RIBBONFISH FISHERY OF KAKINADA DURING 1974-1976

Y. Appanna Sastry
Central Marine Fisheries Research Institute Centre, Kakinada.

Abstract

The ribbonfish fishery of Kakinada during 1974-76 based on the landings by commercial trawlers showed that the annual catches varied from 371.6 to 632.4 tonnes and on an average formed 6.3% of the toltal fish catch. Among the six ribbonfish species, Trichiurus lepturus dominated and accounted for 73% of the total ribbonfish landings. The seasonal abundance and species composition of all the ribbonfishes; the length-weight relationships in L. gangelicus and T. russelli; and the peniodicity of spawning in L. gangeticus are presented in the paper.

Introduction

An estimated 68,353 tonnes of ribbonfish were landed during 1976 (C.M.F.R.I. Newsletter No, 6, 1977), which formed about 5% of the total marine fish catch. Considerable information is available on aspects of taxonomy, biology and fisheries of ribbonfishes (Prabhu 1955, James 1967, Gupta 1967a, b and 1968, Silas and Rajagopalan 1974 and Narasimham 1976). The data on ribbonfish fishery of Kakinada, collected from trawler landings during 1974-76 are discussed and notes on some aspeots of biology of L, gangeticus and T. russelli are presented in this paper.

Material and Methods

Three types of mechanised boats of the length range $9.14 \mathrm{~m}-11.4$ tm fitted with 20-75 H.P. engines operated daily varying from 6 to 12 hours of otter trawling off Kakinada (Lat. $16^{\circ} 35^{\prime} \mathrm{N}$ to $17^{\circ} 25^{\prime} \mathrm{N}$ and Long. $82^{\circ} 20^{\prime} \mathrm{E}$ to 83° $10^{\prime} \mathrm{E}$) in the depth range of $5-70$ metres. Weekly observations were made and about 20% of the boats were examined for catch particulars and species composition. Further details regarding the craft, gear and the method of data collection are given by Muthu et al (1975). Since boats of three different sizes fitted with engines of different horse power, were engaged in fishing the area, the effort was standardised with respect to "Sorrah," which was the largest and most consistant of all the vessels. The catch per hour of trawling (standard effort) is taken as an index to denote the abundance of fish in the area. On each observation day, a minimum of 3.5 kg of ribbonfish sample was collected to study the species composition and length-frequency distribution of the component species. The
length-weight relationships of Lepturacanthus gangeticus and Trichiurus russelli were calculated by the least square method using the formula $\log W=\log a+b$ $\log L$ where $W=$ the weight of fish in grams and L the length in mm. Unless otherwise stated, the total length was measured. Based on a sample of 17 fish and 500 ova from each fish the spawning periodicity in L. gangeticus was studied.

Fishery

In Tables 1, 2 and 3 are presented data on the month-wise estimated catches, \% composition and catch rates in respect of the six species of ribbonfishes for the years 1974,1975 and 1976 respectively.

The study brings to light that the ribbonfishes constitute a multispecies fishery, and formed 6.3% of the total fish catches landed by trawlers off Kakinada. Among them T. lepturus was dominant forming 73.0%, followed by L. gangeticus 12.9%, L. savala 4.6% and E. muticus 4.2%. The success of the ribbonfish fishery depended upon the pattern of the landings of T. lepturus while the other species were of little consequence to the fishery. The ribbonfishes were available throughout the year; with the peak season varying between years. Best catch rates, however were obtained generally during March-May and AugustOctober.

Length-Frequency Distribution

T. lepturus: Based on the length ranges observed in 1974 (131-769 mm); 1975 $(128-764 \mathrm{~mm})$; and $1976(185-1022 \mathrm{~mm})$ and on the observations made by Narasimham (1976) on the growth of the species, it was evident that age structure of the bulk of the catches was limited to zero- and one-year-old fish (Fig 1).

Other species: The percentage length-frequency distribution pooled for the three yeans for the other ribbonfish species are also given in Fig. 1. L. Savala had a size range of $225-645 \mathrm{~mm}$ with modes at 375 and 525 mm . In L. gangeticus the size range varied from $195-585 \mathrm{~mm}$ with a conspicuous mode at 375 mm . The size range observed in T. russelli was $131-535 \mathrm{~mm}$ with a prominent mode at 345 mm . In E, muticus there was considerable variation in the size which ranged from $221-679 \mathrm{~mm}$, with two distinct modes at 315 and 525 mm . Unlike in its congener, the size in E. glossodon is narrow and ranged from 282 to 469 mm with a distinct mode at 345 mm .

Length-Weight Relationship

L. gangeticus: The logarithmic regression equations calculated from data on 57 males ranging in sizes from 64 to 143 mm and 54 females from 86 to 157 mm . (sount-vent lengths) are as follows:-

$$
\begin{aligned}
& \text { Males }: \log W=-4.6898+2.9902 \log \mathrm{~L} . \\
& \text { Females }: \log W=-4.3564+2.8186 \log \mathrm{~L}
\end{aligned}
$$

Table 1. Month-wise ribbon fish species composition (kg), catch rates ($\mathrm{kg} / \mathrm{hr}$) and their percentages in all ribbonfish for 1974.

Species		Jan	Feb	Mar	Apr	May		$J u$	Aug	Sep	Oct	Nor	Dec	Totals
T. lepturus		341	10555	22355	19460	10712	2511	6786	78770	18639	30351	53620	6208	260308
\%		28.0	90.40	79.60	35.10	52.89	26.96	46.40	91.64	51.57	82.35	95.58	39.07	70.06
catch rate		0.02	0.43	1.10	1.27	0.75	0.22	0.48	5.47	1.81	2.52	4.43	0.65	1.47
r. russelif		877	969	-	12010	269	-	-	-	4742	-	2261	8856	29984
\%		72.0	8.30		21.60	1.33	- -	--	-	13.12	-	4.03	55.74	8.07
catch rate		0.05	0.04	\longrightarrow	0.78	0.02		\cdots	-	0.46	-	0.19	0.92	0.17
E. muticus		-	152	-		410	-	1072	963	3394	641	-	464	7105
\%		-	1.30	\square		2.07	-	7.32	1.12	9.39	1.74		2.92	1.91
catch rate		-	0.01			0.03		0.08	0.07	0.33	0.05		0.05	0.04
L. gangeticus		-	-	5736	20020	8047	693	4788	6223	9224	3432		336	58501
\%		-	-	20.40	36.10	39.75	7.44	32.74	7.24	25.52	9.31	-	2.11	15.74
catch rate		.-		0.28	1.31	0.56	0.06	0.34	0.43	0.90	0.29	-	0.03	0.33
L. sarala		-	-	-	3950	729	6111	1781	-	-	1625	-	- -	14196
\%		-		\square	7.10	3.60	65.60	12.18	-	-	4.41	——	-	3.82
catch rate		--	-	-	0.26	0.05	0.54	0.13	-		0.41	-	-	0.08
E. glossodon		-	-	\square	-	72	-	198	—	145	807	219	24	1465
\%		-	-	\cdots	-	0.35	-	1.35	-	0.40	2.19	0.39	0.15	0.01
catch rate		-				0.01	-	0.01		0.01	0.07	0.02	0.02	0.01
Total carch		1218	11676	28091	55440	20250	9315	14625	85956	36144	36856	56100	15888	371559
Catch rate		0.07	0.48	1.38	3.62	1.42	0.82	1.04	5.97	3.51	3.07	4.64	1.65	2.10

Table 2. Month-wise ribbonfish species composition (kg), catch rates (kg/hr) and their percentages in all ribbonfish for 1975.

Species	Jan	Feb	Mar	Apr	May	$J u n$	$J u I$	Aug	Sep	Oct	Nov	Dec	Totals
T. lepturns	9606	4472	23379	19540	31671	28962	7340	74944	48171	29790	10350	5106	293331
\%	53.39	45.45	98.52	95.55	93.93	81.10	83.79	80.62	97.65	48.74	75.99	51.48	77.78
Catch rate	0.92	0.38	1.57	1.08	2.06	2.28	0.40	3.66	2.77	1.75	1.13	0.25	1.58
T. russelli	4705	5368	351	681	169	-	280	47	710		-	4812	17123
\%	26.15	54.55	1.48	3.33	0.50	-	3.20	0.05	1.44	-	-	48.52	4.54
Catch rate	0.45	0.46	0.02	0.04	0.01	-	0.02	0.002	0.04	-		0.24	0.09
E. muticus	2961					--	150	13609		18306	170	-..	35196
\%	16.46	-	-	-	-	--	1.71	14.64	-	29.95	1.25	-	9.33
Catch rate	0.28	-		-	-	6750	410			1.07	0.02	-	0.19
L. gangeticus	376			229	1860	-	0.01	0.66	\square	8697	1870		20192
\%	2.09			1.12	5.52	18.90	4.68	-	-rem	14.23	13.73		5.35
Catch rate	0.04	-	-	0.02	0.12	0.53	0.02		-	0.51	0.20	\cdots	0.11
L. savala	$\underline{\square}$				-	--	480	4360	449	4327	1230		10845
\%	-	-	-	-	-	-	5.48	4.69	0.91	7.08	9.03		2.88
Catch rate	-	-	-	-	-	-	0.03	0.21	0.03	0.25	0.13		0.66
E. glossodon	344	-	-	-	-	-	100	-	-	-			444
$\%$	1.91	-	-	-	-	-	1.14		-	-	--		0.12
Catch rate	0.03			-	-	-	0.01						0.002
Total eatch	17992	9840	23730	20450	33700	35712	8760	92960	49330	61120	13620	9918	377132
Catch rate	1.72	0.84	1.59	1.14	2.19	2.81	0.49	4.53	2.84	3.58	1.48	0.49	2.03

Table 3. Month-wise ribbonfish species composition ($k g$), catch rates ($\mathrm{kg} / \mathrm{hr}$) and their percentages in all ribbonfish for 1976.

Species	$J a \prime$	Feb	Mar	Apr	May	Jun	$J u l$	Aug	Sep	Oct	No.	Dec	Totals
T. lepturts	26.55	9863	91440	51854	41321	-	4360	60591	121941	56227	11903	1956	454111
\%	87.54	93.59	90.84	67.12	45.88	_-.	46.19	74.66	74.91	82.80	81.39	\$2.49	71.80
Cutch rate	0.09	0.46	3.93	2.53	2.59	-	0.30	2.37	4.27	3.01	1.48	0.28	1.91
T. russelli	378	676	4630	9556	-	\cdots	,	2776	__			1683	19699
\%	12.46	6.41	4.60	12.37	-	- -	-	3.42	-	——	-	45.18	3.11
C. toh rate	0.01	0.03	0.20	0.47	-	.	\cdots	0.11				0.24	0.08
E. muticos	-	-	--	-	-	1522	680	171-2	7162	3008	1653	--	15737
\%	-					13.52	7.20	2.11	4.40	4.43	11.30	-	2.49
Catch rate	-	-	-	-	--	0.07	0.05	0.07	0.25	0.16	0.2]	\cdots	0.07
L. gangeticus	--	-	4590	15104	47959	5957	2980	7223	12892	2316	-_	-	99021
$\%$	-	-	4.56	19.55	53.25	52.90	31.57	8.93	7.92	3.41		-	15.66
Catch rate	-	-	0.20	0.74	3.00	0.26	0.20	0.28	0.45	0.12	-		0.42
L. starala	-	-	--	742	784	3781	1420	8854	$1937!$	3585	-	62	38599
\%	-	\ldots	- -	0.96	0.87	33.58	15.04	10.91	11.90	5.28	-	1.67	6.10
Catch rate	-	-	-	0.04	0.05	0.16	0.10	0.35	0.68	0.19		0.01	0.16
E. glossodon	-	-	-	-.	-	$\underline{\square}$	-	-	1417	2371	1069	25	5282
\%	-	-	-	\cdots	-		-	-	0.87	4.08	7.31	0.66	0.54
Catch rate			--				--		0.05	0.15	0.13	0.004	0.02
Total citch	3033	10539	100660	77256	90064	11260	9440	81156	162783	67997	14625	3726	632449
Catch rate	0.10	0.49	4.33	3.78	5.64	0.49	0.65	3.18	5.70	3.63	1.82	0.53	2.66

FIG. 1. Length-frequency distribution of ribbonfish species.

Analysis of covariance (Snedecor 1961) of the two regression equations showed (Table 4) that the regression co-efficients did not differ significantly. So the sexes were combined and the resultant regression equation was:
$\log W=-4.4385+2.8615 \log \mathrm{~L}$.
With the corresponding parabolic equation:

$$
W=0.00003633 L^{2.8615}
$$

T. russelli: The material comprised of observations on 48 males in the length range $238-442 \mathrm{~mm}$ and 49 females in the range $262-535 \mathrm{~mm}$. The logarithmic regression equations obtained are as follows:-

Males $: \log W=-5.7048+2.8018 \log \mathrm{~L}$.
Females : $\log \mathrm{W}=-7.4754+3.4925 \mathrm{~L}$.
Table 4. Analysis of Covariance of the length-weight relationship of L. gangeticus

	N	$N-1$	$\Sigma(x-\bar{x})$	$(y-\bar{y})$	$\Sigma(x-\bar{x})^{2}$	$\Sigma(y-y)^{2}$	$b \Sigma(x-x)$	$(y-\bar{y})$	$\Sigma(y-Y)^{2}$
	N^{2}								
Males	57	56	1.1001	0.3679	3.3610	3.2895	0.0715	55	
Females	54	53	0.6542	0.2321	1.8968	1.3439	0.0529	52	
Total	111	109	1.7543	0.6000	5.2578	5.1334	0.1244	107	

$\mathrm{N}=$ Number of observations. $\Sigma(\mathrm{y}-\mathrm{Y})^{\mathbf{2}}=$ Sum of Spuares due to deviation from regression.

Test of heterogenity of regressions within the samples

Source of variation		Degree of freedom	Sum of squares	Mean
		108	0.1285	
Deviation frem average total regression Deviations from individual regressions within samples Difference	107	0.1243	0.001162	
	1	0.0042	0.0042	

$$
\begin{aligned}
& F=3.61 \\
& 5 \%=3.93 \\
& 1 \%=6.88
\end{aligned}
$$

Analysis of covariance (Snedecor 1961) of the two regression equations showed (Table 5) that both the slopes and elevations differed significantly. The parabolic equations obtained were:

$$
\begin{aligned}
& \text { Males : } W=0.000001971 \mathbf{L}^{2.8018} \\
& \text { Females }: W=0.00000003347 \mathbf{L}^{3.4925}
\end{aligned}
$$

In the other ribbonfishes studied, the regression coefficient of the length weight relationship varied from 3.0819 to 3.5233 (Prabhu 1955, Gupta 1967 b, 1968 , James 1967, Narasimham 1970 and 76). In the present study the regression coefficients in L. gangeticus and in the males of T. russelli were comparatively lower.

Table 5. Comparison of the Regression lines of the length-weight relationship of T. russehi

	d.f.	Σx^{2}	$\Sigma x y$	Σy^{2}	b Dev	Deviation d.f.	$\begin{gathered} \text { ns from } \\ \text { S.S. } \end{gathered}$	regressions M.S.
Within								
Males	48	0.1360	0.3808	1.2861	2.8081	17	0.2193	0.004666
Females	49	0.1324	0.4625	1.7327	3.4925	548	0.1171	0.002440
Pooled (within)						95	0.3364	0.003541
Common	97	0.2684	0.8433	3.0188	3.1419	96	0.3692	0.003959
Slope						1	0.0328	0.0328
Between	1	0.0822	0.2583	0.8117				
Total	98	0.3506	1.1016	3.8305		97	0.3840	
Adjusted means							0.148	0.148

Comparison of slope : $F=6.93$ (d.f. $=1,95$) $F_{5 \%}=3.945$
Comparison of elevation : $F=3.74$ (d.f. $=1,96$) $1 \%=6.915$

Periodicity of Spawning in L. gangeticus

The frequency distribution of ova diameter of individuals in stage III-V of maturation are presented in Fig. 2 Females with running ripe ovaries were not encountered in the catches. In stage III; two modes viz., one representing the immature ova at $6-10 \mathrm{md}$ group ($72 \mathrm{md}=1 \mathrm{~mm}$); and the other representing mature ova ($51-55 \mathrm{md}$ group) could be seen. In stage IV the mode in the mature

FJG. 2. Owdediameter-frequetcy distribution in ovaries of different stages of matoration in L. gangeticus.
group of ova of stages III had shifted to $61-65 \mathrm{md}$ group and there was also a mode at $16-20$ md group. The latter group of ova were translucent with slight yolk deposition. In stage V the mature group of ova were separated from the immature and maturing ova; the mode of the mature group of ova was at 8185 md group. The mode at $16-20 \mathrm{md}$ in stage IV had further progressed to 21-25 md in stage V. In sum, it may be stated that only one batch of ova are separated from the parent stock to become mature and be released in one spawning act as evidenced by the presence of only one mature group of ova in mature ovaries. The presence of fish in stages IV and V in considerable numbers during May-July indicates that the species is likely to spawn in these months.

In all the other ribbonfishes studied, the mature ova are distinctly and widely separated from the immature stock (Prabhu 1955, James 1976, Tampi et al 1968, Narasimham 1976) similar to the condition observed in L. gangeticus in the present study.

Acknowledgements

1 am thankful to Dr. E. G. Silas, Director, for encouragement and to Dr. B. Krishna Moorti and Shri G. Venkataraman, for kindly going through the manuscript and suggesting improvements. 1 am greaty indebted to Shri K. A. Narasimham and Dr. V. Sriramachandra Murty for their valuable help and guidance during the course of the present study.

References

GUPTA, M. V. 1967.!. Studies on the taxonomy, biology and fishery of ribbonfishes of the Hoogly estuarine system. 1. Taxonomy of ribbonfishes. Proc. Zool. Soc. Calcutta., 20: 1-23.

Gupta, M. V. 1967b. Studies on the taxonomy, biology and fishery of ritbbonfishes (Trichiuridare) of the Hoogly estuarine system. 2. Biology of Trichiur us sarala Cuvier. Proc. Zool. Soc., Calcutta, 20: 153-170.
GUpTA. M. V. 1968. Studies on the taxonomy, biology and fishery of ribbonfishes (Trichiuridae) of the Hoogly estuarine system. 3. Biology of Trichinrus pantulai. Gupta. Proc Zool. Soc., Calcuta, 21: 35-50.

James, P. S. B. R. 1967. The ribbonfishes of the family Trichiuridae of India. Memoir l. Mande Biological Association of India, pp. 226.

Muthe, M. S., K. A. Narasimham, G. Sudhakara rao, Y. Appanna sastry and P. RamaLINGAM. 1975. On the commercial trawt fisheries off Kakinad during 1967-70. Indian J. Fish., 22: 171-186. (Issued 1977).

Narasimham, K. A. 1970. On the length-weight relationship and relative condition factor Trichiurus lepturus Linnaeus. Indian J. Fish., 17: 90-96 (Issued 1972).

Narasimham, K. A. 1976. Age and growth of the ribbonfish Trichiurus tepturtes Linnaeus. Indion J. Fish., 23: 174-182 ('lssued 1978).

Prabhu, M. S. 1955. Some aspects of the biology of the ribbonfish, Trichiarus haumela
Silas, E. G. and M. Rajagopalan, 1974. Studies on demersal fishes of the deep neritic waters and the continental slope. 2. On Trichiurus auriga klunzinger, with notes on its biology, J. mar. Blol. Ass. India, 16'(1): 253-274 (issued 1975).
Snedecor, G. W. 196t. Statistical methods. The lowa College Press, Lowa,
Tampl, P. R. S., et. al. P. T. Meenakshisundaram, S. Basheerudin and J. C. GnanaMUTHU. 1968. Spawning periodicity of the ribbonfish, Trichiurus lepturus (F), with a note on its rate of growth. Indian J. Fish., 15: $53-60$ (Issued 1971).

