BIOLOGY AND FISHERY OF ‘CHOO PARAI'-
 SELAROIDES LEPTOLEPIS (CUVIER AND VALENCIENNES)

Part MII. Population Studies*

By K. K. Tandon§
(Central Marine Fisheries Research Institute)
Introduction
This paper is the third in series of publications on the studies of Selaroides leptolepis. The details regarding the material have been given in an earlier paper (Tandon, 1960).

In order to have a rational basis for the management and exploitation of the fishery resources and as an important step in understanding the biology of the species, we must have a good knowledge of the identity of the stocks supporting the fishery. When a species is commercially exploited, it becomes important to know whether the catch comes from a single stock or from several stocks which may or may not remain as discrete entities. The term stock in this investigation is used to denote a group of individuals which inhabit a particular area in a given time showing certain distinct meristic or morphometric characters. If the species exploited belongs to one stock, the fishing intensity at any one place is likely to have its effect in due course at other centres too and hence it is imperative to know about the nature and composition of the commercially exploited stocks.

Methods

It is a well-known fact that ratios between various body parts may differ at different stages of life-history in fishes and this has been demonstrated by Godsil (1948), Schaefer (1948), Schaefer and Walford (1950) and Marr (1955). If, however, the regression of one character over another is found to be linear within a certain range of the independent variable, then comparison of such regressions within the range facilitates testing the homogeneity of various

[^0]samples. Godsil (op. cit.), Schaefer (op. cit.), De Sylva et al. (1956), Pillay (1957), Sarojini (1957), Berdegue (1958), Prasad (1958 b), etc., followed the method of regressions for the analysis of different characters to separate the populations, races or stocks as labelled by them. In the present investigation it was found that the regression of each character was linear over the range of independent variable. Thus the comparison of different samples has been based on the comparison of regressions.

The fork length was taken as an independent character and other lengths as dependent ones. For the meristic counts last dorsal and anal rays were counted as one each. All the measurements and counts were made by the author himself. The measurements were recorded in millimeter. The significance of the difference of regression of each morphometric character and the significance in the difference in the mean values of meristic character were considered at 5% probability level. In the columns $5 \% \mathrm{~F}$. the values of the nearest or the next number, as described in the F. Tables, are given.

Relation between Fork Length and Total Length

Most workers take total length as an independent variable. In this paper, however, the fork length has been used as an independent variable. As will be seen from the following account there is a high correlation between the two and a linear relation exists between them. An attempt was, therefore, made to ascertain this relation. For this purpose 150 specimens ranging from $47-152 \mathrm{~mm}$. in length were measured. The total length was taken from the tip of the lower jaw to the longest ray in the caudal fin when the two lobes were brought together. The regression equation was found out to be $\mathbf{Y}=0.0349+0.8677 \mathrm{X}$. From the same data the correlation coefficient ' r ' was also calculated and found to be 0.9993 indicating a high correlation between the two lengths. ' Y ' and ' X ' denote fork and total lengths respectively. That the relationship is linear can be shown by testing for lincarity (Table I).

Table I, thus, indicates that almost the entire variation is accounted for by linear regression, b is highly significant.

Characters Selected
A large array of morphometric characters may be measured from an individual fish. In order to expedite the collection and analysis of data, bowever, it is desirable to limit collection to the best few of the many possible characters. Selection of the 'best' characters is, however, rather

Table I
Test of linearity of the regression of fork length on total length

Source of variation	Degrees of freedom	Sum of squares	Mean square	F.	
Variation due to regression Residual	1	$805 \cdot 824$	$805 \cdot 824$		
	\cdots	148	1.026	0.006932	116247

difficult as there is no definite yardstick upon which judgement can be based apriori. It has been suggested by some workers that the characters should be selected (1) with a view to choosing those that would be likely to show possible differences, (2) because of facility of measurements under field conditions and (3) because of their use by previous workers.

The three criteria enumerated above suggested the selection of the following characters (Fig. 1):

Fig. 1. Diagram of Selaroides leptolepis indicating the morphometric measurements.

1. Head length. 2. Snout to first dorsal. 3. Snout to second dorsal. 4. Snout to ventral.
2. Snout to anal. 6. Maximum depth of body. 7. Fork length.
(a) Morphometric Characters
(i) Head length,
(ii) Snout to first dorsal,
(iii) Snout to second dorsal,
(iv) Snout to ventral,
(v) Snout to anal,
(vi) Maximum $\mathbf{Y} d e p t h$ of body.
b) Meristic Characters
(i) Number of rays of second dorsal,
(ii) Number of rays of anal,
(iii) Number of vertebrae.

Sexual Dimorphism

In many fish the regression of one character on another may differ for the two sexes. In such cases, comparison of samples have to be made on the basis of sex. On the other hand if there is no significant difference between regressions of one character or another in the two sexes, the comparison of samples can be made directly without reference to sex. Hence, to see if there were differences in the regressions of various characters in the two sexes, a sample of 50 fish was selected. These fish were then separated according to sex, and measurements and counts for individual fish were recorded.

Comparison of regressions of various characters studied showed that except for snout to first dorsal which was significant at 5% probability level, none of the other regressions were significant. Therefore, in the subsequent analyses samples were treated without reference to sexes.

Results

(a) Morphometric Characters

To test the homogeneity or otherwise of the stocks at a particular centre from year to year, and from different centres within a year samples were collected during 1957, 1958 and 1959 from Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam. However, samples were not available at Rameswaram Road during 1957. In 1958 fish were also procured from Madras and Vizhingam.

Comparisons were first made between samples collected during different years from the same place and similarly between samples from different centres within a year. In the event of significant differences between samples, comparisons were made between all possible pairs of samples to find out if the samples could be grouped conveniently. The relevant results are presented in Tables II-X.

Table II
Comparison of different body lengths of Selaroides leptolepis between years (1957, 1958 and 1959) at Rameswaram

Character	Deviation from total regression		Deviation from individual regressions within years			Difference			Observed F.	5% F.
	D.F.	S.S.	D.F.	S.S.	Variance	D.F.	S.S.	Variance		
Head length	135	46.4205	133	39-2026	0. 2947	2	$7 \cdot 2179$	$3 \cdot 6089$	$12 \cdot 2460$	3.06
Snout to first dorsal	135	$70 \cdot 2613$	133	68.1329	$0 \cdot 5122$	2	2-1284	$1 \cdot 0642$	$2 \cdot 0777$	3.06
Snout to second dorsal	135	1208.3633	133	1204-2966	$9 \cdot 0548$	2	4.0667	2.0333	4-4532	19.49
Snout to ventral	135	58.6375	133	57.5026	0.4323	2	1-1349	$0 \cdot 5674$	$1 \cdot 3125$	3.06
Snout to anal	135	111.8570	133	$98 \cdot 7870$	$0 \cdot 7427$	2	$13 \cdot 0700$	$6 \cdot 5350$	$8 \cdot 7989$	$3 \cdot 06$
$\underset{\text { of body }}{\text { Maximum depth }}$	135	92-8805	133	$81 \cdot 7254$	$0 \cdot 6144$	2	11-1551	$5 \cdot 5775$	$9 \cdot 0779$	3.06
Head length:										
1957 and 1958	96	25.4305	95	$25 \cdot 3589$	$0 \cdot 2669$		0.0716	0.0716	3.7276	253
1957 and 1959	92	$36 \cdot 5144$	91	29.8315	0.3278	1	6.6829	$6 \cdot 6829$	$20 \cdot 3871$	3.94
1958 and 1959	81	29.4204	80	$23 \cdot 2148$	$0 \cdot 2901$	1	$6 \cdot 2056$	$6 \cdot 2056$	$21 \cdot 3912$	3.96
Snout to anal:										
1957 and 1958	96	81.6297	95	69.8118	0.7348	1	11.8179	11.8179	16.0831	3.94
1957 and 1959	92	74.9962	91	74.9479	0.8236	1	$0 \cdot 0483$	0.0483	17.0517	253
1958 and 1959	81	$66 \cdot 9656$	80	$52 \cdot 8143$	0.6601	1	$14 \cdot 1513$	$14 \cdot 1513$	21.4381	3.96
Maximum depth of body :										
1957 and 1958	96	$69 \cdot 1392$	95	65.5405	0.6793	1	4. 5987	4.5987	$6 \cdot 7697$	$3 \cdot 94$
1957 and 1959	92	$51 \cdot 5467$	91	$49 \cdot 0004$	$0 \cdot 5384$	1	$2 \cdot 5463$	$2 \cdot 5463$	4.7293	$3 \cdot 94$
1958 and 1959	81	59.2670	80	49.9099	$0 \cdot 6238$	1	$9 \cdot 3571$	9.3571	15.0001	3.96

[^1]Table III
Comparison of different body lengths of Selaroides leptolepis between years (1957, 1958 and 1959) at Thangachimadam

Character	Deviation from tatal regression		Deviation from individual regressions within years			Difference			Observed F.	5\% F.
	D.F.	S.S.	D.F.	S.S.	Variance			Vanance		
Head length	152	72.3412	150	$69 \cdot 9843$	0.4665	2	$2 \cdot 3569$	$1 \cdot 1784$	$2 \cdot 5260$	3.06
Snout to first dorsal	152	$118 \cdot 5561$	150	113-3457	0.7556	2	$5 \cdot 2104$	2-6052	$3 \cdot 4478$	$3 \cdot 06$
Snout to second dorsal	152	$140 \cdot 0965$	150	$138 \cdot 2285$	0.9215	2	1.8680	0.9340	1.0135	$3 \cdot 06$
Snout to ventral	152	88.0574	150	$87 \cdot 4301$	0.5828	2	0.6273	0.3136	1.8584	$19 \cdot 49$
Snout to anal	152	190.0312	150	187-1314	1-2475	2	$2 \cdot 8998$	1.4499	1-1622	3.06
$\begin{aligned} & \text { Maximum depth } \\ & \text { of body } \end{aligned}$	152	$151 \cdot 7904$	150	$140 \cdot 8316$	$0 \cdot 9388$	2	10.9588	$5 \cdot 4784$	$5 \cdot 8365$	$3 \cdot 06$
Snout to first dorsal: 1957 and 1958										
1957 and 1958	113	105.9944	112	$101 \cdot 1230$	0.9028	,	$4 \cdot 8714$	$4 \cdot 8714$	5-3958	$3 \cdot 92$
1957 and 1959	103	95.9229	102	$84 \cdot 3949$	0.8274	1	11.5280	11.5280	13.9328	$3 \cdot 92$
1958 and 1959	87	42.5725	86	$41 \cdot 1735$	0.4787	1	$1 \cdot 3990$	$1 \cdot 3990$	$2 \cdot 9224$	$3 \cdot 94$
Maximum depth of body:										
1957 and 1958	113	116.8846	112	111.8093	0.9982	1	$5 \cdot 0753$	5.0753	$5 \cdot 0844$	$3 \cdot 92$
1957 and 1959	103	$110 \cdot 5877$	102	99.7019	$0 \cdot 9774$	1	$10 \cdot 8858$	10.8858	11-1375	$3 \cdot 92$
1958 and 1959	87	$73 \cdot 0027$	86	$70 \cdot 1520$	0.8157	1	2-8507	$2 \cdot 8507$	$3 \cdot 4947$	$3 \cdot 94$

[^2]Table IV
Comparison of different body lengths of Selaroides leptolepis between years
(1958 and 1959) at Rameswaram Road

Character	Doviation from total regression		Doviation from individual regressions within years			Difference			Observed F.	5\% F.
	D.F.	S.S.	D.F.	S.S.	Variance	D.F.	s.s.	Variance		
Head length ..	97	75.7784	96	72.4579	0.7547	1	3.3205	3.3205	4.3997	3.94
Snout to first dorsal	97	81.6975	96	80.5001	0.8385	1	1-1974	1-1974	1.4280	3.94
Snout to second dorsal	97	98.9595	96	98.7668	1.0288	1	0. 1927	0.1927	5.3388	253
Snout to ventral	97	57.6467	96	57.1751	0.5955	1	0.4716	0.4716	1.2627	253
Snout to anal ..	97	160.9037	96	160.7118	1.6740	1	0.1919	0.1919	8.7232	253
$\begin{gathered} \text { Maximum depth } \\ \text { of body } \end{gathered}$	97	91-7082	96	91.5819	0.9539	1	0.1263	0.1263	7.5526	253

Table V

Table VI

Comparison of different body lengths of Selaroides leptolepis by covariance analysis from Rameswaram, Thangachimadam and Pudumadam during 1957

Character	Deviation from total regression		Deviation from individual regressions within places			Difference			Observed F.	5% F.
	D.F.	S.S.	D.F.	S.S.	Variance	D.F.	S.S.			
Head length	158	81.8344	156	$74 \cdot 3045$	0.4763	2	7.5299	3.7649	7.9044	$3 \cdot 04$
Snout to first dorsal	158	152.1329	156	142.8845	0.9159	2	$9 \cdot 2484$	$4 \cdot 6242$	$5 \cdot 0488$	$3 \cdot 04$
Snout to second dorsal	158	1304-7920	156	$1300 \cdot 2112$	8.3346	2	4. 5808	$2 \cdot 2904$	3.6389	19.49
Snout to ventral	158	107.2277	156	105.2182	0.6744	2	$2 \cdot 0095$	1.0047	1.4897	3.04
Snout to anal	158	$152 \cdot 5318$	156	$151 \cdot 3287$	0.9700	2	1.203I	$0 \cdot 6015$	1.6126	$19 \cdot 49$
Maximum depth of body	158	280.9593	156	267.0274	1.7117	2	13.9319	6.9659	$4 \cdot 0695$	$3 \cdot 04$
Head length: Rameswaram and Thangachimadam	118	60.9566	117	54-0979	0.4623	1	$6 \cdot 8587$	$6 \cdot 8587$	$14 \cdot 8360$	$3 \cdot 92$
Rameswaram and Pudumadam	93	$39 \cdot 0890$	92	36-1944	$0 \cdot 3934$	I	2-8946	$2 \cdot 8946$	$7 \cdot 3579$	$3 \cdot 94$
Thangachimadam and Pudumadam	104	59.9083	103	$58 \cdot 3167$	0.5661	1	$1 \cdot 5916$	$1 \cdot 5916$	$2 \cdot 8115$	3.92

Table VII
Comparison of different body lengths of Selaroides leptolepis by covariance analysis from Rameswaram, Thangachimadam, Rameswaram Road, Pudumadam, Madras and Vizhingam during 1958

Character	Deviation from total regression		Deviation from individual regressions within places			Difference			Observed F.	5\% F.
	D.F.	S S.	D.F.	S.s.	Variance	D.F.	S.s.	Variance		
Head length ..	256	116.5807	251	108.8721	0.4337	5	7-6586	1.5317	3.5317	$2 \cdot 23$
Snout to first dorsal	256	180-9694	251	170.7747	0.6803	5	$10 \cdot 1947$	2.0389	$2 \cdot 9970$	$2 \cdot 23$
Snout to second dorsal ..	256	223-4730	251	218-3329	0.8698	5	$5 \cdot 1401$	1.0280	1.1819	$2 \cdot 23$
Snout to ventral ..	256	145•0954	251	131-3098	$0 \cdot 5231$	5	13.7856	2-7571	5-2706	$2 \cdot 23$
Snout to anal	256	349-9361	251	318:6501	1-2695	5	31.2860	6-2572	4.9288	$2 \cdot 23$
Maximum depth of body ..	256	298-4082	251	270-3871	1-0772	5	28.0211	$5 \cdot 6042$	5-2025	$2 \cdot 23$
Hrod length										
Rameswaram and Thangachimadam	91	31.9575	90	28-1002	$0 \cdot 3122$	1	3-8573	3.8573	12-3552	3.94
Rameswaram and Rameswaram Road	91	44.7546	90	44.7527	$0 \cdot 4972$	1	$0 \cdot 0019$	0-0019	261.6842	253
Kameswaram and	93	29-8370	92	29.6199	$0 \cdot 3219$	1	0-2171	0.2171	I-4827	253
Rameswaram and Madras	91	31-9341	90	30.9160	$0 \cdot 3435$	1	1.0181	1.0181	2.9639	$3 \cdot 94$
Rameswaram and Vizningam	88	13-5943	57	12-9677	0.2275	1	$0 \cdot 6266$	0.6266	2.7542	$4 \cdot 00$
Thangachimadam and Rameswaran Road	97	$55 \cdot 8828$	96	64.1107	0-5633	1	1.7721	1-7721	3-1442	3.94
Thangachimadam and Pudumadam	99	40-3987	98	38-9779	$0 \cdot 3977$	1	$1 \cdot 4208$	1-4208	3.5725	$3 \cdot 94$
Thangachimadam and Mantas	97	44-3460	96	40.2740	$0 \cdot 4195$	1	4.0720	$4 \cdot 0720$	9.7067	3.94
Thangachimadam and Vizhingam	64	24-1016	63	22-3257	0.3543	1	1.7759	1-7759	$5 \cdot 0124$	3.99
Rameswaram Road and Pudumadam	99	$55 \cdot 7418$	98	55-6304	0.5876	1	0-1114	$0 \cdot 1114$	5-0651	253
Rameswaram Road and Madras	97	57.7805	96	56.9265	0-5929	1	$0 \cdot 8540$	0.8540	1.4403	3.94

Table VII (Contd.)

${ }^{*}$ Character	Deviation from total regression		Deviation from individual regressions within places			Difference			Observed F.	5\% F.
	D. F.	s.s.	D.F.	S S.	Variance	D.F.	s.s.	Variance		
Rameswaram and Pudumadan	93	$44 \cdot 8764$	92	37.4462	$0 \cdot 4070$	1	$7 \cdot 4302$	$7 \cdot 4302$	18.2560	3.94
Rameswaram and Madras	91	41 -6942	90	3.4079	$0 \cdot 3823$	1	$7 \cdot 2863$	7.2883	19.0591	3.96
Rameswaram and	58	23.8420	57	22.8968	0. 4016	1	0.9452	0.9452	2-3535	4.00
Thangachimadam and Rameswaram Road	97	62.0363	96	61.6479	0.6421	1	0.3884	0.3884	1.6531	253
Thangachimadam and Pudumadam	99	58.0666	98	52.8703	0.5394	1	5-1963	5.1963	$9 \cdot 6334$	$3 \cdot 94$
Thangachimadam and Madras	97	55.7235	96	49.8320	0.5190	1	$5 \cdot 8915$	5.8935	11.3516	3.94
Thangachimadam and	64	38.9957	63	38.3209	0.6082	1	0.6748	0.6748	1.1095	3.99
Rameswaram Road and Pudumadam	99	59.8551	98	58.6810	0.5977	1	1.2741	1-2741	2-1320	3-94
Rameswaram Road and Madras	97	58.5813	96	55.5427	0.5786	1	3.0386	3.0388	$5 \cdot 2516$	3.94
Rameswaram Road and Vizhingham	64	44.3394	63	44.0316	0.6989	1	0.3078	$0 \cdot 3078$	2.2706	253
Pudumadam and Madras	99	$47 \cdot 8172$	98	46.7651	0.4771	1	1.0521	1.0521	2.2051	$3 \cdot 94$
Pudumadam and	66	35.2827	65	$35 \cdot 2540$	0.5423	1	$0 \cdot 0087$	0.0087	62.3833	253
Madras and Vizhingam	64	32-4078	63	32-2157	0.5113	1	0.1919	0.1919	2.6644	253
Shout to anal										
Rameswaram and Thangachimadam	91	98-3308	90	84-2506	0.9361	1	14.0802	14.0802	15.0413	3.94
Rameswaram and Rameswaram Road	91	122.8219	90	122.8176	1.3646	1	0.0043	0.0043	317-3488	253
Rameswaram and Pudumadam	93	73-2976	92	60.2142	0.6545	1	13.0834	13.0834	19.9899	3.96
Rameswaram and Madras	91	106.2048	90	90.5638	1.0002	1	15.6110	15.6410	15.5446	$3 \cdot 94$

D.F. $=$ Degrees of Freedom. S.S. $=$ Sum of Squares.

Table VIII
Comparison of different body lengths of Selaroides leptolepis by covariance analysis from Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam during 1959

Character	Deviation from total regression		Deviation from individual regressions within places			Difference			Observed F.	5\% F.
	D.F.	S.S.	D.F.	S.S.	Variance	D.F.	s.s.	Variance		
Head lenyth	175	104-8647	172	96-9918	0.5639	3	7.8729	$2 \cdot 6243$	1.6538	$2 \cdot 85$
Snout to first dorsal	175	120-8517	172	$115 \cdot 0753$	$0 \cdot 6690$	3	5.7784	1-9254	2.9780	$2 \cdot 65$
Snout to second dorsal	175	203-4145	172	198.4934	$2 \cdot 1540$	3	4.9211	1.6403	1.4214	$2 \cdot 65$
Snout to ventral	175	$\times 3.0721$	172	81.3482	$0 \cdot 4729$	3	1.7239	0.5740	1.2250	$2 \cdot 65$
Snout to anal	175	253-6994	172	252.2142	I-4663	3	1.4852	0.4950	2 -9622	8.54
Maximum depth of body	175	146.8134	172	$143 \cdot 6823$	0.8853	3	3.1311	1.0437	1.2494	$2 \cdot 65$
Head length Rameswaram and	77	27.2053	76	26.8888	0.3551	1	0.2165	0.2165	1.6401	253
Thangacciunadam	87	50.9239	86	50.9200	0.5920	1	0.0039	0.0039	151-7948	253
Rameswaram and	87	51.4756	86	46.7704	0.5314	1	4-7052	4.7052	8.8543	3-94
Pudumadam	87	50.3351	86	50.2214		1	0.1137	0.1137	5.1304	263
Thangartimadam and Rameswaram Road	87	50.3351	86	50.2214	0.5839	1	0.1137			
Thangachimadam and Pudumadam	87	51-4022	86	46.0718	0.5357	1	5.3304	5.3304	9.9503	$3 \cdot 94$
Rameswaram Road and Pudumadem	97	73.4554	96	70.0030	0.7291	1	$3 \cdot 4524$	$3 \cdot 4524$	4.7351	3.94
Swout to first dorsal			\bullet							
Rameswaram and Thangachimadam	77	29-2822	76	29.0174	0.3818	1	0.2648	0.2648	$1 \cdot 4418$	253
Rameswaram and	87	46.8711	86	44.2122	0.5140	1	$2 \cdot 1589$	0.4589	4.7838	3.94
Rameswaram Road	87	75.7595	86	$75 \cdot 4351$	0.8771	1	0.3344	0.3344	$2 \cdot 6229$	253
Pudumadam										
Thangachimadam and	87	41-5527	36	39.6402	0.4809	1	1.8125	1.9125	4-1494	3.94
Thangachimadam and	87	72-9416	86	70.8631	0.8239	1	$2 \cdot 0785$	2.0785	2-522?	3.94
${ }_{\text {Pradumadam }}^{\text {Pamaram }}$ Prad and	97	91-3454	96	86-0579	0.8964	1	5.2876		5.8985	3.94
$\mathbf{P a d u m a d a m ~}^{\text {and }}$			9				5.286	6.2875	$5 \cdot 8985$	

[^3]Table IX
Significance and non-significance of morphometric characters of Selaroides leptolepis between years from Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam

Locality	Head length		Snout to second dorsal	$\begin{gathered} \text { Snout } \\ \text { to } \\ \text { ventral } \end{gathered}$	$\begin{gathered} \text { Snout } \\ \text { to } \\ \text { anal } \end{gathered}$	Maximum depth of body
Rameswaram						
1957 \%. 1958 ..	NS	NS	NS	NS	S	S
1957 v. 1959 ..	S	NS	NS	NS	NS	S
1958 v. 1959 ..	S	NS	NS	NS	S	S
Thangachimadam						
1957 v. 1958 ..	NS	s	NS	NS	NS	S
1957 v. 1959 ..	NS	S	NS	NS	NS	S
1958 v. 1959 ..	NS	NS	NS	.NS	NS	NS
Rameswaram Road						
1958 v. 1959 ..	S	NS	NS	NS	NS	NS
Pudumadam						
1957 v. 1958 ..	NS	S	NS	NS	NS	S
1957 v. 1959 ..	NS	NS	NS	NS	NS	s
1958 v. 1959 ..	NS	NS	NS	NS	NS	NS

$\mathrm{NS}=\mathbf{N o n}$-significant. $\mathrm{S}=$ Significant.
The results of the regression analyses of various morphometric characters of Selaroides leptolepis may be summarised as follows:
(i) Head length.-The comparison of the samples collected during the years 1957 and 1959, and 1958 and 1959 showed significant differences at Rameswaram. Similarly the samples of 1958 and 1959 were significantly different at Rameswaram Road.

The regressions of head length showed significant differences in the samples collected during 1957 between Rameswaram and Thangachimadam, and Rameswaram and Pudumadam. During 1958, they were significantly

Table X
Significance and non-significance of morphometric characters of Selaroides leptolepis between places during 1957, 1958 and 1959

Locality	Head length			Snout to first dorsal			Snout to second dorsal			Snout to ventral			Snout to anal			$\begin{aligned} & \text { Maximum } \\ & \text { depth of body } \end{aligned}$		
	1957	1958	1959	1987	1988	1959	1867	1958	1959	1957	1958	1959	1957	1988	1859	1057	1058	1969
Rameswaram v. Thanguchimadam		S	NS	s	S	NS	S	NS	s	NS	NS							
Rameswaram v. -" Rameswaram Road		S	NS	\cdots	S	s	.	NS	NS		NS	NS	.	S	ns	\cdots	S	NS
Rameswaram $\%$. Pudumadam	S	NS	S	NS	S	NS	NS	S	Ns	S	S	NS						
Rameswaram v. Madras	\cdots	NS	-	-•	NS	.	..	NS	..	-	S	.	.	S	..	-	s	..
Rameswaram $\%$. Vizhingam	:.	NS	.	..	s	.	-	NS	*	-	NS	-	-	NS	.	..	S	.
Thangachimadam $\%$ Rameswaram Road	\cdots	NS	NS	.	NS	S	..	NS	Ns	.	NS	NS	-	S	NS	.	S	NS
Thangachimadam D. Pudumadam	NS	NS	s	S	NS	NS	NS	NS	NS	NS	S	NS	NS	NS	NS	NS	S	NS
Thangachimadarn v. Madras	..	S	NS	NS	\cdots		S	.	-	NS	.	\cdots	S	-
Thangachimadam v.	..	S	-	\cdots	S	-•	\cdots	NS	..	-	NS	.	\cdots	NS	-	**	NS	-
Rameswaram Road v. Pudumadam	.	NS	s	-	NS	S	.	NS	NS	..	NS	NS	-	S	NS	-	NS	NS
Rameswaram Road v. Madras		NS	.	-	NS	.	..	NS	.	-•	S	..	-	s	-	-	NS	.
$\underset{\text { Vizhingam }}{\text { Ramead }} \boldsymbol{v}$.	-	NS	..	-	s	.	.	NS	..	-	NS	..	.	s	.	.	NS	-
Pudumadam $\%$. Madras	-•	NS	NS	.	.	NS	.	..	NS	.	..	NS	..	.	NS	\cdots
$\begin{aligned} & \text { Pudumadam } z_{1} \\ & \text { Vizhingam } \end{aligned}$..		S	.	\cdots	NS	.			..			-	-		-•
Madras $\%$. Vlzhingam	-•		\cdots			-•	..	NS	-•		NS	..	-	NS	.	-•	NS	-•

NS $=$ Non-Significant. $\mathbf{S}=$ Significant.
different between Rameswaram and Thangachimadam, Rameswaram and Rameswaram Road, Thangachimadam and Madras, and Thangachimadam and Vizhingam. In 1959 significant differences were observed in the samples between Rameswaram and Pudumadam, Thangachimadam and Pudu* madam, and Rameswaram Road and Pudumadam.
(ii) Snout to first dorsal.-The samples collected from Thangachimadam during 1957 when compared with 1958 and 1959 revealed significant differences. Similarly the samples of Pudumadam in 1957 and 1958 were also significantly different.

The comparison of regressions revealed that samples were significantly different between Rameswaram and Thangachimadam, and Thangachimadam and Pudumadam in 1957. In 1958, significant differences were observed between the samples of Rameswaram and Thangachimadam, Rameswaram and Rameswaram Road, Rameswaram and Vizhingam, Thangachimadam and Vizhingam, Rameswaram Road and Vizhingam, and Pudumadam and Vizhingam. The differences persisted during 1959 between Rameswaram and Rameswaram Road, Thangachimadam and Rameswaram Road, and Rameswaram Road and Pudumadam.
(iii) Snout to second dorsal.- In regard to this character the comparison of the regiessions from year to year and from different centres within a year showed that samples might have been drawn from a homogeneous population.
(iv) Snout to ventral.-The regressions of the samples when compared from different years revealed that they did not differ significantly.

The comparison of the regressions showed that samples from different centres might have been drawn from a homogeneous population in 1957 and 1959, whereas significant differences were observed during 1958 between the samples of Rameswaram and Pudumadam, Rameswaram and Madras, Thangachimadam and Pudumadam, Thangachimadam and Madras, and Rameswaram Road and Madras.
(v) Snout to anal.-The samples showed significant differences between 1957 and 1958, and 1958 and 1959 at Rameswaram.

Regressions of the samples within 1957 and 1959 from different places when compared revealed that the differences were non-significant in regard to this character. In 1958 samples were significantly different between Rameswaram and Thangachimadam, Rameswaram and Rameswaram Road, Rameswaram and Pudumadam, Rameswaram and Madras, Thangachimadam
and Rameswaram Road, Rameswaram Road and Madras, Rameswaram Road and Pudumadam, and Rameswaram Road and Vizhingam.
(vi) Maximum "depth of body.-The samples were significantly different between all the years at Rameswaram. Significant differences were also observed in the samples of Thangachimadam and Pudumadam between 1957 and 1958, and 1957 and 1959.

The analysis of this character showed that the regressions were significantly different between the samples of Rameswaram and Thangachimadam, and Rameswaram and Pudumadam in 1957, between Rameswaram and Rameswaram Road, Rameswaram and Pudumadam, Rameswaram and Madras, Rameswaram and Vizhingam, Thangachimadam and Rameswaram Road, Thangachimadam and Pudumadam, and Thangachimadam and Madras in 1958, while they did not show any significant difference within the samples of 1959.

(b) Meristic Characters

In order to test whether the samples were drawn from a homogeneous population from year to year, and from different centres within a year the meristic characters were analysed by the method of Analysis of Variance. The samples were first compared together and in the event of their showing significant differences, they were compared in pairs. The dẻtails of the analyses are given in Tables XI-XV and the final results are presented in Tables XVI and XVII.

The following interesting points can be brought out in connection with the meristic characters of Selaroides leptolepis:
(i) Dorsal fin rays.-Samples collected from year to year and from different centres within a year did not show significant differences in their mean values.
(ii) Anal fin rays.-The mean values of the samples collected from Rameswaram Road showed significant differences between 1958 and 1959.

The analysis of the mean values of this character did not reveal significant differences between the samples of 1957 and 1959; the differences were observed in 1958 between the samples of Rameswaram and Rameswaram Road, Rameswaram and Madras, Rameswaram Road and Pudumadam, and Rameswaram Road and Madras.
(iii) Vertebral counts.-The number of vertebrae being $24(10+14)$ in all the fish examined, irrespective of the time and place of collection, this character was not analysed.

Table XI
Frequency distribution of dorsal and anal fin ray counts of Selaroides leptolepis during 1957 from Rameswerman, Thangachimadam and Pudumadam

Locality		N	Number of fish having dorsal fin ray counts of				Number of fish having anal fin ray counts of			
			23	24	25	26	19	20	21	22
Rameswaram	.	40	7	20	13	.	.	27	8	5
Thangachimadam	.	40	6	17	14	3	2	10	26	2
Pudumadam	.	38	4	17	16	1	1	17	16	4

Table XII
Frequency distribution of dorsal and anal fin ray counts of Selaroides leptolepis during 1958 from Rameswaram, Thangachimadam, Rameswaram Road, Pudumadam, Madras and Vizhingam

Locality		N	Number of fish having dorsal fin ray counts of				Number of fish having anal fin ray counts of					
			23	24	25	26	18	19	20	21	22	23
Rameswaram	.	44	2	30	11	1	..	.	20	21	3	.
Thangachimadam	.	40	2	16	20	2	-	..	12	20	8	-
Rameswaram Road	.	50	1	22	20	7	\cdots	-•	7	27	16	..
Pudumadam	-	80	2	44	27	7	1	.	23	47	9	\ldots
Madras	-	50	.	22	26	2	\cdots	\cdots	15	26	8	1
Vizhingam	*	17	-	10	6	1	*	.	6	6	4	1

Table XIII

Frequency distribution of dorsal and anal fin ray counts of Selaroides leptolepis during 1959 from Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam

Locality	N	Number of fish having dorsal fin ray counts of							Number of fish having anal fin ray counts of					
		21	22	23	24	25	26	27	18	19	20	21	22	23
Rameswaram	40	.	\cdots	1	26	12	1	.	\cdots	\cdots	13	25	2	-
Thangachimadam ..	90	.	-•	8	50	30	2	-*	.	2	24	52	12	\cdots
Rameswaram Road	96	-	-	2	46	43	5	-•	1	1	24	58	12	-
Pudumadam .	73	1	.	6	29	31	5	1	.	3	17	36	15	2

Table XIV
Analysis of variance for dorsal and anal fin rays of Selaroides leptolepis within years (1957, 1958 and 1959) from (i) Rameswaram, (ii) Thangachimadam, (iii) Rameswaram Road and (iv) Pudumadam

	Total		Within years			Between years			Observed F.	5\% F.
	D.F.	S.S.	D.F.	S.S.	Mean square	D.F.	S.S.	Mean square		
(i) Rameswaram										
Dorsal fin rays	123	$46 \cdot 7420$	121	46-1250	0.3811	2	0.6170	0.3085	$1 \cdot 2353$	$19 \cdot 49$
Anal fin rays	123	$49 \cdot 8388$	121	$48 \cdot 3069$	0.3992	2	1.5319	0.7659	1.9185	3.07
(ii) Thangachimadam										
Dorsal fin rays	169	85:3883	167	83.4889	0.4999	2	1.8994	0.9497	1-8997	$3 \cdot 04$
Anal fin rays	169	- 77.9765	167	$77 \cdot 1556$	0.4620	2	0.8209	0.4104	$1 \cdot 1257$	19.49
(iii) Rameswaram Road										
Dorsal fin rays	145	65.6712	144	$65 \cdot 1262$	0.4523	1	$0 \cdot 5450$	$0 \cdot 5450$	$1 \cdot 2050$	3.91
Anal fin rays	145	71.5617	144	$67 \cdot 3696$	0.4678	1	4-1921	4•1921	8.9613	3.91
(iv) Pudumadam										
Dorsal fin rays	190	120.4555	188	120.0489	0.6385	2	0.4066	0.2033	3.1406	19.49
Anal fin rays	190	$111 \cdot 2147$	188	108:2474.	0.5757	2	2-9673	$1 \cdot 4836$	$2 \cdot 5770$	3.04

[^4]Table XV
Analysis of variance for dorsal and anal fin rays of Selaroides leptolepis from (i) Rameswaram, Thangachimadam and Pudumadam during 1957; (ii) Rameswaram, Thangachimadam, Rameswaram Road, Pudumadam, Madras and Vizhingam during 1958 and (iii) Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam during 1959

	Total		Within places			Between places			Observed F.	5\% F.
	D.F.	S.S.	D.F.	S.S.	$\begin{aligned} & \text { Mean } \\ & \text { square } \end{aligned}$	D.F.	S.S.	Mean square		
(i) For 1957 Dorsal fin rays . Anal fin rays	${ }_{117}^{117}$	${ }_{56}^{66 \cdot 2034}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 65 \cdot 0422 \\ & 55 \cdot 3790 \end{aligned}$	$\begin{aligned} & 0.5655 \\ & 0.4815 \end{aligned}$	2	$\begin{aligned} & 1+1612 \\ & 1.2756 \end{aligned}$	$\begin{aligned} & 0.5806 \\ & 0.6368 \end{aligned}$	$\begin{aligned} & 1 \cdot 0967 \\ & 1 \cdot 3225 \end{aligned}$	$\stackrel{3.07}{3.07}$
(i) $\begin{array}{cc}\text { For } 1958 \\ & \text { Dorsal fin rays } \\ & \text { Anal fin rays }\end{array} \quad$.	$\begin{aligned} & 280 \\ & 280 \end{aligned}$	$\begin{aligned} & \mathbf{1 2 4 \cdot 2 2 7 8} \\ & \mathbf{1 4 3 \cdot 8 8 6 2} \end{aligned}$	$\begin{aligned} & 275 \\ & 275 \end{aligned}$	$\begin{aligned} & 119 \cdot 5928 \\ & 135 \cdot 2994 \end{aligned}$	$\begin{aligned} & 0.4349 \\ & 0.4919 \end{aligned}$	5	$\begin{aligned} & 4 \cdot 6350 \\ & 8 \cdot 5868 \end{aligned}$	$\begin{aligned} & 0.9270 \\ & 1.7173 \end{aligned}$	$\begin{aligned} & 2 \cdot 1315 \\ & 3 \cdot 4911 \end{aligned}$	$\begin{aligned} & 2 \cdot 23 \\ & 2 \cdot 23 \end{aligned}$
Ratmeswaram and Thangachimadam	83	37.7500	82	36.0319	0.4394	1	1.7181	1.7181	3.9101	3.94
Remeswaram and Rameswaran Road	83	45;3192	92	37.8119	0.4109	1	7-5073	7.5073	8.2703	3.94
Rameswaram and Pudumadam	123	54.6775	122	53.8194	0.4411	1	0.8881	0.8581	11.9453	3.92
Rameswaram and Madras	93	44.8611	92	42.9319	0.4666	1	1.9182	1.9192	$4 \cdot 1131$	3.94
Rameswaram and	60	32.2623	59	$30 \cdot 4319$	0.5157	1	1.8304	1.8304	$3 \cdot 5493$	$4 \cdot 00$
Thangachimadam and Rameswaram Road	89	42.7223	88	40.9800	0.4656	1	1-7423	1.7423	3.7420	3.94
Thangachimadam and Pudumadam	119	57.3250	118	56.9875	0.4829	1	0.3375	0.3375	1.4808	254
Thangackimadam and Vizhingam	56	33.7193	55	33-6000	$0 \cdot 6109$	1	$0 \cdot 1193$	0.1193	$5 \cdot 1207$	253
Rameswaram Road and Pudumadam	129	63.5077	128	58.7675	0.4591	1	4.7402	4.7402	0.3249	$3 \cdot 91$
Rameswaram Road and Madras	99	49.8400	98	47.8800	0.4885	1	1-0600	1.9600	14.0122	3.94
Rameswaram Road and Vizhingam	66	45-7911	65	45-3800	$0 \cdot 6981$	1	0.4111	0.4111	1-6981	253
Pudumadam and Madras	129	64-2770	128	63.8875	0.4991	1	$0 \cdot 3895$	0.3895	1.9813	254
Pudumadam and	96	52.0207	95	51.3875	0.5409	1	0.6332	0.6332	1-1706	3.94
Madras and Vizhingam	66	40.6269	65	40-5000	0.6230	1	0.1269	0.1269	4.9093	253
Dorsal fin rays Anal fin rays	$\begin{aligned} & 2988 \\ & 208 \end{aligned}$	$\begin{aligned} & 150.7425 \\ & 152.2944 \end{aligned}$	${ }_{2905}^{295}$	$\begin{aligned} & 147 \cdot 3894 \\ & 150 \cdot 9011 \end{aligned}$	$\begin{aligned} & 0.4996 \\ & 0.5115 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & \mathbf{8} \cdot 35312 \\ & 1 \cdot 3938 \end{aligned}$	$\begin{aligned} & 1.1177 \\ & 0.4644 \end{aligned}$	$\begin{aligned} & 2 \cdot 2371 \\ & 1 \cdot 1014 \end{aligned}$	$\begin{aligned} & 2 \cdot 62 \\ & 8.54 \end{aligned}$

Biology and Fishery of 'Choo Parai',-Selaroides leptolepis-III
Table XVI
Significance and non-significance of meristic characters of Selaroides leptolepis between years from Rameswaram, Thangachimadam, Rameswaram Road and Pudumadam

Locality		Dorsal fin rays	Anal fin rays
Rameswaram			
1957 v. 1958	\ldots	NS	NS
$1957 v .1959$	\ldots	NS	NS
$1958 v .1959$	\ldots	NS	NS
Thangachimadam			
$1957 v .1958$	\ldots	NS	NS
$1957 v .1959$	\ldots	NS	NS
1958 v. 1959	\ldots	NS	NS
Rameswaram Road			
$1958 v .1959$	\ldots	NS	S
Pudumadam			
$1957 v .1958$	\cdots	NS	NS
$1957 v .1959$	\ldots	NS	NS
$1958 v .1959$	\ldots	NS	NS

NS $=$ Non-significant. $\quad \mathbf{S}=$ Significant.
From the analyses of the regressions between places within a year and between years within a place, it is seen that the regressions of snout to second dorsal and that of snout to ventral do not differ significantly from sample to sample. Hence, it appears that the utility of these two characters in raciation is of little value. Similarly the Analysis of Variance shows no significant difference between samples with regard to the meristic character 'dorsal fin rays', indicating that this character is also not of much value in racial studies of Selaroides leptolepis.

Discussion

That populations resemble each other more if the distribution is closer to one another and as we go farther apart the differences become greater have been obsernd by De Sylva et al. (1956), Berdegue (1958), Prasad

Table XVII
Significance and non-significance of meristic characters of Selaroides leptolepis between places during 1957, 1958 and 1959

Locality	Dorsal fin rays			Anal fin rays		
	1957	1958	1959	1957	1958	1959
Rameswaram v. Thangachimadam	NS	NS	NS	NS	NS	NS
Rameswaram v. Rameswaram Road	.	NS	NS	.	S	NS
Rameswaram y. Pudumadam	NS	NS	NS	NS	NS	NS
Rameswaram v. Madras	.	NS	.	.	S	..
Rameswaram v. Vizhingam	.	NS	.	.	NS	\cdots
Thangachimadam v. Rameswaram Road	${ }^{*}$	NS	NS	. ${ }^{\text {a }}$	NS	NS
Thangachimadam v. Pudumadam	NS	NS	NS	NS	NS	NS
Thangachimadam v. Madras	.	NS	.	-•	NS	.
Thangachimadam v. Vizhingam	-	NS	.	\cdots	NS	.
Rameswaram Road p. Pudumadam	-	NS	NS	.	S	NS
Rameswaram Road v. Madras	-	NS	.	-•	S	-
Rameswaram Road v. Vizhingam	.	NS	.	.	NS	-•
Pudumadam v. Madras	..	NS	..	.	NS	.
Pudumadam v. Vizhingam	.	NS	..	.	NS	.
Madras v. Vizhingam	.	NS	..	.	NS	.

NS $=$ Non-significant. $\quad \mathbf{S}=$ Significant.
(1958 b) and may other workers. In the present study it was noticed that some of the characters were non-significant among the samples obtained from places situated far apart while others were significant. The converse, i.e., populations from closely situated places exhibited characters which were at times significantly different and at other times not, was also true.

The regression analyses of various morphometric characters and the Analyses of Variance of meristic characters showed (i) that the samples
collected during different years at the same place show significant difference and (ii) samples obtained from different centres within the same year also differ significantly. Paired comparisons of samples did not lead to any meaningful grouping of samples, indicating consistent and independent spatial or temporal groups. The only conclusions that can be drawn from the above analyses are that there exist significant statistical differences among morphometric and meristic characters of the samples drawn from different centres within the same year and among samples drawn from different years at the same place. The rather anomalous situation arising from the analyses, viz., that the regressions of some characters being significantly different between two years and not being so for another two years and similarly the regressions of some characters being significantly different between two neighbouring places but not being so between distant places, make it rather difficult to interpret these statistical differences as racial differences. Statistical differences may be due to varying ecological or other factors at different places and time that affect differently the various characters studied.

The spawning period of the fish is protracted and ecological conditions undergo considerable change during this period, and we may expect varying influence of these on some of the characters (at the time of first spawning, January-March, the temperature and salinity in the neighbourhood of Mandapam vary from $23 \cdot 5-30^{\circ} \mathrm{C}$. and $24 \cdot 76-33 \cdot 08 \%$ respectively, and at the time of second spawning, July/August to October, they range from $25 \cdot 5-30 \cdot 5^{\circ} \mathrm{C}$. and $33 \cdot 04-37 \cdot 45 \%$ respectively, Prasad, 1958 a).

Summary

The relationship between fork length and total length was found to be $\mathrm{Y}=0.0349+0.8677 \mathrm{X}$, and correlation coefficient ' r ' to be 0.9993 .

The test of linearity of the regression of fork length on total length showed that the hypothesis of linear relation was very good.

The statistical analyses of the morphometric and meristic characters on data collected during 1957-59 from different centres probably do not indicate the existence of distinct populations. The biological significance of these differences has been discussed.

Acknowledgements

My sincere thanks are due to Dr. S. Jones, Director, and Dr. R. Raghu Prasad, Deputy Director, for going through the manuscript, their criticism
and valuable suggestions. I also thank Shri S. K. Banerji, Research Officer, for the assistance rendered to me in the statistical procedures.

References

Berdegue, J. A. 1958 .. Biometric comparison of the anchoveta, Cetengraulis mysticetus (Günther), from ten localities of the Eastern Tropical Pacific Ocean. Inter-Amer. Trop. Tuna Comm. Bull., 3, 1-53.

De Sylva, D. P., Stearns, H. B. Populations of the black mullet (Mugil cephalus L.) in Florida. and Tabb, D. C. 1956 Florida State Bd. Cons. Tech. Ser. (19), 1-45.
Godsil, H. C. 1948 .. A preliminary population study of the yellowfin tuna and the albacore. Calif. Fish Game Fish. Bult. (70), 1-90.
Marr, J. C. $1955 \quad$. \quad The use of morphometric data in systematic racial and relative growth studies in fishes. Copeia (1), 23-31.

Pillay, T. V. R. 1957 .. A morphometric study of the populations of Hilsa, Hilsa itisha (Ham.) of the river Hooghly and of the Chilka Lake. Indian J. Fish., 4, 344-86.
Prasad, R. R. 1958 a . Plankton calendars of the inshore waters at Mandapam, with a note on the productivity of the area. Ibid., $5,170-88$.
\ldots __—— $1958 b$ Racial analysis of Clavelandia ios (Jordan and Gilbert) in California waters. Amer. Midl. Nat., 59, 465-76.
Sarojini, K. K. 1957 .. Biology and fishery of the grey mullets of Bengal. I. Biology of Mugil parsia Hamilton with notes on its fishery in Bengal. Indian J. Fish., 4, 160-207.

* Schaefer, M. B. 1948 . . Morphometric characteristics and relative growth of yellowfin tuna (Neothunnus macropterus) from Central America. Pacific Science, 2, 114-20.
- and Walford, L. A.

Biometric comparison between yellowftn tunas (Neothumus) of Angola and of the Pacific Coast of Cuntral America. Fish. Bull., U.S., 51, 425-43.
Tandon, K. K. 1960 .. Biology and fishery of 'Choo parai' Selaroides leptolepis (Cuvier and Valenciennes). Part I. Food and feeding habits. Indian J. Fish., 7, 82-100.

[^5]
[^0]: - Forms part of the thesis accepted for the Ph.D. degree of the Panjab University.
 § Present address: Department of Zoology, Panjab University, Chandigarh.

[^1]: D.F. $=$ Degrees of Freedom. S.S. $=$ Sum of Squares.

[^2]: D.F. $=$ Degrees of Freedom. S.S. $=$ Sum of Squares.

[^3]: D.F. $=$ Degrees of Freedom. S.S. $=$ Sum of Squares.

[^4]: D.F. $=$ Degrees of Freedom. S.S. $=$ Sum of Squares.

[^5]: * Not consulted in original.

