Proceedings of the Summer Institute in Recent Advances on the Study of Marine Fish Eggs and Larvae 14 JUNE to 3 JULY, 1989

CENTRAL MARINE FISHERIES RESEARCH INSTITUTE Dr. SALIM ALI ROAD

CMFRI/SI/ $1989 / \mathrm{Th} . \mathrm{XV}$

PRESENT STATUS OF WORK ON MARINE FISH EGGS AND LARVAE

 IN INDIA AND OUTLOOK FOR THE FUTUREBy

P. Bensam
Principal Scientist

(Central Marine Fisheries Research Institute, Cochin)

In India, interest on a study of marine fish eggs and larvae is found to have begun only in the first decade of the present century, when Bhattacharya (1916) has identified the larvae of a few estuarine fishes, Although there bes been a steady increase-in the output of research thereafter, most of the publications till the end of the thirties are on estuarine species only. It may also be seen that in the initial period many identifications are based on those made elswhere, more so from Indonesia (formerly Java) by Delsman (1922-1938). An analysis of the quantum of publications made recently by Bensam (in press) shows that the main stay so far is from the fifties through the seventies, with the peak during the fifties (30\%), followed by sixties (24\%) and the seventies (22\%). Species-wise also, the maximum coverage is during the fifties (30\%), followed by sixties (20\%) and seventies (19\%). As already pointed out in one of the previous lectures, the total number of species whose one or more developmental stage has been identified so far is 29% of the known total number of species; and the number of species of which most of the vital stages axe known at present is only 8% of the marine bony fishes present in Indian Waters. Hence, there is urgent need to intensify the studies on marine fish eggs and larvae in India.

 measurements and scrutiny of characters. One method lesser if their condition does not facilitate accurate
 to do so, it is essential to improve the quality of the for their characters, in cases where it is not possible collected. Although it is desirable to study live eggs it is essential to enhance the quality of the specimens as drawn attention to by Ahlstrom and Moser (1981), Apart from making extensive and intensive collections,
collected for the series method of identification. that as complete series of stages as is possible are more extensively and intensively in space and time, so future collections of marine fish eggs and larvae much Russell, 1976). Hence it has become essential to make mental stages (Nellen and Hempel, 1970; Bailey, 1974; not necessarily contain one or more of the other developbody of water which contains one developmental stage need stages. It may be noted in this connection that the same collections are not adequate to document all the important the whole series are availmble and that in most cases of publications from India shows that only in some cases changes in the developmental characters. But, a perusal stages should be available, in order to follow the vital For this method to be effective, the whole series of "series method" of identification (vide lecture No.5). at present and hence the workers have to depend upon the the hatching method of identification is not possible for a country like India, with the existing facilities, their oozing ovarian ova are difficult to collect. Thus, vast majority of inshore and offshore fishes because as mullets. But, this method cannot be followed in the in the cases of a few estuarine and inshore fishes such (vide lecture No.5) of marine fish eggs is possible only

clupeoides and S. sirm. Between twơ almost comparable of development observed in the postlarvae of Sardinella

 studies (Bensam, 1984, 1986) on certain clupeids with 7иəəəx ut periəsqo uəaq sey otqenten ore siozวexeyo ət7ans पons feपf 7oef oul sefoeds paftte fo sebezs
 certain subtle or clusive characters are not given due instances, except for some prominent diagnostic features,

$$
\text { Sueu ut } 7 e 47 \text { smous oxnzexoftt jo } \text { Tesnied } \forall
$$

adoption in future work in this country. followed in most of the descriptions in India; and needs contrast (Fig. 1 and 2). Such a procedure has not been the figures in a manner, suitable for comparison and skills have to be employed for documenting and presenting

and other stages standardised are given in Table L gradual development into the juvenile phase. These postflextion one is the longest period, involving a et al (1977), viz.. (1) Preflexion, (2) Flexion and (3) and Ahlstrom (1970), Ahlstrom et al (1976) and Moser developmental sequences into three as followed by Moser it would be advantageous to standardise postlarval early egg, (2) the middle eggr and (3) the late egg. Also, proposed by Ahlstrom and Counts (1955), such as (i) the worthwhile to follow the division of developing eggs standardisation of the stages. In this connection, it is stages is the ambiquity prevailing in the definition and for effective comparison and contrast of the developmental

vation techniques of marine fish eggs and larvae. for some basic research on ship-board handing and preserattention to by Ahlstrom and Moser (1981) there is need
sizes, the 10.2 mm postlarva of S , clupeoides and the 10.4 mm postlarva of S. sirm . . the former shows markedly lesser developmental sequence in its narrow body, truncated caudal fin and lesser developed dorsal and anal fins when compared with the broader body, forked caudal fin and more advanced dorsal and anal fins in the latter species. Although the former is 0.2 mm shorter than the latter in total length, it is rather insignificant to account for all the above differences. In this connection it is suggested that for segregating comparable and/or similar sized developmental stages of closely allied species and/or cenera, a tabulation of the characters of the developmental stages on the model proposed in Table 2 may be carried out. By divising such a mechanism, it may be possible to overcome some of the identification problems.

Similarly, much more intensive studies are required on the variability of such characters of developing stages as the location of the oilglobule and pigmentation between allied species. It is observed in recent studies (Bensam, 1984) among the larvae of the grey mullets Liza tade and L. subviridis which have the same number of myomeres that although the oilglobule in the larvae of both the species is situated in the front aspect of the yolksac, the principal difference between the two is the presence of four narrow vertical streaks of pigments in L. tade but only a single prominent postanal band in L. subvivids

In addition to such character differences, it is also essential to discover new characters for identification. Osteological and anatomical features of the early stages of one species may be different from those of an allied species. The advent of scanning electromicroscopy has opened up the possibilities for solving such inteicate identification problems. By this method, Sumida et al. (1980) have found out differences between the chorion. structure of the eggs of flatfishes. Similarly,
electrophoretic techniques may also be employed for discovering new distinguishing characters.

By adopting such techniques it will be possible to identify, distinguish and document the early developmental stages of such of the species and/or genera which are posing problems still.

References

Ahlstrom, E.He, J.Le Butler and B.Y. Sumida 1976 (As given in the previous notes)

Ahlstrom, E.H. and H.G. Moser 1981. Overview Systematics and Development of early life history stages of marine fishes: Achievements during the past century, present status and suggestions for the future. Rapp. P. - Ve Reun. Cons. int. Mer. 178: 541-546.

Bailey, R.S. 1974. The life history and biology of the blue Whiting in the Northeast Atlantic, 1. The planktonic phase in the Rockall area. Mar. Res. Edinb., No.1.

Bensam, P. 1984. Observations on a few early developmental staces in some fishes of Porto Novo Coast. India, Ph.D., Thesis, Annamalai University.

Bensam, P. 1986. Early developmental stages of some marine fishes from India 1. Nimatalosa nasus, Sardinella clupeoides. S. fimbriata, S. sirm and S. albella La mer (Tokyo), 24: 33-41.

Bensam, P. (in press)
Bhattacharya, D.H. 1916. Fauna of the Chilka Lake, Stages in the life history of Gobius, Petroscirtes and Hemirhampus. . Mem. Indian Mus., 5 (4): 383-392.
-6-

