.050(·) 0.023(·) - 0.099(-) - 0.1240 

Table.2.3.4. Calculated values of squared partial 
canonical correlations and test statistic for the vector 
time series of transformed landings of mackerel, 
anchovies, tuna and penaeid prawns. 

Squared Partial Canonical Correlation LR 
Lag (i) (ii) (iii) (iv) Statistic 

I 0.9555 0.8435 0.6934 0.6866 1059.66 
2 0.1586 0.0904 0.0121 0.0005 40.63 
3 0.0931 0.0446 0.0129 0.0023 22.99 
4 0.1611 0.0809 0.0480 0.0001 44.86 
5 0.2484 0.1045 0.0881 0.0388 76.50 
6 0.1600 0.0619 0.0052 0.0001 35.32 
7 0.0993 0.0533 0.03 19 0.0013 · 28.00 
8 0.11 97 0.0186 0.0059 0.0002 22.08 
9 0.1745 0.0613 0.0058 0.0004 · 37.88 

10 0.0847 0.0564 0.0006 0.0000 21 .35 

Table.2.3 .5. Computed values of different order selection 
cri teria for the vector time series of transformed landings of 
mackerel, anchovies, tuna and penaeid prawns. 

p I ~ ; FPE AIC HQ SC 
I 0.000048 0.000051 -9.7265 -9.5930 -9.3980 
2 0.000036 0.00004 1 -9.7808 -9.5138 -9 .1 238 
3 0.000031 0.000037 -9.7160 -9.3156 -8.7306 
4 0.000024 0.000030 -9.7641 -9.2303 -8.4503 
5 0.000012 0.000016 -10.2410 -9.5736 -8.5986 
6 0.000008 0.000011 -10.4012 -9.6004 -8.4304 
7 0.000007 0.000010 -10.3977 -9.4634 -8.0984 
8 0.000005 0.000008 -10.3873 -9.3196 -7.7596 
9 0.000003 0.00006 -10.6167 -9.4155 -7.6605 
10 0.000002 0.000004 -10.7960 -9.4613 -7.5 11 3 

oro, '] 
- 0.068(-) 

-0.0730 

-0. 1000 

-'-""] 0.0740 

-0.0520 

0.0370 

'""" ] 0.059(-) 

0.002(·) 

0.0310 
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Table.2.3.6. Eigen values of the characteristic 
matrix of the V AR(I ) model estimated for the 
vector time series of transformed landings of 
mackerel, anchovies, tuna and penaeid prawns. 
No. Real Imaginary Absolute 

Pa rI part Value 

I 0.8809 -0.0434 0.8820 
2 0.8809 0.0434 0.8820 
, 0.8463 0.0000 0.8463 0 

4 0.9869 0.0000 0.9869 

Table.2.4.I . Cross correlation matrices of the vector time series of transformed landings 
of oi l sardine, anchovies, tuna and penaeid prawns [ , ... , -M"-, -''''-, -'''-'] [ .... , -•. ,"-, -•. ",-, -'''''-'] 

- 0.412(-) 1.000(+) 0.754(+) 0.584(+) C(I)= -0.420(- ) 0.946(+) 0.76 1(+) 0.556(+) 
C(O)-

-0359(-) 0.754(+) 1.000(+) 0.483(+) -0.374(-) 0.743(+) 0.969(+) 0.474(+) 

- 0.400(-) 0:584(+) 0.483(+) 1.000(+) - 0.4 13(+) 0.570(+) 0.493(+) 0.886( +) [ .""., - .... -, -'''0-' -''''-'] [ · ""., -.. ,,-, -''''-, -""-'] - 0.437(-) 0.887(+) 0.767(+) 0.529(+) C(3)= -0.453(- ) 0.826(+) 0.764(+) 0.497(+) 
C(2)-

0.937(+) 0.46 1(+) -0392(- ) 0.737(+) -0.408(- ) 0.721(+) 0.903(+) 0.455(+) 

-0.404(-) 0.577(+) 0.519(+) 0.764(+) -0.358(- ) 0.593(+) 0.546(+) 0.665(+) 

[ .""., -""-, -0.359(-) 
-. ""-, ] [ .. "., - 0.284(- ) -•. "',-, -'W'-'] - 0.480(- ) 0.751(+) 0.757(+) 0.45 1(+) - 0.5 18(- ) 0.7 13(+) 0.749(+) 0.427(+) 

C(4)- C(5)-
- -0.4 18(-) 0.709(+) 0.870(+) 0.449(+) - 0.425(- ) 0.688(+) 0.859(+) 0.432(+) 

-03 13(-) 0.577(+) 0.60 1(+) 0.56 1(+) - 0.270(- ) 0.565(+) 0.646(+) 0.539(+) 

[ •. ""., - 0.263(-) - 0.331(-) 

-''''-'] [ .n"., - 0.235(-) - 0.298(-) 
- .. "", ] 

-0.551(- ) 0.679(+) 0.726(+) 0.4 17(+) - 0.583(- ) 0.645(+) 0.702(+) 0.417(+) 
C(6)- C(7)-

- 0.430(-) 0.667(+) 0.854(+) 0.403( +) -0.435(- ) 0.663( +) 0.842(+) 0365(+) 

- 0.234(-) 0.550(+) 0.660(+) 0.512(+) - 0.209(- ) 0.510(+) 0.675(+) 0.456(+) 

[ . " .. , - 0.211 - 0.270(-) ' ''0' ] [ .. ", -0.181(- ) - 0.247(-) .... '] - 0.609(- ) 0.614(+) 0.675(+) 0.4 18(+) - 0.626(- ) 0.584(+) 0.645(+) 0.418(+} 
C(8} - C(9}= -0.441(- } - - 0.440(-) 0.664(+} 0.825(+} 0.329(+} 0.672(+} 0.804(+) 0.310(+} 

- 0.194(-) 0.468(+} 0.663(+) 0.4 17(+} - 0.198(- } 0.433(+} 0.627(+) 0393(+) 

[ •.. ,,' -0. 156(·} -0.228(- } 
- •. "", ] [ - .. ", -... " -.,,"-, -'·"·'1 - 0.633(-) 0.568(+} 0.626(+} 0.4 15(+) - 0.630( - } 0.557(+} 0.611(+} 0.40 1(+) 

C(lO} = C(l I} = 
- 0.440(- ) 0.676(+} 0.77?(+} 0.299(+} -0.437(-} 0.664(+} 0.757(+} 0.292(+} 

- 0.207(- } 0.402(+} 0.612(+} 0.379(+ } -0.221(-) 0.387(+} 0.589(+} 0369(+) 

['''' - 0.142(-} -0.2 15(-} .. ,,' I [ - 0.095(·} - 0.148(·} - 0.205(-} .. ,,' I - 0.616(- } 0.546(+} 0.590(+ } 0.375(+} -0.582(-) 0.544(+ ) 0.573(+} 0.348(+) 
C 12 - C(l3}= 

( ) - -0.432(- } 0.643(+ } 0.740(+} 0.275(+ } - 0.435(- } 0.615(+} 0.722(+} 0.246(+} 

- 0.248(- ) 0.390(+} 0.574(+) 0.333(+ } - 0.261(-) 0.402(+ } 0.578(+) 0.298(+) 

[_. , "" - 0.153(-} - 0. 194(-} 

"~'l ['''.: -0.147(·} - 0.177(-} 

" 'n, I - 0.535(-) 0.521(+ } 0.554(+) 0.320(+} - 0.48 1(- } 0.49 1(+) 0.533(+} 0.296(+ } 
C(14}= 

0.585(+) 0.70 1(+} 0.212(+} 
C(15) = 

0.569(+) 0.676(+} 0.179(+} - 0.442(-} - 0.460(- ) 

- 0.267(-) 0.405(+) 0.569(+} 0.271(+) - 0.281(- ) 0.419(+} 0.564(+} 0.255(+} 
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Table.2.4.I. Continued 

[-. ",., -0.147(·) -0.159(·) 

""'] [ -•. ,," - 0.143(·) - 0.143(·) .~, ] 
-0.431(-) 0.459(+) 0.523(+) 0.285(+) -0.393(-) 0.432(+) 0.509(+) 0.267(+) 

C(16) = C(17)= 
- 0.484(- ) 0.560(+) 0.644{+) 0.155(·) -0.499(-) 0.550(+) 0.611(+) 0.143(·) 

- 0.269(-) 0.43 ~+) 0.554(+) 0.274(+) - 0.262(-) 0.435(+) 0.536(+) 0.288(+) 

[-."'., - 0.148(·) - 0.120(-) 

'00" ] ["'"'' - 0.157(·) - 0.0920 '00«, ] -0.359(- ) 0.425(+) 0.487(+) 0.250(+) 
C(19) = = ~!!~ 

0.415(+) 0.461(+) 0.240(+) 
C(l 8) = 

- 0.505(-) 0.540(+) 0.579( +) 0.1310 0.524{+) 0.550(+) 0.1170 

-0.263(-) 0.423(+) 0.515(+) 0.292(+) - 0.234 0.387(+) 0.487(+) 0.285(+) 

[ -""" -0.160(-) -0.062(·) 

-'''''] ["'''' - 0.172(-) - 0.037(·) ""'] - 0.304(-) 0.416(+) 0.428(+) 0.226(+) - 0.279(-) 0.4 12(+) 0.390(+) 0.213(+) 
C(20) = C 2 1 -

-0.469(-) 0.506(+) 0.526(+) 0.108(·) ( )- -0.444(-) 0.493(+) 0.505(+) 0.085(·) 

-0.282(-) 0.350(+) 0.455(+) 0.245(+) -0.303(-) 0.296( +) 0.428(+) 0.175(+) 

[ ."., -0.170(-) -0.023(·) -'."] [ .. ,' -0.162(·) - 0.0 18(·) -'''''] -0.265(- ) 0.398(+) 0.362(+) 0.203(+) - 0.256(-) 0.39 1(+) 0.342(+) 0.175(+) 
C(22) = C(23) = 

- 0.420(-) 0.493(+) 0 . .481(+) 0.069(·) -0.403(-) 0.497(+) 0.457(+) 0.063(·) 

- 0.322(-) 0.248(+) 0.410(+) 0.123(·) - 0.341(-) 0.215(+) 0.394(+) 0.085(·) 

[ "'" - 0.157(·) -..• ",., -'."'] [ , ~ -•. ", -". _'M] 
- 0.242(-) 0.368(+) 0.329(+) 0.144{·) -0.412 1.000 0.754 0.584 

C(24) = s = 
- 0.392(-) 0.496(+) 0.431(+) 0.053(·) - 0.359 0.754 1.000 0.483 

- 0.356(- ) 0.171(+) 0.376(+) 0.056(·) -0.400 0.584 0.483 1.000 

Table.2.4.2. The X 2 statistic for testing combined significance of cross correlation 
matrices calculated for the original series and residual series of Y AR( I), Y AR(2) 
and Y AR(5) models using the vector time series of transformed landings of oil 
sardine, anchovies, tuna and penaeid prawns. 

Zl statistic Zl stati stic 

Original Residual series of Original Residual series of 

Lag series YAR(I) YAR(2) YAR(5) Lag senes YAR(I) YAR(2) YAR(S) 

I 468.72 46.70 5.71 4.59 13 170.68 19.46 15.07 13.73 
2 353.18 20.93 14.04 9.87 14 158.46 13 .77 18.56 11.08 

~ . 

3 266.94 15.39 28.40 3.36 15 150.57 16.15 17.98 13.20 
4 198.14 73.93 87.03 15.34 16 148.77 22.6 1 25.41 19.58 
5 184.18 21.05 21.15 21.85 17 146.42 24.12 17.35 13 .46 
6 179.81 29.42 30.96 16.55 18 142.83 21.61 15 .77 18.84 
7 178.36 10.49 9.83 24.20 19 138.51 31.23 28.28 26.35 
8 183.23 22.66 19.22 30.88 20 128.66 18.73 23.80 22.41 
9 186.54 24.07 21.64 11.95 21 131.57 23 .52 26.90 28.25 

10 191.55 23.33 24.11 20.13 22 136.84 22.05 23.97 17.90 
I 1 189.11 17.49 17.14 10.57 23 136.04 12.00 19.99 19.47 
12 180.39 22.77 22.27 22.42 24 140.75 14.21 17.98 11.49 
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Table.2 .4.3. Parti al cross correlation matrices for the vector time series oftransforrned 
landings of oil sardine, anchovies, tuna and 'penaeid prawns. 

[ 

0948(-) - 0.397(-) -0.347(-) -0.37 1(-)] 
_ I _ - 0.420(-) 0.946(+) 0.761(+) 0.556(+) 
j>()- - 0.374{-) 0.743(+) 0.969(+) 0.474(+) 

- 0.413(-) 0.570(+) 0.493(+) 0.886(+) 

[

-0.172(-) -0.092(·) 0.0110 _0.069(')] 
_ 3 _ 0.039(·) - 0. 11 70 - 0.03 1(·) - 0.075(·) 

p()- 0.0 11() - 0. 128(·) - 0.045(-) 0.0500 

0.186(+) 0.094(·) 0.044(·) 0.029(-) 

[ 

0.257(+) -0.006(·) 0. 178(+) -0.061(.)] 
_ _ -0.157(·) 0.297(+) 0.0420 0.088(·) 

p(»= - 0.016() 0.083(·) 0.385(+) -0.074(·) 

.0.037(·) 0.029(·) 0.017(·) 0.307(+) 

[

- 0.111(·) 0.049(·) 0. 154(·) - 0.053(')] 
_ - 0.008(-) - 0.003(-) - 0.0720 0.06 1(·) 

p(7)= 
-0.043(·) 0.1 12(·) - 0.140(·) -0.065(·) 

0.125(·) -0.142(·) 0.145(·) -0. 108(·) 

[ 

0.057(·) 0.156(·) 0.\34(·) 0.13 1(.)] 
_ -0.10 1(·) 0.106(-) 0.021(·) 0.116(·) 

p(9) = 0.0 18(.) 0.019(.) 0.101(·) 0.0 14(·) 

-0. \36(·) 0.0 16(-) - 0.235(-) 0.101(·) 

[ 

0.027(·) - 0.022(·) - 0.019(·) - 0.0370 ] 

_ - 0.057(·) 0.057(·) 0.019(·) 0.033(·) 
p(II )= 

- 0.052(·) - 0.0320 0.072(·) - 0.003(·) 

0.009(·) 0.0540 0.003(-) - 0.006(·) 

[

- 0.132(·) - 0.030(-) 0.173( +) 0.033(')] 
_ 0.11 6(-) 0.050(·) -0.026(-) 0.076(·) 

p(13) = 
- 0. 137(·) - 0.035(·) 0.023(·) - 0.048(·) 

- 0.022(·) 0.048(·) - 0.090(·) 0.092(·) 

[

-0.20:<-) -0.025(·) 0.180(+) 0,1 18(')1 
_ 0.073(·) 0.012(·) 0.033(·) 0.085(·) 
p(l5)= 

- 0.233(-) 0.092(·) - 0.012(·) - 0.005(·) 

-0.083(·) 0.160(·) 0.186(+) 0.057(·) 

1

-0.464(-) 0.155(} -0.1 81(-) 0.141(.)] 
_ -0.112(·) -0.101(·) 0.0520 -0.015(-) 
j>(2)= 

. -0.0710 0.082(·) - 0.057(·) - 0.023(-) 

0.124{·) 0.154{·) 0.174(+) -0.120(·) 

[

- 0.162(·) 0.0080 0.0700 0.0420 ] 
_ - 0.166(·) -0.233(- ) 0.022(·) -0.1 080 

p (4)= 
0.050(·) 0.098(-) - 0.033(·) 0.000(·) 

-0.095(·) -0. 170(-) 0.284(+) -0. 11 2(·) 

[

-0.240(- ) 0.095(·) -0.017(·) 0.099(,)] 
_ - 0.076(·) - 0.068(·) -0.157(·) 0.0500 
p(6) = 

- 0.028(·) 0.075(·) 0.099(·) - 0.096(·) 

0.019(·) 0.002(·) - 0.038(-) -0.101(-) 

[

-0,079(-) - 0.154(·) - 0. 11 7(·) 0.040(')] 

p(8)= -0. 100(·) - 0. 126(-) - 0.059(·) - 0.008(-) 

-0.0720 0. 121() -0. 156(·) -0.032(·) 

-0. 101(·) - 0. 188(- ) -0.060(·) -0.022(·) 

[

- 0.084(·) - 0.071(·) - 0.049(·) 0.030(')] 
_ ) -0.002(·) 0.14 1(·) 0.071(·) 0.065(·) 

p (1O = 
- 0.042(·) - 0.045(·) - 0.014(·) -0.016(·) 

0.040(-) 0. 131(·) 0.0620 0.016(·) 

[

- 0.074(·) 0.030(-) - 0.093(·) - 0,067( ')1 
_ -0.030(·) - 0.141(·) -0.113(·) -0.089(·) 
p(12) = 

- 0.034(-) 0.033(·) - 0.0 14(·) - 0.066(·) 

-0.192(-) - 0.078(·) 0.078(·) -0. \30(·) 

[

-0,037(,) 0.13 1(·) -0.111(·) 0.0070 ] 

p(14) = 0.08 1(·) - 0. 169(-) - 0.056(-) - 0.046(-) 
- 0.058(·) - 0. 11 9(·) - 0.084(·) 0.073(·) 

0.009(·) - 0. 107(·) - 0.045(·) - 0.037(·) 

p(16)= -0.096(·) -0.073(·) 0.0730 0.104(·) 

[ 

0.052(·) - 0.067(·) -0.046(·) - 0.080(')] 

- O. \39(.) 0.145(·) - 0.085(·) - 0.028(·) 

0.031(-) -0.076(-) -0. 11 0( -) 0.\32(·) 
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Table.2.4.4. Calculated values of squared partial canonical 
correlations and test statistic for the vector time series of 
transformed landings of oil sardine, anchovies, tuna and 
penaeid prawns 

Squared Partial Canonical Correlation LR 
Lag (i) (ii) (i ii) (iv) Statistic 

I 0.9595 0.8686 0.6938 0.6884 1099.91 
2 0.2957 0.0945 0.0203 0.0021 68.51 
, 0.1051 0.0271 0.0095 0.0012 21.66 ~ 

4 0.1787 0.0601 0.0180 0.0022 40.48 
5 0.2296 0.1354 0.0760 0.0569 78.86 
6 0.1185 0.0535 0.0107 0.p003 27.88 
7 0. 1279 0.0438 0.0210 0.0002 29.45 
8 0.1284 0.0632 0.0036 0.0003 29.95 
9 0.1392 0.0655 0.0048 0.0004 32.31 

10 0.0538 0.0118 0.0007 · 0.0001 9.85 

Table.2.4.5. Computed values of different order selection 
criteria for the vector time series of transformed landings of 
oil sardine, anchovies, tuna and penaeid prawns. 

p I~ FPE AIC HQ SC 
I 0.000044 0.000047 -9.8219 -9.6885 -9.4935 
2 0.000028 0.000031 -10.OH8 -9.7848 -9.3948 
3 0.000023 0.000028 -10.0137 -9.6133 -9.0283 
4 0.000019 0.000024 -10.0018 -9.4679 -8.6879 
5 0.000009 0.000012 -10.4872 -9~8199 -8.8449 
6 0.000007 0.000010 -10.5465 -9.7457 -8.5757 
7 0.000005 0.000008 -10.6036 -9.6693 -8.3043 
8 0.000004 0.000006 -10.6521 -9.5843 -8.0243 
9 0.000003 0.000005 -10.7252 -9.5240 -7.7690 
10 0.000002 0.000004 -10.7697 -9.4350 -7.4850 
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Table.2.4 .6. Eigen values of the characteristic matrices of the VAR(I), VAR(2) and 
VAR(5) models estimated for the vector time series of transformed landings of oil 
sardine, anchovies, tuna and penaeid prawns. 

V AR( I ) model V AR(2) model VAR(5) model 

I No. Real Imaginary Absol ute Real Imaginary Absolute Real Imaginary Absolute 
part part value part part value part part value 

I 0.9851 0.0000 0.985 1 0.0635 -0.1051 0.1228 -0.6 161 -0.50 II 0.7942 
2 0.8344 0.0000 0.8344 0.0635 0.105 1 0.1228 -0.6161 0.50 II 0.7942 
3 0.9333 0.0000 0.9333 0.5218 0.0000 0.5218 -0.5322 -0.6942 0.8747 
4 0.8552 0.0000 0.8552 0.328 1 0.0000 0.3281 -0.5322 0.6942 0.8747 
5 0.7829 -0.1072 0.7902 -0.5442 -0.5651 0.7845 
6 0.7829 0.1072 0.7902 -0.5442 0.5651 0.7845 
7 0.9840 0.0000 0.9840 -0.438 I -0.6279 0.7656 
8 0.8392 0.0000 0.8392 -0.4381 0.6279 0.7656 
9 0.5194 -0.6553 0.8362 

10 0.5194 0.6553 0.8362 
II 0.6741 -0.5281 0.8563 
12 0.6741 0.528 1 0.8563 
13 0.6 197 -0.5 169 0.8070 
14 0.6197 0.5 169 0.8070 
15 0.7050 -0.3463 0.7855 
16 0.7050 0.3463 0.7855 
17 0.79 12 0.0000 0.7912 
18 0.9870 0.0000 0.9870 
19 0.9203 -0.0245 0.9206 
20 0.9203 0.0245 0.9206 

Table.2.5.I. Cross correlation matrices of the vector time series of transformed landings 
of elasmobranchs, oi l sardine, mackerel and sear fish 

[ ,,,,,., '·'''·1 -'.Inl-' -• ",., 1 [""'.' .",.1 -'·"<-1 -'"' ' i C(O) = 0.240( +) 1.000(+) -0.350(-) -0.345(- ) C(1) = 0.264(+) 0.948(+) - 0.354(-) - 0.340(- ) 

- 0. 172(-) - 0.350(- ) 1.000(+) 0.421(+) -0.1530 - 0.343(- ) 0.929(+) 0.41 8(+) 

- 0.120(·) - 0.345(-) 0.421(+) 1.000(+) -0.186(- ) - 0.348(- ) 0.40 1(+) 0.963(+) 

[ '''' -' '·"'.1 -•. ".-, -.",., 1 [ ''',., ",,·1 -•. n'-I -,""" 1 
C(2)= 0.295(·) 0.852(+) -0.368(-) -0.347(- ) C 0.315(+) 0.733(+) -0.380(-) - 0.354(- ) 

(3) a 
- 0. 171(-) - 0.334(- ) 0.826(+) 0.4 16(+) -0.205(- ) - 0.319(- ) 0.726(+) 0.420(+) 

• - 0.243(-) - 0.360(- ) 0.391(+) 0.9 14(+) -0.277(- ) - 0.379(- ) 0.398(+) 0.864(+) 

[ 0.125( .) 0.293(+) 0.357() 0.044(·) 1 [ .m" I ." '·1 -'.'''-1 -"''''' 1 0.3 17(+) 0.597(+) - 0.382(-) -0.354(- ) C(5) = 0.285(+) 0.482(+) - 0.369(- ) - 0.350(- ) 
C(4) -

- 0.248(-) - 0.301(- ) 0.623(+) 0.4 16(+) -0.28 1(- ) - 0.295(- ) 0.541(+) 0.4 14(+) 

- 0.293(-) - 0.402(- ) 0.412(+) 0.811(+) - 0.282(- ) - 0.428(-) 0.442(+) 0.791(+) 
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Table.2.5. I. Continued .. -- - - - -- - - - -- - - - - - -

' "'''' ""',' -•. ,,,-, -'''''] [ ",,,., .,."" -.. ,,, -, -"'"" i 
0.23 11- ' 0.375(+) - 0.346(- ) - 0.334(- ) ( 0.182(+) 0.272(+) -0.314(- ) -0.307(-) 

C(6) = (7) = 
- 0.279\ -' - 0.296(-) 0.475(+) 0.406(+) - 0.237(- ) -0.301(-) 0.388(+) 0.382(+) 

, - 0.251(-1 - 0.447( -) 0.467(+) 0.785(+) - 0.249(-) - 0.454(- ) 0.482(+) 0.77J(+} .. ,," '.,..., -.. ".-, -'''''! [ .,,,,., ... ,., -"",-' -. "" ] 
0.129\ I 0.180(+) - 0.285( -) - 0.273(-) 0.084(·) 0 097(·) - 0.249(-) -0.233(-) 

C(8)= - 0.162( I -0.317(- ) 0.314(+) 0.369\+) 
C(9) = 

- 0.0920 - 0.327(- ) 0.263(+) 0.374(+) 

- 0.2631 - ' -0.452(-) 0.499\+) 0.757(+) - 0.300(-) - 0.439(-) 0.504(+) 0.748(+) 

I "~" "",' -.,"-, -.. , '" ] ['"'''' .",., -.m-, -'''''] 0.070< ' 0.026(-) -0.220(-) -0.190(- ) 0.056(-) -0.027(·) - 0.L96(-) -0.15 10 
C(lO) = C(l I) = 

- O.O~ r. , - 0.342(-) 0.218(+) 0.389\+) - 0.0150 -0.35 1(- ) 0.177(+) 0.419(+) 

, - 0.35'1- 1 -0.424(- ) 0.500(+) 0.729(+) -0.388(-) -0.41 2( - ) 0.489(+) 0.714(+) 

[ " .. -. .m,., -• "'-, -"""'] [""" ' ... ,., -.. ,"-, -.. ,,' I 
0.056<' - 0.066(·) - 0.173(-) -0. 1240 0.068(-) - 0.095(·) - 0.153(·) - 0. 105(·) 

C(12) = C(l3) = 
-0.02"" - 0.354(- ) 0.138(·) 0.450(+) -0.062(·) - 0.343(-) 0.103(-) 0.456(+) 

- 0.398(-) - 0.394(-) 0.470(+) 0.699(+) -0.388(-) -0.384(- ) 0.449(+) 0.677(+} [ .,,,., ' ... ,., -, ",,., -'''., i [""" · ",., -.",-, '''''' I 0.07-1(, - 0.117(·) -0.124(·) - 0.096(·) 0.096(·) - 0.136(·) - 0.087(·) -0.095(·) 

C(1 4)= - 0.090<' - 0.326(-) 0.086(·) 0.460(+) 
C(l5) = 

-0.14 1(·) - 0.317(- ) -0.087(·) 0.458(+) 

- 0.360,-1 - 0.375(- ) 0.427(+) 0.660(+) - 0.343(-) - 0.374(- ) 0.413(+) 0.64 1(+) 

[ .", -. ""H -•. '" -, '''''' ] [""" .,,,., -" ,,-, '."] 0.13211 - 0.1520 -0.0~ 5( · ) - 0.087(·) 0 171(+) - 0 153(·) -0.009(·) - 0.Q74(·) 
C(16)= C(17) = 

-O. IB-I - 0.3 19( - ) 0.0880 0.446(+) -0.173(-) - 0.332(- ) 0.083(·) 0.443(+) 

- 0.31(),-) -0.182(-) 0.396(+) 0.614(+) -0.3 19(-) - 0.190(- ) 0.379(+) 0.590(+) [""-' · .",., -.. ''''-, ... ", I ["'''' · ".-, -, "" ' .. ,., I 0 .2 1 ~-) - 0. 1420 0.016( ·) - 0.0590 C(19) = 0.250(+) - 0.123( ·) 0.036(·) - 0.041(·) 
C(18) = 

- 0.188<-\ - 0.340(-) 0.0850 0.429(+) -0.193(-) - 0.338(-) 0.091(·) 0.397(+) 

- 0.327(-) - 0.398(-) 0.372(+) 0.561(+) - 0.332(-) - 0.393(- ) 0.368(+) 0.535(+) 

.,,'" ." •. , -.m, """] [ .... , .. ",., -,,,,., -... , I 
C(20) = 

0.271H -0.089(-) 0.035(·) -0.028(·) 0.274(+) - 0.039(·) 0.030(-) -0.026(-) 
C(21) = 

- 0.1891-1 - 0.127(-) 0.117(-) 0.358(+) - 0.198(- ) - 0.316( - ) 0. 157(·) 0.3 13(+) 

- 0.3~1I - ) - 0.386(-) 0.371(+) 0.513(+) -0.352(-) - 0.383(- ) 0.371(+) 0.497(+) 

('''''' ' .. ",., -.. ", -" ""! [""" ... ,' -.m" -..... '] 
C(22) = l 0.2511-1 0.010(-) 0.0221-) - 0.029(·) 0.216(+) 0.0680 0.0020 -0.038(-) 

- 0.2021-1 - 0.309( - ) 0.182( +) 0.25i( +) C(23)= - 0.199(- ) - 0.297( - ) 0.194(+) 0.219(+) 

- 0.353(-) -0.381(-) 0.365(+ ) 0.483(+) -0.354(-) - 0.386(- ) 0.349(+) 0.472(+) 

[ · .. ," ."., -."" ."., ] [ · ~ •. , .. -.m -''''] C(24)= 0.172(-) 0.119(·) -0.02 1(·) - 0.045(-) 0.240 1.000 - 0.350 - 0.345 
s= 

- 0.211(-) - 0.272(- ) 0.196(+) 0.193(+) - 0 172 - 0.350 1.000 0.421 

-0.3671-) - 0.390(-) 0.330(+) 0.461(+) - 0.120 - 0.345 0.42 1 1.000 
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Table . ~.5 . 2. The / stati stic for testing combined significance of 
cross correlation matrices calculated for the original series and 
residual series of the V AR(2) model using the vector time series of 
transformed landings of of elasmobranchs, oil sardine, mackerel 
and sear fish. 

1 .. 
X. statistic 

1 . . 
X stati stic 

Original Residual Original Residual 
Lag series series Lag series series 

I 488.54 4.57 13 152.39 22.14 
2 362.35 10.78 14 148.18 35.30 
3 26 1.88 31.60 15 146.11 15.07 
4 197.22 61.94 16 145.88 25.71 
5 171.25 12.67 17 144.43 18 .23 
6 150.62 25.40 18 137.62 16.67 
7 130.82 13 .22 19 126.97 20.27 
8 121.77 18.16 20 112.99 18.21 
9 125.31 20.72 21 98 .82 15.39 

10 135.22 15.64 22 86.02 24.88 
II 145.87 29.53 23 75.55 22.26 
12 152.93 29.38 24 71.49 10.89 

Table.2.5.3 . . Partial cross correlation matrices for the vector time series of transformed 
land ings of elasmobranchs oi l sardine mackerel and sear fish - , , 

[ ."., 0.236(+) - 0.204(- ) -.. ", ! r''''-' 
0.095(·) -.m,-, -'~"I · 0.264(+) 0.948(+) -0.354(- ) - 0.340H · 0.089(·) - 0.472(-) - 0.097(·) - 0.1 54(·) 

p( I) : -0.153(·) - 0.343(-) 0.929(+) 0.418(+) p(2): - 0.169(- ) 0.009( ·) -0.278(- ) 0.032(·) 

-0. 186(-) - 0.348(-) 0.401( +) 0.963(+) - 0.024(·) - 0.118(·) 0.063(·) - 0. 139(·) 

[ -. "'" ... ,' -.. n" '00" 1 [-.''''' 0.057(·) 

'00" -""·'1 . , -0.034( ·) - 0 16{)(·) 0.051(·) 0.041( ·) • - 0.023( ·) - 0.192(- ) 0.087(·) 0.093( ·) 
p(» : 0.013( ·) 0 037(·) 0.052(·) 0.075( ·) P(4): - 0.051(.) - 0.016(-) - 0.129(·) -0.092(·) 

0.004( ·) - 0.030( ·) 0.104(·) 0.016( ·) - 0.031(·) - 0.006(·) - 0.0 18(·) 0.028(·) 

[ .,"-, -•. 00,,·, -""" •• ,' 1 [ ."" 0.022(·) .. ,,' · ... '1 · -0.136(·) 0.254(+) 0.136(·) 0.009( ·) · 6 _ - 0.010(·) - 0.266(-) - 0.030(·) 0.101(·) 
p(5) : 0.046( .) - 0.131(-) 0.156(·) 0. 135(.) p( ) - 0.044(-) -0.002(·) - 0. 145(·) - 0.038(·) 

0.074(·) - 0.021(-) 0.162(·) 0.380(+) 0.083(·) 0.062(·) - 0.076(·) -0.055(·) 

['00" 
- 0.024(·) -.. ",., -... " , I [-"'" 

0.083( ·) - 0.043(·) -""-'] • 0.087(·) - 0.155(·) 0. 150(·) 0.177(+) · 8 _ - 0.099(·) -0. 138(·) - 0.038(·) 0.132(·) 
P(7) : 0.169(+1 - 0.002(·) -0.201(- ) -0.110(·) p( ) - 0.088( ·) 0.024(·) - 0.0 17(·) 0.1 (9(.) 

-0. 174(-) 0.084(·) -0.047(-) - 0.123(·) - 0.073(·) 0.003(·) 0.051(·) 0.011(·) 

[ 0.237(+) 0.1550 0.063( ·) 
0077(] ["'" .,," - 0.047(·) -''''] · -0.045(·) 0.044(·) 0.187(+) 0. 145(·) PliO): 0. 192(+) -0.083(·) - 0.133(-) 0.065(·) 

p(9) : _ 0.060(.) - 0.036(·) 0.090(-) 0. 149(·) - 0.071(·) - 0.088(·) -0. 105(·) 0.052( ·) 
- 0.071(·) 0.093( ·) - 0.091( ·) 0. 16 1(-) 0.002(·) - 0.004(-) - 0.093(·) - 0.160(-) 
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Table.2.5.3. Continued 

['." -'.00" -"'"" -'~'.'] [ """ -.. ", -'.m, , 'm" ] 0.003(·) - 0.008(-) 0.022(·) 0.123(·) P(12)= - 0.007(·) - 0086(·) - 0.Ol7(·) - 0.102(·) 
P(II) = 

0.141(·) 0.034(·) - 0.013(·) 0.126(-) -0.0800 - 0.086(·) - 0.041( ·) 0.076(·) 

0. 106(·) 0.016(·) - 0.Ol4(·) 0.030(·) - 0.021( ·) 0.098(·) - 0.097(·) O.Oll( ·) 

[ ""-, -"N' -'"'" '''''I . - 0.Ol7( ·) -0.107(·) 0.047(·) 0.068( ·) 
p(ll) = 

P(14) = 0.02l0 - 0.068(·) 0.0190 0.034(·) ['.'.' ,., .. , -,. ''''-, -''''.'] 
- 0.083(·) 0.111(·) 0.090(-) - O.ll3( ·) 0.091(·) - 0.106( ·) - 0.016(·) 0.069(·) 

- 0.01 10 - 0.005(·) - 0.048(·) - 0.060(·) 0.091(·) 0.083( ·) - 0.132(-) 0.046(·) 

[ , .. , ,m,·, ,",., '''''] • 0.102(·) - 0.076(·) O.l l l(·) 0.000(·) 
jJ( ll)= 

. 0.072(-) 0.048(-) 0.016(·) 0.084(·) ["'" '"" """ '""" ] jJ(16) = 0.072(-) - 0.072(.) - 0. 102(.) 0.072(.) - 0.127(·) - 0.099(·) 0.08 1(·) 0.024(-) 

- 0.093( ·) - 0.110(·) 0.084(·) - 0.028(·) 0.070(·) 0.028(·) - 0.116(·) - 0.072(·) 

Table.2.5.4. Calculated val ues of squared parti al 
canonical correlations and test statisti c for the vector 
time series of transformed landings of eiasmobranchs, 
oil sardine, mackerel and sear fish. 

Squared Partial Canonical Correlation LR 

Lag (i) (ii) (i ii) (iv) Statistic 

I 0.9454 0.8817 0.8222 0.6967 1154.63 
2 0.3121 0.2488 0.0676 0.0004 105.93 
3 0.0731 0.0295 0.0098 0.0026 17.14 
4 0.0683 0.0448 0.0216 0.0026 20.46 
5 0.1976 0.1556 0.0646 0.0164 68.53 
6 0.0843 0.0272 0.0045 0.0003 17.48 
7 0. 1085 0.0879 0.0087 0.0008 31.39 
8 0.0796 0.0442 0.0081 0.0035 20.27 
9 0.0921 0.0900 0.0494 0.0035 35.56 

10 0.0768 0.0592 0.0190 0.0085 24.46 
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Table.2.5.5. Computed values of different order se lection 
criteria for the vector time series of transformed landings of 
elasmobranchs. oil sardine, mackerel and sear fish . 

p It I I'PE AIC HQ 
1 0.000145 0.000155 -8.6 1% -8.4861 
2 0.000062 0.000070 -9.2431 -8.9762 
3 0.000055 0.000066 -9.1390 -8.7386 
4 0.000048 0.000061 -9.0609 -8.5270 
5 0.000026 0.00003.4 -9.4733 -8.8060 
6 0.000021 0.000029 -9.4589 -8.6581 
7 0.000016 0.000024 -9.5159 -8.5817 
8 0.000013 0.000021 -9.4870 -8.41 93 
9 0.000009 0.000015 -9.6571 -8.4559 
10 0.000006 0.000012 -9.7455 -8.4108 

Table.2.5.6. Eigen values of the characteristic 
matrices of the V AR(2) model estimated for 
the vector time series of transformed landings 
of elasmobranchs, oil sardine, mackerel and 
sear fi sh. 
No. Real Imaginary Absolute 

Pari part Value 

I -0.0786 0.0000 0.0786 
2 0.31 65 0.0000 0.3165 
3 0.6712 -0.3347 0.7500 
4 0.6712 0.3347 0.7500 
5 0.7058 -0.1558 0.7228 
6 0.7058 0.1558 0.7228 
7 0.8322 0.0000 0.8322 
8 0.9875 0.0000 0.9875 

SC 

-8.29 11 
-8.5861 
-8.1536 
-7.7470 
-7.8310 
-7.4881 
-7.2167 
-6.8593 
-6.7009 
-6.4608 
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Table.2.6.1. Forecasts with standard errors for the vector time series consisting of 
transformed landings of oil sardine, mackerel, anchovies and lesser sardine using 
the fitted VAR(2) model 

Oil sardine Mackerel 
Year Quarter Observed Forecasted SE Observed Forecasted SE 

I 8.3564 8.1038 0.2598 10.5004 10.1696 0.3053 

1997 
II 8.9392 8.1562 0.4475 10.2735 10.0773 0.4852 
III 9.0120 8.1672 0.5832 10.1245 9.9693 0.6093 
IV 9.2357 8.1585 0.6757 9.9324 9.8561 0.6943 
I 8.9451 8.1475 0.7380 9.6394 9.7481 0.7534 

1998 
II 8.8739 8.1428 0.7809 9.6173 9.6510 0.7962 
III 8.9840 8.1474 0.8120 9.6238 9.5665 0.8287 
IV 8.9954 8.1612 0.8363 9.5270 9.4938 0.8547 

Year Quarter 
Anchovies Lesser sardine 

Observed Forecasted SE Observed Forecasted SE 
I 10.9587 10.8919 0.3050 11 .7177 11 .1246 0.3937 

1997 
II 10.9741 10.8497 0.4410 11 .5152 11 .1684 0.5855 
III 11 .0627 10.7914 0.5339 10.9002 11 .2437 0.7059 
IV 10.8624 10.7376 0.6046 11 .4506 11 .3185 0.7866 

I 10.9498 10.6898 0.6618 11.4429 11 .3884 0.8436 

1998 
II 11 .1438 10.6462 0.7095 11 .6955 11.4531 0.8849 
III 11 .0740 10.6055 0.7500 10.8220 11 .5122 0.9154 
IV 11 .1145 10.5670 0.7847 10.9244 11 .5654 0.9379 

Table.2.6.2. Forecasts with standard errors for the vector time series consisting of 
transformed landings of anchovies, lesser sardine, ribbon fish and catfish using the 
fitted VAR(2) model 

Year Quarter 
Anchovies Lesser sardine 

Observed Forecasted SE Observed Forecasted SE 
I 10.9587 10.9121 0.3024 11.7177 11 .1628 0.3914 

1997 
II 10.9741 10.9406 0.4341 11 .5152 11 .2580 0.5796 
III 11 .0627 10.9672 0.5239 10.9002 11 .3948 0.6971 
IV 10.8624 10.9868 0.5881 11.4506 11 .5200 0.7734 
I 10.9498 10.9949 0.6366 11.4429 11 .6173 0.8259 

1998 
II 11 .1438 10.9909 0.6756 11.6955 11 .6849 0.8647 
III 11 .0740 10.9766 0.7084 10.8220 11 .7273 0.8947 
IV 11 .1145 10.9549 0.7370 10.9244 11 .7505 0.9184 

Year Quarter Observed 
Ribbon fish Catfish 
Forecasted SE Observed Forecasted SE 

I 6.0280 5.6722 0.3173 3.1677 3.9499 0.1957 

1997 
II 6.2939 5.5799 0.5088 2.8621 3.9988 0.3000 
III 6.1958 5.4331 0.6416 2.6690 4.0389 0.3765 
IV 6.1316 5.2840 0.7278 2.7261 4.0723 0.4378 
I 6.0040 5.1569 0.7823 3.0627 4.0988 0.4902 

1998 
II 5.5221 5.0593 0.8177 3.2491 4.1190 0.5369 
III 5.6453 4.9896 0.8424 3.1171 4.1344 0.5793 
IV 5.5083 4.9424 0.8613 3.1187 4.1464 0.6180 
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Table.2.6.3. Forecasts with standard errors for the vector time series consisting of 
transformed land ings of mackerel, anchovies, tuna and penaeid prawns using the 
fitted VAR( 1) model 

Quarter 
Mackerel Anchovies 

Year 
Observed Forecasted SE Observed Forecasted SE 

I 10.5004 10.1589 0.3255 10.9587 10.8394 0.3068 
II 10.2735 10.0791 0.4409 10.9741 10.8275 0.4107 

1997 
III I 10.1245 10.0044 0.5195 11 .0627 10.8190 0.4783 
IV 9.9324 9.9348 0.5793 10.8624 10.8132 0.5275 

I 9.6394 9.8703 0.6272 10.9498 10.8096 0.5655 
II 9.6173 9.8109 0.6670 11.1438 10.8076 0.5962 

1998 
III 9.6238 9.7563 0.7006 11 .0740 10.8070 0.6217 
IV 9.5270 9.7064 0.7293 11 .1145 10.8074 0.6436 

Tuna Penaeid prawns 
Year Quarter 

Observed Forecasted SE Observed Forecasted SE 
I 7.8524 7.9458 0.2124 20.2447 19.7818 0.3561 

II 7.8221 7.9531 0.2891 20.3667 19.7802 0.4721 
1997 

III 7.8610 7.9577 0.3426 20.1132 19.7806 0.5441 

IV 7.8340 7.9600 0.3846 20.3892 19.7824 0.5932 

I 7.7659 7.9606 0.4197 20.3828 19.7853 0.6285 

II 7.6598 7.9598 0.4503 20.5662 19.7890 0.6546 
1998 

III 7.6158 7.9580 0.4777 20.6265 19.7934 0.6744 

IV 7.5407 7.9554 0.5028 20.3538 19.7981 0.6899 

Table.2.6.4. Forecasts with standard errors for the vector time series consisting of 
transformed landings of oil sardine, anchovies, tuna and penaeid prawns using the 
fitted VAR(5) model 

Year Quarter 
Oil sardine Anchovies 

Observed Forecasted SE Observed Forecasted SE 
I 8.3564 7.9372 0.2265 10.9587 10.8250 0.2579 

1997 
II 8.9392 7.5849 0.3719 10.9741 10.9849 0.3790 
III 90120 7.4091 0.4983 11 .0627 11 .0803 0.4722 
IV 9.2357 7.3217 0.6197 10.8624 11 .0943 0.5578 
I I 8.9451 7.3062 0.6874 10.9498 11 .0812 0.5976 

1998 
II 8.8739 7.4624 0.7240 11 .1438 10.9844 0.6268 
III I 8.9840 7.5972 0.7434 11 .0740 10.8933 0.6477 
IV 8.9954 7.7164 0.7549 11 .1145 10.8371 0.6607 

Quarter 
Tuna Penaeid prawns 

Year 
Observed Forecasted SE Observed Forecasted SE 

I 7.8524 7.7908 0.1708 20.2447 19.9420 0.3165 

1997 
II 7.8221 7.6729 0.2407 20.3667 20.0907 0.4719 
III 7.8610 7.6003 0.2926 20.1132 20.2066 0.5581 
IV 7.8340 7.5425 0.3424 20.3892 20.0970 0.6382 
I 7.7659 7.5981 0.3564 20.3828 20.0497 0.6614 
II 7.6598 7.6698 0.3714 20.5662 19.9595 0.6708 

1998 
III 7.6158 7.7548 0.3813 20.6265 19.8291 0.6838 
IV 7.5407 7.8221 0.3923 20.3538 19.81 02 0.6922 
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Table.2.6.5. Forecasts with standard errors for the vector time series consisting of 
transformed landings of elasmobranchs, oil sardine, mackerel and seerfish using 
the fitted VAR(2) model 

Year Quarter 
Elasmobranchs Oil sardine 

Observed Forecasted SE Observed Forecasted SE 
I 22.6104 23.0553 0.4579 8.3564 7.9137 0.2583 

1997 
II 22.6569 23.2519 0.6985 8.9392 7.8537 0.4421 
III 22.5766 23.2553 0.8294 9.0120 7.8358 0.5808 
IV 22.2715 23.1572 0.8870 9.2357 7.8544 0.6762 
I 22.3049 23.0283 0.9069 8.9451 7.8942 0.7378 

1998 
II 22.4139 22.9141 0.9133 8.8739 7.9394 0.7763 
III 219812 22.8362 0.9179 8.9840 7.9786 0.8007 
IV I 22.1759 22.7981 0.9232 8.9954 8.0058 0.8169 

Year .I Mackerel Seerfish 
Quarterl Observed Forecasted SE Observed Forecasted SE 
I I 10.5004 10.4499 0.2922 8.1530 8.2848 0.2404 
II 10.2735 10.4642 0.4588 8.0764 8.3356 0.3611 

1997 
III 10.1-245 10.3765 0.5742 8.2773 8.3840 0.4527 
IV \ 

9.9324 10.2401 0.6487 8.1423 8.4258 0.5228 
I 9.6394 10.0975 0.6966 8.1580 8.4593 0.5771 

1998 
II 9.6173 9.9740 0.7296 8.2203 8.4840 0.6198 
III 9.6238 9.8802 0.7542 8.3186 8.5004 0.6537 
IV 9.5270 9.8164 0.7736 8.4636 8.51 00 0.6813 
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Table.2.6.6. Quarterwise forecasls (in lonnes) of marine fish landings in Kernla for selected 
specieslQroups computed using different Vector Autoreqressive models fitted . 

Year Quarter 
Model-l : VAR(2) Model-2: VAR(2) 

OILSRD MACKRL ANCHOV LESSRD ANCHOV LESSRD RIBFSH CATFSH 
I 10091 6077 3779 424 4032 468 203 192 
II 1835 16690 4235 1822 5321 2081 602 68 

1997 III 11401 38699 5386 1822 7080 2136 4798 110 
IV 11034 23517 12637 3608 16014 4110 4519 123 
I 9619 3961 3239 508 4139 602 102 217 
II 1799 11360 3680 2154 5252 2479 355 75 

1998 III 11631 27685 4724 2123 6761 2383 3290 118 
IV 11712 17630 11162 4139 14935 4365 3501 130 

Year Quarter 
Model-3: VAR(l) Model-4: VAR(5) 

MACKRL ANCHOV TUNA PPRAWN OILSRD ANCHOV TUNA PPRAWN 
I 5824 3190 3893 7155 4899 3045 2026 9656 
II 17540 4671 6617 11466 317 8128 3903 15191 

1997 III 44155 6323 2841 20246 5071 8839 2053 25131 
IV 279511 14755 5047 7228 7842 15728 3915 5868 
I 4510 3152 3903 7194 4580 2919 2561 8838 
II 13858 4641 6596 11547 625 5949 5280 12832 

1998 III 35567 6310 2819 20411 9102 6589 2938 19689 
IV 22939 14773 4991 7293 13150 13122 5198 5665 

Year Quarter 
Model-5: VAR(2) 

ELASMO OILSRD MACKRL SERFSH 
I 1644 4424 18453 1646 
II 1295 1127 25470 1446 

1997 III 831 10060 41936 633 
IV 1473 12422 21456 2132 
I 1402 5257 10485 1846 
II 1125 1371 15609 1573 

1998 III 754 11924 28915 670 
IV 1405 13978 16662 2203 



CHAPTER-3 

MODELLING MARINE FISH LANDINGS USING VARMA MODELS 

Introduction 

Consider a vector time seri es y, represented by Vector Autoregressive model of 

order p given by y, = 0 + <!l ,y,_, + ... + <!l py,_p + &, where &, 's are independently and 

identically distributed random vec tors with £( &,) = 0 and £( &,&;) = L for all t. which are 

otherwise known as white noise series. Instead. if we assume that the error terms are 

autocorrelated up to a certain lag say 9. then &, can be replaced by an auto correlated 

term a - e a _ ... - 0 a where the a,'s are independently and identically 
I ) I - I q t-q 

distributed white noise series and 0 , .. ··.0. are matrices of order k x k. By making this 

substitution for &, • we get the corresponding model as 

Y =,,+ <!l y + ... +<!l y +a -0 a - ···-0 a 
I I I -I P t-p I 1 I-I q l -q 

and this model is known as Vector Autoregressive Moving Average model with orders 

(p,q) denoted by VARMA(P.q). This can be rewritten as <!l(B)y, = ,,+ 0(B)a, where 

<!l(B) = J - <!l B - <!l B' - ... - <!l BP 0(B) = J - 0 B - 0 B' - . .. - 0 B' J is an I 2 P' I 2 q' 

identity matrix of order k and B is the back shift operator such that B' y, = Y,_I' A vector 

time series can be modelled by a VARMA model which is a multivariate analog of the 

univariate ARMA model. The conditions required for stationarity and invertibility of a 

V ARMA(P.q) process is that the zeros of the determinental polynomials 1<!l(B)1 and 

IO(B)1 in B lie outside the unit circle. 
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In the earlier analysis for fitting a suitable VAR(P) model to the vector time series 

consisting of transformed landings of oil sardine, anchovies, runa and penaeid prawns, 

the model found suitable was a VAR(5) model and this model was estimated for the 

vector time series. Such a model with a higher order wi ll not be parsimonious as there are 

90 elements in the parameter matrices which are to be estimated. Hence it is advisable to 

go for an alternative model with lesser number of parameters and have almost the same 

amount of accuracy. It is known that the mixed V ARMA(p,q) models with low orders 

can replace a higher order VAR(P) model (Reinsel 1993). There fore an attempt is .made 

here to find a suitable VARMA(p,q) model with low orders for the vector time series 

consisting of transformed landings of oil sardine, anchovies, runa and penaeid prawns. 

Review of literature. 

Hannan (1969) derived a necessary and sufficient condi tion for unique identification 

of a VARMA process and extended it to deal the problem for continuous processes. He 

also developed a method using Fourier Transform for the estimation of parameters of 

univariate ARMA models and extended it for the vector moving average process. Tuan 

(1978) showed that there is a one-to-one correspondence between each ARMA process 

and a member of a class of special Markovian representation. He used this property to fit 

multivariate processes of the ARMA type. Phadke (1978) proposed three methods for 

computing exact likelihood function of a multivariate moving average process. These 

methods utilize the strucrure of the covariance matrices in different ways. He compared 

these estimates through Monte Carlo simulation. Nicholls and Hall (1979) derived an 

expression for exact likelihood function of a stationary vector ARMA process through 
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tensor products using concentrated maximum likelihood techniques. In this process they 

also derived an expression for the covariance function of the process in terms of the 

coefficients of the model. Hillmer and Tiao (1979) developed procedures for the 

estimation of parameters in multivariate ARMA models by assuming Gaussian errors. 

They developed an exact maximum likelihood estimation procedure for pure moving 

average models and an approximate procedure for the estimation of stationary ARMA 

models. 

Yamamoto (1981) gave a simple formula for multiperiod predictions of multivariate 

autoregressive moving average models as a funct ion of suitably defined parameter 

matrices and observation vector. Tiao and Box (1981) proposed an approach to the 

modelling and analysis of multiple time series consisting of tentative specification, 

estimation and diagnostic checking. They also discussed the properties of a class of 

vector ARMA models. Lutkepohl ( 1982) proposed modified polynomial lag models for 

multiple time series analysis, which he considered as a compromise between modelling 

pure AR and ARMA processes. Ansley and Kohn (1983, pointed out that using Kalman 

filter with non-constant coefficients the exact likelihood of a vector ARMA process with 

observed noise can be computed when some of the observations are missing. Spliid 

(1983) presented a fast and simple algorithm for estimation of the parameters in 

multivariate time series and distributed lag models thaI is useful at the identification 

stage. His method is purely based on regression estimation and can also be used for 

estimation of parameters in V ARMAX models. Poskitt and Tremayne(J 984) considered 

the application of hypothesis testing procedures to vector ARMAX systems. They 
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suggested a Lagrangian multiplier principle to obtain miss specification tests appropriate 

for these models. They also investigated the structure of the information matrix to discuss 

the identifiability of alternative models and used it to show the existence of a set of 

admissible alternate models that are locally equivalent to one another. 

Stoffer (1986) presented a method for modelling and fitting multivariate spatial time 

series data based on current spacial methodology coupled with the parameterisation of 

ARMAX models. McLeod and Hipel (1987) considered bivariate ARMA time series 

models with diagonal parameter matrices for AR and MA components. They derived an 

efficient maximum likelihood algorithm for parameter estimation and compared it with 

standard multivariate procedures. Pukkila (1987) gave methods for the identification of 

nonzero elements in V ARMA(l,I) models and have shown how to use these methods for 

higher order models. Hannan and Poskit (1988) had shown that in the case of stationary 

vector ARMA processes, the number of linearly independent pairs is the number of 

zeroes of the determinant of transfer functions from innovations to outputs that lie on the 

unit circle. Phillips (1988) introduced the concept of a near integrated vector random 

process and developed a general asymptotic regression theory for mUltiple time series in 

which some series may be AR1MA type and the rest stable ARMA processes. Ahn and 

Reinsel (1988) considered nested reduced rank AR models in order to simplify and 

provide a more detailed description about the structure of the multivariate time series and 

to reduce parameters in time series modelling. They suggested a canonical variable 

transformation that produces simpler structure in the model and illustrated how different 

components of the vector series depend on past lagged values. Shea (1989) gave a 
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FORTRAN algorithm for computing the exact likelihood of a vector ARMA model based 

of Chandrasekar algorithm. Li and Hui (1989) proposed a robust estimation procedure for 

multiple time series models, which is based on robustifying the residual autocovariances 

in the estimation equation. They derived asymptotic distribution of these estimators and a 

portmanteau statistic for diagnostic checking. 

Grubb (1992) analyzed an index of monthly price of nour at three cities in US using 

multivariate time series models to explore the relationships between them and to discover 

the structure responsible for their movements. They tried to build VARMA models based 

on the method suggested by Tsay and Tiao and fitted a V AR( I) model for the' data. 

Luceno (1994) developed a fast and numerically efficient algorithm for calculating the 

exact likelihood function for stationary and partially non-stationary vector autoregressive 

moving average process. The method proposed by him does not require differencing of 

the series and it avoids complications caused by over differencing and related 

identification problems. Mauricio (1995) presented a new efficient procedure for 

evaluating the exact likelihood function of vector autoregressive moving average model. 

Based on this procedure he developed an algorithm for exact maximum likelihood 

estimation of VARMA models. In the algorithm he has described steps to check for 

stationarity and invertibility of the model at different stages of evaluation ef a 

concentrated log likelihood function. Yap and Reinsel (1995) considered Gaussian 

estimation of partially non-stationary vector autoregressive moving average models and 

derived an asymptotic distribution of the likelihood ratio statistic for testing the number 

of unit roots. 
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Materials and Methods 

The conditions required for stationarity of a VARMA model is that of the 

corresponding vector autoregressive model and the conditions for invertibility of the 

model is same as that for the corresponding vector mOVIng average model. These 

conditions are det(f - cJJ ,B - ... - cJJ pEP) '" 0 for IBI $ 1 for stationarity and 

det(f - 0 1B - ... - 0.B·) '" 0 for IBI $ 1 for invertibility. A genera l VARMA(p,q) model 

can have a V AR(f) representation using which it is poss ible to test the stationary 

condition in terms of eigen values of a characteristic matrix (Lutkepohl, 1993). The form 

of the AR coefficient matrix for such a representation in terms of the parameter matrices 

IS 

a matrix of order (p+ q)k x (p + q)k where the component matrices are given by 

cJJ l cJJ , cJJ p_1 cJJ
p 

1, 0 0 0 

cJJ ll = 0 1, 0 0 a matrix of order kp x kp, 

0 0 1, 0 

0 I 0 , 0._1 0 • 
0 0 0 0 

a matrix of order kp x kq , cJJ I2 = 

0 0 0 0 

cJJ 21 is a matrix of order kq x kp with all its elements zero and 
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0 0 0 0 

I, 0 0 0 

<I:> 22 = 0 I, 0 0 a matrix of order kq x kq 

0 0 I, 0 

If all the elgen values of matrix <I:> are less than one in absolute value then the 

VARMA(p,q) model IS stationary. In particular for a VARMA{I,I) model with the 

expression y, -<I:> Y,_I = &, - e &,-1' the condition for stationarity is that all eigen values 

of the coefficient matrix <I:> are less than one in absolute value and the condition for 

invertibility of the model is that all eigen values of the coefficient matrix e are less than 

one in absolute value. 

Selection of the order parameters p and q are made by using order selection 

criteria like A1C, BIC and HQ. The Akaike's information criterion is approximated by 

AlC, '" log(iI,i)+ ~ +c, the Baysean information criterion given by Schwarz (1978) is 

BIC, = logQI,P + r 10;(T) , and the criterion proposed 'by Hannan and Quinn (1979) is 

HQ, = 10gqI,p+ 2rlOg~Og(T» where I, is the maximum likelihood estimate of the 

innovation dispersion matrix L, r is the number of parameters estimated, T is the sample 

size and c is a constant. The orders that yield minimum value for these criterion is 

selected as the required order for the model. For a VARMA(p,q) model the number of 

parameters to be estimated is (p + q)e so that we get these criterion for selection of 

orders p and q of a V ARMA(p,q) model as 



2( + )Ie' 
AlC(p,q)=logqrl)+ p / 

BIC(p,q) = logqrl) + (P+q)~IOg(T) and 
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HQ(p,q) = 10g(III)+ 2(P+q)k';Og(lOg(T}) 

For the eslimation of parameters of VARMA(p,q) model, the approximate 

likelihood method proposed by Wilson (1973) which is iterative in nature was used. 

Consider a stationary vector time series {y,} with k components modelled by a 

v ARMA(p,q) model. Assuming zero mean vector for the series, the expression for this 

are k x k matrices, a, = (a", ·· ,a.,! are independently and identically distributed random 

variables with zero mean vector and innovation dispersion matrix D. The unknown 

parameters of the model are the (p+q+l) matrices <I>,,··,<I>p,El,,· ·,El.and D. Denote by 

K the total number of unknown parameters of the model and let jJ=(A,··,jJK)'is the 

vector of these parameters in some standard order. Since the parameter matrices must 

satislY the conditions for stationarity and invertibility, we can assume that ~ lies within a 

parameter space n determined by the conditions 1<I>(z)1 ct 0 and IEl(z)1 ct 0 for Izl ~ I . 

For a proposed estimate ~ of the parameter vector ~, let 0, is the estimate of a, based 

on a sample of s,ze T which ,s obtained as 

0, = y, - ci>'YH-"'-ci> pY'_p + 0,0,_, + .. +0.0,_. and this can be used recursively to 

evaluate all the vectors 0, for 1 = 1, .. ·, T. Here ci>" ... ,ci> p,0" .. ,0. are the estimates 
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of <IJ 1" '" <IJ p' 0 1,," ,0 q respectively corresponding to the estimate ~ of ~ . Under 

normali ty assumption of a" the likelihood of the parameters is 

. . _lkT lnI ~ -f ,. I 
L(~,D) = (21l) 2 ~I exp[- t(L.,a,D- a,)] and the loglikelihood is given by 

t=l 

T 

LL(P ,D) = -!kTlog(21l) - trF(P,D) where F(P, D) = lo~~ + ~ La;D-la, . 
1=1 

Hence maximization of the likelihood is equivalent to the minimization of the 

funct ion F(P, D) with resp~ct to the elements of the vector P and simultaneous zeroes of 

the equations of derivatives will yield the required solution. Using the notation 

am - ai, (111= I, .. ·,K) for the first order partial derivatives and 
I - aPm ' 

. iF T 

(111,1 = I, "' , K) for the second order partial derivatives we get -.- = ~ ~>;'D-Ia, and 
ofJm T ,. , 

iF D' I IT .. h Q' D' - I d h h d' . I' f D . - .- = - + - a ,a I were = an ence t e con Itlona estimate 0 IS 
,?') rl T r s 
~rJ /_1 

D- I f ·· ' B . iF I ~ . m'D' -I . 0 r I K F = - L.,a,a, . y equating -.- to zero we get - ~a, a, = lor III = ,. .. , . or 
T , =1 ofJm T '" 

x 
given D we can line arise a, by Taylors expansion as a,(p)=a,(p)+ Ia:aP+ ~apl 

1=1 

where ap = p - Po . Ignoring the term ~api and using the above relations we ' get a 

system of linear equations Aap = - g, where the K x K matrix A has elements 

A· I ~ . m'D' -1, 1 r I I K d h If ' . b ml = - ~a, a, lor III, = ,. .. , an tee ements 0 vector g are given y 
T ,., 
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goo =.!. I,ti,··irlti, for m = I .. ··.K both the matrix it and vector g being evaluated at 
T ,.1 

Po. Solution of this leads to the value of a~. Then a new estimate for P is 

jJ, = Po + ap. Using this relation we have to repeat iteration by replacing Po with the 

new estimate jJ, and this process is continued till convergence is attained. In order to 

ensure convergence. the successive parameter differences are constrained as is done in 

non-linear least square problems. The summary of this algorithm. for simultaneous 

estimation of elements of vector P and matrix D, is given as: 

i) For given starting values of P and J > 0 evaluate the innovation vectors {a,} and 

ii) 

D· If ··, d set = - L., a,a, an 
T ,.1 

I T 
. . " ' m ' •• , • • with elements Am' = - L., a, Qa, • vector g with 

T ,. , 

elements gm =.!. I,ti,m'Qti, and a scaling quantity am = Jit~ for m.I=I ... ·;K. 
T ,., 

iii) Construct a scaled matrix E with elements Em! = AmJ(ama,) and a scaled vector 

/; with elements hM =iJm/am for m,l =I ..... K . 

iv) Set the diagonal elements of E to (I + J). solve fo,. vector x in the equation 

Ex = h and then evaluate a new proposed set of parameters as Pm = Pm - xm/ am 

for II! = 1 ... ·.K. 
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v) Using this new parameter set evaluate the innovation vectors at and set 

D = l>(jJ) = ~Ilitli; and test whether Irace(DQ) < m, where m is the number of 

components in the multiple time series. 

If the above condition is satisfied repeat iteration from, step (i) onwards, 

for further improvement by replacing iJ with J3, D with D and by reducing the 

constraint parameter ,,/ by a predetermined quantity. If the condition is not satisfied, then 

increase the constraint parameter ,,/ by a predetermined quantity and repeat calculation 

from step (iv) onwards. When ,,/ becomes very large or when convergence to a desired 

accuracy level is attained, the iteration is stopped. 

The fast algoritlun for estimation of vector autoregressive moving average models 

with exogenous variables given by Spliid (1983) was suitably modified for VARMA(p,q) 

model estimation and was used in the identification stage for calculation of order 

selection criteria. This procedure is as followed. 

Consider the model $(B)Yt = 0(B)c, which is stationary and invertible where 

$(B)=1-$8-· ··-$ BP and 0(B)=1-0B-···-0 Bq Let y ... y beasample I p I q' 1" It 

of vector realizations of the series. Define matrices 

y = (y.) ... for i = I," ', n;j = I," ',k which is an n x k matrix of observations, 

e = (c. )... for i = I, '" ,n;j = I,'" ,k which is an n x k matrix of residuals, 

y = (By, B' y,"', BP y) which is a lagged data matrix of order n x pk , 

A = (B e, B' e, ' ", Bq c) which is a lagged residual matrix of order n x qk , 
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U = (-A,y) which is a matrix of order n x (p + q)k . 

Here B'y is the matrix with its (i,)" element y,_,.~ for i = I .. ·· ,n;) = I .. ··,k and it is of 

order n x k . Now define the matrix 0 = (0, .. ··,0.,<1>, .. · ',<1> p)' of parameters which is of 

order (p + q)k x k. Using these matrices the VARMA(p,q) model can be written ~or the 

sample data matrix as y = Uo + &. First make the initial estimates of residual vectors by 

fitting a higher order vector autoregressive model. For this construct a matrix 

w = (By,B 2y .. ··,B'y) where s is the higher order chosen for the autoregression. Then 

the initial residual matrix &(0) is obtained as &(O)= y - W(W'Wr' Wy . Using this 

residual matrix construct matrices A(O) and U(O) and compute the first estimate of 0 as 

6(1) from linear regression as, 6(1)= [U'(O) U(O)r' U '(O) yand initial value 6(0) is 

assumed as zero. 

For the j" iteration to estimate 6(J + I), we obtain the estimate from the regression 

U'(J) U(J) 6(J + I) = U'(J) y as 6(J + I}= [U'(J) U(J)r' U'(j) y and we compute the 

p • 

new set of residuals using the recursion c, (J + I) = y, - L ¢ ,(J)Y' -i + L 0 ,(J)c, _, (J). 
i_ I 

Using the new estimate of residuals and parameter matrices the iteration is continued till 

convergence is achieved to a satisfactory level of accuracy. 

The parameters of a V ARMA(p,q) model can be estimated by conditional maximum 

likelihood method as described by Reinsel (1993). Suppose Y = (y, .. ' "YT)' is the T x k 

matrix of sample observations and & = (&, .. ' " &T )' is the T x k matrix of innovations. 
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Let B;Y and B; c denote the T x k matrices 

respectively. Then the model for the entire sample can be written as 

Y - I B; Y <1>; = c - I B; c 0 ; and its vector form is 
,-, ,-, 
P q 

y- I)lT ® <I> ,)B;y =e - IpT ® 0 J B;e where ,-, ,-, 

y= vee(Y' ) =(y;, ... , y~)' 

e = vee( c') = (c;, " " c~ )' 

and if we define fA = vee(<I> J and fJ, = vee(0) then another useful form of the equation 

IS y - I(B'y® /I )¢i =e - I(B;e ® / I)fJ,. Define ,O = (¢;, .. · ,¢~,e:," · ,I1,)'and let 
i.1 

,0. is an initial estimate of ,0, 0 ;,i = I,"'q are the initial estimates of 0 ;,i = I, '" ,q , 

o = (IT ® II) - I (Li ® 0,) where t is a T x T iag matrix which has ones on the 
i_ I 

subdiagonal directly below the main diagonal and zeroes else where 

Z = [<BY ® II),--',(BPY ® II ),-(LC ® II)'" ' ,-(L'I! ® II )J, 

then the Newton-Rapson algorithm which is in the form of Generalized least square is 
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Another form of this algorithm is 

The innovations C, can be computed recursively by 

for I=I,·· ,T with - - - 0 1.:0=& = .. . =& = - I I- q \ Let 

U
j
, and V;, are k x e matrices, and these matrices can be calculated as 

q 

Uj, = Ie;Uj.,-i + (Y;-j ®I,) for I = I,··,r with Uj, =0 for 1$0. 
i - I 

q 

V;, = IeiV;.,-i -(c,'- j ® I,) for 1= I,· ·,r with V;, = 0 for 1$0. 
i_I 

Results 

The algorithm for approximate maximum likelihood estimation of parametef$ of a 

V ARMA(p,q) model suggested by Wilson (1973) require computation of derivatives of 

the innovation vectors with respect to the parameters. Consider a zero mean 

p q 

V ARMA(p,q) model, Y, = I¢(I)Y,-I + a, - I0(I)a, _1 where Y, = (y",··,y,,)', 
I - I / - 1 

a, = (a", ·· ,a,,)', ¢(I)(l = I,··,p) and O(1)(1 = I, ··,q) are k x k parameter matrices and 

{a,} is assumed to be independently and identically distributed white noise series with 

zero mean vector and constant dispersion matrix L. From the model we can express a, as 

p q 

a, = Y, - I ¢ (I)Y,_1 + L 0 (I)a,_1 . This leads to the k linear equations 
'.1 '_I 
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p .l q .t 

ai' = Yi' - L {L<I>~)Yj.' -/} + L {Le~)aj.' _/} for i = l ... ·.k. 
/- 1 j_1 1=1 j ... 1 

Differentiating ai' with respect to an element <I>~). the element in r'h row and Sill column 

of the parameter matrix <l> lm). we get. 

But when i = r.j = s and 1= m simultaneously otherwise its value is zero. 

Hence the first part of the derivative is zero for all terms except when i = r.j = s and 

I = m so that we get 

00" f~e(l)aai.'-I h ' d aai, f~e(/)aaj.'_1 h . ----w- = - YJ ,I-M + ~ ~ .. ij ----w- w en I = r an ----w- == i..J ~ .. ij ----w- w en l:t:. r . 
0<1> n 1_' j_' 0<1>" 0<1> n 1_, j_' 0<1> n 

Similarly when we differentiate a" with respect to e~:) . the element in rlh row and S'h 

column of the parameter matrix e lm). we get. 

t · a = -- e(l)a Lae(.) ! ij iI-I} ' 
/ .. 1 j-I n 
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and 
00(1) 
~~" -- I h ' 'd --'- w en r = I,S = } an O0(m) 

n 

l=m 
"",,(I) ,,_ 

, , :::l- 0 a Jr.- (m) } _ r.- (I) ~ sImultaneously other wIse O0(m) - so that O0(m) \1:1. a/, ,_I - "" if O0(m) + a,,'_m 
n n n 

h ' ' d I h ' a J",(m) , } ",(I) oa/,'_I w en r = I , S = } an = m ot erwlse O0(m) p . a/,'_ I = <::,}. O0(m) , 
n n 

when r = i 

Hence we get 
otherwise 

Then the required recursive relations for computing the derivatives of elements of the 

innovation vector with respect to the parameters are 

for i,s = I" :',k m = I," ',p and t = 1,"',Twith 

initial few derivatives set to zero, 

1
'1') oau _,.t, f. 0 (/) oa /,-1 r ' 

( .III) - L~oij (1ft) Jor r ~ I, 
i3<I> n I _I J-I i3<I> n 

i,r,s = I";',k and m = l,"',p, 

iii) oal, = a + ,.t, f. 0 (/) oa J,I-I for 
::-.o (m) ",-1ft L~ I) 80(m) 
V'CI Js 1. 1 J-' is 

i,s = I,. .. ,k and m = I,. .. ,q 

" t ' aa , ) ~= "r.- (/) ::::..l:!.::!.. r 
IV .(m) ~""q .(m) lor 

O0n I_I J-I a0n 

i ,r ,s = l,.·· ,k and m = l,. ··,q 

Ifwe ~enote the i" row of the parameter matrix 0 (1) by 0~/) and a, = (al," " ,a"Y IS 

the innovation vector, then the above recurrence relations can be re-written as 

i) ~ - _ + ,.t, 0 (/ ) aa'_1 
",... (m ) - Y, ,'-m L I ",...(m) 
lI'V u '_I V'V is 
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ii} OOil = ~ 0 (1) 00, _1 for ret i 
"",(M) L... , "",(M) 
U'V n / _1 U'V n 

1
·1·1· ) OOil ~0(1) 00, _1 d 

(;) = a s,I _Ift + L..J .. j (;) an 
00" 1_, 00" 

oa. I' ( I) oa . iv) --."- = 0 . __ ,-_, for r et I . 
"",,(m) , O0(m) 
f.,.fCIn / . 1 n 

This shows that the derivative of an element in the innovation vector a, wilh respect to a 

parameter is the sum of inner products of the corresponding rows of the moving average 

parameter matrices with the vectors of derivatives of earlier innovation vectors 

a,_, .. ··.a,_. with resp~ct to the same parameter plus a term depending on whether the 

parameter belongs 10 the same row as the corresponding element of a, . 

It can be seen that if we arrange the elements of the parameter matrices 

<Il, ..... <Il p' 0 , .. ··.0.. in standard order. as a vector /l = (IJ, ..... /lK)' where 

K = (p + q)k'. then <Il ~m) is the km -I)k' + (i -I)k + )t element of /land 0~M) is the 

kp + m-I)k' + (i -I)k + )1' element of /l . The correspondence of elements of /lwith 

the parameter matrices can be established as follows. 

To determine the 1'4 element IJ, of the vector /l. for I = I .. ··• K we define 

) = Imod(k) 

i =(I - )/k mod(k) + I and 

m = {I - (i -l)k - )} / k' + I 
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If m ~ p, then fJ, = C!>~M) and if m > p, then fJ, = 0~m-p) : For a given set of observation 

vectors Y"Yl'··'YT the residuals based on a proposed set of parameter vector Pis given 

by G, = y, - <i> ,y,_, - ... - <i> p + 0,G,_, + ... + 0 A-q . Hence for computing the initial few 

residuals G"",Gm , where m = max(p,q), we requi re past observation vectors 

Yo,y-,.",y-tp- " and past residual vectors Go,G_P"',G_tq_II ' One suggestion is to assume 

these values to be zeroes and another is to use observation vectors for I =m+I , .. ·,T so 

that the initial value problem for the observation vectors can be avoided and assume the 

values of the initial residual vectors G"",G .. as zeros. Yet another suggestion is to use an 

appropriate precast model to estimate initial observation vectors and residual vectors. 

For selecting appropriate orders of VARMA(p,q) model to be filled to the vector 

time series consisting of transformed landings of oil sardine, anchovies, tuna and penaeid 

prawns, the three criteria namely AlC, BIC and HQ were computed for dilTerent values 

of the order parameters p and q taking values I to 4. The values of these criterion were 

computed by estimating the model parameters of each of the resulting model using a 

computer software developed in C language based on the algorithm of Spliids (1983). 

The values of these three criteria for dilTerent orders are given in table.3 . I. The minimum 

values for the BIC and HQ criterion were -9.11 09 and -9.5009 respectively and both 

these values are corresponding to the model V ARMA( I, I). The minimum value of AIC 

was -10.0140 corresponding to the model V ARMA( I ,3) which is of higher orders. Hence 

the model V ARMA(\,I) was selected as the suitable model arid the estimation of 

parameter matrices in the model was attempted by maximum likelihood method 
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following the algorithm given by Wilson (1973). This ML estimation algorithm require 

initial estimates of parameter matrices as input and in this study three different initia l 

inputs as obtained through different methods were tried. The first initial estimates used 

was obtained form the first step of the regression procedure of Splid's algorithm with 

VAR(5) model to estimate error terms. The second set of values used were obtained as 

the final estimates from Spliid's algorithm. The third set was obtained form the 

conditional maximum likelihood estimation through a Newton-Rapson algorithm in the 

form of a generalised least square procedure (Reinsel 1993). 

The first set of inputs used for ML estimation as obtained through the first step of 

Spliid's algorithm were 

J = (2.2490, 2.447 1, 1.6457, 4.7637) 

0.7128 -0.0103 - 0.0316 0.0335 

0.0060 0.6133 0.09 17 0.0361 
<1>, = 

-0.0084 0.0453 0.6919 0.0014 

0.0579 0.0343 0.0389 0.6923 

-0.3051 - 0.1077 -0.0195 0.0911 

0.1541 -0.2408 0. 1790 0.1105 
and 0 , = 

- 0.0528 -0.0070 -0.0308 0.0395 

0.2625 0.0430 -0.0172 -0.098 1 

[ 0 .. 0 .. -0"" -o.o m -0.0207] 
_ - 0.0 188 0.1360 0.0459 0.0423 
I: = 

-0.0171 0.0459 0.1056 0.0096 

- 0.0217 0.0423 0.0096 0.1359 

With the above values as input and the values of the constraint parameters of the 

algorithm as A = 1.0, t.A = 0.01, Amu = 10.0 the ML estimation was carried out. The log 
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likelihood for the' initial estimates was -186.6232. The algorithm failed to converge to a 

desired degree of accuracy of 0.001 even after 25 iterations. The difference in the 

successive estimates of parameters after 25 iterations was 0.0075 and the log likelihood 

value corresponding to the estimate after 25 iterations was -I 08.2975. 

The second set of initial inputs used were obtained as the final output of the Spliid ' s 

method and these estimates were 

J = (0.0497, - 0.0398, 0.0142, -0.0573) 

0.9344 -0.0294 -0.0336 0.0550 

( ¢ , = 0.0112 0.8371 0.1060 0.0438 

-0.0237 0.0613 0.9 126 0.0092 

0.0917 0.0648 0.0458 0.9107 

- 0.4796 - 0.1369 0.0147 0.0873 

El, = 
0.1796 -0.1783 0.1135 0.1315 

and 
- 0.1743 0.0036 -0.0576 0.0771 

0.3550 0.0777 -0.0759 -0.1781 

0.0776 0.0043 0.005 1 0.0003 

t= 
0.0043 0.0902 -0.0022 0.0242 

0.0057 - 0.0022 0.0431 -0.0128 

0.0003 0.0242 -0.0128 0.1243 

The log likelihood corresponding to these estimates was - 77.1709 and these estimates 

were used as the initial input for ML estimation of parameters. The estimation algorithm 

converged after 7 iterations with an accuracy of 0.00 I for the parameter estimates 

leading to the log likelihood value of -75.83553 corresponding to the final estimates. The 

fina l estimates of the parameters obtained were 

J = (0.0735, -0.0887, -0.0457, -0.1577) 
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0.9342 -0.0299 -0.0348 0.0545 

0.0124 0.8385 0.1079 0.0444 
Ci> , = 

- 0.021 8 0.0628 0.9146 0.0100 

0.0945 0.0674 0.0493 0.9 121 

- 0.4840 -0.0953 -0.0899 0.05 13 

0.1674 -0.1561 0.1254 0.0883 
0 , = 

-0. 1564 0.0 195 -0.0863 0.0792 

0.3421 0.0359 -0.1001 - 0.1834 

0.0769 0.0049 0.0050 0.0004 

r= 0.0049 0.0894 -0.0018 0.024 1 

0.0050 -0.0018 0.0428 -0.0125 

0.0004 0.0241 -0.0 125 0. 1251 

. . . -(I) -(I) -(I) -(Q -(Q -(Q 
In these estImates the elements found slgmficant were <1> " ' <1> 22 ' <1>23 ' <1») , <1>" ' <1> .. ; 

e (l) e(l) e (l) and e (l) where (ji (~) denote the (i J')" element of matrix (ji and e lM) 
II' )1 r 4' 44 I) I . 1ft ij 

denote the (i,i)" element of matrix em' 

The third set of inputs for the ML estimation of the parameters were obtained 

through the conditional likelihood estimation based on generalized least square procedure 

described by Reinsel (1993). The conditional estimation program took 27 iterations to 

converge and arrive at the following estimates. The log likelihood corresponding to these 

estimates was --{)5.4983 I. The algebric expression of the model and estimates of its 

parameters are 

J = (2.396959, 0.116563, - 0.679548,2.274994) 
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0.872816 -0.010475 -0.051833 - 0.042331 

0.008596 0.840623 0.110818 0.033358 
<1> , = 

- 0.000552 0.0827 16 0.896 180 0.029064 

0.022338 0.0428 14 0.055359 0. 829 198 

- 0.528347 - 0.076779 -0.137238 0.055880 

0.177013 - 0.165844 0. 1408 12 0.080439 
0 ,= and 

-0. 159972 0.053 174 -0.11 9049 0.0838 17 

0.364932 0.007692 -0.130277 -0.1969 14 

0.07368 0.0039 11 0.006 177 -0.0046 17 

i:= 
0.003911 0.089200 - 0.00 1252 0.022278 

0.006177 -0.00 1252 0.042094 - 0.010020 

-0.00461 7 0.022278 - 0.0 10020 0.114538 

Using these estimales of paramelers as input, likelihood estimation based on Wilson's 

algorithm was attempted. The estimation process tenninated after one iteration and could 

not achieve further maximization of the log likelihood yielding the same set of parameter 

estimates with an accuracy of 0.00001. The standard errors of the estimated parameter 

matrices were 

0.02852 1 0.061330 0.056048 0.029307 

0.024321 0.053795 0.0484 11 0.025458 
S£(<Il ,) = 

0.017 175 0.037909 0.034182 0.017939 
0.029206 0.064360 0.058064 0.030482 

0.067512 0.074033 0.0975 19 0.058594 

S£(0,) = 
0.09 1552 0.095382 0.126856 0.077446 
0.062742 0.065669 0.087247 0.053071 
0.103102 0.108015 0.143052 0.087134 

In the estimated model the elements of coefficient matrices found significant were iii:',>, 

estimated model explained 92.63%, 91.08%, 95.79% and 88.5% respectively of 
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variations in the individual component series of the vector. It was also examined whether 

the stationary and invertible conditions are satisfied by the estimated model. For this the 

eigen values of the characteristi c matrices of the model were evaluated and these are 

given in tableJ.!. All the eigen values were found to fall within the unit circle boundary 

and hence the model estimated is both stationary and invertible. 

Discussion 

To examine the sui tabil ity of the estimated model residual analysis was 

carried out by computing cross correlation matrices for the residual series corresponding 

to the estimated model. The values of X' for testing the significance of elements of the 

residual cross correlation matrices for different lags are given in tableJ.2. It was found 

that out of a total of 384 elements in the cross correlation matrices only 23 elements were 

significant. Maximum number of significant elements was 4 at lag 4 all significant 

elements being diagonal elements which represent autocorrelation. The combined 

significant X' statistic was also significant at lag 4 which evidently may be due to some 

left out effects of seasonality present in the quarter wise data. Using the estimated model 

quarterwise forecasts were computed along with standard errors for the years 1997 and 

1998 and these are given in table.3.4. Compared to the V AR(5) model, though the 

percentage of variation explained by this model is also sati sfactory though it is high for 

the V AR(5) model. But the forecasts made using this model is more close to the observed 

value than that of the V AR(5) model. The expressions for the individual models for the 

components of the vector time series are 
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YI, = 2.3970+0.8728 YIJ-I -0.0105 h'-I -0.0518 Y)J -I -0.0423 Y.J-I 

+ 0.5283 G1 .. _I + 0.0768 G'J_I + 0.1372 G)J_I - 0.0559 G'J_I + G, , 

y" = 0.1166 + 0.0086 YIJ-I + 0.8406 h'-I - 0.11 08 h,-I - 0.0334 Y.J-I 

- 0.1 770GIJ_I + 0.1658 G'J_I - 0.1408 G).'_I - 0.0804 G'J_I + G, , 

Y), = -0.6795 - 0.0006 Y..'-I + 0.0827 Y'J -I + 0.8962 h'-I + 0.029 1 Y'J-I 

+ 0.1600 GIJ_I - 0.0532 G'J_I + 0.11 90 G)J_I - 0.0838 G.J_1 + G, 

and y" = 2.2750 + 0.0223 YI.,_I + 0.0428 Y'J-I + 0.0554 Y)J-I + 0.8292 Y<J-I 

- 0.3649 G1J_1 - 0.0077 G'J_I + 0.1328 G)J_I - 0.1969 G'J_I + G, . 

In the first model for the series on transformed landings of oil sardine, significant 
coefficients were only for YI.,_I and GIJ_I' Hence oi l sardine landings significantly 

depend on its own past values and residuals at lag I. Significant coefficients of the second 
model corresponding to anchovies were for Y'J-I and h'-I' There fore the series on 

landings of anchovies is affected by the series on tuna landings and its own past values 
both at lag I. In the third model corresponding to landings of Tuna the significant 
coefficients were for Y'J- I ' Y)J -I and G1J_1. This shows that the series on landings of 

Tuna depend on the series on landings of anchovies and its own past values both with a 
lag of I. It also depends on the residuals of oil sardine series with lag I. In the fourth 
model correspond ing to the landings of penaeid prawns the coefficients significant were 
for Y.J-I ' G1J_1 and G'J_I' According to this model the series on landings of penaeid 

prawns is significantly influenced by its own past values and residuals at lag I and also 
on the residual at lag I of oil sardine series. 



Appendix-III (Tables) 

Table.3.I . Values of AIC, BIC and HQ criterion for 
different models 

p q AIC BIC HQ 
I I -9.7678 -9.1109 -9.5009 
I 2 -9.7063 -8.7209 -9.3059 
I 3 -10.0140 -8.7001 -9.480 I 
I 4 -9.9861 -8.3437 -9.3187 
2 I -8.7066 -7.7212 -8.3062 
2 2 -8.0064 -6.6925 -7.4725 
2 3 -8.0573 -6.4150 -7.3900 
2 4 -5.7184 -3 .7476 -4.9176 
3 I -4.6539 -3 .3400 -4.1200 
3 2 -5.2321 -3 .5898 -4.5648 
3 3 -4.6665 -2.6957 -3.8657 
3 4 -7.0985 -4.7993 -6.1643 
4 I -5.7904 -4.1481 -5.1231 
4 2 -2.0182 -0.0474 -1.2174 
4 3 -2.9859 -0.6866 -2.0516 
4 4 -0.7492 1.8785 0.3185 

Table.3.2. Eigen values of characteristic matrices corresponding to the AR 'and 
MA terms in the estimated model 

Eigen vlaues of the characteristic Eigen vlaues of the characteristic 
matrix of AR coefficient matrices matrix of MA coefficient matrices 

Sl. Real Imaginary Absolute Real Imaginary Absolute 
No. Part part Value Part part Value 

1 0.87031 0.00000 0.87031 -0.57195 0.00000 0.57195 
2 0.81965 0.00000 0.81965 -0.09123 -0.13115 0.15976 
3 0.98220 0.00000 0.98220 -0.09123 0.13115 0.15976 
4 0.76739 0.00000 0.76739 -0.25574 0.00000 0.25574 



Table.3.3. Chi-square stalJstlc for 
testing the combined significance of 
residual cross correlation matrices 

Lag X' Lag X' 
I 1.693 13 15.842 
2 14.534 14 18.867 
3 23.273 15 15.552 
4 75.696 16 23.284 
5 20.305 17 14 .988 
6 29.832 18 17.183 
7 11.245 19 24.998 
8 15.904 20 24.034 
9 23.196 21 23.741 

10 27.458 22 23.927 
11 15.793 23 13.798 
12 18.885 24 16.316 

" 

Table.3.4. Forecasts and standard errors oil sardine, anchovies, tuna, penaeid 
prawns using V ARMA( 1, I) model 
Year Quarter Oil sardine Anchovies 

Observed Forecasted SE Observed Forecasted SE 
19971 8.3564 8.0875 0.2714 10.9587 10.7984 0.2987 

II 8.9392 8.0938 0.4711 10.9741 10.8007 0.4225 
III 9.012 8.1021 0.5796 11 .0627 10.7984 0.4930 
IV 9.2357 8.1119 0.6510 10.8624 10.7927 0.5405 

1998 I 8.9451 8.1228 0.7012 10.9498 10.7844 0.5757 
II 8.8739 8.1346 0.7378 11.1438 10.774 1 0.6037 
III 8.984 8.1469 0.7652 11 .074 10.7625 0.6271 
IV 8.9954 8.1597 0.7862 11.1145 10.7498 0.6474 

Year :)uarter Tuna Penaeid prawns 
Observed Forecasted SE Observed Forecasted SE 

1997 I 7.8524 7.9035 0.2052 20.2447 19.8269 0.3384 
II 7.822 1 7.8742 0.3015 20.3667 19.7959 0.4955 
HI 7.861 · 7.8472 0.3603 20.1132 19.7689 0.5785 
IV 7.834 7.8220 0.4036 20.3892 19.7450 0.6296 

19981 7.7659 7.7983 0.4389 20.3828 19.7239 0.6634 
II 7.6598 7.7757 0.4694 20.5662 19.7049 0.6870 
III 7.6 158 7.7540 0.4969 20.6265 19.6877 0.7042 
IV 7.5407 7.7331 0.5220 20.3538 19.6720 0.7174 



CHAPTER-4 

MODELLING MARINE FISH LANDINGS WITI·I ENVIRONMENTAL VARIABLES 

Introduction 

Time series data on monthly landings of elasmobranchs, oil sardine, 

stolephorus and mackerel at Cochin Fisheries Harbour during the period 1988-97 

were used to develop Vector Autoregressive models with environmental variables as 

exogenous variables (VARX model). The environmental time series variables 

considered were monthly means of maximum and minimum temperatures, lowest and 

highest temperature recorded in a month, total monthly rainfall, highesl rainfall 

recorded in a month and the number of rainy days in a month, all being recorded at 

cochin. The main objective of the study was to establish possible relationship 

between environmental variables and marine /ish landings by developing suitable 

vector time series models. 

A general vector autoregressive model with exogenous variables of orders p 

and r denoted by VARX(p,r) is given by 

<J>(B)y, = (j + P(B)x, + a, 

where (/)(B)=I-(/),B - ""·-(/)pBP, jJ(B) =jJo+jJ,B+···+ jJ,_, B'-' are matrix 

polynomials in the back shift operator B of orders p and (r-J) respectively, 

y, = (Y't>·'·'Yb)' is the vector output series with k components, x, = (x"."",xm,)' 

is the exogenous vector series with m components, o=(O,."",Ok)' is a constant 

vector of size k, (/)" .. ' (/)p are k x k parameter matrices, jJo,A."",jJ,-, are k x m 

parameter matrices and a, = (a't>""',ak, )' is a vector of innovations, H~re it is 
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assumed that the innovation series are distributed independently and identically with 

zero mean vector and constant covariance matrix I . 

Review of literature: 

Murty and Edelman (1966) relaled the long-term nuctuations in the Indian oil 

sardine fishery with the strength of summer monsoon over the peninsular region of 

India. They found that cenain range of monsoon intensity is unfavourable to the 

fishery and cenain other range favourable . Murphy and Winkler (1984) reviewed 

probability forecasting methods in meleorology and described relationship petween 

probability forecasting in meteorology and other fields. Pati (1984) studied the 

relationship between rainfall and coastal fishery in Indian waters. He obtained 

significant correlations between the nuctuations in annual rainfall and landings from 

drift gillnet fishery, total rainfall and total catch rate and total rainfall and catch rate 

of plankton. Keller (1987) used Box-Jenkins transfer function models for forecasting 

primary production rates. He found that the incorporation of phytoplankton biomass 

and hourly light as two input variables improved the fit of the models. Fogarty (1988) 

used Box-Jenkins transfer function models to analyse the relationship between water 

temperature and marine lobster catch and catch per unit effon. He found the effect as 

vulnerability to capture increase with water temperature and obtained a significant 

effect of temperature at a six-year lag. Huang and Guo (1990) considered the 

estimation problems of linear feed back control system described by ARMAX 

models. He developed an estimation algorithm for ARMAX systems in the line of 

Hannan and Rissanen method. Longhurst and Wooster (1990) studied the 

relationship between the abundance of oil sardine and upwelling on the' south west 
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coast of India. They found that Ihe o-group recruitment to the fishery begins towards 

the end of the summer monsoon and its success is stalistically related to sea level at 

Cochin jusl prior to the onsel of monsoon. Campbell (1994) investigated the 

relationship belween sudden infant death syndrome (SIDS) and environmental 

temperature. He established a strong negative relationship in which Ihe death due to 

SIDS increase 2 - 5 days after the environmental temperature. Handcock and Wallis 

(1994) developed a random field model for mean temperature in which the stochastic 

structure was modelled by stationary spatial-temporal Gaussian random field. Borah 

and Bora (1995) modellled monthly rainfall al Guwagati using seasonal ARlMA 

model and used it to predict month-wise rainfall for an year ahead. 

Materials and Methods: 

The metbod of estimation of parameler matrices in VARX model was derived 

following the procedure given by Spliid (1983). Let a sample of size Tis available for 

tbe input and output vector series as YI ... · YT and Xl .. ... x T . To avoid the problem of 

initial values for Y, and X" we define the data matrices for the output and input 

series by Y=(Y'+I .... . Yr)' . x=(xS+I . .. ·.XT )' and the innovation matrix by 

a = (as+I ... ·.aT )' where s = max(p.r). These matrices will be of order nxk. n xm 

and n x k respectively where n = T - s. Now define matrices 

Y =(BY.B 2Y ..... B PY ) of order n x pk. X=(x.Bx ..... B'oI X) of order nxrm 

and V=Q.Y.X)is of order n x (pk+mr+l) where! is a column vector of size n 

with all elements unity. Define a = (0. (/)1 ..... (/) p • flo ./JI ... • .fl,-I)' as the parameter 
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matrix of order (pk+mr+l)xk. Then the general multivariate linear regression 

equivalent for the model is 

Y=Ua+a. 

The model representati on for the I"~ row of this equation is 

and transpose of this will yield the original model l/J(B)y, = 0+ jJ(B) x, + a, . Under 

this general multivariate linear regression model, the maximum likelihood estimate of 

the paramerer matrix a is same as the least square estimate given by 

and the estimate for the i" column a i of a is 

ai = (V'Ur ' U'y; for i = I, .. ·,(kp + mr + I) 

where Yi is the i'k column of matrix Y . The unbiased estimate of innovation 

covariance matrix 1: is given by 

E= I (Y -Ua)'(Y -Ua) 
(T-m) 

and the maximum likelihood estimate of 1: is 

- (T-r). 
1:= 1: . 

T 

The covariance matrix of the estimated parameter matrix can be estimated as 

Time senes data on landings of these marine fish species/groups were 

collected from the "National marine living resources data center" of CMFRl. The 
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environmental time senes data were collected from the India Meteorological 

Department. Since the time series sequences used in this study were all monthly 

observations, a 12 point moving average of these series were taken before analysis to 

remove seasonaliry present in the data. 

Results 

The relation between the four time senes on landings and environmental 

variables series were initially examined by computing cross correlations up to lag 24 

between different series. Cross correlations of the series on elasmobranchs with 

different environmental time series variables are given in table.4.1. The series on 

elasmobranchs landings did not show any significant cross correlation with that of the 

mean maximum temperature. The maximum cross correlation observed was 0.161 at 

lag 21. Cross correlations of elasmobranchs with highest temperature were significant 

and negative for lags 3 to 18 and for lags 15 to 24 the cross correlations were positive 

and significant. The maximum cross correlation observed between these tw.o series 

was 0.3573 for lag 24. These cross correlations showed a cyclical pattern with low 

negative values for the initial lags and changed its sign after lag 8. Cross correlations 

of elasmobranchs with mean minimum temperature were significant and negative for 

lags from 0 to 12 with -0.5932 as the maximum cross correlation at lag 3. With the 

lowest temperature sequence elasmobranchs landings was found to have negative and 

significant cross correlations for all the lags, from 0 to 21 . The maximum cross 

correlation observed between these two series was - 0.5135 at lag 2. Total rainfall 

series did not have any significant cross correlation with elasmobrachs for most of the 

initial lags. The significant cross correlations were for lags from 18 to 29 and these 
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were negative with maxImum cross correlation being -0.3145 at lag 21. 

Elasmobranchs and highest rainfall series had significant positive cross correlations 

for lags 7 to 18 and the maximum cross correlation was 0.3979 at lag 11. With the 

series on number of rainy days elasmobranchs landings were found to have significant 

negative cross correlations for all the lags from 0 to 24. The maximum cross 

correlation observed was - 0.3795 at lag 21. 

Cross correlations of the series on oil sardine landings with different series on 

environmental variables are given in table.4.2. Cross correlations of oil sardine series 

with the series on mean maximum temperature were not significant for most of the 

lags. The significant cross correlations were for lags 21 to 24 and were all negative. 

The maximum cross correlation between these two series was -0.2791 for lag 24. 

With the series on highest temperature oil sardine landings series had significant and 

positive cross correlations for lags from 4 to 18. The maximum cross correlation 

between them was 0.3517 at lag 12. Cross correlations of oil sardine series with mean 

minimum temperature series were significant for lags 0 to 5 and 20 to 24. All these 

cross correlations were negative and the maximum cross correlation was -0.3513 for 

lag O. Cross correlations of oil sardine series with the lowest temperature were 

negative, significant and high for the lags from 0 to 13 and 23 to 24. The maximum 

cross correlation observed was -0.5294 for lag O. For most of the initial lags the series 

on oil sardine landings did not have any significant cross correlation with the total 

rainfall series. The significant cross correlations were for the higher lags from 15 to 

24 and were all positive and high, with a maximum of 0.5368 at lag 23. With highest 

rainfall series, the cross correlations of oil sardine landings series were positive, 

significant and high for all the lags from 0 to 24. The observed maximum of the cross 
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correlations between these two series was 0.3715 at lag I. The oil sardine landings 

series had high, negative and significant cross correlations with the series on number 

of rainy days, for all the lags from 0 to 24, with -{).7730 at lag II as the maximum 

cross correlation. 

For different lags from 0 to 24, cross correlations of the series on mackerel 

landings with different environmental variables series are given in table.4.3. Cross 

correlations of the series on landings of mackerel with mean maximum temperature 

were positive and significant for lags 6 to 23 with maximum cross correlation of 

0.4957 at lag 16. With the highest temperature series the cross correlations of 

mackerel series were significant at lag 0 and lags 7 to 18. All the cross correlations 

from lag 7 to lag 18 were positive and at lag 0 it was negative. Cross correlations of 

mackerel series with mean minimum temperature series were significant and positive 

for all the lags from 0 to 21. The highest cross correlation was 0.5017 at lag 5. With 

the lowest temperature series the cross correlations of mackerel were significant and 

positive for lags 0 to 19 with 0.5258 as the highest cross correlation at lag 9. For most 

of the lags mackerel landings did not have any significant cross correlation with the 

series on total rainfall. The significant cross correlations were for lags 0, I and 2, and 

these cross correlations were negative with -{).2258 as the maximum at lag O. Cross 

correlations of the mackerel series with the highest rainfall series were also not 

significant for most of the lags. The cross correlations significant were for lag 0 and 

lags 17 to 14 which were all negative and -{).2829 was the maximum at lag 24. With 

the number of rainy days series cross correlations of mackerel series were positive 

and high for most of the lags. The significant lags were from 0 to 18 and the 

maximum cross correlation was 0.6514 at lag 8. 
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Cross correlations of the series on landings of stolephorus with different series 

on environmental variables are given in table.4.4. The series on stolephorus landings 

did not have any significant cross correlation with mean maximum temperature series 

for lags 0 to 21. For lags 22, 23 and 24 the cross correlations were positive and 

significant with 0.2598 as the maximum cross correlation at lag 24. With the series on 

highest temperature the cross correlations ' of stolephorus landings series were 

negative and significant for lags 5 to 17. The maximum cross correlation of 

stolephorus series with the highest temperature series was -{).4378 at lag 13. Cross 

correlations of stolephorus series with mean minimum temperature were significant 

and positive for lags 0 to 6 and 18 to 24. The maximum cross correlation observed 

between the two series was 0.3440 at lag O. With the lowest temperature series the 

cross correlations of stolephorus landings series were significant for all the lags from 

lag 0 to lag 24 except for lags 10 and II. All these cross correlations were positive 

and the maximum cross correlation between the two series was 0.3858 at lag 19. 

Cross correlations of stolephorus series with total rainfall were significant for lags 9 

to 15 and all these cross correlations were negative. The maximum cross correlation 

observed between the two series was -{).2549 at lag 13. With the series on highest 

rainfall the cross correlation of stolephorus series were significant and negative for 

lags 0 to 14 and the maximum cross correlation obtained was -{).6141 at lag 6. The 

cross correlations of stolephorus series with the series on number of rainy days were 

positive, high and significant for all the lags from 0 to 24. The maximum cross 

correlation obtained was 0.6506 at lag 7. 

Based on the above cross-correlation analysis of these time series sequences, 

two environmental time series variables, namely mean maximum temperature and 



l 

168 

total rainfall, were excluded from modelling as their influence was comparatively less 

on all the four landings series. In the present study, the four time series sequences on 

landings formed the output vector Y, and two time series sequences one each to 

represent temperature and rainfall formed the exogenous vector x,. This resulted in 

six different models with same set of output vector and different pairs of 

environmental time series sequences as components for the exogenous vector. 

For the first model considered; the components of exogenous vector were, the 

highest temperature series and the highest rainfall series. To identify a suitable 

VARX(p,r) type model, order selection criteria Al C, BIC and HQ were evaluated 

for values of p and r ranging from I to 5. The model that yielded mlmmum 

AIC criterion was VARX(3,3) and both BIC and HQ criteria had minimum .values 

for the model VARX(I,l) . These two models were estimated and compared for final 

selection. The estimated VARX(3,3) model could explain 98.25%, 97.56%, 94.86% 

and 93.17% respectively of the variations in the components of vector output series 

{Y,}, It was found that out of 48 elements of the estimated AR coefficient mairices, 

only \3 elements were significant; among 24 elements of the estimated coefficient 

matrices of exogenous variables only 5 elements were significant and only one 

element of the estimated constant vector was significant. The estimated VARX(I,I) 

model was found to explain 97.56%, 96.63%, 94.27% and 91.06% respectively of the 

variations in the components of vector output series. Out of a total of 24 elements in 

the estimated parameter matrices of this model, II were found significant. Though the 

VARX(3,3) model was slightly better than the VARX( I,I) model in respect of its 

capability to explain variations in the components of Y
" 

it had too many parameters 
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as elements of the coefficient matrices and most of them were non-significant. Hence 

VARX(l,I) model was chosen as the suitable model for this data set. The variance 

covariance matrix of the sample output vector time series {y, } consisting oflandings 

of the four species/group was estimated as 

301.9829 899. 1459 - 254.3888 -1411.6567 

899. 1459 27435.8854 - 5554.9400 -10480.0057 

- 254.3888 - 5554.9400 2482.9746 568.2350 

-1411.6567 -10480.0057 568.2350 27487.8107 

The expression for VARX(l,I) model is y, = 0 + <1>, y,_, + flo x, + s, and the 

estimates of parameters of the model and standard errors of the estimates were 

, 
J = (- 66.5073,870.5186, - 274.2013,1962.3127) 

SE(b) = (39.9554, 447.6489, 175.4848, 729.5187)' 

<1> , = 

0.9491 0.0019 0.0070 0.0016 

0.4410 0.9498 - 0.0645 - 0.0165 

-0. 1911 -0.0251 

-0.1611 0.0179 

0.9237 - 0.0299 

0.1622 0.9060 

0.0187 0.0025 0.008 1 0.0021 

0.2098 0.0277 0.0906 0.0231 
SE(<I>,) = 

0.0822 0.0 I 09 0.0355 0.0091 

0.3419 0.0451 0.1477 0.0377 

1.9336 0.0446 1.2132 0.0453 

Po = 
- 25.7190 

8.3518 

-0.3239 13.5918 
, SE(Po) = 

0.4992 5.3282 

0.5071 

0.1988 

- 55.7698 -1.8047 22.1502 0.8263 



170 

7.3700 4.4179 -2.1791 23.7713 

4.4179 925.1074 -34.3015 261.4268 
L= 

-2.1791 -34.3015 142.1662 87.3555 

23.7731 261.4268 87.355 2456.9138 

The elements found significant in matrix <i> I were <i> II' <i> 21' <i> 12' <i> JI' <i> J2' 

<i> ,), <i>,. and <i>" . In matrix Po, the elements fo und significant were P'2' P" and 

P.2' The only significant element in the constant vector Jwas J,. 

With another set of exogenous vector variable consisting of the lowest 

temperature series and the series on number of rainy days, modelling was attempted. 

For this data set, the AIC criterion yielded 'minimum value for VARX(3 ,5) model 

where as BIC and HQ criteria had minimum values for VARX(I,I) model. These two 

models were estimated and compared to arrive at the final model. The percentage of 

variations in the components of output vector series that were explained by the 

estimated VARX(3,5) model were 98.29%, 97.71 %, 95.47% and 93.26% respectively. 

Out of a total of 88 elements in the eight parameter matrices of this model only 20 

elements were found significant. The estimated VARX(I,I) model could explain 

97.17%, 96.50%, 93.89% and 90.53% of the variations in the components 

respectively of the output vector. In the estimates of two parameter matrices of the 

model, 10 out of 24 elements were found significant. Though V ARX(3,5) model 

behaved better than VARX(I,I) model in its capability to explain variations of the 

components in the output vector series, it was not advisable as most of its parameter 

elements were not significant. Hence V ARX( I, I) model was taken as the final model 

for this data set. The algebraic expression of the model, estimate of the model 

parameters and standard errors of the parameter estimates are as given below. 
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J = (-20.3774, -80.2955, -42.0427, 1169.7475)' 

SE(J) = (20.3727, 323.0121,128.3342, 531.5191} 

0.9534 - 0.0001 0.0089 . 0.0044 

ci>, = 
0.5460 0.9474 -0.0638 - 0.0096 

-0.2136 -0.0 109 0.9090 -0.0405 

-0.2680 - 0.0647 0.1795 0.9400 

0.0195 0.0028 0.0077 0.0022 

SE(ci>,) = 
0.2301 0.0325 0.0913 0.0262 

0.0914 0.0129 0.0363 0.0104 

0.3787 0.0534 0. 1502 0.0431 

1.4538 -1.1662 1.2307 

P.= 3.3484 0.6139 
, SE(P.) = 

14.5225 

2.2053 2.2805 5.7699 

- 48.7001 -6.0903 23.8969 

6.9012 1.6133 0.7538 13.4059 

E= 
1.6133 961.0046 -53.0893 366.8509 

0.7538 - 53.0893 151.6954 44.6009 

13.4059 366.8509 44.6009 2602.1089 

0.3513 

4.1459 

1.6472 

6.8221 

The elements of estimated parameter matrices found significant were J. of 

vector J; <i> 11 , <i> 14' <i> 21 , <i> 22, <i> 31 , <i> 33' <i> 34 and <i> 44 in matrix <i>,; p 12 and 

P 41 in matrix P •. 

Another model with monthly mean minimum temperature series and the series 

on the number of rainy days as the two components of the vector exogenous series 

{x, } and the same output vector series {y,}consisting of series on landings by the 
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four marine fish species/groups as components was also attempted. For this data set 

the Al C criterion had minimum value for VARX(3,1) model and both BlC and HQ 

criteria had minimum values for VARX(I,I) model. These two models were estimated 

and examined in detail to select the final model. The estimated VARX(3,1) model 

could explain 98. 14%, 97.30%, 94.45% and 91.81 % respectively of variations in the 

four components of output vector series. Out of 60 parameters as elements in the four 

parameter matrices of the model only 14 elements were found significant. When 

VARX(I,I ) model was fitted to the data set it explained 97.76%, 96.53%, 93.96% 

and 90.42% respectively of the variations in the four components of the output vector 

series. Out of 24 elements belonging to two parameter matrices of the model, 7 were 

found significant. The VARX(I,I) model was selected as the final model because it 

was parsimonious compared to VARX(3,1) model and was capable of explaining the 

variations reasonably well. The model, estimates of parameters, estimate of standard 

errors of parameter estimates and estimate of innovation dispersion matrix are given 

below. 

y, = t5 + <1> , y,_, + fJo x, + E:, 

J = (- 56.7753, 469.2078, -1 91.1 021,1318.733 7)' 

. . , 
SECtS) = (36.8410,436.561 6, 173.4347,726.3920) 

0.9581 - 0.00 16 0.0055 0.0036 

0.4252 0.9491 - 0.0483 - 0.0073 
<il ,= 

- 0.1869 - 0.0140 0.9003 - 0.0423 

- 0.2031 - 0.0220 0.2544 . 0.9599 



0.0192 

SE(¢. ,) = 
0.2272 

0.0903 

0.3780 

2.88 16 

fl. = 
- 20.0571 

8.3264 

- 51.4190 

6.7718 

3.3401 
L= 

0.2575 

14.3194 

0.0026 

0.0310 

0.0123 

0.0516 

-1 .2260 

1.6271 

2.0192 

- 6.0321 

3.3401 

950.8867 

- 48.3813 

332.8231 

173 

0.0077 0.0022 

0.0918 0.0260 

0.0365 0.0103 

0.1527 0.0432 

1.5433 

18.2872 
SECBo) = 

7.2653 

30.4290 

0.2575 14.3194 

-48.3813 332.8231 

150.0754 51.3407 

51.3407 2632.5698 

0.3502 

4.1496 

1.6485 

6.9045 

In the estimates of parameter matrices the elements found significant were 

Using the two time series sequences on mean minimum temperature and 

highest rainfall series as components of the exogenous vector and the same set of 

output vector series on landings a fourth model was tried. The model corresponding to 

minimum AlC value was YARX(3,2) and both BIC and HQ criteria had minimum 

values for YARX(I ,I) model. A comparison of these two models was made after 

estimating the model parameters to choose the final model. When the V ARX(3,2) 

model was estimated it was found that 17 out of 68 elements of the estimated 

parameter matrices were significant. This model could explain 98.09%, 97.38%, 

94.90% and 92.55% respectively of the variations in the four component series of the 

output vector y,. The VARX(I,I) model was also estimated and it was found that out 

of 28 elements in the parameter matrices of the model 10 were significant. This model 
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could explain 97.53%, 96.55%, 94.26% and 90.87% respectively of the variations in 

the four components of output vector y,. Since this model had lesser number of 

parameters as elements of the parameter matrices and is equally good with regard to 

its capability to explain variations, the VARX( 1,1) model was chosen to represent thi s 

data set. The algebraic expression of the model, estimates of parameters, standard 

error of parameter estimates and estimate of innovation dispersion matrix are given 

below. 

y, = is + <Il, Y<-I + flo x, + c, 

J = (- 48.8707, 486.5004, - 251 .9278,1534.6473) 

SE(§) = (38.6195,435.2963,168.9213,709.0073) 

0.9525 0.0021 0.0062 0.0006 

<1> , = 
0.4257 0.9466 -0.0605 -0.0048 

-0.1654 - 0.0243 0.9185 -0.0348 

-0.2760 0.0118 0.1864 0.9359 

0.0200 0.0025 0.0082 0.0021 

0.2257 0.0279 0.0928 0.0236 
SE(<I>,) = 

0.0876 0.0 I 08 0.0360 0.0092 

0.3676 0.0455 0.1512 0.0385 

, 

, 

1.8927 0.0531 1.5891 

fto= 
-19.0042 -0.4334 

, SE(fto) = 
17.9113 

10.4015 0.5372 6.9507 

-57.9377 - 2.0518 29.1738 

0.0453 

0.5101 

0.1980 

0.8309 
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7.4456 3.0941 -1.9678 21.7650 

3.0941 945.9179 - 38.8645 297.8737 
L= 

-1 .9678 - 38.8645 142.4466 82.2113 

21.7650 289.8737 82.2113 2509.4863 

In these estimates the parameter elements found significant were. J, in 

A fifth model was attempted by replacing the vector exogenous series with 

another pair consisting of lowest temperature series and highest rainfall series. For 

this data set the AlC criterion suggested VARX(3,3) model where as both BIC an HQ 

criteria suggested VARX( I,I) model as the suitable one. To select the final model 

these two models were estimated and compared. Out of a total of 86 elements 

belonging to the parameter matrices of the estimated VARX(3,3) model 21 elements 

were found significant. This model explained 98.22%, 97.42%, 94.97% and 90.81 % 

respectively of variations in output vector series components. For the estimated 

VARX(I,I) model these values were 97.51%, 96.52%, 94.15% and 90.82% 

respectively. Out of a total of 28 elements in the parameter matrices estimated for the 

VARX(I,I) model 10 elements were found significant. There fore VARX(l,I) model 

which had lesser number of parameters and was equally good in terms of variations 

explained was selected as the suitable model for the data set. The model, estimates of 

parameter vector and parameter matrices in the model, estimates of standard errors of 
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parameter estimates and estimate of innovation dispersion matrix are given below for 

the V ARX (1,1) model. 

y, = 0 + <1>, y,_, + Po x, + &, 

, 
J = (- 15.7106, -106.7808, -17.0096, 1084.6822) 

, 
SECJr= (28.6981, 323.0731,126.0997, 525.3455) 

0.9469 0.0027 0.0082 0.0012 

0.5569 0.9507 -0.0759 -0.0095 
<1> , = 

-0.2113 -0.0230 0.9283 -0.0319 

- 0.2685 -0.0286 0.1183 0.9161 

0.0203 0.0027 0.0082 0.0021 

SEC<il,) = 
0.2286 0.0307 0.0919 0.0233 

0.0892 0.0120 0.0359 0.0091 

0.3717 0.0499 0.1494 0.0378 

0.5740 0.0482 1.2915 0.0463 

Po = 
6.0319 -0.4618 

, SECPo) = 
14.5398 0.5210 

0.7675 0.5262 5.6751 0.2034 

-43 .1766 -1.7360 23.6430 0.8472 

7.5296 1.9674 -1.4487 19.8071 

t= 1.9674 954.2572 - 44.4546 338.8185 

-1 .4487 -44.4546 145.3757 67.1437 

19.8071 338.8185 67.1437 2523.2135 

The elements found significant in these estimates were J, in vector J ; 
<il", <il", <il", <il", <ilJ) ' <il " and <il .. in matrix <il,; Pl2 and p" in matrix Po . 
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By replacing the exogenous variables with the new set consisting of time 

series sequences on highest temperature and number of rainy days, yet another 

VARX(p,r) type model was tried. The AIC criterion gave minimum value for 

VARX(3,1) model where as both BIC and HQ criteria had minimum values for 

VARX( I, I) model. The final model was selected by estimating these two models and 

comparing their properties. The estimated VARX(3, I) model could explain ~8.13%, 

97.33%.94.50% and 92.06% respectively of the variations in the four components of 

the vector output series. Out of a total of 60 elements in 4 coefficient matrices and 

one constant vector only 17 elements were significant. The other model VARX(I,I) 

was also estimated and it was found that there are 12 significant elements out of a 

total of28 elements. This model was found to explain 97.76%, 96.62%, 94.05% and 

90.77% respectively of variations in the components of the vector output series. When 

these models were compared it was found that VARX(3,1) model could explain 

variations in the components of output vector series slightly better than VARX(I,I) 

model and the maximum difference in percentage was 1.29% for the fourth 

component. To achieve such a small improvement it was requ ired to estimate more 

than double the number of parameters in VARX(I,I) model. Hence VARX(l.l) was a 

better compromise and this was taken as the final model for the data set. Details 

regarding parameter estimates of the model are' given below . . 

y, = t5 + <1>, y,_, + fJo x, + C, 

. ' 
15= (- 62.2340, 874.9945, - 301 .2467, 2056.4514) 

. . ' 
SE(O) = (38.2658,448.4893,179,0007.741.5303) 



178 

0.9509 - 0.0016 0.0072 0.0047 

¢, = 
0.4413 0.95 17 -0.0557 -0.0187 

-0.1991 - 0.0146 0.9041 -0.0381 

-0.1335 - 0.0176 0.2321 0.9335 

0.0179 0.0026 0.0076 0.0022 

SE(¢,) = 
0.2102 0.0306 0.0894 0.0258 

0.0839 0.0122 0.0357 0.0103 

Po = 

0.3475 0.0506 0.1479 0.0427 

2.2443 -1.1346 1.1567 0.3438 

- 26.8017 1.1548 13.5596 4.0293 
, SE(Po) = 

9.3537 2.2413 5.4108 1.6082 

-59.5120 -7.3777 

6.7549 4.6305 - 0.0922 

4.6305 927.8973 - 41.0585 

-0.0922 -41.0585 147.8105 

22.4149 6.6621 

16.6624 

285.4104 

66.0920 

16.6624 285.4104 66.0921 2536.6093 

The elements found significant in the estimates of parameter vector and parameter 

matrices of the model were J , ofvector J; ¢" ' ¢ "' ¢ "' ¢l2'¢31'¢33 ' ¢ )< and 

¢ .. in matrix ¢ I ; p", p" and p" in matrix Po. 

Discussion 

From the cross correlation analysis . it was seen that the mean maximum 

temperature series did not have much influence on the series on landings of oil 

sardine, stolephorus and elasmobranchs but had signi ficant effects on mackerel series. 

The highest temperature series had lagged effects on oil sardine, mackerel and 

stolephorus series for almost identical lags where as the effects on elasmobranchs 
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series were for different lags. The effects on oil sardine and mackerel series were 

positive but that on elasmobranchs and stolephorus series were negative. The mean 

minimum temperature series had more effects. on mackerel and elasmobranchs series 

and for the initial lags it had effects on all the four landings series. For mackerel and 

stolephorus series the effects were positive and for oil sardine and clasmobranchs 

series the effects were negative. Lowest temperature series had significant effects on 

all the four series. The effects were positive for mackerel and stolephorus series and it 

was negative for oil sardine and elasmobranchs. The series on total rainfall did not 

have much influence on any of the four series on landings, but had little positive 

effects on oil sardine series at higher lags. Highest rainfall series had more effects on 

oil sardine series that was positive and there was effect even at higher lags. Its effects 

on the series of elasmobranchs landings were also positive but the influence were at 

higher lags. It had high and negative effects on stolephorus series at many lags, and 

the influence on mackerel landings was comparatively less. Its effects on mackerel 

series were negative and these were for higher lags. The number of rainy days series 

had significant influence on all the four landings series at almost all lags. Its effects 

on oil sardine and elasmobranchs series wer negative where as its effects on 

mackerael and stolephorus landings were positive. The strength of influence was high 

for oil sardine, mackerel and stolephorus series. 

In the first V AR.X model fitted with time series on highest temperature and 

highest rainfall as components of the exogenous vector, models for the third and 

fourth components of the output vector were having significant coefficients for the 

exogenous variables. These models are 
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Y~ = -274.2013 - 0.1911 YIJ-I - 0.025 1 Y'J - I + 0.9237 Y)J-I - 0.0299 Y4J-1 

+ 8.351 8 X I, + 0.4992 x" + e), 

and Y" =.1962.3 127 - 0.1611 Y IJ-I + 0.0179 1>.,_1 + 0.1622 Y)J-I + 0.9060 Y'J-I 

- 55 .7698x l, - 1.8047x" + e,,, respecti vely. 

These models correspond to the seri es on landings of stolephorus and mackerel 

respectively. All the coefficients of the model of stolephorus except that for XI, were 

significant. Thus, apart from its dependence on lagged values of other three landings 

series the stolephorus series depends on the highest rainfall series also. An increase in 

highest rainfall is expected to cause increased landings of stolephorus. In the model 

for the series on landings of mackerel both the coefficients of exogenous components 

and the coefficient of Y,.I-I were significant. So apart from its dependence on' its own 

past the series on landings of mackerel depend on both highest temperature and 

highest rainfall series. Increase in the values of these variables are not favourable for 

good landings of mackerel. 

In the second VARX model with the series on lowest temperature and number 

of rainy days as the components of exogenous vector, the individual univariate 

models with significant coefficients for exogenous vector components are 

YI. = 20.3727 + 0.9534 YI.,_I - 0.0001 Y' J- I + 0.0089 Y)J-I + 0.0044 Y.J- I 

+ 1.4538 x" -1 .1662 x" + el • 

and y,. = 1169.7475-0.2680 YIJ-I -0.0647 Y'J- I + 0.1795 Y)J-I +0.9400 ~'J-I 

- 48.7001 x" - 6.0903 x" + e4,. 

In the above models, the first model is for the series on landings of elasmobranchs 

and significant coefficients in this model were for YI 1-1' y, ._1 and x, •. Therefore the . . 

series on elasmobranchs landings depend on its own past and lagged values of the 
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senes on landings of mackerel. Also, the senes on number of rainy days had 

significant effect on the series on elasmobranchs landings and the effect is negative. 

According to the second model, which corresponds to the series on landings of 

mackerel, the significant coefficients were for y, ,_, and x" . Hence, the series on 

landings of mackerel depend on its own past and also on the series on lowest 

temperature. Increase in the values lowest temperature series is not favourable for 

increased landings of mackerel. 

In the VARX model fitted with the third set consisting of series on mean 

minimum temperature and number of rainy days as components for the exogenous 

vector, the only model having significant relation with the exogenous vector variables 

was 

y" = -56.7753 + 0.9581 y,;_, - 0.0016 Y2;-' + 0.0055 y,;_, + 0.0036 Y.;_, 

+ 2.8816 x" -1.2260 x2, + E" 

In this model the significant coefficients were for Y';_' and x2, . Hence, the series on 

landings of elasmobranchs depend on its own past and also on the series on number of 

rainy days. This was established by the earlier model also. 

From the V ARX model fitted with series on mean minimum temperature and highest 

rainfall as components for the exogenous vector variable we get models with 

significant effect coefficients for the environmental vector components as 

y" = -251.9278 - 0.1654 y,;_, - 0.0243 y/;-, + 0.9185 y,;_, - 0.0348 Y. ;_, 

+ 10.4015 x" +O.5372x2, +E" 
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y" = 1534.6473 - 0.2760 YI;_I + 0.0118 Y';_I + 0.1864 Y);_I + 0.9359 Y.;_I 

-57.9377 XI' -2.0518x" +E., 

In the first model for the senes on stolephorus landings the coefficients of 

Y Y Y and X were significant. Hence the senes on landings of 
';-1' );-1> 4;-1 " 

stolephorus significantly depend on its own past and lagged values of the series on 

landings of oil sardine and mackerel. Also, the series on highest rainfall had 

significant and positive effect on the series on landings of stolephorus. In the second 

model above, for the series on mackerel landings the coefficients significant were 

Y'.<-I' XI, and x" . Thus the series on landings of mackerel are autocorrelated with lag 

I and both the mean minimum temperature series and highest rainfall series had 

significant and negative effect on the landings of mackerel. 

In the VARX model fitted with lowest temperature and highest rainfall as the 

component variables for the exogenous vector, the following models were obtained 

with significant coefficients for these environmental components. 

Y), = -17.0096 - 0.2113 YI;_I - 0.0230 Y2;-1 + 0.9283 Y);_I - 0.0319 Y.;-I 

+ 0.7675 XI, + 0.5262 x" + Ell 

y" = 1084.6822-0.2685 YI;_I -0.0286 Y';_I +0.1 183 h,-I +0.9161 Y.;_I 

- 43.1766 x" -1.7360 x" + E., 

In the first model above for the stolephorus landings series the coefficients 

significant were for YI;_I> Y);_I> Y.;-I and x". In the second model for the series on 

mackerel landings, the significant coefficients were Y 4;-1 and x". This indicate that 
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both the series on landings of stolephorus and mackerel depend on their own past 

values. Both these series are effected by.the series on highest rainfall but in different 

directions. Increased values for the highest rainfall series is expected to increase the 

landings of stolephorus and reduce the landings of mackerel. Stolephorus landings 

series was also affected by the series on landings of elasmobranchs and mackerel. 

In the VARX model fitted with the exogenous vector consisting of series on 

highest temperature and number of rainy days, the models with significant values for 

the coefficients of the exogenous vector components are 

y" = -62.2340 + 0.9509 YIJ-I - 0.0016 Y2 J-1 + 0.0072 YJJ-I + 0.0047 Y'J-I 

+ 2.2443 XI, -1.1346 x2, + EI, 

Y), = 874.9945 + 0.44 13 YIJ-I + 0.9517Y2J_1 - 0.0557 YJJ- I - 0.0187 Y'J-I 

- 26.8017 x" + 1.1548 x2, + E2, 

y" = 2056.4514 - 0.1335 YI.H - 0.0176 h'-I + 0.2321 YJJ -I + 0.9335 Y'J- I 

-59.5120 x" -7.3777 x2, + E" 

In the model for the series on elasmobranchs landings the significant coefficients 

were for YIJ-I' Y' .'-I and x2, . Those significant in the model for oil sardine landings 

series were for YIJ-I' YV- I and x". For the model on landings of mackerel the 

coefficients found significant were for Y'J-I and XI, . There fore all the three series on 

landings of elasmobranchs, oil sardine and mackerel depend on own past values at lag 

I. The series on mackerel influence the series on landings of mackerel ·and the 

landings of oil sardine was influenced by elasmobranchs landings series. Both the 

series on landings of oi l sardine and mackerel series depend on the highest 
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temperature series where as Ihe series on landings of elasmobranchs depend~ on the 

number of rainy days series. For all the three landings series their dependence on the 

two environmental variables are not positive. 



Appendix-IV (Tables) 

Table.4.1. Cross correlations of the series 011 landings of elasmobranchs with 
different series on environmental variables 

~Ie.n Mean Number 0 

Maximum HigheSi Minimum Lowest Tota l Highest Rainy 
La. Temnerature Temperature Temperature Tem pera ture Rainfall Rainfall days 

0 0. 11 51 -0.0614 -0.5284 -0.4823 0.1894 0.1374 -0.3786 
I 0.0613 -0.1216 -0.5636 -0.4992 0.1725 0.1413 -0.3508 
2 0.0228 -0.1800 -0.5923 -0.5135 0.1404 0.1366 -0.3341 
3 -0.0014 -0.2216 -0.5932 -0.5 108 0.1000 0.1227 -0.3263 
4 -0.0255 -0.2541 -0.58 19 -0.5041 0.0633 0.1240 -0.3128 
5 -0.0449 -0.2583 -0.5675 -0.4945 0.0380 0.1555 -0.2902 
6 -0.0538 -0.2572 -0.5367 -0.4789 0.0066 0.1809 -0.2699 
7 -0.0475 -0.25 10 -0.4859 -0.4580 -0.0293 0.2257 ~0.2670 

• 8 -0.0336 -0.2222 -0.4346 -0.4447 -0.0526 0.264 1 -0.2551 
9 -0.0147 -0.1765 -0.3768 -0.4327 -0.060 I 0.3230 -0.2441 

10 0.0079 -0.1266 -0.3249 -0.444 1 -0.0266 0.3914 -0.2221 
II 0.0357 -0.0689 -0.2752 -0.4554 -0.0 186 0.3979 -0.2172 
12 0.0537 -0.0148 -0.2274 -0.4557 -0.0 198 0.3879 -0.2193 
13 0.0709 0.0456 -0.1860 -0.4615 -0.0263 0.3855 -0.22 15 
14 0.0928 0.1193 -0.1 428 -0.4390 -0.0357 0.3756 -0.2235 
15 0.1054 0.1616 -0.1112 -0.4253 -0.0587 0.3545 -0.2290 
16 0.1229 0.2094 -0.0829 -0.4252 -0.0994 0.3190 -0.2437 
17 0.1336 0.2468 -0.0680 -0.4121 -0.1334 0.2759 -0.2552 
18 0. 1480 0.2848 -0.0495 -0.3978 -0.1936 0.2062 -0.2897 
19 0. 1577 0.3055 -0.0359 -0.3682 -0.2288 0.1209 -0.3099 
20 0. 159 1 0.3207 -0.0034 -0.3149 -0.2835 0.0282 -0.3532 
21 0. 1606 0.3332 0.0385 -0.2489 -0.3145 -0.0552 -0.3795 
22 0.1509 0.3420 0.0720 -0.1716 -0.3144 -0.1228 -0.3786 
23 0.1341 0.3487 0.1068 -0.0992 -0.3070 -0.1424 -0.3763 
24 0.1345 0.3573 0.1411 -0.0442 -0.2856 -0.1624 -0.3788 
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Table.4.2. Cross correlations of the series on landings of oil sardine with 
different series on environmental variables 

Me.n Meon Number of 
Maximum Highest Minimum Lowest Tot.1 Highest Rainy 

L •• Temoerature Temoer. ture Temoerature Temper.ture R.inf.1I R.infall days 

0 0.0058 0.Q312 -0.3513 -0.5294 -0.187 1 0.3569 :0.6627 
I 0.0179 0.0844 -0.3181 -0.5312 -0.164 1 0.3715 -0.6760 
2 0.0281 0.1389 -0.2794 -0.5231 -0.1429 0.3683 -0.6873 
3 0.0273 0.1888 -0.2471 -0.5100 -0.120 I 0.3709 -0.7021 
4 0.0204 0.2267 -0.2277 -0.5036 -0.1022 0.3541 -0.7075 
5 0.0177 0.2633 -0.2058 -0.4863 -0.1054 0.3357 -0.7245 
6 0.0153 0.2895 -0.1914 -0.4695 -0.0994 0.3224 -0.741 1 
7 0.0122 0.3156 -0.1 847 -0.4629 -0.0768 0.3072 -0.7478 
8 0.0040 0.3251 -0.1845 -0.4484 -0.0511 0.2951 -0.7501 
9 0.0041 0.3386 -0.1765 -0.4278 -0.0438 0.2592 -0.7637 

10 -0.0024 0.3412 -0.1620 -0.3742 -0.0163 0.2340 -0.7704 
II -0.0175 0.336 1 -0. 1473 -0.3140 . 0.0144 0.2192 -0.7730 
12 -0.0255 0.35 17 -0.1306 -0.2622 0.0603 0.2275 -0.7659 
13 -0.0403 0.3436 -0.1223 -0.2064 0.1211 0.2379 -0.7476 
14 -0.0598 0.3252 -0.1202 -0.1775 0.1648 0.2389 -0.7341 
15 -0.0810 0.3026 -0.1330 -0.1614 0.2168 0.2357 -0.7129 
16 -0.0916 0.2831 -0. 1399 -0.1462 0.2402 0.2202 -0.7087 
17 -0.1066 0.2502 -0.1546 -0.1474 0.2992 0.2235 -0.6985 
18 -0.1273 0.2183 -0.1686 -0.1 477 0.3684 0.2392 :0.6821 
19 -0.1537 0.1896 -0.186 1 -0.1451 0.4229 0.2655 -0.6629 
20 -0.1702 0.1670 -0.2036 -0.1469 0.4740 0.2903 -0.6358 
21 -0.2016 0.1386 -0.2305 -0.1570 0.5332 0.3286 -0.6020 
22 -0.2226 0.1085 -0.2595 -0.1807 0.5349 0.3 163 -0.5832 
23 -0.2463 0.0785 -0.2882 -0.2129 0.5368 0.2995 -0.5632 
24 -0.2791 0.0274 -0.3235 -0.2377 0.5348 0.2810 -0.5453 
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Table.4.3. Cross correlations of the series on landings of mackerel with different 
series on environmental variables 

Mean Mean Number of 
Maximum Highest Minimum Lowest Total Highest Rainy 

La2 Temperature Temperature Temperature Temperature Rainfall Rainfall days 

0 -0.1834 -0.2092 0.3674 0.2720 -0.2258 -0.2407 0.5601 
I -0.1046 -0.1306 0.4155 0.3136 -0.1955 -0.1733 0.5911 
2 -0.0158 -0.0489 0.4614 0.3554 -0.1934 -0.1503 0.6104 
3 0.0460 0.0109 0.4889 0.3935 -0.1865 -0.1103 0.6270 
4 0.0991 0.0560 0.4898 0.4043 -0.1731 -0.0581 0.6405 
5 0.1554 0.1079 0.5017 0.4408 -0.1619 -0.0257 0.6381 
6 0.2048 0.1477 0.5008 0.4645 -0.1497 -0.0083 0.6310 
7 0.2547 0.2096 0.4982 0.4822 -0.1291 0.0007 0.6343 
8 0.2960 0.2515 0.4785 0.5094 -0.0921 0.0352 0.6514 
9 0.3576 0.2878 0.4690 0.5258 -0.1425 -0.0150 ·0.6178 

10 0.3910 0.2843 0.4466 0.5147 -0.1521 -0.0453 0.5751 
II 0.4134 0.2705 0.4284 0.5007 -0.1619 -0.0771 0.5167 
12 0.4280 0.2583 0.3983 0.4659 -0.1616 -0.1123 0.4661 
13 0.4544 0.2573 0.3862 0.4625 -0.1490 -0.1312 0.4305 
14 0.4623 0.2401 0.3680 0.4373 -0.1179 -0.1200 0.3922 
15 0.4891 0.2488 0.3559 0.4072 -0.1016 -0.1454 0.3418 
16 0.4957 0.2458 0.3458 0.3694 -0.0891 -0.1781 0.2941 
17 0.4946 0.2344 0.3241 Q.3129 -0.0727 -0.1924 0.2556 
18 0.4677 0.1962 0.3006 0.2675 -0.0480 -0.1958 0.2254 
19 0.4336 0.1555 0.2719 0.2170 -0.0567 -0.2163 0.1 798 
20 0.3944 0.1098 0.2431 0.1568 -0.0735 -0.2507 0.1318 
21 0.3310 0.0457 0.1953 0.0991 -0.0529 -0.2432 0.1136 
22 0.2788 -0.01 96 0.1540 0.0609 -0.1027 -0.2669 0.0969 
23 0.2211 -0.0931 0.1060 0.0190 -0.1466 -0.2789 0.0892 
24 0.1567 -0.1721 0.0596 -0.0158 -0.1996 -0.2829 0.0670 
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Table.4.4. Cross correlations of the series on landings of stolephorus with 
different series on environmental variables 

Me.n Me.n Number 0 

MaJimum Highest Minimum Lowest Tot.1 Highest Rainy 
Lae Temperature Temperature Temperature Temper.ture Rainfall Rainfall days 

0 0.1329 0.1075 0.3440 0.3790 0.1018 -0.2853 0.4028 
I 0.1 189 0.0500 0.3306 0.3629 0.0740 -0.3555 0.4136 
2 0.101 7 -0.0064 0.3082 0.3408 0.0335 -0.4352 0.4141 
3 0.0809 -0.0703 0.2773 0.3031 -0.0198 -0.5034 0.4198 
4 0.0531 -0.1436 0.2450 0.2627 -0.05 16 -0.5451 0.4322 
5 0.0281 -0.2027 0.2148 0.2245 -0.0846 -0.5870 0.4389 
6 -0.0048 -0.2579 0.1984 0.2000 -0.1197 -0.6141 0.4548 
7 -0.0392 -0.3043 0.1890 0.1917 -0.1444 -0.6040 0.4793 
8 -0.0651 -0.3311 0.1 783 0.1976 -0.1761 -0.5971 0.5058 
9 -0.0926 -0.3639 0.1642 0.1937 -0.2027 -0.5644 0.5343 

10 -0.1109 -0.3836 0.1530 0.1885 -0.2219 -0.5285 0.5590 
II -0.1352 -0.4119 0.1335 0.1794 -0.2239 -0.4799 0.5837 
12 -0.1476 -0.4308 0.124 1 0.1 938 -0.2406 -0.4364 0.5980 
13 -0.1510 -0.4378 0.1216 0.2194 -0.2549 -0.3747 0.6115 
14 -0.1432 -0.4267 0. 1258 0.2473 -0.2298 -0.2768 0.6321 
15 -0.1153 -0.3859 0. 144 1 0.2899 -0.1998 -0.1856 0.6373 
16 -0.0749 -0.3213 0.160 I 0.3226 -0.1807 -0.1154 0.6412 
17 -0.0332 -0.2648 0.1711 0.3498 -0.1549 -0.0393 0.6506 
18 0.0306 -0.1881 0.1930 0.3840 -0.1447 0.0119 0.6432 
19 0.0820 -0.1337 0.2057 0.3858 -0.1438 0.0370 0.6226 
20 0.1212 -0.0898 0.2086 0.3546 -0.1511 0.0444 0.5841 
21 0.1 616 -0.0446 0.2159 0.3371 -0.1608 0.0314 0.5429 
22 0.1945 -0.0078 0.2188 0.3124 -0.1781 0.0075 0.5060 
23 0.2292 0.0390 0.2283 0.2955 -0.1996 -0.0127 0.4761 
24 0.2598 0.0771 0.2322 0.2618 -0.2160 -0.0281 0.4465 



CHAPTER-5 

TIME SERIES RELATIONS THROUGH CANO ICAL PATH ANALYSIS AND 

TIME SERIES OF MOVI 'G SUMS. 

5.1. Time series relations through canonical path analysis 

Introduction: Canonical correlation analysis is a well known multivariate statistical 

technique to form a set of paired random variables (u" v,). (11 , . v,) • ...• (11,. v,) which are 

linear combinations of elements of two given sets of random variables 

i = I •.. .• p with the following properties. 

I. {I for i = j {I 
COV(Up l1 )= .. and Cov(V,. vj )= 

J 0 fOTl '" ) 0 

for i = j 
for i '" j 

II. P I =Corr(ul • vy:~O and uland vl are uncorrelated wi th uj and Vj for i", jand 

these correlations are in the order p, ~ P, ~ .. . ~ p,. 

The quantities P,. P,.·· ·. P, are called the canonical correlations between the two sets of 

random variables X,and X ,. and the pairs of random variables (u,.v,). (u,.v,) .. 

(U,. v,) are known as the canonical variables. 

Path coefficient analysis is another popular technique in multivariate statistical 

analysis in which the objective is to decompose the correlations of a random variable 

y with another set of mutually correlated random variables x,. x,. "'. x, into direct effect 

of each variable on y and indirect effects of each variable through all other variables. In 

the present study the concepts of canonical correlations and path coefficient analysis are 
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used to develop a strategy for the examination of inter-relations between time series 

sequences. 

Review of literature 

Hannan (1955) obtained an exact test for correlation between two time series 

x, and y, with y, Markovian. The test statistic developed was the partial correlation 

between x" and y" when the effect of (Y'H + y, .. ,). x,,_, and x, .. , have been removed. 

Whittle (1963) generalized the recursive method of fitting autoregressive schemes 

proposed by Durbin (1960) for multivariate autoregressions and gave the approximate 

canonical factorization of the spectral density matrix. Gower (1966) developed a Q­

technique for evaluation of canonical variables that have computational and statistical 

advantages over the usual R-technique. Lancaster (1966) provided an alternative proof 

for the derivation of canonical correlations for multivariate normal distributions and 

proved in bivariate case that the marginal variables have greater correlation than any 

other functions of the marginal variables. Chen (1971 ) have shown that the addition of 

extra variates to either set of variables can never decrease canonical correlations between 

two sets of variables. Kettenring (1971) considered five extensions of the classical two 

set theory of canonical correlation analysis to three or more sets and developed 

procedures for fmding canonical variables associated with different approaches. Tiao and 

Wei (1976) considered the effect of temporal aggregation on the dynamic relationships 

between two discrete time series variables and found that it can lead to substantial loss in 

parameter estimation while the loss in prediction eJliciency is less severe. Box and Tiao 

(1977) proposed a canonical transformation of a k dimensional stationary autoregressive 
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process, and then ordered Ihe components of the transformed process from least to most 

predictable. 

Geweke (1981) derived approximate slopes of several tests of independence of 

two covariance stationary time series and compared these tests. He has shown that the 

approximate slopes of regression tests are al least as greal as those based on residuals of 

ARlMA models. Campbell (1982) developed a robust M-estimation for canonical variate 

analysis based on a functional relationship model. Jewell and Bloomfield (1983) 

investigated the canonical correlation and canonical components of the past and future of 

a stationary Gaussian time series. Darroch and Mosimamn (1984) defined canonical and 

principal components of shape from log shape vectors and related Ihese components to 

corresponding log measurements components and residual log size. They applied these 

results to three species of iris and red winged black birds in Florida and found that they 

differ strongly in shape as well as size. Geweke (1984) defined measures of linear 

dependence and feed back for two multiple time series condi tional on a third. The 

measure of conditional linear dependence is the sum of linear feed back from the first to 

the second, conditional on Ihe third and instantaneous linear feed back between the first 

and second series conditional on the third. Tsay and Tiao ( 1985) proposed a canonical 

correlation approach for tentative order determination for ARMA model building which 

is based on the consistency properties of certain canonical correlations. 

Koch and Yang (1986) developed an asymptotic test of independence of two time 

series that incorporates a possible pattern in successive cross correlation coefficients. 
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Hannan and Poskit (1988) considered full rank VARMA processes and tbe situation 

where there are linear functions of the future and past having unit canonical correlations. 

They showed that tbe number of unit canonical correlations between future and past is the 

number of zeroes of the determinant of the transfer function from innovations to outputs 

that lie on tbe unit circle. Degerine (1990) suggested a definition of partial 

autocorrelation function for multivariate stationary time series based on the canonical 

analysis of forward and backward innovations. 

Materials and metbods: 

Consider two sets of random variables X, =(x",",x,p)' and X2 =(X2,, ··· ,X2.), 

witb p < q and respective covariance matrices D(X,) = E", D(X2) = E22 and 

Cov(X"X2) = E'2' Then the canonical correlation analysis between tbese two sets is to 

find new sets of random variables as linear combinations a;X" a;X,,"', a~X" and 

b;X2' b;X2' " ', b~X2 which are called canonical variables and the respective canonical 

correlations p" P2' "', Pp are defined as Pi = Corr(a;X" b;X2) for i = I, "' , p so that 

p, ~ P2 ~ ... ~ Pp ~ O. These are obtained from the eigen structure solution of the two 

matrices E;,' EI2 E;; E2, and E;; E2, E;~ E'2 ' Non-zero eigen values of these two 

matrices will be identical and the number of non-zero eigen values will be equal to the 

rank of E' 2' The eigen values of these matrices in descending order of magnitude will 

provide the squared canonical correlations p,2, p;, "' , p; . The eigen vectors of 

E;,' E'2 E;; E2, corresponding to these eigen values will give the first set of linearisation 
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vectors a" a,,···, a p and the eigen vectors of L;; LlI L~: LI1 corresponding to the same 

eigen values will be the required second set of vectors b" b" ... , bp • 

For testing the significance of canonical correlations a test procedure based on 

Bartlett's lambda is used. To test the hypothesis that X, is not related to X" an 

approximate X' with pq degrees of freedom is defined as 

, -{ (p+q+l)]1 (A) X = /1- n 
2 

wbere A = il (1- pi), n = T -I and T is the sample· size. 
i-I 

Once this null hypothesis is rejected, the contributions of the first r canonical correlations 

are tested by another Z' defined by 

X'' = -{/I- (p + q + 1)]ln(A') 
2 

wbere A' = il (1- Pi') and this X" will have (p - r)(q - r) degrees of freedom. 
i_,+\ 

Consider a set of standardized random variables y, x,, x,, · ··, x, that are correlated 

to each other. Since the variables are standardized we bave E(y) = E(xi ) = 0 and 

V(y)=V(xi)=1 jori=I,·· ·, k . Let COV(y, Xi) = Corr(y, x,) = rOi and 

COV(xi, XJ) = Corr(x" x) = rij . Consider the linear relation of yon x,, x,, . .. , x, as 

y = p,x, + p,x, + ... + p,x, + c 

where c's are independently and identically distributed random variables, uncorrelated 

with x" x,,···, x, . Taking the covariance of y with each of x,, x,, ... , x, we get the set 
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of linear equations roi = fl,li, + fl,li, + ... + fl.riJ. for different values of i = I,. ·· ,k and 

collectively this can be written in matrix form as 

rOI rll r,. fl, 
r02 rll r,. fl, 

= 

ro. r., r., fl. 

We can then solve for the vector fl= (fl" fl
" 

... , fl.)' as fl= C-'r where C is a 

k x k matrix with rif as its (i, j)" element and r = (rOi' rOl " " , ro.)'. Now the correlation 

between yand Xi is obtained as the linear sum 

I 

That is the correlation between yand Xi is composed of the direct effect of Xi on 

y component fl, and the effect of other (k-1) variables through Xi components fl,li i' 

components on y through Xi ' Such a decomposition is available for all i = l,.··,k. The 

variation in y explained by these variables in terms of direct and indirect effects is given 

by 

• • 
R2 = I IfJjJjrij = f! C fl . 

j-\ j- I 

Results: 

Consider the canonical correlations setup in 11 time series context with the first set 

consisting of only one variable {y,}, a univariate time series sequence, and the second set 

a vector time series sequence {X,} with k components. We assume that both {y,} and 
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{X,} are second order stationary with E(y,) =O, E(X,) =O, V(y,) = 0"2 , D(X,)=1: , 

variance in panitioned form for y, and X'_m can be written as 

We are interested to study the influence of X, at different lags 0, I, · .. , P on y, as the 

maximum correlation possible between y, and a linear combination of elements of X'_M 

for m = 0, I,.· ·, p . Since the rank of O"(M) is unity, there will be a unique linear 

combination corresponding to the only one non-zero canonical correlation between y, 

and X,_m . Since the linear combinations of y, and X'_M should have unit variances, the 

required combination for y, will be z, = y,/ 0" • The linear combination M'X,_m will have 

maximum correlation, say P (m) , with z, when M is obtained as the eigen vector 

corresponding to the non-zero e)gen value 2 
P (m) 

,, -I (2)-1' I ,, -I A h' , . k k 
.. O"(m) 0" O"(m) = - 2 " il (m) were il (m) = O"(M) O"(m) IS a x 

0" 

the equation for the linear combination for y" which is 

of the matrix 

matrix. By considering 

the expression for the maximum correlation P (m) between z, and M'X'_M can be obtained 

as 

The test based on Bartlett's lambda with k degrees of freedom given by 
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2 _-{ (k+2)]1 (1- 2 ) Z - n n P(m) 
2 

is used to test the null hypothesis H 0 : P(m) = 0 for different lags m = 0, 1, ... , p. 

Let us denote the eigen vector corresponding to the eigen value Pim) obtained using the 

matrix 1 ,,-I A 
-2 u u(.) (T by Am) . For different lags of X, we can have such linear 

combinations as fJ;O)X" fJ;, )X,_" ... , fJ;P)X,_P with corresponding canonical correlations 

p (O)' P (ll' ... , p (p) with z,. Let us denote these linear correlations as 

combinations can be obtained as follows. 

where r(l) is the cross covariance matrix of X, for lag I. 

Then we can have a regression relation 

where &,'S are independently and identically distributed random variables with zero 

mean and constant variance (T; and they are uncorrelated with {X,} . We can then get the 

relations 

p (O) = ao + 

p (' ) = aoCov(u"u,_,} + 

a,Cov(u"u,_, ) + ... + apCov(u"u,_p) 

a , + ... +apCov(u,_" u,_p) 
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and using matrix notations we can write this as 

PIO) 000 001 Oop ao 

P II) 010 0" Ol p a l 
= 

Pip) OpO °pl Opp a p 

say P=Da where P = (Plo» Pill' ... , Pip)' , D= (oij )"" a=(ao,a,,· ··, a p)' and the 

Now it can be seen that 

0i' = fJ;j) ru - i)/J,., ) 

= fJ; j) r'(i- J)fJI,) ( •• r(-k) =r'(k) ) 

= (fJi,) r (i - J) fJ(j} )' 
=(0.)' 

= oij ( .: Oij is scalar) 

and hence the matrix D is symmetric. We can estimate the parameter vector a as 

~ I " ... a = D- P where D = (oij )." and the estimate of elements of D IS obtained as 

if. = fJ;i) C(i - J) fJ(j} where C(I) is the estimate of r (l), the lag I cross covariance 

matrix for the vector time series X,. 

From the relation P = Da we get a decomposition of the maximum correlations 

P IOl' Pill' ... , Pip) of z, with linear combination of elements of X, at different lags into 

direct and indirect effects similar to that in path coefficient analysis. Here 

The coefficients ao, a" .. . , apare the direct effects of the respective linear combinations 

on z, and the proportion of variation in z, explained by these variables can then be 

estimated as 
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- 2 ~ - - - -, - -R = La, ajoij = a D a 
i,j-iJ 

In terms of the original variable the new relation can be written as 

y, = M;X, +M;X,., +···+M~X,.p +a, where M, = era, A,) for i =O,I,.··, p . 

The information extracted through this analysis can be used for further modeling of the 

univariate times series {y,} by allowing the sequence {a,} to take necessary transfer 

function form of the innovations. The canonical path analysis described here can be 

successfully used as a tool for identification of time series components to be included in 

vector time series modelling. 

Example: 

To examine the influence of landings of mackerel, anchovies and lesser sardines 

on oil sardine landings, time series data on quarter wise landings by this species during 

1960-96 in Kerala were used. All these species/groups compete each other for food, all 

being mainly plankton feeders. Oil sardine and mackerel are the two major fi shery in 

Kerala. Anchovies and lesser sardines are also major contributors towards total landings 

in the state. Seasonality present in the data were removed by taking a 4 point moving sum 

of each time series and then standardized to zero mean and unit variance before 

subjecting to canonical path analysis. For this analysis, the standardized landings of oil 

sardine was treated as the univariate. time series {y,} and the vector time series {X,} 

consist of landings of mackerel, anchovies and lesser sardines. The variance covariance 

matrix for the vector time series was 

[

1.000 0.339 

L = 0.339 1.000 

0.139 - 0.007 

0.139] 
-0.007 

1.000 
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Cross covariance matrices C(i) of the vector time series {X,} and cross covariance 

vector Uti) of {y,} with the elements of {X,} were computed up to lag 15. Canonical 

correlations P (i) and canonical vectors Pci) were computed for each of these lags 

following the method derived. The eigen value p(~) ; canonical correlation P(i» linearising 

vectors Pci) and the X' statistic for different lags are shown in tableS I. I. It was found 

that the p(~) values are comparatively low after "Jag 8 and hence for further analysis 

information up to lag 8 only was used. The maximum value of p(~) observed was 

0.243667 at lag 4. The covariance matrix D of the canonical variables which is of order 

9 x 9 was then constructed and it is given in table.S.1.2. The total effects vector P of 

canonical correlations, direct effects vector a obtained as the solution vector from the 

matrix equation? = Da and the total of indirect effects are given in table.S.I.3. 

Among the direct effects of the linear combinations of X, at different lags, the 

maximum was 0.3118 at lag 7 and other important lags in order of magnitude of direct 

effects were -0.21495 at lag 8, 0.21026 at lag 0, 0:20776 at lag 3 and -0.11653 at lag 2. 

At all other lags the direct effects were very low. The total variation in y, explained by 

the linear combinations of variables in X, up to lag 8 was 0.292223. Since {y,} is a time 

series which it self is a process that can be modelled this much variation due to the vector 

time series {X,} on {y,} is a valuable proportion. 
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The direct and indirect contributions of elements of X, on Y, at different lags 

were examined by a decomposition of each canonical correlation into direct and iI1direct 

effects and this decomposition is given in table5.1.4. The indirect effects of linear 

combinations of X, on Y, were maximum for lags 0, 3 and 7 through the other lags of 

X, . Out of the total proportion of 0.292223 of the variations in Y, that was explained by 

linear combinations of elements of X, at different lags, 19.65% was caused by the first 

element of X" 42.48% by the second element and the remaining 37.87% by the third 

element. When only the direct effects were considered these percentages were 22.15%, 

40.67% and 37.18% respectively due to the three elements. 

S.2. Time series process generated by moving sums. 

In univariate time series modelling, it may usually be required to perform some 

preliminary processing of the sample time series before analysing the data. When data is 

available in seasonal form it is a good practice to generate a new series as a moving sum 

or aggregate of a desired order on the original observed series before attempting to find a 

suitable model. This will remove any additive seasonal component present in the data and 

also smoothen the error component. Here in this study, the properties of the process 

generated as a moving sum are examined for the class of models of types autoregressive, 

moving average and mixed autoregressive moving average. For practical applications, 

Methods of estimation of mixed autoregressive moving average models based on 

regression procedures were suggested by Hannari and Rissanen (1982), Hanna!! and 

Kavalieris (1984) and John and Victoria (1997). These regression procedures can be 
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suitably modified for the model on moving sum in a similar line suggested here for the 

autoregressive type model. 

Results and Discussion: 

Consider a univariate process {y,} generated by an autoregressive process of 

order I as, Y, = ¢ Y,_I + E, where {E,} is an innovation sequence of independently and 

identically distributed random variables with zero mean and constant variance 0'2. Let 

{x, } is another process generated as a sum of s consecutive terms of {y,} defined by 

x, = Y, + Y,_I + ... + Y'-HI 
s-I 

= LY,-l 
s-I 

= L {¢ Yt-l-I + E,_l} 
l=O 

5-1 5- 1 

= ¢LY,-l-I + LE,-k 
l =O k=O 

$-I 

= ¢X'_I + LE,-l . 
l=O 

s- I 

This we can write as x, = ¢xH + 'I,. where 'I, = LE,-l is a new innovation sequence. 
l=O 

Hence {x,} also have the same structure of an AR(I) process with the same AR 

coefficient parameter ¢ as that of {y,}, but with a different innovation sequence which 

is the sum of s consecutive terms of the innovations E, of {y, } . 

Now, consider the general AR(p) representation for {y,} given by 

Y, = t¢} Y,_} + E, 
}=I 

If we define another sequence {x,} as a sum of s consecutive terms of {y,} then we have 



.-1 

x, = LY,-k 
k =() 
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. -1 

'I, = Le,-k . 
k=O 

Hence the new process {X, } also have the structure of an AR(P) process with the same 

AR coefficients but with a different innovation sequence {'I,} which is a sum of s 

consecutive terms of {e,} , the innovation sequence of the original process {y,}. 

Consider the case when the process {y,} has a moving average representation of 

order q with {e,} as the innovation sequence which are independently and identically 

di stributed random variables wi th zero mean and constant variance a 2 
• The MA(q) 

model is 

Now define a new process {x,} generated as a moving sums of s consecutive terms of 

{y, } . Then we have 



= f OJ 11,- j + 11, where 
j <1 

199 

,-I 

11, = LC,-k 
k=O 

which shows that the process {x,} also have the. structure of an MA(q} process with 

innovation sequence {11, }. Hence a process generated as the moving sum of an MA(q) 

process will also have an MA(q) representation and the moving average coefficients of 

the new process is same as that of the original process. The innovation sequence of the 

new process is different and it is a moving sum of the innovations of the original process. 

Now consider the case when the original process {y,} has a mixed ARMA(p,q) 

representation given by 

where {c, } is the sequence of innovations which are independently and identically 

distributed with zero mean and constant variance (]"2. Let {x,} is a new process 

generated as a moving sum of s terms of sequence {y,} . Then we have 
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= I¢i X'_i + f.Oj '1,-j +'1, where 
;=) j =1 

,-I 

'1, = LC,-k . 
k =O 

The abo\'e expression is that of an ARMA(P.q) corresponding to a process {x,} 

sequence {'1, }. Hence the new series {x,}. which is a moving sum of s consecutive 

terms of the original series {y,}. have the sameARMA(p.q) representation with the 

same AR and MA coefficients but with a new innovation sequence which is a moving 

sum of the innovations of {y, } . 

For estimation of parameters of the above models one will be interested to know 

how the new sequence {'1,} will be distributed. Since the innovation sequence {c,} is 

independently and identically distributed with zero mean and constant variance (Tl. the 

mean of '1, will also be zero. We shall now find the covariance structure of the sequence 

{'1, }. We have 

.-1 
'7t = LC,-i' 

i=O 

Variance of '1, can be determined as 

I-I .)'-1 

= E[ {:L>",-;} {Lc,-j } 1 
;=0 j =O 

J'-l s-I 

= IIE(c,-i C,_j ) 
i=O j=O 
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because we get nonzero terms in the above sum only for s terms when i = j . 

Similarly we can find the covariance as 

COV('1,,'1,+k) =£('1, '1,+k) 
s - ) 5-1 

= £[ {l:>,-i }{ ~:>" +k- j } 1 
;=0 j =O 

5-15- 1 

= 2:2:£(&,-i &,.k-j) 
;=0 j=O 

=(s-k)u2 when k < sand 0 otherwise. 

When the original series is first order seasonal type, its moving sum series will be free 

form seasonality. To. examine this consider series {y,) and its moving sum series 

{x, } defined by 

x, = y, + y,-l + ... + Y,-s+l 

= (I + B +".+ B s-l)y, 

(1- B S
) 

= (I-B) y, 

Let ¢(B)x, = 8(B)a, be the suitable model to represent the moving sum series {x,). 

then the corresponding model for the original series can be obtained by substituting for 

x, in terms of y, in the model. So we get 

¢(B) (1- B
S
) y, = 8(B)a, 

(l -B) 

: .¢(B)(I_BS)y, = (I/(B) a, where (I/(B)={l-B)8(B). 
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The above representation is that of an ARMA model with first order seasonal difference 

applied to the series {y,} to represent the seasonal factor and the model for the moving 

sum series {x,} is free from this seasonal component. 

If the original series {y,} has a linear trend apart from the ARMA representation 

then the moving sum series will also be affected by a linear trend with different slope and 

intercept. Consider the ARMA representation with linear trend for the series {y,} as 

¢(B) y, =a + bt + B(B) &, 

Then the corresponding model for the moving sum series {x, } is 

,-I 

¢(B)x, = L,{a+b(t-i}}+B(B}'1, where 
;=0 

,-I 

'1, = L,&'-i 
;=0 

= sa + sbt - sb(s -1) / 2+ B(B} '1, 

s{2a-b(s-I)} 
=c+dt+B(B)'1, where c= and d = sb . 

2 

Hence if the original series bas a linear trend, then the moving sum series will also have a 

linear trend with different slope and intercept. 

In the case of an AR( I) process the moving sum series can be expressed as 

generated by a transfer function of the innovations of the original series. Consider the 

AR( I) representation for the original series {y,} as 

y, = P y,-I + &, 

Transfer function representation for this model can be obtained by writing the model 

using the back shift operator B as 

(l-pB)y, = &, 



y, =(i-¢Brl 
&, 

=(I+¢B+l B2 + .. -)&, 
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I 
so that --,­

I-¢B 
is the transfer function to generate the series {y, } from the innovations 

sequence {&, }. For the moving sum series {x,} we have the relation 

,-I 

x, = LYt-i 
;=() 

(1- B') 
= (1- B) y, 

(1- B') 
= & 

(I-B)(I-¢B) , 

Hence {x,} can also be generated from the same · innovation sequence {&,} using the 

transfer function 
(1- B') 

(1- B)(I- ¢B) 

Estimation of parameters of the model require iterative algorithms for both MA 

and mixed ARMA type process. We shall examine the method of estimation for an AR(P) 

type moving sum process. Suppose that a sample real ization of the AR(P) process {y, } 

of size T is available. Then we can generate the sample series of moving sums {x, } of 

size n = T-s . where s is the number of terms added. We then have the following linear 

equation for the moving sum sample as 

x=Xrp+'l 
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where X = (xp.I .... ,xn)' , rp=(fA .. ··,¢p)' and '7= ('7p+I .. ·· ''7n)' are column vectors of 

size n-p,p and nAp respectively and X is a matrix of order (n-p) x p defined as 

X p Xp-I XI 

X= 
Xp+ 1 xp x 2 

X n_1 x n_ 2 xn _
p 

Since the dispersion matrix of the error vector 'I in the above matrix equation is not 

(j21 , where] is an identity matrix of order (n-p), the usual linear least square procedure 

can not be applied for estimating the parameter vector rp and the innovation variance 

(j2 . By considering the covariance structure of {'Ii}, we get the covariance matrix .of 'I 

as (j2V where V = (vij) is square matrix of order (n-p) whose elements are defined by 

= 0 for Ii - A ~ s . 

That is all the diagonal elements of V are equal to s, the off diagonal elements reduce by 

one as they move away from the main diagonal till it becomes one and all other elements 

are zeroes. Hence rp and (j2 can be estimated through generalized least square where in 

a transformation of the type z = (L,) -I X is applied using the Cholesky factor L of V to 

reduce the covariance of the error vector in the new matrix equation to (j2] (Rao, 1973). 

The final solution is then 

i'=(X'v - lxr l X ' V - Ix and 

.2 (x-Xi')'V- 1 (x-Xi') 
(j = . 

n- p 



Appendix-V (Tables) 

Table.5.1.1. Cross covariance vector of y, with elements of X" Cross · 

covariance matrix of X" linearising vector, squared canonical correlation 

and significance X' for different lags. 
Lag 

0'(1) C{i} ~, ) 
, 

P U) X' 
(il 

[ -0.197] [ 
1.0000 0.3392 

0.1391] [0.089749) 
0 - 0.390 0.3392 1.0000 -0.0067 0.846954 0.19921 31.43 

-0.211 0.1391 -0.0067 1.0000 0.465550 

I 
[ -0.194) [ 

0.9076 0.2999 0.1221) 
r·06605] 

-0.394 0.3663 0.9371 -0.0103 0.836571 0.21250 33.80 

-0.234 0.1642 -0.0141 0.8701 0.504692 

2 
[- 0.218] [ 

0.7747 0.2631 0.1460) [0.119215) 
- 0.383 0.4048 0.8706 0.0299 0.772131 0.22472 36.02 

-0.271 0.12 11 -0.0277 0.7239 0.560709 

3 
[ -0.250] [ 

0.6597 0.2388 
0.1732] [0.186557) 

-0.372 0.4260 0.7990 0.0295 0.69637 1 0.24241 39.28 . 

- 0.308 0.08 11 -0.0299 0.5741 0.605313 

4 
[- 0288) ( 

0.5626 0.2231 0.2123) [0.293002) 
- 0.341 0.4411 0.7021 0.0388 0.595936 0.24367 39.52 

-0.328 0.0272 - 0.0334 0.4194 0.628030 

5 
[ - 0.3 16) ( 0.4959 0.2069 0.2582) [0.410219) 
-0.303 0.4609 0.6484 0.0547 0.504544 0.22481 36.03 

- 0.314 -0.0258 -0.0476 0.3953 0.609398 

6 
( - 0.321) [ 0.4321 0.2011 0.2487) [0.489457) 

- 0.272 0.4695 0.59 13 0.0595 0.449945 0.19804 31.23 

-0.286 - 0.0298 -0.05 12 0.3779 0.577472 

7 ro

.
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J 
[ 0.3353 0.2039 0.2628J (0.537739J 

- 0.237 0.4678 0.5441 0.0940 0.405464 0.16409 25.36 

-0.257 - 0.0377 - 0.069 1 0.3501 0.563342 

8 
( -0.274J ( 0.2490 0.2089 0.2933J (0.565316J 
-0.2 15 0.4640 0.5171 0.1061 0.424028 0.12355 18.66 . 

-0.206 -0.0363 - 0.0835 0.3473 0.510541 



II 

Table.5. I. I. Continued 

Lag 
u (j) C(i) Ai) , 

P (I) ;(' 

(i) 

9 
( -0.235J ( 0.1867 0.2118 0.3367J (0.532617J 

- 0.210 0.4583 0.4983 0.1228 0.509103 0.09314 13.83 

- 0.161 - 0.0391 -0.0971 0.3061 0.456789 

10 
( -0.201 ] [ 0.141 6 0.2076 0.3934] [0.491124] 
- 0.210 0.4563 0.4984 0.1403 0.6 18982 0.07174 10.53 

-0.112 -0.0470 - 0.1 225 0.2586 0.352465 

II 
(- 0.185J ( 0.1242 0.2051 

0.4025J (0.465894) 
-0.219 0.4586 0.4922 0.1129 0.712782 0.06369 9.31 

-0.058 - 0.0434 - 0.1384 0.2219 0.170685 

12 
[ -0.171] [ 0.1105 0.2012 0.3658] [0.4231 90] 

- 0.223 0.4480 0.4820 0.0991 0.764104 0.06060 8.84 

-0.035 -0.0443 -0. 1516 0.1507 0.089762 

13 
( -0.154J ( 0.0991 0.1902 

0.3306J ( 0.323I73J 
-0.235 0.4378 0.4918 0.0865 0.836590 0.06176 9.02 

-0.029 - 0.0459 - 0. 1631 0.1003 0.078228 

14 
(-O.l35J 

[ 0.1052 0.1 734 0.3165] [0 234535J 
-0.240 0.4213 0.4791 0.0657 0.890297 0.06117 8.93 

-0.026 -0.0338 -0.1659 0.0421 0.080273 

15 
( - o. I04J ( 0.1251 0.1415 0.3132) ( 0.089350) 
-0.239 0.3974 0.4586 0.0873 0.959008 0.05834 8.51 

- 0.029 -0.0496 - 0. 1720 -0.0177 0.113314 

Table.5.1 .2. Covariance matrix D for the canonical variables at different lags. 

D = {d" = fJ;iPi - J)Ail} 
(iJ) 0 1 2 3 4 5 6 7 8 
0 1.000000 0.927245 0.832999 0.722114 0.594237 0.536419 0.490784 0.453396 0.458934 
1 0.927245 1.000000 0.918103 0.812626 0.690512 0.569745 0.525945 0.480831 0.469581 
2 0.832999 0.918103 1.000000 0.915032 0.800468 0.680967 0.575557 0.535684 0.513390 
3 0.722114 0.812626 0.915032 1.000000 0.909630 0.792860 0.684480 0.582986 0.566846 
4 0.594237 0.690512 0.800468 0.909630 1.000000 0.910242 0.801474 0.696606 0.614656 
5 0.536419 0.569745 0.660967 0.792860 0.910242 1.000000 0.916871 0.811565 0.721327 
6 0.490784 0.525945 0.575557 0.684480 0.601474 0.916871 1.000000 0.920183 0.823700 
7 0.453396 0.480831 0.535684 0.582986 0.696606 0.811565 0.920183 1.000000 0.923036 
8 0.456934 0.469581 0.513390 0.566846 0.614656 0.721327 0.823700 0.923036 1.000000 
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Table.5.I.3. Table showing direct effects, indirect effects, 
total effects and final coefficient vector for the original 
variables 

Direct Indirect Total 
Lag Effects Effects Effects Vector M; 
(i) (a (i ) ) (p(;) ) 

0 0.210265 0.236061 1 0.446326 0.018871 0.178085 0.097889 

1 0.056982 0.403990 0.460973 0.003764 0.047670 0.028759 

2 -0.116533 0.357511 0.474043 -0.013892 -0.089979 -0.065341 

3 0.207756 0.284600 0.492356 0.038758 0.144675 0.125757 

4 0.089441 0.404185 0.493626 0.026206 0.053301 0.056172 

5 0.084720 0.389423 0.474143 0.034754 0.042745 0.051628 

6 -0.021933 0.423088 0.445020 -0.010735 -0.009868 -0.0 12665 

7 0.3111851 0.093899 0.405084 0.167336 0.126174 0.175303 

8 -0.214950 0.136550 0.351500 -0.121515 -0.091145 -0.109741 

Table.5.I.4. Table of direct and indirect effects of the canonical variables at different 
I ags. 

Matrix of direct effects (diagonal elements) and indirect effects 

(iJ) 0 I 1 2 3 4 5 6 7 8 

0 0.210265 0.052837 -0.097072 0.150024 0.053149 0.045446 -0.010784 0.141090 -0.098648 

1 0.194967 0.056982 -0.106989 0.168828 0.061760 0.048269 -0.011535 0.149627 -0.100936 
2 0.175150 0.052316 -0.116533 0.190103 0.071595 0.057692 -0.012623 0.166697 -0.110353 

3 0.151835 0.046305 -0.106631 0.207756 0.081358 0.067171 -0.015012 0.181416 -0.121843 
4 0.124947 0.039347 -0.093281 0.188981 0.089441 0.077116 -0.017578 0.216773 -0.1 32120 

5 0.1127901 0.032465 -0.079355 0.164721 0.081413 0.084720 -0.020109 0.252547 -0.155049 

6 0.103195 0.029970 -0.067071 0.142205 0.071685 0.077677 -0.021933 0.286347 -0.177054 

7 0.095333 0.027399 -0.062425 0.121119 0.062305 0.068756 -0.020182 0.311185 -0.198406 
8 0.096498 0.026758 -0.059827 0.117766 0.054975 0.061111 -0.018066 0.287235 -0.214950 



Appendix-VI 

List of computer softwares developed 
(using C++ language) 

I. Module for transposing a matrix. 

2. Module for multiplication of two matrices (for both near and far type of memory 
allocation). 

3. Module for inverting a square matrix (translated from Press el. al. 1992). 

4. Module for Cholesky factorisation of matrix. 

5. Module to compute eigen values and eigen vectors of a real symmetric matrix 
(translated from Press el. al. 1992). 

6. Module for computing eigen values of a general .matrix. 

7. Module for evaluating the roots of a polynomial for checking stationarity of a 
univariate time series model. 

8. Module for printing matrices. 

9. Module to copy block matrices of uniform size to its partitioned matrix. 

10. Module for computing the three types of variograms. 

II. Program for computing cross correlation matrices of given lags for a Vector Time 
Series. This program also provides tests of significance of individual cross 
correlation coefficients and testing combined significance of cross-correlation 
matrices. 

12. Programe for computing partial cros correlation matrices of different lags for a vector 
timeseries through the evaluation of forward and backward vector autoregressions. 

13. Programe for computing partial canonical correlations of a vector time series. This 
software computes the canonical structure, proportions of varince extracted and 
redundancy. Test of significance of canonical correlation based on Wilk's lamda is 
also provided in this programe. 

14. Program for the estimation of parameter matrices of a vector autoregressive model. 
This program will also compute the AlC, BlC; HQ and FPE order selection cJ:iteria. 
Standard errors of the estimated parameters also will be computed by this program. 



11 

15. Program for the estiamtion of parameters of a mixed Vector Autoregressive moving 
average model based on the algorithm of Spliid. This program also calculate the order 
selection criteria and innovation dispersion matrix. 

16. Program for the estiamtion of parameters of a mixed Vector Autoregressive moving 
average model through maximum likelihood method. The standard errors of the 
estimates of parameters also will be computed in this program. 

17. Program for the estiamtion of parameters of a mixed Vector Autoregressive moving 
average model through conditional maximum likelihood method. 

18. Module for checking Stability and lnvertibility condi tions of an estimated 
V ARMA(p,q) type model by computing eigen va lues of characteristic matrices. 

19. Program for the estimation of parameter matrices and standard errors of the estimated 
parameters for a V ARX model. 



SUMMARY A D CONCLUSIONS 

India is one among the top 10 fish producing countries with a coastline of about 

8, 129 Kilometers. Mari ne fish production from the country accounts for 3% of the world 

marine fi sh production. It earns a foreign exchange worth 41,500 million rupees and 

about 5 million people living in the coastal areas are engaged in fi shing and other related 

activities for their livelihood. Marine fi sh production from Kerala contributes to almost 

25% of the total marine fish production in the country though the total coast line covered 

is only one-tenth of the Indian coast line. 

Prior information about future marine fish production can help in proper planning, 

storage and distribution etc. It is desirable to know about the inter-relations that exist 

between landings of different species as many of the marine fish species depend each 

other due to factors like prey-predator relation, competing for a common food resource 

and influenced by a common environmental condition and so on. In this study 

quarterwise marine fi sh landings in Kerala during the period 1960-96 were used to 

develop suitable univariate and multivariate time series models. The relation between 

environment and marine fi sh landings were also examined using multivariate time series 

models. 

The univarate time series model used in this study was Box-Jenkins seasonal 

autoregressive integrated moving average models (ARlMA). Seasonal ARlMA models 

were fitted to the quarterwise landings of oil sardine, mackerel, anchovies, lesser 
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sardines, penaeid prawns, tuna, thrissocies, ribbon Iishes and total landings. For each of 

these time series autocorrelation and partial autocorrelation analysis were carried out to 

examine the behavior of the time series. Suitable orders for each model were selected 

based on AIC and SBC order selection criteria. Different models found suitable and Iitted 

were AR1MA(l ,0,0)(O,I , I)4 for oil sardine landings, ARlMA(I ,O,O)(O,I,I)4 with log 

transformation for mackerel landings, ARlMA( 4,0,0)( I, 1,2)4 with log transformation for 

anchovies, ARlMA(O, I, I )(0, I, 1)4 with log transformation for both lesser sardine and 

luna landings, ARlMA(O,O, I )(0, I, 1)4 wi th log transformation for penaeid prawn 

landings, ARlMA( I, I, 1)( I, 1,2)4 wi th log transformation for thrissocies, 

ARlMA( I ,0, I )(0, I, 1)4 with log transformation for ribbon Iishes and 

ARlMA(O, I ,2)(0, I, 1)4 for total landings. These models Iitted were then used for 

forecasting quarterwise landings for 1997 and 1998. 

The effect of introduction of new crafts Iitted wi th out board engrnes and 

introduction of a new Iishing gear rn the late eighties was examined through an 

intervention analysis. The model used for intervention analysis was 

ARlMA(O, I ,2)(0, I, 1)4 by treating the period 1960-87 as the pre-intervention period. This 

analysis revealed that on an average there is an increase of about 53,770r in total marine 

Iish landings in the state by the introduction of new gears and new crafts Iitted with 

outboard engines into the Iishery. 

The inter-relations between landings of selected species I groups of marine Iishes 

were examined through cross-correlation analysis and also by using partial cross 
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correlation matrices and partial canonical cross correlation matrices. Vector 

autoregressive models (V AR model) were fitted for five sets of data consisting of four 

times series sequences each on landings to represent a vector time series. The 

species/groups for each set were selected based their commercial importance and also 

buy examining their food and feeding habits to establish prey-predator type or competing 

type of relationship. Suitable orders for these V AR models were selected based order 

selection criteria like AIC, BIC and the HQ criterion given by Hannan and Quinn. The 

model parameter matrices were estimated through generalised least square method and 

adequacy of each fitted model was tested by computing cross correlation matrices for the 

residual vector series and also by testing combined significance of the residual cross 

correlation matrices using an approximate chi-square test. Stationarity of the fitted VAR 

models were examined by evaluating eigen values of a characteristic matrix. For the first 

vector time series consisting of landings of oil sardine, mackerel, anchovies and lesser 

sardine the model found suitable was V AR(2); for the second vector time series 

consisting of landings of anchovies, lesser sardine, ribbon fish and catfish the model 

found suitable was V AR(2) model; V AR( I) model was found suitable for the third vector 

time series with landings of mackerel, anchovies, tuna and penaeid prawns as 

components; V AR(5) model was found suitable for the vector time series consisting of 

landings of oil sardine, anchovies, tuna and penaeid prawns; and for the fifth vector times 

series with landings of elasmobranchs, oil sardine, mackerel and seer fish as components 

the model found suitable was V AR(2). These models were estimated and tested for their 

suitability through residual cross correlation analysis and also by using an appropriate 

chi-square test. It was found that these models are capable of explaining the variations in 

'1~ 
LIB RAR Y 
;j;",,--: r. .... -:- - -; -. '.r.::fur.r Ifro;! 
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the component series satisfactorily, in most cases more than 90% of the variations in the 

data. These models were used for forecasting quarlerwise landings of 1997 and 1998. 

These analysis revealed that 

I. Compared to mackerel and lesser sardines, the senes that was capable of 

explaining some portion of the variation in oil sardine landings was the anchovies 

senes. 

II. The presence of the senes on anchovies in the model was more effective In 

explaining the variations in mackerel landings 

Ill. The influence of oil sardine on mackerel landings was quite high compared to that 

of lesser sardines 

IV. Oil sardine series had comparatively high influence on the variations in anchovies 

senes 

As an alternative to the higher order VAR model fitted to the vector time series 

consisting of landings of oil sardine, anchovies, tuna and penaeid prawns the mixed 

vector autoregressive moving average (VARMA) model was attempted. Here alsp, the 

orders of the model were selected based on AlC, BlC and HQ criterion. The model 

parameters were estimated by an approximate maximum likelihood method given by 

Wilson (1973). For the estimation algorithm, expressions were derived for computing 

partial derivatives of the innovation vectors which are requ ired for the iterative 

computation of the maximum likelihood estimate. The fitted VARMA model was tested 

for its suitability by computing cross correlation matrices for the residual vector series 

and also by testing the combined significance of elements of cross correlation matrices. 
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IV. There was significant dependence of oil sardine landings on highest temperature 

series and the effect was negative in direction. 

A new method based on canonical correlations and path coefficients analysis was 

developed to evaluate the relationship between time series sequences. This procedure was 

illustrated using data on quarterwise landings of four marine fish species/group. The 

properties of a univariate time series generated as a moving total of standard time se.ries 

processes of AR, MA and ARMA rype were also examined. 
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