STUDIES ON SOME ASPECTS OF THE BIOLOGY OF THE COMMON ANCHOVY, THRISSOCLES MYSTAX (BLOCH \& SCHNEIDER)

By G. Venkataraman
(Central Marine Fisheries Research Süb-Station, Kozhikode)

INTRÓDUCTION

The anchovies form an important fishery along the Malabar Coast and contribute considerably to the fish catches during certain seasons of the year and especially during the lean years for sardines. Of the 7 species of anchovies recorded along the west coast, ${ }_{2}$ Thrissocles mystax is the most common and is caught abundantly in the commercial hauls. It has a wide distribution and is known to occur in the seas of Indja, Malay Archipelago and China. It attains a maximum length of 205 mm .

The present knowledge of the biology of Thrissocles mystax is very meagre. Chidambaram and Venkataraman (1946) have, in their account of the natural history of certain marine food-fishes of Madras Presidency, given brief notes. on the size, food, spawning season, fishery ande economic importance of the anchovies in general, along with a tabular statement showing their total landings along the west coast during the years 1937-42. Some aspects of then bionomics, methods of capture and economic importance have been dealt with by Devanesen and Chidambaram (1948). Bhimachar and Venkataraman (1952), in their studies on the fish populations along the Malabar Coast, have briefly indicated the seasonal fluctuation in the occurrence of Thrissocles mystax, along with that of four other species of Thrissocles, in the inshore waters off Calicut during 1949-50.

Material and Methods

The present stady is based on the specimens caught in the routine departmental biwcekly fish collections from the sea of West Hill, Calicut, and also of samples obtained from the commercial catches, during the years 1950-52. The specimens were analysed for their total length, weight, sex; food and gonadal condition. The majority of them were obtained from catches made with the boat-seine and gill-net, locally known as paithu vala and chala vala respectively, which form the two important nets used along this coast for capturing pelagic shoaling fish. Details of these two nets and their mode of operation have been described by Bhimachar and Venkataraman (op.cit.). For the length-frequency studies the total length of fish (from the tip of the snout to the end of the ventral fluke of the caudal fin) was taken into consideration and the specimed
were analysed for theirt size-frequencies irrespective of the gear employed. They were grouped at 10 囯m. intervals and the frequencies occurring in each sizegroup were converted into percèntages in order to facilitate comparison.

For the study of food habits, the stomach contents were analysed in detail, both qualitatively and quantitatively. They were examined either fresh or after preservation in 4\% forfflin. The various food constituents were identified, as far as possible, up to the species but in most cases up to the genera. Two methods were adopted for the quantitative estimation of food, Pearse's method (Pearse, 1915-cited by Breder and Crawford, 1922) and Points method (Swynnerton and Worthington, 1940-as reviewed by Hynes, 1950). There was close similarity between the values obtained by these two methods in respect of the seasonal variations in the abundance of the different groups of food elements. The specimens were also analysed for their sex, and, in regard to females, the gonadal stages were determined on the basis of the maturity scales fixed by the International Council for the Exploration of the Sea. In the case of males, they were noted as either mature or immature, from the size and general colour of the testes, and this was confirmed by microscopic examination.

Length-Frequency Studies

The length-frequency analyses, for those months in 1950-51 for which data are available, are givenin ${ }^{2}$ rable I wherein the figures given within brackets are the frequencies converted into percentages which are shown graphically in Fig. 1. In the length-frequency histogram for January 1950, a distinct mode at 155 mm . and another one at 35 mm . are seen, of which the latter, though not conspicuous, could be followed clearly during the subsequent months. The fish measuring 35 mm . belong to group \mathbf{A} and evidently are fish of the year, while the fish measuring 155 mm . represent group B and belong to the stock recruited during the previous spawning season, i.e., from September 1948 to May 1949. In the histogram for February 1950, two modes are seen in group A, one at 25 mm . and another at 45 mm . While the former mode represents a newly recruited stock, the latter, which is the same stock observed in January, indicates a growth of 10 mm . This modal length has further advanced to 55 mm . in March 1950. During the subsequent months of April and May 1950, growth of this group was not discernible, as the mode remained constant at 55 mm . The entry of large numbers of post-larval and juvenile anchovies into the fishery during the peak spawning period extending from November 1949 to March 1950, has apparently tended to mask the progression of this mode. This modal length increased to 75 mm . by June 1950 and it farther advanced to 95 mm . in August 1950. After this, these juvenile specimens were not represented in the subsequent samples taken in October and November 1950, indicating their absence from the fishing grounds during

Fig. 1. Histograms showing the length-frequency distribution ơf Thrissocles mystax during 1950-51,

Table I
Length-frequency analyses of Thrissocles mystax for different months during 1950 and 1951

Si	1950									1951					
in mm.	Jan.	Feb.	March	Apr 1	May	June	Augast	Oct.	Nov.	Ianuary	Feh.	Narth	April	May	Ju'y
10-20	.	$\frac{2.5)}{(0.5)}$	\cdots	\cdots	\cdots	.	\because				.	
20-30	$\stackrel{2}{(0.3)}$	$\stackrel{58}{(11-9)}$	${ }_{(2357}^{177}$..	\cdots	.	${ }_{(3.3)}^{5}$	5 (2.7)	${ }_{(4.2)}^{16}$	${ }_{(5.2)}^{15}$.	..
30-40	$\underset{(0.8)}{6}$	$\stackrel{8}{(1.7)}$	$\frac{1}{(0 \cdot 1)}$	$\begin{aligned} & 1 \\ & (0 \cdot 3) \end{aligned}$	$\stackrel{1}{(0.5)}$	$\begin{aligned} & 78 \\ & (11-2) \end{aligned}$	$\underset{(30 \cdot 2)}{60}$	${ }_{(8.8)}^{16}$	$\underset{(26-9)}{102}$	${ }_{(9 \cdot 2)}^{27}$
40-50	$\frac{2}{(0 \cdot 3)}$	${ }_{(8.0)}^{39}$	$\begin{aligned} & 33 \\ & (4.8) \end{aligned}$	${ }_{(5 \cdot 4)}^{16}$	$\stackrel{4}{(2.2)}$	$\underset{(3 \cdot 0)}{21}$.	\cdots	..	$\begin{gathered} 41 \\ (20 \cdot 8) \end{gathered}$	${ }_{(6.6)}^{12}$	${ }_{(12 \cdot 5)}^{47}$	${ }_{(8 \cdot 6)}^{25}$	${ }_{(3.0)}^{7}$..
50-60	$\stackrel{\mathbf{1}}{(0.2)}$	$11(2 \cdot 2)$	$\underset{(3 \cdot 4)}{37}$	${ }_{(6.4)}^{19}$	$\stackrel{26}{(14-8)}$	$\frac{1}{(0.1)}$	$\stackrel{(3-9)}{6}$	${ }_{(1 \overline{5} \cdot 4)}^{28}$	${ }_{(10.6)}^{40}$	$\stackrel{42}{(14-4)}$	$\stackrel{41}{(17 \cdot 4)}$	$\stackrel{1}{(0.4)}$
c0-70	.	$\mathbf{(1 . 8)}^{8}$	$\underset{(2 \cdot 3)}{18}$	$\underset{(2 \cdot 3)}{7}$	${ }_{(7.4)}^{13}$	${ }_{(1 \cdot 7)}^{11}$	$\stackrel{1}{(2.5)}$	${ }_{(1 \cdot 3)}^{2}$	$\underset{(13.7)}{25}$	$\begin{gathered} 38 \\ (10 \cdot 1) \end{gathered}$	$\stackrel{36}{(12 \cdot 3)}$	${ }_{(27 \cdot 6)}^{65}$	-
70-80	$\begin{gathered} 1 \\ (0.1) \end{gathered}$	$\underset{(0.2)}{1}$	$\stackrel{8}{(1-2)}$	$\stackrel{3}{(1 \cdot 0)}$	(1.7)	$\stackrel{5}{(5 \cdot 2)}$	$\underset{(15 \cdot 0)}{6}$	\cdots	$\stackrel{5}{(2.7)}$	${ }_{(2 \cdot 9)}$	${ }_{(12 \cdot 3)}^{36}$	${ }_{(16-5)}^{39}$	$\stackrel{8}{(3.0)}$
80-90	..	.	$\stackrel{4}{(0 \cdot \sigma)}$	$\stackrel{8}{(2 \cdot 7)}$	$\stackrel{3}{(1.7)}$	${ }_{(3 \cdot 8)}^{25}$	${\underset{(27 \cdot 5)}{11}}^{2}$	$\stackrel{2}{(1 \cdot 1)}$	$\underset{(1 \cdot 9)}{7}$	$\underset{(5.2)}{15}$	$\begin{aligned} & 35 \\ & (14 \cdot 8) \end{aligned}$	${ }_{(23 \cdot 5)}^{63}$
90-100	$\stackrel{1}{(0 \cdot 1)}$	$\underset{(0 \cdot 4)}{2}$	$\stackrel{1}{(0 \cdot 2)}$	$\stackrel{3}{(1-0)}$	$\begin{aligned} & 4 \\ & (2 \cdot 3) \end{aligned}$	${ }_{(1 \cdot 7)}^{11}$	${ }_{(35 \cdot 0)}^{14}$	\cdots	$\underset{(1 \cdot 1)}{9}$	$\underset{(0.5)}{2}$	$(1 \cdot 4)$	$\begin{gathered} (2 \cdot 6) \\ \mathbf{B}^{\prime} \end{gathered}$	${\underset{(24-3)}{6 a}}_{60}$
100-110	.	..	${ }_{(0.2)}^{1}$	$\stackrel{2}{(0.7)}$..	$\begin{gathered} 3 \\ (7 \cdot 5) \end{gathered}$	$\frac{2 \cdot 7)}{(0.7)}$	$\frac{2}{(0.8)}$	${ }_{(5.2)}^{14}$

110-120	*	$\stackrel{1}{(0.2)}$	$\stackrel{2}{(0 \cdot 3)}$	$!$		$\begin{aligned} & 10 \\ & (1.4) \end{aligned}$	$\underset{(2 \cdot 5)}{1}$	\cdots	.	*	.	"	**	**	$\stackrel{2}{(0.7)}$
: 120-130	.	$\stackrel{1}{(0 \cdot 2)}$	$\stackrel{1}{(0-1)}$	$\stackrel{5}{(1 \cdot 7)}$	$\stackrel{2}{(1 \cdot 1)}$	$\begin{aligned} & 23 \\ & (3 \cdot 6) \end{aligned}$	\cdots	$\stackrel{2}{(0.6)}$	-•	*	$\stackrel{1}{(0.6)}$	\cdots	\cdots	*	$\stackrel{2}{(0.7)}$
$\therefore 130-140$	$\begin{aligned} & 34 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 23 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 22 \\ & (3 \cdot 2) \end{aligned}$	$\stackrel{11}{(3.7)}$	$\stackrel{3}{(1.7)}$	$\begin{aligned} & 34 \\ & (4.9) \end{aligned}$	*	$\stackrel{5}{(1-4)}$	$\stackrel{2}{(0.5)}$	\cdots	$\stackrel{2}{(1 \cdot 1)}$	$\stackrel{2}{(0.5)}$	*	$\stackrel{2}{(0.8)}$	$\begin{gathered} 6 \\ (2.2) \end{gathered}$
140-150	$\begin{aligned} & 2: 3 \\ & (30.5) \end{aligned}$	$\stackrel{96}{(19-6)}$	$\begin{aligned} & 214 \\ & (31 \cdot 1) \end{aligned}$	$\begin{gathered} 79 \\ (26 \cdot 5) \end{gathered}$	$\begin{gathered} 29 \\ (16.5) \end{gathered}$	$\begin{gathered} 70 \\ (10 \cdot 1) \end{gathered}$	$\stackrel{1}{(2 \cdot 5)}$	$\stackrel{5}{(1-4)}$	$\begin{aligned} & 20 \\ & (4 \cdot 9) \end{aligned}$	$\stackrel{6}{(3.9)}$	$\begin{aligned} & 16 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 17 \\ & (4 \cdot 5) \end{aligned}$	$\stackrel{6}{(2 \cdot 0)}$	$\stackrel{5}{(2 \cdot 1)}$	$\stackrel{7}{(2 \cdot 6)}$
150-160	$\begin{aligned} & 233 \\ & (31-9) \end{aligned}$	$\begin{aligned} & 129 \\ & (24-8) \end{aligned}$	$\begin{aligned} & 226 \\ & (32 \cdot 9) \end{aligned}$	${ }_{(33 \cdot 9)}^{101}$	$\stackrel{00}{(34-1)}$	$\begin{gathered} 79 \\ (11-4) \end{gathered}$	\cdots	$\binom{53}{(15 \cdot 6)}$	$\begin{gathered} 62 \\ (15 \cdot 2) \end{gathered}$	$\begin{aligned} & 11 \\ & (7 \cdot 2) \end{aligned}$	$\stackrel{31}{(\mathbf{1 7} \cdot 0)}$	$\stackrel{34}{(9.0)}$	$\begin{aligned} & 22 \\ & (7 \cdot 5) \end{aligned}$	$\stackrel{2}{(0.8)}$	$\stackrel{6}{(2 \cdot 2)}$
160-170	$\begin{aligned} & 134 \\ & (18 \cdot 4) \end{aligned}$	$\stackrel{78}{(1<.7)}$	$\begin{gathered} 78 \\ (11-4) \end{gathered}$	$\begin{aligned} & 30 \\ & (10 \cdot 1) \end{aligned}$	$\stackrel{18}{(10.2)}$	$\begin{aligned} & 55 \\ & (7.9) \end{aligned}$	$\underset{(2 \cdot 5)}{1}$	$\begin{aligned} & 145 \\ & (42 \cdot 9) \end{aligned}$	$\stackrel{69}{(t 6.9)}$	$\begin{aligned} & 10 \\ & (6 \cdot 6) \end{aligned}$	$\stackrel{21}{(11-5)}$	$\begin{aligned} & 28 \\ & (6 \cdot 1) \end{aligned}$	$\stackrel{34}{(11-6)}$	$\begin{aligned} & 16 \\ & (6.8) \end{aligned}$	$\stackrel{27}{(10.1)}$
170-180	$\begin{gathered} 81 \\ (11.1) \end{gathered}$	$\begin{aligned} & 38 \\ & (7 \times 8) \end{aligned}$	$\begin{aligned} & 37 \\ & (5 \cdot 6) \end{aligned}$	10	$\stackrel{8}{(4-3)}$	$\begin{aligned} & 33 \\ & (4+8) \end{aligned}$	$\stackrel{2}{(5.0)}$	196 $(28 \cdot 4)$	$\begin{aligned} & 106 \\ & (25 \cdot 7) \end{aligned}$	$\stackrel{8}{(5-2)}$	$\begin{aligned} & 12 \\ & (6 \cdot 6) \end{aligned}$	$\begin{aligned} & 24 \\ & (6 \cdot 4) \end{aligned}$	$\begin{aligned} & 18 \\ & (6 \cdot 2) \end{aligned}$	$\begin{aligned} & 11 \\ & (4 \cdot 7) \end{aligned}$	$\begin{gathered} 34 \\ (12.7) \end{gathered}$
180-190	$\begin{aligned} & 12 \\ & (1 \cdot 6) \end{aligned}$	$\stackrel{5}{(1-9)}$	$\stackrel{4}{(0.6)}$	$\underset{(0 \cdot 7)}{2}$	$\stackrel{2}{(1: 3)}$	$\begin{aligned} & 20 \\ & (2 \cdot 9) \end{aligned}$	-	(8.5) ${ }^{3}$	118	$\stackrel{4}{(2 \cdot 6)}$	$\stackrel{3}{1} \cdot 7$	13	$\begin{gathered} 7 \\ (2 \cdot 4) \end{gathered}$	$(2 \cdot 1)$	$(10 \cdot 5)$
180-200	-	-	(0.1)	(0.3)	$*$	$\stackrel{7}{(1-0}$	*-	(1-2)		\because	$(0 \cdot 0)$	$=(0.5)$	$3_{(1-0)}^{3}$	-*	$\begin{aligned} & 5 \\ & (1 \infty) \end{aligned}$
: 200-210.	-•	$\underset{(i, 2)}{1}$	$\frac{1}{(0 \cdot 1\}}$		\because :	-				*	\cdots	*	*	\cdots	* --
Total	720	489	687.	298	176	693	40	338	408	153 ?	182	378	292	236	288

this period. The mode seen at 25 mm . in the histogram for June 1950 was due to the recruitment of new stock (born in April-May 1950) by the late spawners of the same season.

The modal length of group B, which was observed at 155 mm . in January ; 1950, remained constant during the subsequent months, February to June, which may probably be due to the predominance of that particular size-group in the population and also tue to the non-availability of larger-sized groups in sufficient numbers on the fishing grounds. The histogram for October 1950; when the next large collection (the sample of this group obtained in August 1950 being not representative, as the numbers were too poor) was obtained, showed its mode at 165 mm . The collection obtained in November showed a modal length of 185 mm . Judging from the wide variation in the respective modal sizes of the two foreging collections, and a growth of 20 mm . over a period of one month being nof likely, it can be inferred that the latter collection, though of group B, beldinged to an earlier stock than the preceding one.

The juvenile specimens of group A, observed last in August 1950, entered into the fishery as adults in January 1951, forming group B. The lengthfrequency histograms for the months, January to March 1951, show the mode of this group at 155 mm . andithe mode shifted to 165 mm . by April-May 1951. The histogram for July 1951 shows a further advancement of this mode to 175 mm . After this, the growth could not be followed as the samples which were obtained in the subsequent months were not large enough for the lengthfrequency analysis.

The histogram for January 1951, as in the previous year, shows the presence of a new generation of post-larval and juvenile specimens (born in November-December 1950) in the samples, which during the subsequents, months shows an increase in size, with some fluctuations, attaining a modal length of 95 mm . by July 1951.

From the foregoing account, it is seen that group A, recruited presumably during the months of November-December 1949, entered the fishery as post-larval and juvenile forms in January 1950 and attained a modal length. of 95 mm . by August 1950, in about 8-9 months. Subsequently, this stock left the fishing grounds and reappeared in the fishery in January-February 1951 with a modal length of 155 mm ., indicating a growth of 60 mm . in the course of 5-6 months. This modal length advanced further to 175 mm . by July 1951, after which its increase could not be followed since the samples in the subsequent months were not large enough to justify any conclusions. Judging from the growth-rate during the second year, it is evident that the
highest mode of 185 mm ., observed in,November 1950, was reached towards the end of the second year of its life.

Based on the observations given above, it could be deduced that the fish attains an average length of 95 mm . during the first year of its life (in the course of $8-9$ months) and of 155 mm . during the eadier part and 185 mm . at the end of its second year of life, the growth-rate duting the second year being thus comparatively very slow. It is also seen that the fishery is mainly constituted by the first-and second-year classes. It is probable that the maximum size of 205 mm . is reached by the fish during the third year of its life.

- It would be interesting to compare the age of this species of the anchovy with that of species occurring elsewhere. Clark and Pegilips:(1952), in their studies on the biotogy of the Northern anchovy, Engraulis mordax mordax Girard, have stated that the oldest anchovy in the fishery had completed seven years of life. The European anchovy, E. encrasicholus (L.), has been observed to attain a total length of $12-15 \mathrm{~cm}$., $15-18 \mathrm{~cm}$. and $18-21 \mathrm{~cm}$. in 1, 2 and 3 years respectively (Fage, 1911, 1935, 1937; Arne, 1931; Meek, 1916; and De Buen, 1931). Blakburn (1950), comparing the growith-rate of the European species with that-of $E^{\text {E }}$ australis (White) obtained from Victorian waters, Australia, observed that the growth of the former is almost double that of the latter which attains a length of only $7-8 \mathrm{~cm} .9 \mathrm{~cm}$. and $10-11 \mathrm{~cm}$. in 1,2 and 3 years respectively. The findings as regards the age and growth of Thrissocles mystax are more comparable with that of E. encrasicholus than with that of E.australls or E. mordax mordax.

Food and Feeding Habrrs

In the course of this investigation, 1,067 specimens were examined for their stomach contents, of which 132 specimens had empty stomachs. Tables II, III and IV show the variations in the percentage composition of the different food components taken by the fish during the yearis 1950, 1951 and 1952 respectively and these are represented graphically in Fig. 2 for the years 1950 and 1952 only. A brief account of the different food items and their occurrence during different periods of the year in the stomach of fish examined. is given below.

Decapods:

Prawns constituted the most dominant food of this anchovy, the average percentage for the entire period being 34.7. In 1950, they were most abundante in the stomach contents during the months, January to June. But, from the latter half of June till October, they were practically absents except fạr small numbers recorded during August. They were again noticed in appreciable quantities in the stomach contents from October to December, the maximum being in December. More or less the same trend of occurrence was noticed during 1951 and 1952 also, the prawns being dominant during the post-monsoon and summer months, which

Table II
Percentage composition of different food items taken by Thrissocles mystax during 1950

Months	No. of specimens examined	No. of specimens with empty stomachs	Percentage of fish with empty stomachs	$\begin{array}{\|c\|c\|} \\ \text { Range in } \\ \hline & \begin{array}{c} \text { length } \\ \text { in } \\ \text { mm. } \end{array} \\ \hline \text { man } \end{array}$	Stomach contents . -										
					Prawns	Acetes	Lucifer	Cope pods	Amphi. pods	$\underset{\substack{\text { Stomato- } \\ \text { pods }}}{ }$	Other crusta+ ceans	Fish	Polychates	Molluscs	Miscellaneous
January	75	-	d	135-183	64-0	.	$2 \cdot 7$	1.8	-	\cdots	0.8	3-0	23-3	"	4.4
February	100	14	14	106-192	40.7	2.0	$2 \cdot 3$	0.8	$0 \cdot 4$	15.5	2.7	1.5	33.0	-	$1 \cdot 1$
March	110	4	$3 \cdot 0$	64-201	41.0	44.4	$2 \cdot 4$	0.4	$0 \cdot 2$	$0 \cdot 4$	$1 \cdot 4$	$5 \cdot 4$	4.4	\cdots	*
April	50	**	..	135-175	18.5	$62 \cdot 4$	0.9	\cdots	0.5	..	$0 \cdot 1$	$15 \cdot 0$	$2 \cdot 6$	\cdots	-
May	24	\cdots	!	97-184	35.8	40.4	1.8	$2 \cdot 2$	0.6	-	:	14.4	*-	$4 \cdot 7$	-•
Jane	48	14	29.2	75-193 !	23.1	31.7	$2 \cdot 8$	0.6	\cdots	1.6	0.2	36.4	1.8	1.7	-
July	-	-	-	..	\cdots	;		\cdots	-	..	\cdots	\cdots	-*	-•	\cdots
August	14	6	$42 \cdot 9$	80-173	$7 \cdot 5$..	25.5	2.5	$5 \cdot 5$		8.2	24.8	24.5	*	3.5
September	7	1	14.3	85-191	.	12.5	3.7	$2 \cdot 8$	-•	-	*	49.7	26.7	-•	$4 \cdot 6$
October	20	3	15	121-186!	$21 \cdot 6$			17.5	$1 \cdot 3$	6.2	$4 \cdot 1$	15.7	31.7	1.2	-•
Novemter	31	6	19.4	151-260	30.1	$17 \cdot 4$		0.5	-	.	0.5	25.5	20.0	*	6.0
Decemter	20	-		136-195	63.5	.	$3 \cdot 0$	6.0			$2 \cdot 5$	25.0	\cdots	-	.
Average percentage					31.4	19.2	$4 \cdot 2$	3.2	0.9	$2 \cdot 0$	1.7	19.7	15.3	0.5	1.9

Table III
Percentage composition of different food items taken by Thrissocles mystax during 1951

Months	$\begin{gathered} \text { No. of } \\ \text { speci- } \\ \text { mens } \\ \text { examined } \end{gathered}$	No. of specimens with empty stomacilas	Percentage of fish with empty stomachs	Range in length in mm.	Stomach contents										
					Prawns	Actes	Lucifer	Cope pods	Amphipoots	Stomatopods	Other crustaceans	Fish	Poly. chates	Molluscs	Miscellaneous
A pril	28	-	-•	154-194	$60 \cdot 1$	20.4	$0 \cdot 2$	-	-	-•	$5 \cdot 7$	13.4	$0 \cdot 2$	\cdots	**
May	23	*	*	71-183	34.9	$41 \cdot 4$	$6 \cdot 1$	$1 \cdot 1$	$5 \cdot 1$	*	1.5	$3 \cdot 5$	-•	-•	$6 \cdot 4$
Joly	18	8	44.4	91-184	8.9	-•	1.8	0.3	$0 \cdot 6$	*	55.7	$32 \cdot 6$	-	\cdots	-
August	16	6	37.8	134-199	-	-	\cdots	0.9	\cdots	-•	0.8	60.8	13-3	*	24-2
September	2	-	-	169-187	-	\cdots	*	\cdots	\cdots	-•	\cdots	\cdots	100-0	\cdots	**
November	7	1	$14 \cdot 3$	148-193	$32 \cdot 7$.	-•	-	.	$0 \cdot 7$	18.6	$0 \cdot 6$	32.7	16.7	-•
December ${ }^{*}$	2	*	.	149-182	$100 \cdot 0$.	\cdots	\cdots	.	.	.
Average percentage					33.8	8.8	1.2	0.3	0.8	$0 \cdot 1$	11-5	15.8	20.9	2.4	$4 \cdot 4$

Table IV
Showing the percentage composition of different food items taken by Thrissocles mystax during 1952

Months	$\begin{gathered} \text { No. of } \\ \text { speci- } \\ \text { mens } \\ \text { examined } \end{gathered}$	No. with empty stomachs	Percentage of fish with empty stomachs	Range in length in mm.		Stomach contents									
						Acetes	Luciéer	Copepods	Amphi. pods	Stomatopods	Other crustaceans	Fish	Polychates	Molluscs	Miscellaneous
January	15	2	13.3	146-188	53,8	-•	\cdots	\cdots	-	46.2	-•	.	-	.	\cdots
February	- 17	1	5.9	110-201	71.1	\cdots	13.7	0.8	$7 \cdot 6$	-	-•	$4 \cdot 0$	$2 \cdot 8$	-	.
March	- 45	*	-•	55-173	30.5	$38 \cdot 4$	$5 \cdot 3$	0.9	4.5	18.2	0.4	1-3	1.3	-	1.2
April	- 64	*	\cdots	52-185	55.5	$20 \cdot 5$	$9 \cdot 3$	4.9	$2 \cdot 0$	-•	-	$5 \cdot 4$	1.9	-•	0.5
May	- 64	\cdots	-	52-192	50.6	$13 \cdot 8$	6.8	$6 \cdot 3$	16.4	-•	*	.	1.8	$3 \cdot 3$	0.8
June	- 6	6	100	134-168	-•	*	-•	\cdots	\cdots	-•	-•	\cdots	.	\cdots	-•
july	- 36	- 24	68.7	142-200	$25 \cdot 3$!	-	2.5	$5 \cdot 7$	7-2	*	$3 \cdot 6$	41.0	$9 \cdot 8$	-	$4 \cdot 9$
August	- 9	1	11.1	185-200		..	23.1	2.9	-*	\cdots	$8 \cdot 6$	62.5	$2 \cdot 8$	\cdots	-
September	. 70	15	19.7	135-199		-	$2 \cdot 3$	23.1	6.1	10.0	$10 \cdot 6$	8.0	38.4	-	1.5
October	- 58	7	12.1	135-191	31.8	$6 \cdot 6$	-	$2 \cdot 0$	4.8	$3 \cdot 3$	$6 \cdot 4$	6.2	28-9	*	\cdots
November	- 41	5	12.2	195-185	41.3	\cdots	4.9	1.9	$0 \cdot 7$	$3 \cdot 3$	*	9.4	33.6	*	4-9
December	51	11	21-6	129-187	64.8	..	2.2	.	-•	.	10.8	22.2	.	\cdots	-
Average percentage	1				38.6	$7 \cdot 2$	6.4	$4 \cdot 4$	4.5	. 7 -2	3.7	-14.5	11.8	0.3	1.3

Fig. 2. Histogram showing the variation in the occurrence of lifferent food organisms in the stopach of Thrissocles mystax during different months in 1950-51.
extend from September to February and from March to May respectively. The three most common species of prawns forming the food of this fish were Penaus indicus, Parapencopsis stylifera and Metapenaus dobsoni. Another common decapod, that formed an important constituent of the food, was the small shrimp, Acefes dispar. It was abundantly consumed during the summer months of March-May 1950 and during the first half of June, after which it was totally absent in the stomach contents till the end of the year, except for brief periods in September and November. Its abundant occurrence in the stomach contents was again noticed during the summer months of 1951 and 1952. LuCifer "was a common form present in the stomach contents almost all through the year, both in 1950 and 1952, and its maximum occurrence was in August during both the years, while in 1951 it was in May.

Copepods.--Copepods constituted an importantitem of ciet and were in evidence during both the pre-monsoon and post-monsoon periods; with occasional occurrrence during the monsoon months. The peak of their occurrence in the stomachs was noticed in October 1950 and in September 1952. The most common copépods observed were Pseudodiaptomus mertoni, Temora turbinata, Centropages alcocki, Paracalanus sp., Euterpina sp., Caligus sp. and Acartia sp.

Amphipods.-Amphipods, the most common form being Cheiriphotis megacheles, constituted good proportions of its diet during some months in 1952, whife during the two earlier years their presence in the stomach contents was very poor.

Stomatopods.-The stomatopod, Squilla, was occasionally present in large numbers in the stomach contents during the post-monsoon period, as was noticed in January 1952.

Other crustaceans.-Among other crustaceans the cladoceran, Evadne, formed the main food with which the stomachs on some occasions were practically gorged, especially during the rainy months of July and August. Penæid larvæ, zea and megalopa stages of crabs, small crabs and mysids were also observed commonly in the stomach contents, mainly during the post-monsoon months. Larvæ of Hippa and Cirripede also formed part of its food.

Fish-Both adult and post-larval fish constituted a major food item during the months, June-September. As most of the fish noticed in the stomach contents were in a digested condition or only fragments of it were present, it was not possible to determine their identity.

Polychotes.-Polychætes (mainly Prionospio pinnata) were one of the doneinant food items of this fish, mainly occurring during the post-monsoon period. They were abundantly present during January and February and from August-November 1950. They were again noticed during August-December 1951, the maximum being in September. More or less the same trend of occurrence in the stomach. contents was noticed in 1952 also, the largest number recorded being in October,

Mollus.s.-Larval bivalves were rave in the stomach contents and were present in appreciable numbers only on one occasion in November 1951.

Miscellaneous.-The diatoms were placed under the miscellaneous group, as they were poorly present in the stomachs of this fish and formed an insignificant part of its diet. The common diatoms observed in its stomach were Coscinodiscus and Pleurosigma. Included under the miscellaneous is also the chetognath, Sagitta, some numbers of which were present in the stomach contents on very few occasions. Under this section are also included a few unrecoguizable.and unidentified organisms.

A close correlation between the stomach contents of Thrissocles mystax and the organisms available in its environment could be made out. The three species of prawns, Penaus indicus, Metapeneus dobsoni and Parapencopsis stylifera, which form the main food of this anchovy during the postmonsoon and summer months, also occur abundantly during the same period in the inshore area off West Hill, Calicut, from where most of the specimens examined "for" food were obtained. Again, the small shrimp, Acetes dispar, which is plentiful in the inshore area off West Hill during the summer months of March, April and May, showed a corresponding dominance in the stomach contents also. The decline in the occurrence of prawns and Acetes noticed in the stomach contents autring the monsoon monthis coinedded with their poor fishery during the same period in the inshore area. Instéad, the fish fed mostly on adult and post-larval fishes, as shown by a steep rise in their occurrence in the stomach contents during this period. As already stated, polychates (mainly Prionospio pinnata) form one of the chief items of its food. Seshappa (1953), in the course of his studies on the inshore sea bottom fauna of West Hill, stresses the importance of this polychæte as fish food and states " Prionospio pinnata is about the most important member of the bottom infauna of the West Hill sea, both from the point of view of abundance and from the point of value as fish food. \because. The recolonisation of this spozies in the inshore area after a temporary: absence during the monsoon months due to adverse conditions, takes place in September. The polychate occurs abundantly till May of the following year, and it is during this period, especially during the earlier part, that it was noted in large numbers in the stomach contents. Among the minor items of food, the cladoceran, Evadne, showed a distinct dominance in the stomach contents during the rainy season, which also forms the abundant season for the cladocerans in the plankton as observed by George (1953). Copepods, which occurred abundantly in the stomachs of this fish during September and October, have also been noticed in appreciable numbers in the plankton during the same period.

The fish shows intense feeding during the period in hemediately following the monsoon, which is also its maturing period. The peak of its feeding is reached during the months, December to May, when the stomachs of all the specimens were generally gorged with prawns and Acetes. But a decline in the feeding interity is noticed during the monsoon months, as judged from the relatively higher percentage of fish showing empty stomachs.

From an analysis of its food, it is seen that the fish is mainly a carnivore. It may be mentioned that a similar carnivorous food habit, with crustaceans forming the major food item, has been observed in the allied species of anchovy Thrissocles hamiltonii (Grey), T. purava (Ham.) and Setipinna phasa (Ham.) by Mookerjee and Mookerjee (1950), Bal and Bapat (1950) and Jones and Menon (1951). Thrissocles mystax feeds at all levels as shown by the presence of pelagic crustaceans, fish and fish larve and bottom-living polychætes. Zooplanktonic elements were more common in the stomach contents than phytoplanktonic elements. Some differences in the feeding habits of juvenile and adult specimens were noticed. Juvenile specimens showed a marked preference for Lucifer, Acetes, larval penæids and fish post-larvæ, while larger specimens preferred prawns, fish and polychætes. The presence of small numbers of Sqgitta in the stomachs on a few occasions could only be regarded as a rare inclusion.

Spawning Period

The accompanying table (Table V) shows the percentage of mature and immature females (graphically represented in Fig. 3) observed in each month during the years 1950 and 1951. Those females which showed ovaries in stage IV and above were included under the category of mature specimens while the rest were counted as immature specimens.

It is seen that this fish has a prolonged spawning season extending over a period of 8 months from September to May of the following year. But its maximum spawning activity is limited to the November-March period, judging from the largest percentage of mature specimens recorded during this period. During the subsequent months of April and May, there was a decline in the percentage of mature specimens, the immature ones predominating the collections. During the months June-August, specimens of all sizes, including adult ones, were immature with an appreciable increase in their fat contents.

As ripe and oozing specimens, fertilized eggs or early larva were not obtained from the inshore area during the period of the investigation, it is probable that the spawning takes place elsewhere. But, in the case of

Tarle V
Parcentage of mature and immature fish during 1950-51

Months		No. of females		Percentage of mature fish 92.9	Percentage of immature fish$7 \cdot 1$	Months		$\begin{gathered} \begin{array}{c} \text { No. } \\ \text { of } \\ \text { females } \end{array} \\ \hline 20 \end{gathered}$		Percentage of mature fish75.0	Percentage of immature fish $25 \cdot 0$
January	1950	.	28			January	1951				
February	1950	.	35	$92 \cdot 1$	7.9	February	1951	\cdots	14	78.6	21.4
March	1950	.	49	73-1	26.9	March	1951	\cdots	68	72-1	27.9
April	1950	.	26	26.9	$73 \cdot 1$	April	1951	\ldots	67	$47 \cdot 8$	$52 \cdot 2$
May	1950	..	12	$16 \cdot 7$	$83 \cdot 3$	May	1951	\cdots	32	$6 \cdot 3$	93.7
June	1950	.	27	-	$100 \cdot 0$	June	1951	.	5	.	$100 \cdot 0$
July	1950	..	4	.	$100 \cdot 0$	July	1951	.	82	.	$100 \cdot 0$
August	1950	.	11	.	100.0	August	1951	\cdots	3	-•	100.0
September	1950	.	6	$33 \cdot 3$	$66 \cdot 7$	September	1951	.	42	59.5	40.5
October	1950	.	41	$48 \cdot 8$	$51 \cdot 2$	October	1951	\cdots	13	63.8	46-2
November	1950	\cdots	181	$95 \cdot 6$	$4 \cdot 4$	November	1951	.	20	85.0	15.0
December	1950	-•	9	$66 \cdot 7$	$33 \cdot 3$	December	1951	.	4.	$75 \cdot 0$	25.0

Fig. 3. Histograms showirg the percentage of mature and immature fenales for each month in 1950 and 1951. Black represents stages IV ard above, while blank represer ts stages Ito III.

Thrissocles purava, Palekar and Karandikar (1952) state that "the species visits Bombay shores mainly for spawning" twice a year.

Size at First Maturity
The table shown below gives the numbers of mature and immature females and also the percentage of matime fomaler in mencinnmes sispogroup from the samples taken during the peak of their spawning season.

Table VI
The number of mature and immature females and percentage of mature fish in each 10 mm . of length

Length in mm .		Total fish observed	Number mature	Number immature	Percentage mature
20-30		21	0	21	0.0
30-40		24.	0	. 24	0.0
40-50		32	0	32	0.0
50-60		40	0	40	0.0
60-70		35	0	35	0.0
70-80	**	45	0	45	0.0
80-90	-	23	0	-23	$0 \cdot 0$
90-100		15	0	15	0.0
100-110		. 11	0	- \% Whin	$\cdots 0.0$
110-120		12	-. 0	12	0.0
120-130		2	0	2	0.0
130-140		20	5.	15	25.0
140-150		28	- 17	11	$60 \cdot 7$
150-160		52	49	3	94.2
160-170		40	39	1	$97 \cdot 5$
170-180		62	62	.	$100 \cdot 0$
180-190		101	101	*	$100 \cdot 0$
190-200	,	37	37	. .	$100 \cdot 0$
200-210		1	1	-•	$100 \cdot 0$

The results show that 25.0% of the specimens were mature at $130-140 \mathrm{~mm}$., $60 \cdot 7 \%$ at $140-150 \mathrm{~mm} ., 94 \cdot 2 \%$ at $150-160 \mathrm{~mm}$. and $97 \cdot 5 \%$ at $160-170 \mathrm{~mm}$., and practically all the specimens over 170 mm . were mature. No mature specimens were noticed among the size-groups below 130 mm . Since 60.7% of the specimens were mature at $140-50 \mathrm{~mm}$. it can be stated that first maturity is attained at a length of $140-50 \mathrm{~mm}$. by the end of the first year of its life or beginning of the second year.

Length-Weight Relationship

In order to hind out the length-weight relationship, the individual weights and measurements of 175 specimens, ranging in size from 50 mm . to 200 mm ., were recorded. The entire size-range was divided into eight size-groups, each at 20 mm . interval. The average length and weight of all the observations in each gioup were recorded. The length-weight: relationship was determined through the use of the general formula $W=A L^{k}$, where W and L represent the weight and length of the fish respectively and A and k are the constants. The formula worked out to be

$$
W=\cdot 0000003776 L^{2 . \theta 12}
$$

where the value of k is very near three. From the above formula the calculated value of \mathbf{W} was derived for the given value of \mathbf{L}. It is seen from Table VII (and Fig. 4) that both calculated weights and the corresponding observed weights agree closely with one another and the weight of the fish varies almost as the cube of the length, the length-weight relationship thus showing a normalepattern.

Table VII
Average observed and calculated weights of Thrissocles mystax

Size-group in mm.	Number of observations	Length (average)	Weight ing. (average)	Calculated weight ing.
$50-70$	4	62.25	2.27	1.985
$70-90$	10	81.00	3.4	3.969
$90-100$	9	101.77	7.94	7.655
$110-130$	3	120.66	11.91	12.474
$130-150$	60	141.77	20.13	20.696
$150-170$	46	156.00	25.23	25.799
$170-190$	38	176.18	36.00	36.855
$190-210$	4	192.25	46.21	47.628

Studies on Otoliths and Scales
Detailed examination of the otoliths and scales of the fish of different sizes for the presence of growth rings was carried out. No growth rings were

Fig. 4. Calculated length-weight curve (solid line) fitted to the average observed length-weight values (black dots).
noticed in otoliths even after careful scrutiny following the method adopted for the study of the otolith of the oil sardine (Nair, 1949). But a detailed examination of the scales indicated the presence of distinct ${ }^{2}$ growth rings along with a number of false ones. Growth rings were not observed in specimens measuring less than 14 cm ., while in specimens measuring $14-20 \mathrm{~cm}$. the number of rings varied generally from 1 to 3 , though any definite relationship with the size of the fish could not be established. From the observations so far made, it has not yet been possible to draw any positive correlation between the size of fish and the number of rings.

Fishery

Table VIII (as also Fig. 5) given below shows the annual estimated landings of the anchovies from the data maintained in the fish-curing yards in the South Kanara and Malabar Coasts for a period of 28 years, from 1925 to 1953. Of the few species of anchovies included in these landings, Thrissocles mystax was the most common form constituting the largest portion of the catches and as such a general picture of the fluctuations seen in the fishery of this species could be made out,

Table VIII
The estimated landings of anchovies along the West Coast (South Kanara and Malabar) from 1925-53

Seasons	Landings in maunds	Seasons	Landings in maunds
$1925-26$	8,852	$1939-40$	9,336
$1926-27$	13,050	$1940-41$	10,384
$1927-28$	10,782	$1941-42$	8,737
$1928-29$	11,281	$1942-43$	1,633
$1929-30$	2,642	$1943-44$	5,026
$1930-31$	2,040	$1944-45$	20,251
$1931-32$	5,660	$1945-46$	15,951
$1932-33$	4,929	$1946-47$	9,759
$1933-34$	4,992	$1947-48$	52,854
$1934-35$	5,105	$1948-49$	4,634
$1935-36$	11,240	$1949-50$	3,380
$1936-37$	11,305	$1950-51$	1,020
$1937-38$	16,039	$1951-52$	2,088
$1938-39$	15,807	$1952-53$	3,819

It is seen that there was an irregular fluctuation in the abundance of the fishery at intervals ranging from 2 to 6 years. Only during 11 seasons did the annual landings along the Malabar and South Kanara coasts exceed 10,000 maunds, while during other years the landings were considerably less. The highest landing was in 1947-48 when 52,854 maunds were obtained and the lowest was in 1950-51 when only 1,020 maunds were recorded. The average annual landings for the entire period is about 9,736 maunds. It is significant to note that during the years 1944-48, there was a marked increase in the landings of the anchovies, when the oil-sardine fishery was poor:

Frg. 5. The annual total landings of anchovies in the South Kanara and Malabar Coasts for the years 1925-26 to 1952-53.

Summary

The results reported here on the biology of the anchovy, Thrissocles mystax, are based on a study of the specimens occurring in experimental hauls from the inshore area off West Hill, Calicut, and also of material obtained from the commercial catches during the years 1950-52.

The length-frequency studies show that the fish attains an average length of 95 mm . during the first year of its life (in the course of 8-9 months), and 155 mm . during the earlier part'and 185 mm . at the end of the second year of its life, the growth during the second year being comparatively slow. The fishery is mainly constituted by the first and second-year classes. It is probable that the maximum size of $\mathbf{2 0 5 ~ m m}$. is reached by the fish during the third year of its life.

A detailed study of the food and feeding habits shows that it is mainly a carnivore, prawns, Acetes, polychates, and fish forming the major items of its food. A close correlation between the seasonal abundance of the different food items taken by the figh and their corresponding dominance in the foreshore waters could be mad out. It shows intensive feeding during the postmonsoon and summer months with the peak during December-May, A decline in the feeding intensity is noticed during the monsoon months.

The species has a prolonged spawning season extending over a period of months from September to May, though the maximum spawning activity is
limited from November to March. It attains first maturity at a length of $140-150 \mathrm{~mm}$. by the end of first year or beginning of the second year of its life.

Growth rings could not be made out in otoliths. A careful examination of the scales of specimens measuring $14-20 \mathrm{~cm}$. indicated the presence of distinct growth rings which generally varied from 1 to 3 . From the observations so far made on the scales, it has not yet been possible to draw any positive correlation between the size of fish and the number of rings.

The estimated annual landings of the anchovies along the West Coast (South Kanara and Malabar) for the years 1925-53 show irregular fluctuations. A marked increase in the landings of anchovies was noticed during some years when the oil-sardine fishery was poor.

Acknowledgements

1 wish to express my grateful thanks to Dr. N. K. Panikkar and Dr. B. S. Bhimachar for guidance and valuable suggestions. I am also thankful to Dr. S. Jones and Shri R. Velappan Nair for the helpful criticisms and also to Shri M. Krishna Menon, Dr. G. Seshappa and Shri L. R. Kasturirangan for help in the identification of some of the food constituents. My thanks are also due to Shri P. I. Chacko and Shri G. K. Kurian, Assistant Ditectors of Madras Fisheries Department, for making available the data relating to the estimated landings of anchovies presented in this paper.
*Arne, P. 1931 .. Contribution a l'étude de l'anchois (Engraulis encrasichofus L.) du Golfe de Gascogne. Rev. Trav. Off. Pêches Marit., 4 (2), 153-81.
Bapat, S. V. and Bal, D. V. The food of some young clupeids. Proc. Indian Acad. Sci., 1950
Bhimachar, B. S. and Venkataraman, G. 1952 32 B (1), 39-55.

Blackburn, M. 1950 . A biological study of the anchovy, Engraulis australis (White), in Australian waters. Aust. J. Mar. Freshw. Res., 1 (1), 3-84.
Breder, C. M. and Crawford, The food of certain minnows. Zoologica, 2 (14), 287-327. D. R. 1922

Chidambaram, K. and Venkataraman, R, S. 1946

Tabular Statements on the Natural History of Certain Marine Food Fishes of the Madras Presidency-West Coast. Govt. Press, Madras, 1-26. .
Clark, F. N. and Philiips, J. B. The northern anchovy (Engraulis mordax mordax) in the Cali1952
*De Buen, F. 1931

Devanesen, D. W. and Chidambaram, K. 1948
fornia fishery, Calif. Fish. and Game, 38 (3), 189-207.
Clupéidés et leur pêche (4e Rapport). Rapp. Comm. Int. Mer. Médit., 6, 289-336.
The Common Food Flshes of the Madras Presidency. Govt: Press, Madras. 1-79.
*Fage, L. 1911 .. Recherches sur la biologie de l'anchois (Engraulis encrasicholus Linne.). Ann. Inst. Océanog. Monaco, 2 (4).
.. L'anchois de la Mer du Nord (Engraulis encrasicholus L). et. L'assèchement du ZuiderZée. Bull. Inst. Océanog. Monaco, No. 668.
.. La ponte et les races locales de l'anchois de la Méditerranée (Engraulis encrasicholus L.). Rapp. Comm. Int. Mer. Medit., 10, 67-71.
George, P. C. 1953 . The marine plankton of the coastal waters of Calicut with observations on the hydrological conditions. J. zool. Soc. India, 5 (1), 76-107.
Hynes, H. B. N. 1950
.. The food of fresh-water stickle-backs (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. J. Anim. Ecol., 19 (1), 36-58.
Jones, S. and Menon, P. M. G. Observations on the life-history, bionomics and fishery of the 1951 Gangetic anchovy, Setipinna phasa. (Ham.). J. zool. Soc. India, 3 (2), 323-33.

Meek, A. 1916
Mookerjee, H. K. and
Mookerjee, P. S. 1950
Nair, R. V. $1949 \quad$. The growth rings on the otoliths of the oil-sardine, Sardinella longiceps Cuv. and Val. Curr. Sci., 18 (1), 9-11,
___ and Chidambaram, K. A review of the Indian oil sardine fishery. Proc. Mat. Inst.

1951
Palekar, V. C. and Karandikar, K. R. 1952

Pearse, A. S. 1915 .. On the food of the smali shore fishes in the waters near Madison, Wisconsin. Bull. Wis. Nat. His. Soc., 13.
Seshappa, G. 1953 .. Observations on the physical and biological features of the inshore sea bottom along the Malabar Coast. Proc. Nat. Inst. Sci. India, 19 (2), 257-79.
Swynnerton, G. H. and
.. Note on the food of fish in Haweswater (Westmorland). Worthington, E. B. 1940 Scl. Indla, 17, 71-85.
Maturity and spawning period of Thrissocles purava (Ham.) as determined by cva-diameter measurements. Proc. Indian Acad. Scl., 35 B (4), 143-153.

* Cited by Blackburn, 1950.

