# **CMFRI**

# Winter School on

# Impact of Climate Change on Indian Marine Fisheries

### Lecture Notes

Part 2

Compiled and Edited by

E. Vivekanandan and J. Jayasankar

Central Marine Fisheries Research Institute (CMFRI), (Indian Council of Agricultural Research) P.B. No. 1603, Cochin - 682 018, Kerala

(18.01.2008 - 07.02.2008)





## STATISTICAL PACKAGE FOR SOCIAL SCIENTISTS - A PREPARATORY EXPOSITION

#### J. Jayasankar and Somy Kuriakose

Central Marine Fisheries Research Institute, Kochi 682 018 (jjsankar@gmail.com)



#### Introduction

SPSS is a package developed originally for social scientists using large mainframe computers. Since then it has been refined and redeveloped for different types of architecture including Windows. It is an extensive package with facilities for data entry, data manipulation and statistical analysis in a graphical environment. It has modules for survey analysis, graphical display and time series. The package has been considerably improved to include logistic regression and repeated measures analysis and much more which probably can be explored while experiencing the functionalities of the package.

#### **Getting Started**

This exposition is aimed at taking the reader through the preliminaries of the package with an aim to make him/ her feel assured of the preparatory pangs like data import/ transfer and export/ saving. Most of these steps and windows can be accessed/ viewed in earlier versions of SPSS too. The examples and screen shots are select collation from a real session done with the sole purpose of demonstrating the various facets of the package with uniformity and flow.

The package can be accessed from the **Start** menu and selecting **All Programs** and then **SPSS for Windows** and **SPSS14 for Windows**. Ignore, by selecting **OK**, any error messages that may appear on the screen until you see Figure 1. Select the option **Don't show this dialog in the future** and this dialogue-box will not appear again. You can then remove the screen by selecting the **Cancel** button.

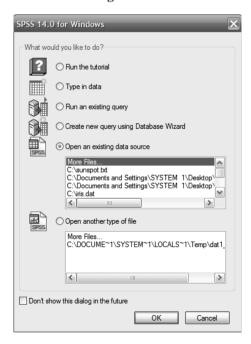



Figure - 1

Please wait until Figure 2 then appears on the screen. [For information - to exit SPSS, click on the **File** option on the menu bar and choose **Exit** and confirm your intention]

#### **Default SPSS Windows**

The default image, which should be visible, is shown in Figure 2. The main window, **Untitled1** [DataSet0] - SPSS Data Editor, with the Data View tab highlighted allows numeric data entry direct into the spreadsheet using the default options. If you are not in this view then select the correct **Tab** at the bottom of the screen before proceeding further. The **Variable View** tab will be discussed later in the tutorial for inputting of non-numeric data and other uses. Maximize this window image if you prefer.

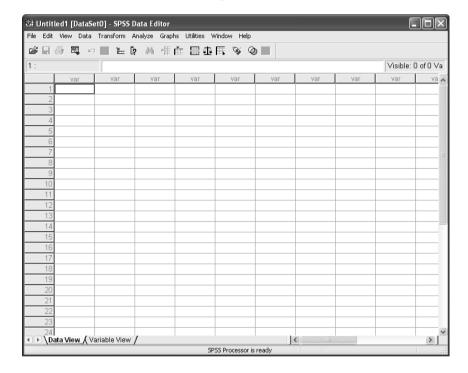



Figure - 2

#### Notation

In the sections that follow, the actions you must perform are shown in **bold**, as too are the default values chosen by **SPSS.** *Italic* is used to denote items whose names/values you may choose. It is preferred that variable names start with a letter and are kept as short and simple as possible.

#### For information:

A sequence of actions using the drop-down menus will be denoted by  $\rightarrow$ . For example, **Data \rightarrow Insert Variable...** would mean "Click-left on the **Data** option on the drop-down menu and select the option **Insert Variable...** (by clicking-left again)".

#### **Data Entry**

If **SPSS** has been set up correctly the first empty column in the first row will be outlined in the **Untitled1 [DataSet0] - SPSS Data Editor** window. Enter the following three columns of data into the spreadsheet (the data dimensions being 8 columns and 12° rows, with the first row being the variable names)

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 1997 | 1          | JAN   | 2164       | 10798    | 48743        | 27.95857143 | 1.1557      |
| 1997 | 2          | FEB   | 16043      | 5738     | 59900        | 28.14       | 1.59508     |
| 1997 | 3          | MAR   | 11981      | 6008     | 58922        | 29.27142857 | 0.815337    |
| 1997 | 4          | APR   | 8968       | 3201     | 49769        | 30.15571429 | 3.47977     |
| 1997 | 5          | MAY   | 8217       | 4160     | 45006        | 30.17857143 | 2.21777     |
| 1997 | 6          | JUN   | 1120       | 2429     | 26136        | 29.52       | 3.33698     |
| 1997 | 7          | JUL   | 5740       | 9049     | 28104        | 28.46714286 | 0.775625    |
| 1997 | 8          | AUG   | 1838       | 7257     | 47069        | 28.02428571 | 1.43846     |
| 1997 | 9          | SEP   | 7328       | 16589    | 57652        | 28.53857143 | 1.06579     |
| 1997 | 10         | OCT   | 21919      | 10387    | 74325        | 29.46714286 | 2.17776     |
| 1997 | 11         | NOV   | 6612       | 4240     | 39380        | 29.54714286 | 1.06579     |
| 1997 | 12         | DEC   | 1706       | 2573     | 39768        | 29.21714286 | 1.48941     |
| 1998 | 1          | JAN   | 1289       | 2093     | 32569        | 28.85       | 1.1557      |
| 1998 | 2          | FEB   | 2296       | 2048     | 27642        | 29.01428571 | 0.712894    |
| 1998 | 3          | MAR   | 4974       | 2919     | 43667        | 29.73571429 | 0.775625    |
| 1998 | 4          | APR   | 2699       | 4287     | 43778        | 30.68       | 0.718546    |
| 1998 | 5          | MAY   | 2203       | 2362     | 36631        | 31.09285714 | 2.21777     |
| 1998 | 6          | JUN   | 8542       | 2319     | 36886        | 29.37       | 16.7595     |
| 1998 | 7          | JUL   | 2637       | 3236     | 35385        | 28.16       | 13.192      |
| 1998 | 8          | AUG   | 7672       | 21580    | 86532        | 27.8        | 3.14315     |
| 1998 | 9          | SEP   | 13712      | 8934     | 52487        | 28.17571429 | 9.40961     |
| 1998 | 10         | OCT   | 6889       | 3845     | 40704        | 28.39428571 | 3.33698     |
| 1998 | 11         | NOV   | 22509      | 5068     | 78819        | 28.62428571 | 3.47977     |
| 1998 | 12         | DEC   | 2373       | 2808     | 27596        | 28.49857143 | 0.815337    |
| 1999 | 1          | JAN   | 9662       | 2347     | 44428        | 28.25571429 | 1.59508     |
| 1999 | 2          | FEB   | 8665       | 1319     | 34286        | 28.41857143 | 1.23454     |
| 1999 | 3          | MAR   | 5791       | 3638     | 42796        | 29.56428571 | 1.43846     |
| 1999 | 4          | APR   | 5325       | 2466     | 34920        | 29.76857143 | 1.1557      |
| 1999 | 5          | MAY   | 263        | 11531    | 36511        | 29.20428571 | 1.84048     |
| 1999 | 6          | JUN   | 9417       | 7943     | 39565        | 28.55428571 | 18.6066     |
| 1999 | 7          | JUL   | 7711       | 8087     | 34158        | 27.75857143 | 11.6915     |
| 1999 | 8          | AUG   | 10654      | 9579     | 76723        | 27.54428571 | 21.4233     |
| 1999 | 9          | SEP   | 30662      | 8629     | 63820        | 28.19714286 | 4.40898     |
| 1999 | 10         | OCT   | 15088      | 10804    | 55748        | 28.12428571 | 1.78038     |
| 1999 | 11         | NOV   | 26622      | 14783    | 74745        | 28.61285714 | 1.09354     |
| 1999 | 12         | DEC   | 13292      | 1343     | 43073        | 28.46714286 | 0.518182    |
| 2000 | 1          | JAN   | 11107      | 5278     | 42002        | 27.97       | 1.08595     |
| 2000 | 2          | FEB   | 15625      | 2165     | 42459        | 28.29285714 | 0.781984    |
| 2000 | 3          | MAR   | 12374      | 3832     | 45642        | 29.09428571 | 0.72823     |
| 2000 | 4          | APR   | 28959      | 1689     | 59597        | 29.76142857 | 0.943045    |
| 2000 | 5          | MAY   | 13122      | 3597     | 45654        | 29.86857143 | 14.925      |
| 2000 | 6          | JUN   | 26938      | 3462     | 46613        | 28.29714286 | 5.03917     |

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 2000 | 7          | JUL   | 49414      | 2252     | 58843        | 27.65571429 | 4.23542     |
| 2000 | 8          | AUG   | 11428      | 3176     | 74315        | 27.41714286 | 7.89502     |
| 2000 | 9          | SEP   | 20633      | 3362     | 55702        | 27.94       | 10.8457     |
| 2000 | 10         | OCT   | 17641      | 1919     | 49515        | 28.72857143 | 4.90867     |
| 2000 | 11         | NOV   | 25573      | 745      | 47473        | 28.97428571 | 1.16986     |
| 2000 | 12         | DEC   | 8597       | 2377     | 36298        | 28.34285714 | 0.918132    |
| 2001 | 1          | JAN   | 6537       | 2402     | 32947        | 28.04142857 | 1.33493     |
| 2001 | 2          | FEB   | 7347       | 1129     | 26572        | 28.31142857 | 1.37667     |
| 2001 | 3          | MAR   | 7081       | 2166     | 33019        | 29.19285714 | 0.972663    |
| 2001 | 4          | APR   | 14283      | 1520     | 35765        | 30.03428571 | 0.722598    |
| 2001 | 5          | MAY   | 15894      | 790      | 40985        | 30.20142857 | 9.70774     |
| 2001 | 6          | JUN   | 11867      | 1146     | 28226        | 28.65857143 | 2.90212     |
| 2001 | 7          | JUL   | 17590      | 2633     | 40412        | 27.80428571 | 4.11085     |
| 2001 | 8          | AUG   | 15177      | 3704     | 70109        | 26.98714286 | 5.74943     |
| 2001 | 9          | SEP   | 15368      | 1210     | 64822        | 27.72       | 0.918132    |
| 2001 | 10         | OCT   | 20001      | 1789     | 52771        | 28.35714286 | 10.1286     |
| 2001 | 11         | NOV   | 14365      | 935      | 50376        | 28.86285714 | 3.47744     |
| 2001 | 12         | DEC   | 11827      | 1374     | 38135        | 28.62285714 | 0.956651    |
| 2002 | 1          | JAN   | 10551      | 1110     | 52092        | 28.31285714 | 0.920593    |
| 2002 | 2          | FEB   | 4123       | 3693     | 32460        | 28.41428571 | 1.72478     |
| 2002 | 3          | MAR   | 5800       | 1423     | 32501        | 29.34142857 | 0.936253    |
| 2002 | 4          | APR   | 16579      | 1284     | 42278        | 30.26142857 | 0.695176    |
| 2002 | 5          | MAY   | 9049       | 1680     | 33068        | 30.04       | 3.13685     |
| 2002 | 6          | JUN   | 9951       | 536      | 24413        | 28.89714286 | 2.94478     |
| 2002 | 7          | JUL   | 17219      | 2710     | 40210        | 28.17       | 19.46       |
| 2002 | 8          | AUG   | 14880      | 1191     | 59169        | 27.48857143 | 5.74943     |
| 2002 | 9          | SEP   | 37251      | 4161     | 85064        | 28.32714286 | 7.04024     |
| 2002 | 10         | OCT   | 29594      | 1304     | 65127        | 28.92571429 | 1.68665     |
| 2002 | 11         | NOV   | 49121      | 2760     | 79725        | 29.09285714 | 0.861453    |
| 2002 | 12         | DEC   | 15350      | 1556     | 43412        | 28.84714286 | 1.06736     |
| 2003 | 1          | JAN   | 17065      | 1358     | 45217        | 28.25285714 | 0.861914    |
| 2003 | 2          | FEB   | 16852      | 1201     | 49516        | 28.52857143 | 1.19247     |
| 2003 | 3          | MAR   | 31683      | 1652     | 55889        | 29.74428571 | 0.985244    |
| 2003 | 4          | APR   | 14096      | 2964     | 36449        | 30.41428571 | 0.663178    |
| 2003 | 5          | MAY   | 11187      | 1845     | 45030        | 30.42714286 | 9.70774     |
| 2003 | 6          | JUN   | 22772      | 2015     | 54273        | 29.42714286 | 4.37136     |
| 2003 | 7          | JUL   | 13146      | 2683     | 25629        | 28.23       | 13.9812     |
| 2003 | 8          | AUG   | 14189      | 3835     | 51982        | 28.07714286 | 3.2039      |
| 2003 | 9          | SEP   | 23153      | 5098     | 52253        | 28.31571429 | 17.1568     |
| 2003 | 10         | OCT   | 51363      | 6041     | 94733        | 28.64       | 5.32919     |
| 2003 | 11         | NOV   | 36644      | 3644     | 74517        | 28.82285714 | 1.08247     |
| 2003 | 12         | DEC   | 12222      | 2690     | 37805        | 28.37428571 | 0.588376    |

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 2004 | 1          | JAN   | 17924      | 738      | 44881        | 28.32714286 | 0.987224    |
| 2004 | 2          | FEB   | 11406      | 1119     | 41604        | 29.48428571 | 1.42619     |
| 2004 | 3          | MAR   | 15478      | 2979     | 62697        | 30.34571429 | 1.33172     |
| 2004 | 4          | APR   | 8667       | 1384     | 46880        | 29.63857143 | 0.940146    |
| 2004 | 5          | MAY   | 11046      | 1837     | 44196        | 28.54857143 | 2.15283     |
| 2004 | 6          | JUN   | 5754       | 269      | 27372        | 27.92714286 | 1.84319     |
| 2004 | 7          | JUL   | 26737      | 4512     | 46501        | 27.57571429 | 4.73062     |
| 2004 | 8          | AUG   | 10825      | 4167     | 59778        | 28.00285714 | 2.82243     |
| 2004 | 9          | SEP   | 24449      | 15048    | 73691        | 28.67428571 | 5.53495     |
| 2004 | 10         | OCT   | 31339      | 14809    | 71802        | 28.96285714 | 4.20154     |
| 2004 | 11         | NOV   | 29653      | 1410     | 48536        | 28.34428571 | 1.3531      |
| 2004 | 12         | DEC   | 31428      | 5739     | 48901        | 28.04142857 | 1.38722     |
| 2005 | 1          | JAN   | 10124      | 1804     | 21423        | 28.42857143 | 0.835333    |
| 2005 | 2          | FEB   | 12266      | 1056     | 33224        | 29.02142857 | 1.21194     |
| 2005 | 3          | MAR   | 31748      | 1008     | 46888        | 30.17857143 | 0.951414    |
| 2005 | 4          | APR   | 8667       | 1384     | 46880        | 28.17571429 | 1.42963     |
| 2005 | 5          | MAY   | 11046      | 1837     | 44196        | 28.62428571 | 1.71465     |
| 2005 | 6          | JUN   | 8819       | 6407     | 32292        | 28.41857143 | 9.70774     |
| 2005 | 7          | JUL   | 11808      | 3381     | 26487        | 29.20428571 | 9.86626     |
| 2005 | 8          | AUG   | 12302      | 4442     | 52508        | 27.75857143 | 30.2002     |
| 2005 | 9          | SEP   | 30619      | 12669    | 68050        | 28.19714286 | 6.41821     |
| 2005 | 10         | OCT   | 11048      | 3208     | 40531        | 28.12428571 | 6.38736     |
| 2005 | 11         | NOV   | 26757      | 5407     | 54622        | 28.46714286 | 4.35151     |
| 2005 | 12         | DEC   | 43592      | 7895     | 69114        | 29.19285714 | 1.36511     |
| 2006 | 1          | JAN   | 21759      | 5771     | 46744        | 28.65857143 | 1.36292     |
| 2006 | 2          | FEB   | 20246      | 2248     | 37993        | 26.98714286 | 1.27417     |
| 2006 | 3          | MAR   | 12072      | 1360     | 42533        | 28.35714286 | 0.834216    |
| 2006 | 4          | APR   | 9943       | 2329     | 41333        | 28.86285714 | 2.4887      |
| 2006 | 5          | MAY   | 17729      | 1638     | 49849        | 28.62285714 | 2.18389     |
| 2006 | 6          | JUN   | 15206      | 5169     | 38998        | 28.41428571 | 14.929      |
| 2006 | 7          | JUL   | 19889      | 1266     | 33541        | 29.34142857 | 9.86626     |
| 2006 | 8          | AUG   | 11036      | 4977     | 58870        | 30.26142857 | 4.82528     |
| 2006 | 9          | SEP   | 18393      | 4549     | 58230        | 28.64       | 3.32627     |
| 2006 | 10         | OCT   | 33047      | 9625     | 79580        | 27.57571429 | 4.17407     |
| 2006 | 11         | NOV   | 31031      | 1387     | 56594        | 28.67428571 | 2.22998     |
| 2006 | 12         | DEC   | 15917      | 4784     | 47637        | 28.04142857 | 1.37097     |

By default the names given to these three columns are var00001, var00002 and var00003.

Each row of this data represents the year and month with corresponding month code along with the oil sardine landing estimates (tons) and Indian mackerel landings (tons) and Sea Surface Temperature (SST) in degrees Celsius and lastly the Chlorophyll content in mg/m³ off Kerala coast. The variables given in the first row of the data can very well be used to name the variables in lieu of their default names.

Move to the **Variable View** window (click-left on the tab at the bottom of the window) to see Figure 3 and replace the default names by those suggested above in the **Name** column. Move back to the **Data View** window to see Figure 4. Do not worry about the contents of the other columns, shown in **Variable View**, they will be discussed as the need arises.

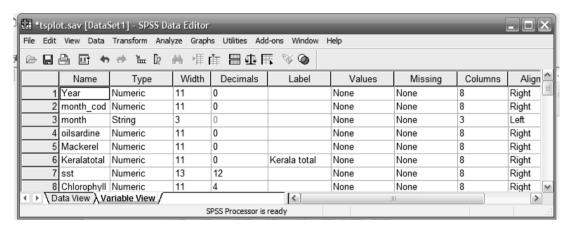
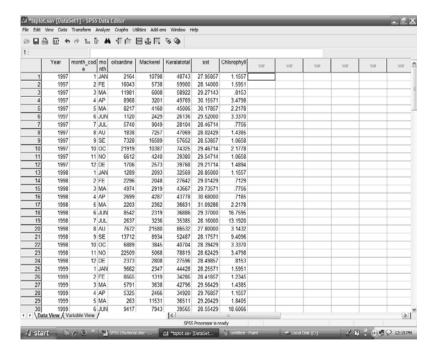




Figure - 3

Figure - 4



#### **Saving Your Work**

Although entering the data in Section 5 did not take too long it is always wise to save any work you have done. Saving your work should be a frequent operation whenever you use a PC.

#### Exercise 1

Several types of files, subsets of variables, or commands can be saved. Here you will be creating a **SPSS Save** file (*.sav*) which will create a file in compressed form containing the complete set of data, names and formats.

Choose **File**→**Save As...** from the main drop-down menu. The :**Save Data As** dialogue box appears (as shown in Figure 5). If necessary, choose the correct folder (**My Documents\....**), then type a relevant filename e.g. *tsplot* in the **File name** box. [Note that the default file extension is given as .sav] Click on **Save** and the data will be saved.

The dialogue box will close automatically after the file has been saved.

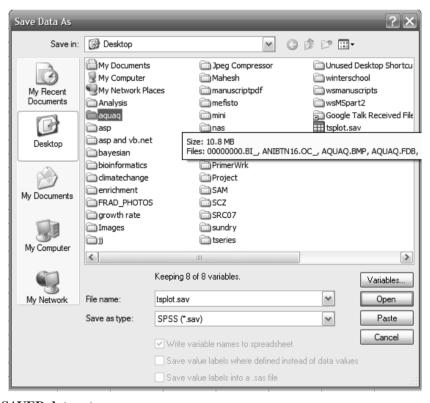



Figure - 5

#### Reading in a SAVED data set

While we deal with data sets it is a good time to learn how to read in a previously saved SPSS data set. Follow Exercise 2 and exit from SPSS, check that the file exists and then restart the program and retrieve the saved file you have just created.

If you have **SPSS** installed on your personal PC you would be able to open the file **My Documents\...\tsplot.sav** from within the file manager.

- ♦ Choose <u>File</u> → Exit from the main menu. Using any method you know (ie look at the contents of the folder My Documents\ on the desktop) check the file tsplot.sav exists.
- ♦ Invoke the package again and wait for the software to be reloaded. (described in Section 2)
- Select File→Open→Data... from the main menu bar. This will show the Open File dialogue box similar to Figure 6. Check you are looking at the correct folder and filename My Documents\...\\subset{Select Open}
- ♦ Check that the *tsplot.sav* SPSS Data Viewer is as shown in Figure 4.

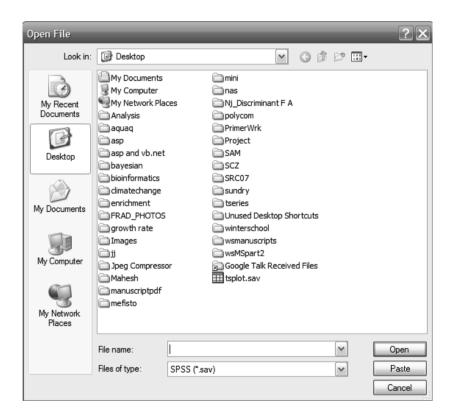



Figure - 6

#### Listing the Data

One of the first things that you should always do with the values you have input is confirm that the program will be working on the data values exactly as you intended. You can easily make a mistake by typing 100 in place of 1.00 and this would make your results very strange. As your data is in a spreadsheet you can do this by checking the values straight from the screen. However, you may wish to create a paper listing and take it away with you to check. Follow through the next exercise in order to list and check your data.

From the main menu bar choose **Analyze** Reports Case Summaries to produce the dialogue-box shown in Figure 7. Highlight the word oilsardine from the selection on the left-hand side and then click on the

button to select the variable as required to be listed. Repeat for mackerel etc..

Click on the **OK** button. The maximised **Output1 - SPSS Viewer** window will become visible. Scroll up and down through it to check that it looks like Figure 8. Note that the data is listed in the order in which you selected the variables e.g. alphabetic. This window could then be printed.

Correct any mistakes if necessary, and re-save the data file using **File→Save**. This will automatically overwrite the file **My Documents**\...\tsplot.sav.

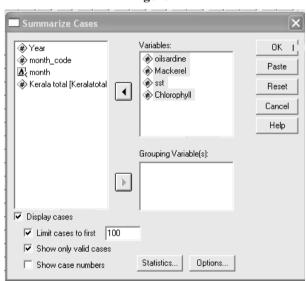
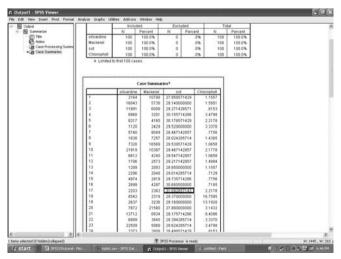




Figure - 7





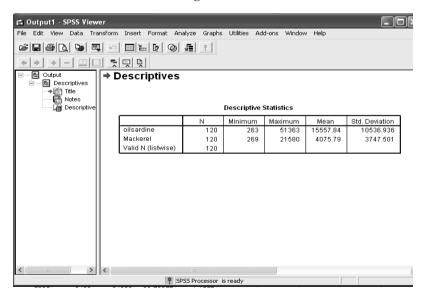
#### **Exploring the Data**

There are several techniques for helping you to summarise your data. Checking data means or plotting appropriate pairs of variables quickly give you an image of the spread of the data. Both of these checks can be made by following Exercises 4 & 5.

#### Exercise 4

#### 1. Data Means:

Choose the **Analyze** → **Descriptive Statistics** → **Descriptives** menu to get a dialogue-box as shown in to Figure 9 below. Select the variables oilsardine and Mackerel in the same way as you did in the previous exercise and then click on OK. Check the contents of the Output1 - SPSS Viewer window against Figure 10. The summary statistics produced are the default actions of the command but as you will see from the syntax (command language) printed in Figure 33 the underlying command is getting quite complex.


Descriptives Variable(s): Year month\_code ø oilsardine Mackerel Reset Kerala total [Keralati Cancel #Dsst Chlorophyll

Help

Options...

Figure - 9

Figure - 10



Save standardized values as variables

#### 2. Scatterplots:

From the main menu select **Graphs** Scatter/Dot ... This will produce a further dialogue-box as shown in Figure 11. Select the **Simple Scatter** plot and click on the **Define** button to produce Figure 12. Select *oilsardine* as the **Y-axis** and *Mackerel* as the **X-axis** using the method in Exercise 3 and then click on **OK**. The **Output1** - **SPSS Viewer** window now contains this simple scatterplot (as shown in Figure 13).

Figure - 11

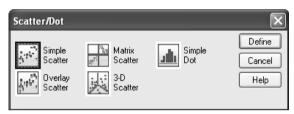



Figure - 12

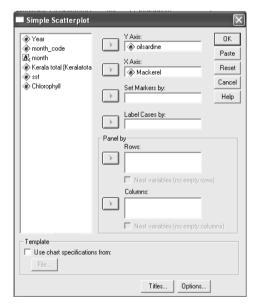
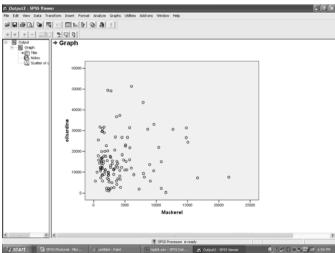




Figure - 13



#### **Saving Results**

It is possible to print the contents of the **Output1 - SPSS Viewer** window directly and the output can be saved for convenient printing post analysis too. Try the following exercise to save the contents of the **Output1 - SPSS Viewer** window so that you can print it out in your own machine after this session. [Another method of saving results would be to **Cut** and **Paste** the relevant sections into a Word document – you may find this easier when doing your own analysis]

#### Exercise 6

If necessary, move into the **Output1 - SPSS Viewer** window and click in it. Select **File → Save As** which will give the dialogue-box similar to that shown in Figure 14. Confirm that your folder **My Documents\...** is selected and then supply a suitable **File name** such as *tsplot*. [Note that the default file extension is given as *.spo*] Click on **Save** and the complete contents of the output window will be saved and the default window name changed to **My Documents\...\tsplot.spo**. It is possible to save the graphs separately in a special format that can be imported into a Word Processor, such as Word 2000, however, for most reports this quality is sufficient.

Exit from SPSS [File→Exit] but you do not need to save the contents of any other window.

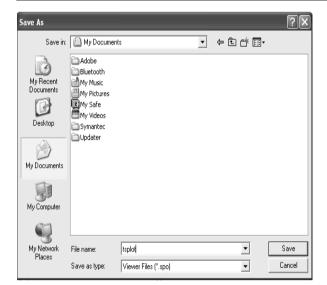
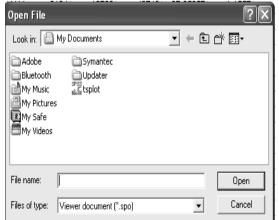




Figure - 14





To print the output file **My Documents\...** \*Vsplot.spo*, once saved, you can read it back into **SPSS** from the **File** \(\rightarrow **Open** \(\rightarrow **Output...** menu and choose the correct file as shown in Figure 15. Try it now before going on to the next set of data.

Exit from SPSS [File→Exit] so that you have a clean session for the start of the next exercise.

#### Reading Data From A Separate File

A data set that you wish to analyse may have been entered using a text editor, a database or into another spreadsheet facility. This example assumes that the data, with which you have been supplied, in **My Documents\...\oil\_mackerel.txt** is in an ASCII (plain text) file created using an editor such as **Notepad.** There are many methods to read (or input) data into **SPSS** but for the purposes of this session, it is assumed that data values are separated by one or more spaces but that character values have no spaces between them. This is called **Freefield or free form** data.

Other forms of data entry are also possible though not considered for extensive use in this study. For example, **Excel** spreadsheets can be opened directly into **SPSS** and you may prefer to explore this facility in your own time.

#### **Transformations and Calculations on Data**

Transforming data with special limitations like unstable variance or not amenable to assumptions originally made for the analysis has been much in practice. The following exercise demonstrates the manipulation of data values. Many other calculations and transformations are possible but can be explored in your own time.

#### Exercise 8

Select **Transform** Compute variable from the main menu to get the dialogue box shown in Figure 16. Complete the dialogue-box in the following way:

- Enter the name of the new variable *log\_os* in the **Target Variable** box
- > Type in the expression *log(oilsardine)* in the **Numeric Expression** box.
- Click on **OK** and return to the **Untitled SPSS Data Editor** window and check that one or two observations, of the new variable *log\_os*, have been calculated correctly.
- > Calculate the number of "incorrect" (or not "yes") answers to show you understand how to use this facility.

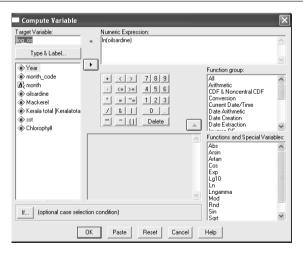



Figure - 16

#### **Creating Subgroups of Data**

If you want to repeat an analysis for each subset of observations, it is possible to **split** the file into the groups required and then do the analysis automatically on each group.

To demonstrate this facility try the following exercise to consider the mean of the percentage data for all schools together and then for each school individually.

#### Exercise 9

Calculate the overall means of the variables *oilsardine*, *Mackerel* and *sst*. Then split the file into the four different schools as follows:

- ❖ From the main menu select **Data**→**Split File** to get Figure 17.
- Select the option **Organise output by groups**.
- Select the variable *year* and move it into the **Groups Based on:** box. Your screen should now look like Figure 17.
- Click on OK as usual. Notice that the data in the Untitled SPSS Data Editor window has been sorted by year and that it lists the 1997 school first.
- Repeat the calculations with the same variables and see that ten separate mean values (one for each *year*) have been calculated for each variable.

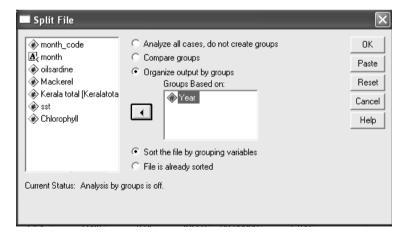



Figure - 17

#### Exercise 10

Be aware that the data file is considered to be split into the groups for any following analysis so complete the next exercise to show how to remove the grouping indicator. Very simply, follow the previous exercise but this time select the option

#### Analyze all cases, do not create groups.

Notice that the box entitled **Groups Based on:** has become dimmed. Click on **OK**. You need to be aware of the **status** of the data set that you are analysing so that you always work with the data intended.

Exit from SPSS [File→Exit] but again you do not need to save the contents of any window.

#### **Data Summary**

If survey data are being analysed, almost the first thing that is required is to display the data in tabular form. This has the added bonus of being a way of checking categorical data. The following exercises demonstrate methods of tabulating data.

#### Exercise 11

This exercise demonstrates simple one-way frequency tables. Select **Analyze** Descriptive **Statistics** Frequencies... Select variable *year* to demonstrate Figure 18 then click on **OK**. Examine the output. Repeat with other variables as you wish, removing the previous selection by highlighting the variable name in the **Variable(s)**: box and click on the button. If you have more time select the **Statistics** and **Charts** buttons and try the options for more descriptive statistics and bar charts.

#### Exercise 12

Crosstabulations can be produced using a different menu selection. This time choose **Analyze** Descriptive Statistics Crosstabs... to produce Figure 19. Select a variable to appear in the row dimension and another to appear in the column dimension e.g. *year* and *month*. Click on **OK** and examine the output again. Can you interpret the results OK? Try adding the **Expected** values and the **Row percentages** to the **Cells** and calculate the **Chi- square** (look at **Statistics**).

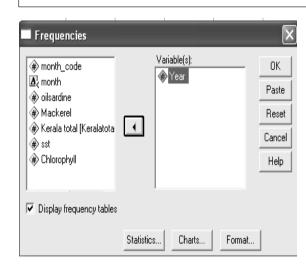



Figure - 18

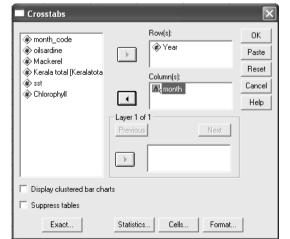



Figure - 19

#### Statistical Analysis - Regression

**SPSS** contains many facilities to perform statistical analyses. All should be used initially under the guidance of a statistician as there are many ways of producing the wrong analysis.

The following exercise uses LINEAR REGRESSION to perform simple regressions.

#### Exercise 13

The **SPSS** file **My Documents\tsplot.sav** has as well an opportunity to try out simple linear regression between two variables viz. *oilsardine* and *sst* 

Using the plotting command investigate the relationship between the dependent variable, *Oilsardine*, and one of the independent variables, *sst*. (To see how the oilsardine landings varies with time).

Can you suggest a relationship between *oilsardine* and *sst*? From the main drop-down menu select **Analyze** Regression Linear and choose *oilsardine* as the dependent and *sst* as the independent variables (see Figure 20). Click on **OK**.

Look at the output but do not worry if you are unable to interpret this or any other statistical output. This tutorial is showing you the methods that can be used in SPSS when necessary and does not attempt to teach you statistical techniques.

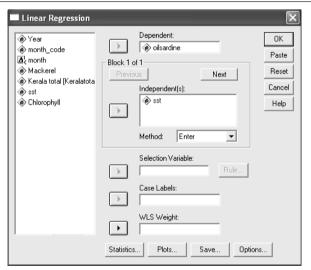



Figure - 20

The following exercise uses **CURVE ESTIMATION** to perform more complex regressions.

#### Exercise 14

Repeat the plot between another pair of variables *oilsardine* and *sst*. By eye, it does not look as if a linear regression would be the best fit between these variables *oilsardine* and *sst* but you can try it anyway. This time you will use a different method.

Select Analyze Regression Curve Estimation... and choose *oilsardine* and *sst* as appropriate (see Figure 21). Using all the default selections, fit the curve. Notice that a plot is automatically prepared with both the observed data and the fitted linear regression being plotted together. It does not appear to be a good fit, so repeat this part of the exercise selecting the **Quadratic** and then finally the **Cubic** options in the the **Models** selection box. This is also known as "polynomial regression".

Curve Estimation Dependent(s): ОΚ Year ø oilsardine month\_code Paste A month Reset Mackerel Independent Kerala total [Keralatotal] Variable: Cancel Chlorophyll 1 Help ▼ Include constant in equation Time Case Labels: ▼ Plot models Models ✓ Linear Quadratic Growth □ Logarithmic Cubic □ S Exponential ☐ Logistic Inverse ☐ Power Display ANOVA table Save

Figure - 21

When regression analysis has been performed it is usual to want to save the predicted (or fitted) values and residuals and plot them against each other to check that they are randomly scattered about zero. **SPSS** allows you to both save and plot at the same time.

Select Analyze → Regression → Linear... and choose the simple regression of *oilsardine* on *sst*. This time, however, click on the Save button and select Standardised Predicted Values and Standardised Residuals.

Click on **Continue** to return to the previous screen and then click on **Plots**.

Choose \***ZPRED** as the X-variable and \***ZRESID** as the Y-variable. Click on **Continue** and then **OK.** Look at the **Output1 - SPSS Viewer** 

Scatterplot

# Dependent Variable: oilsardine

Regression Standardized Predicted Value

#### **Analysis of Variance**

SPSS also has many commands to perform analysis of variance dependent on your data collection. This exercise demonstrates a simple analysis of variance of a balanced designed experiment.

#### Exercise 18

Let us use the same file that has been created called **My Documents**\(\forall \) open this into the **SPSS Data Editor** window (saving the previous results if required) and look at the data. The file contains information on the *landings of oilsardine* for a period of ten years. Analyse the data in the following way assuming that *monthly* estimates are randomized. (these are no true situations, for practice only)

Select Analyze General Linear Model Univariate and in the resulting window select *oilsardine* as the dependent variable and then *year* as the fixed factor to be defined. This time, rather than run the commands automatically (using **OK**), **Paste** the commands into the **Syntax1 - SPSS Syntax Editor** window, as shown in Figure 22, where you can see the default **Design** sub-command as follows:

#### DESIGN year.

Now run the commands shown in this window by clicking on **Run→Current** [or use **Ctrl-R**] and look at the results in the **Output1 – SPSS Viewer** window.

In order to display the means for *year*, return to the **Univariate** dialogue-box (via **Analyze → General Linear Model → Univariate** menu), select the **Options** button and choose the factors required, and continue as before defining the appropriate (second) design. This time, highlight and run just this **Selection** of the **Syntax1 – SPSS Syntax editor** window.

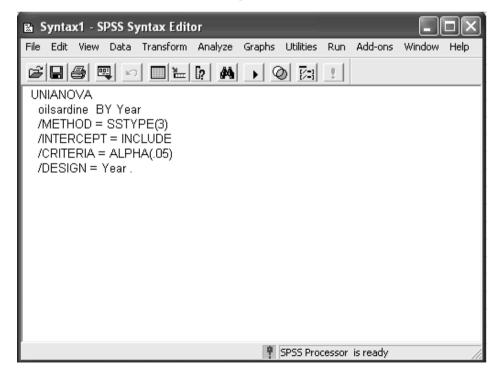



Figure - 22

#### **Saving Command Syntax**

A copy of all of the syntax (SPSS command language) used to produce the analysis required is automatically saved in a file called SPSS.JNL. However, this file is usually overwritten every time SPSS is invoked.

It is also possible to direct certain parts of the syntax to a separate file for future reference, for example, you may want to repeat the exact analysis on a new set of data containing the same variables etc. As shown in the previous exercise there is a **Paste** button available. Having run a particular dialogue-box (e.g. **Descriptive Statistics**) and decided that this would be needed for a subsequent data set you can return to this box and select **Paste**. A new icon will appear on the taskbar which if you open it should contain similar information to that shown in Figure 23.



Figure - 23

It is possible to save the contents of the **Syntax - SPSS Syntax Editor** window for use at a future date. If you want to save any of the command syntax that you have pasted into the window before exiting then move into the **Syntax - SPSS Syntax Editor** window and click on **File → Save As...**. Give a suitable name to the file which is given the default extension of *.sps*. This can be reused in a later session opening the file straight into the **Syntax1 - SPSS Syntax Editor** window and using **Run → Current** [or use **Ctrl-R**].

#### Using the HELP menu

All statistical analysis packages include an extensive **Help** system. If you have time, make use of the drop-down menu and look at the **Statistics Coach** facility that is loaded in this PC lab. It may not be available in the public PC labs but is a simple introduction to basic analysis.

When finished use **File**→**Exit** saving any files you might like to refer to at a later date.