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ABSTRACT 

The capability of retrieving the image/signal of interest from extremely low photon flux is 

attractive in scientific, industrial, and medical imaging applications. Conventional 

imaging modalities and reconstruction algorithms rely on hundreds to thousands of 

photons per pixel (or per measurement) to ensure enough signal-to-noise (SNR) ratio 

for extracting the image/signal of interest. Unfortunately, the potential of radiation or 

photon damage prohibits high SNR measurements in dose-sensitive diagnosis 

scenarios. In addition, imaging systems utilizing inherently weak signals as contrast 

mechanism, such as X-ray scattering-based tomography, or attosecond pulse retrieval 

from the streaking trace, entail prolonged integration time to acquire hundreds of 

photons, thus rendering high SNR measurement impractical. 

This dissertation addresses the problem of imaging from limited photon budget when high 

SNR measurements are either prohibitive or impractical. A statistical image 

reconstruction framework based on the knowledge of the image-formation process and 

the noise model of the measurement system has been constructed and successfully 

demonstrated on two imaging platforms – photon-counting X-ray imaging, and attosecond 

pulse retrieval. For photon-counting X-ray imaging, the statistical image reconstruction 

framework achieves high-fidelity X-ray projection and tomographic image reconstruction 

from as low as 16 photons per pixel on average. The capability of our framework in 

modeling the reconstruction error opens the opportunity of designing the optimal 

strategies to distribute a fixed photon budget for region-of-interest (ROI) reconstruction, 
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paving the way for radiation dose management in an imaging-specific task. For 

attosecond pulse retrieval, a learning-based framework has been incorporated into the 

statistical image reconstruction to retrieve the attosecond pulses from the noisy streaking 

traces. Quantitative study on the required signal-to-noise ratio for satisfactory pulse 

retrieval enabled by our framework provides a guideline to future attosecond streaking 

experiments. In addition, resolving the ambiguities in the streaking process due to the 

carrier envelop phase has also been demonstrated with our statistical reconstruction 

framework. 
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CHAPTER 1: INTRODUCTION 

Imaging from low photon budget is attractive in many photon-starving imaging 

systems [1].  Photo-starving scenarios can occur when the image is formed from 

intrinsically weak signals. This scenario includes X-ray scattering tomography, including 

Rayleigh scattering or Compton scattering whose signal, despite providing enhanced 

material, is 102~103 times weaker than the transmitted beam [2]. The same situation 

also happens in attosecond pulse retrieval from the streaking trace [3], in which the 

photon flux of the attosecond pulse used in the streaking experiment is orders of 

magnitude weaker than the femtosecond pump laser [4]. These scenarios typically 

require hours long imaging time to accumulate enough photons for satisfactory signal-

to-noise ratio on the detector, which can be impractical in real-time imaging 

applications. Another photon-starving scenario occurs when photon damage of the 

specimen prohibits the use of large photon flux in the measurements, and thus reducing 

the signal-to-noise ratio (SNR) of the detected signal. This scenario can be found in 

virtually all X-ray imaging systems, including radiography (X-ray projection image), 

computed tomography (CT), and spectroscopy, because the excessive ionizing 

radiation can induce preferment damage, which manifests either as conformational 

changes in protein for biological samples [5,6], or functional changes in the 

microstructure of processors, memory chips, and other integrated circuits [7,8] in 

industrial parts inspection. 
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Recently, ingenious measurement system designs have been proposed to partially 

mitigate the photon-starving scenarios. In X-ray imaging, solutions such as parallelizing 

the data acquisition [9,10], or reducing the data acquisition only to the region-of-interest 

(ROI) [2,11] have demonstrated the potential to reduce the imaging time by one order of 

magnitude. Despite these attempts to accelerate the imaging process, the amount of 

radiation per area or volume remain the same, if the same SNR as a point-by-point 

imaging system on the reconstructed image were to be achieved [9]. Moreover, these 

unconventional data acquisition schemes necessities careful alignment and calibration, 

intricating the overall operation of these imaging systems compared to their point-by-point 

scanning counterpart. Therefore, in most photon-starving scenarios that demand easy-

to-use setup and low radiation exposure, high SNR measurements are still not readily 

feasible. 

Since increasing the signal level cannot be easily accomplished with a simple modification 

to the imaging system, reducing the noise in the measurement becomes a natural choice. 

Detectors that eliminate as much thermal noise as possible via improved operation 

environment and integrated pulse counting, sorting, and shape-specific gating circuits can 

be used. These detectors enable the measurement of the signal at the precision of single 

photons in both visible and X-ray imaging [12–14]. Nevertheless, the received photon 

counts still fluctuate due to the discrete nature of photons, a phenomenon termed 

“photon-limited noise”, even the measurement can be completely deprived of thermal 

noise. Up till recently, computational imaging reconstruction has not yet incorporated the 

complete physical process of the noise and image formation to cope with the systems’ 
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hardware properties. Most of the conventional image reconstruction algorithms can be 

summarized as two alternating steps that enforces the measurement consistency and 

signal/image constraints in an iterative process [15–17]. These algorithms are designed 

to minimize the mean squared error (MSE) between the measured signal and simulated 

measurement from the estimated signal/image. The fundamental design principle behind 

these iterative algorithms implies an equivalent of Gaussian (thermal) noise on the 

detector side, and thus would fail when handling photon-counting signals with low counts 

due to the discrepancy in their underlying assumptions on the physical and noise model. 

In this dissertation, we introduce a statistical image reconstruction framework for solving 

a variety of photon-starving imaging problems, including X-ray transmission and 

tomographic imaging, region-of-interest tomography, and attosecond pulse retrieval. The 

proposal is organized as follows. Chapter 2 discusses the physical process of photon-

counting measurements; and proposes a statistical image/signal inference framework 

based on the estimation of the posterior probability of possible images/signals given a 

photon-counting measurement. Learning-based posterior estimation is then introduced to 

obviate the iterative inference process and accelerate the image/signal retrieval. In 

chapter 3 and 4, we present several examples of statistical image retrieval, including 

image reconstruction from photon-counting X-ray projection and CT measurements, as 

well as pulse retrieval from attosecond streaking traces with limited photon flux. For 

photon-counting CT, we will apply our statistical reconstruction framework to study the 

optimal photon budget allocation for region-of-interest reconstruction in CT. For 

attosecond pulse retrieval, the proposed statistical reconstruction framework is combined 
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with a learning-based method to model the pulse reconstruction error and uncertainty at 

various noise levels, which can serve as guidelines to future attosecond streaking 

experiments. Because the proposed framework can capture the distribution of all possible 

signals given an observation, we will also demonstrate its capability in resolving phase-

shifting ambiguity in the streaking process. Chapter 5 concludes the findings and results 

throughout this study. 
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CHPATER 2: PHOTON-COUNTING IMAGE FORMATION AND 

RECONSTRUCTION 

In this chapter we establish the statistical theory behind photon-counting detection, 

derive the statistical estimation of the signal/image of interest from the photon-counting 

measurements, and show its asymptotic behavior as the photon counts increases. This 

chapter focuses on the discussion of photon-counting in X-ray imaging, where 

attenuation is the primary contrast mechanism. At the end of this chapter, we will extend 

the discussion to a general imaging model. 

2.1 Statistical photon counting model 

Figure 1 illustrates the readout from a detector operating in the ideal photon-counting 

mode, in which all the thermal noise has been filtered out via pulse censoring circuitry. 

Avalanche photodiode or X-ray photon-counting detectors [12–14] are a few examples 

that can be modeled with this ideal photon-counting detection scheme. Consider a 

pencil-beam X-ray source and a photon-counting detector. Assume the counting rate 

1/Δ𝑡 (interval Δ𝑡) is much faster (shorter) than the rate (interval) of photon arrival 

instances, such that no two photon instances are registered within the same counting 

interval. The probability of detecting a photon instance within one interval when no 

sample is present between the source and the detector is denoted as 𝜆. In experiment, 

𝜆 needs to be calibrated beforehand, and is the proportional to the product between 

source flux and detector quantum efficiency. 
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Figure 1: Illustration of the photon-counting scheme for X-ray imaging, including projection and tomography 
setups. 

When an object, discretized by 𝐟, is placed into the pencil beam, the probability of 

receiving one photon in each time interval is reduced exponentially 

 
𝑇𝑗 = 𝜆 exp(−∑𝐀𝑖𝑗𝐟𝑖

𝑛

𝑖=1

) 
(1) 

where the subscript 𝑖 = 1,2, … , 𝑛 represents the index of the discretized object 

attenuation map 𝐟; and 𝑗 = 1,2…𝑚 represents the index of discretized pencil-beam 

measurements. The matrix 𝐀 establishes the linear relation between the object and the 

measurement. For X-ray projection imaging, 𝐀 is the identity matrix, and for 

tomography, 𝐀 represents the Radon transform matrix constructed from the distance-

driven ray-tracing model [18]. The joint probability of detecting the 𝐫-th photon at 𝐠-th 

…
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time interval follows the negative binomial distribution 𝐠~𝑁𝐵(𝐫, 𝐓), (𝐫 ∈ ℕ+
𝑚,𝐠 ∈ ℕ+

𝑚), 

whose probability mass function (PMF) is 

𝑝(𝐠|𝐟; 𝐫) =∏(
𝑔𝑗 − 1

𝑟𝑗 − 1
) (1 − 𝑇𝑗)

𝑔𝑗−𝑟𝑗
𝑇𝑗
𝑟𝑗

𝑚

𝑗=1

, (2) 

where 𝐠 = (𝑔1, 𝑔2, … 𝑔𝑚) is the total number of time intervals that has elapsed upon the 

arrival of the first 𝐫 = (𝑟1, 𝑟2, … 𝑟𝑚) photons at each pencil beam, 𝑗. If instead the number 

of photons are counted within a predefined period 𝐠Δ𝑡, the joint probability of receiving 𝐫 

photons for each pencil beam follows binomial distribution 𝐫~𝐵(𝐠, 𝐓) (𝐠 ∈ ℕ+
𝑚, 𝐫 ∈ ℕ𝑚) 

 𝑝(𝐫|𝐟; 𝐠) =∏(
𝑔𝑗
𝑟𝑗
) (1 − 𝑇𝑗)

𝑔𝑗−𝑟𝑗
𝑇𝑗
𝑟𝑗

𝑚

𝑗=1

. (3) 

Notice that if the transmitted photon flux 𝑇𝑗 is small and the number of intervals 𝑔𝑗 is 

sufficiently large, Equation (3) can be approximated by 𝐫~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐠𝐓) where the 

detected photons within the time period 𝐠Δ𝑡 follows Poisson distribution 

 𝑝(𝐫|𝐟; 𝐠) =∏
𝑇
𝑗

𝑟𝑗 exp(−𝑔𝑗𝑇𝑗)

𝑟𝑗!

𝑚

𝑗=1

. (4) 

 

2.2 Bayesian inference for image/signal reconstruction 

From a statistical perspective, image reconstruction is the process of estimating 

signal/image of interest 𝐟, from the measurements 𝐠, knowing the combined noise 

model and image formation process 𝑝(𝐠|𝐟; 𝐫). Here we consider the binomial noise 



8 
 

model (Equation (3)), in which 𝐫 represents the number of photons to accumulate for 

each pencil beam, and is a set of parameters of the imaging system. 

The reconstructed image/signal of interest 𝐟 should be the one that minimizes the 

negative posterior likelihood 𝑝(𝐟|𝐠; 𝐫) (or its logarithm 𝐿(𝐟|𝐠; 𝐫)) [19]. This statistical 

estimation scheme is termed maximum-a-posteriori, MAP. Applying Bayes’ rule in the 

calculation of posterior likelihood, the estimator can be formulated as 

 𝐟 = argmin
𝐟
𝐿(𝐟|𝐠; 𝐫) = argmin

𝐟
−log [

𝑝(𝐠|𝐟; 𝐫)𝜋(𝐟)

𝑝(𝐠; 𝐫)
] (5) 

where 𝜋(𝐟) is the prior distribution covering all plausible images/signals, 𝐟, and its 

logarithm enforces constraint or regularization on the reconstructed image/signal. The 

marginal distribution of the measurement log 𝑝(𝐠; 𝐫) is independent of 𝐟, and thus not 

included in the optimization. Let us assume 𝜋(𝐟) follows the distribution 

 𝜋(𝐟) = 𝐶𝛽,𝐃 exp(−𝜏‖𝐃𝐟‖𝑝
2), (6) 

where 𝐶𝛽,𝐃 is the normalization factor; 𝐃 projects 𝐟 onto the domain 𝐮 = 𝐃𝐟 in which the 

image/signal is sparse, such as total-variation (TV) [20] or wavelet [21]; ‖⋅‖𝑝 denotes 

the L-p norm of the vector; 𝜏 adjusts the variance of the prior distribution, which in turn 

controls the strength of the regularization. 

For image reconstruction from photon-counting measurements with a pre-defined 

photon number to accumulate at each pencil beam, the negative log-posterior 

distribution 𝐿(𝐟|𝐠; 𝐫) of waiting 𝐠 intervals for 𝐫 photons given the sample prior 𝜋(𝐟) is 
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𝐿(𝐟|𝐠; 𝐫) = − log [
𝑝(𝐠|𝐟; 𝐫)𝜋(𝐟)

𝑝(𝐠; 𝐫)
] 

= −∑{log (
𝑔𝑗 − 1

𝑟𝑗 − 1
) + (𝑔𝑗 − 𝑟𝑗) log [1 − 𝜆 exp (−∑𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

)] − 𝑟𝑗∑𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

}

𝑚

𝑗=1

+ ‖𝐃𝐟‖𝑝
2 + log 𝑝(𝐠; 𝐫). 

(7) 

The minimization of Equation (7) is solved numerically using a gradient-descent 

method, such as a modified SPIRAL-TAP [16], which is a two-step, gradient-descent 

algorithm combined with regularization enforcement in each iteration. The gradient and 

Hessian of the negative binomial log-likelihood − log 𝑝(𝐠|𝐟; 𝐫) are respectively 

 ∇𝐟(− log 𝑝(𝐠|𝐟; 𝐫)) = 𝐀
𝑇 (𝐫 −

𝜆(𝐠 − 𝐫)⊙ exp(−𝐀𝐟)

1 − 𝜆 exp(−𝐀𝐟)
), (8) 

 𝐇(− log 𝑝(𝐠|𝐟; 𝐫)) = 𝐀𝑇𝑑𝑖𝑎𝑔 (
𝜆(𝐠 − 𝐫)⊙ exp(−𝐀𝐟)

(1 − 𝜆 exp(−𝐀𝐟))2
)𝐀. (9) 

Because the probability 𝜆 of detecting one photon within each time interval is on the 

order of 10−2, it is very rare (<10−4) to detect multiple photons in one interval. As a 

result, 𝑔𝑗 − 𝑟𝑗 has a high probability of being non-negative, suggesting that the Hessian 

has a high probability of being positive semidefinite for non-negative object 𝐟 ≥ 𝟎. This 

ensures high probability of 𝐿(𝐟|𝐠; 𝐫) being a convex function with respect to 𝐟, thus 

guarantees the convergence of the algorithm if the positivity of 𝐟 is imposed throughout 

the iterations. The step of the gradient-descent is chosen according to the modified 

Barzilai-Borwein method described in Ref. [16], and is inversely proportional to Δ𝐟𝑻𝐇Δ𝐟, 

where Δ𝐟 is the update to the solution between adjacent iterations. Notice that Equation 
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(9) contains a singular point on the denominator. A maximum step size was enforced to 

avoid moving the solution across this singular point. 

2.3 Learning-based posterior estimation 

The essence of statistical image reconstruction is to write down the posterior distribution 

of all possible images/signals given the measurement 𝑝(𝐟|𝐠; 𝐫), from which we can then 

pick the image/signal of interest that maximizes it. A high-fidelity image reconstruction 

entails accurately modeling the image formation and noise process, as well as providing 

a prior distribution that can discriminate all plausible images against non-realistic ones. 

Based on Bayesian framework (Equation (5)), using a generative model to derive a 

more accurate prior distribution than Equation(6) becomes a logical follow-up [23–25]. 

The prior 𝜋(𝐟) can be trained on a series of observations {𝐟𝑖}𝑖=1
𝑁 . Though promising 

retrieval results has been demonstrated, the optimization remains a lengthy iterative 

process. In this section, we will describe a posterior estimation method based on 

conditional variational generative network, CVGN for short, to directly capture the 

posterior distribution 𝑝(𝐟|𝐠; 𝐫), for solving image/signal reconstruction problems. The 

proposed learning-based framework is a single-pass inference process through the 

trained neural networks, capable of handling the ambiguity in the image-formation 

process, as well as capturing the uncertainty of reconstructed image given a noisy 

measurement. In the following discussions, the parameters of imaging system 𝐫 is 

treated as a constant and omitted from the probability distributions for simplification of 

the notation. 
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Figure 2: Directed graphical model (solid lines) of our proposed image/signal retrieval network, which 
contains an inference model (a) and a retrieval model (b). The image/signal retrieval process is 
parameterized by 𝜃. Training of the parameters 𝜃 is assisted by introducing variational inference process 

𝒒𝝓(𝐳|𝐟, 𝐠)  (dashed lines). Each arrow represents a conditional probability. Variables in gray contain 

observable data in their respective models. 

The learning-based image reconstruction framework models the distribution of all 

possible images via a mixture of Gaussian distributions and parameterizing it with a latent 

variable 𝐳, 

 𝑝𝜃(𝐟|𝐠) = ∫𝑝𝜃(𝐟|𝐳, 𝐠)𝑝𝜃(𝐳|𝐠)𝑑𝐳. (10) 

During the image reconstruction process, the latent variable 𝐳 was sampled from the 

conditional prior 𝑝𝜃(𝐳|𝐠) given measurement 𝐠, and the retrieved signal 𝐟 is generated 

from the conditional variational distribution 𝑝𝜃(𝐟|𝐳, 𝐠). Both 𝑝𝜃(𝐳|𝐠) and 𝑝𝜃(𝐟|𝐳, 𝐠) are 

assumed to be high-dimensional Gaussian distributions with diagonal covariance 

matrix, 𝑝𝜃(𝐳|𝐠) = 𝒩(𝐳; 𝝁𝐳
(𝜃)(𝐠), 𝑑𝑖𝑎𝑔 ([𝝈𝒛

(𝜃)(𝐠)]
2
)), 𝑝𝜃(𝐟|𝐳, 𝐠) = 𝒩(𝐟; 𝝁𝐟

(𝜃)(𝐠, 𝐳), 𝛽𝐈), where 

the mean and variance parameters𝝁𝐳
(𝜃)(𝐠),𝝁𝐟

(𝜃)(𝐠, 𝐳) and 𝝈𝐳
(𝛾)
(𝐠) are implemented by 

neural networks with parameter 𝜃 [22], and 𝛽 is a hyper parameter that determines the 

covariance of the posterior distribution. 

The training process of conditional variational generative network maximizes the joint 

log-likelihood log 𝑝𝜃(𝐟|𝐠) = ∑ log 𝑝𝜃(𝐟𝑖|𝐠𝑖)
𝑁
𝑖=1  of observing the pulse parameters vs trace 

pairs {(𝐟𝑖, 𝐠𝑖), 𝑖 = 1,… ,𝑁} in the dataset. Due to the intractable integral in Equation(10), a 

(a)

𝐠 𝐠 𝐟

𝐳
(b)

𝐠 𝐟

𝐳
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lower bound of the log-likelihood is used as the objective function, ℒ, with the 

introduction of a recognition distribution 𝑞𝜙(𝐳|𝐟, 𝐠) [23] 

 log 𝑝𝜃(𝐟𝑖|𝐠𝑖) ≥ −𝐾𝐿 (𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖)||𝑝𝜃(𝐳|𝐠𝑖))

+ 𝐸𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖)
(log 𝑝𝜃(𝐟𝑖|𝐳, 𝐠𝑖)) ≔ ℒ, 

(11) 

where 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖) captures the latent distribution conditioned on both the streaking trace 

and pulse parameters. If we model 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖) as a multivariate Gaussian with diagonal 

covariance matrix 𝒩(𝐳; 𝝁𝐳
(𝜙)(𝐟, 𝐠), 𝑑𝑖𝑎𝑔 ([𝝈𝒛

(𝜙)(𝐟, 𝐠)]
2
)), whose mean and variance are 

also implemented by neural networks with parameter 𝜙, the objective function to 

maximize has a closed form 

 

ℒ = −∑(log
𝜎𝑖𝑗
(𝜙)

𝜎𝑖𝑗
(𝜃)
+
(𝜇𝑖𝑗

(𝜃) − 𝜇𝑖𝑗
(𝜙)
)
2

+ 𝜎𝑖𝑗
(𝜃)2

2𝜎𝑖𝑗
(𝜙)2

−
1

2
)

𝑀

𝑗=1

−
1

𝛽𝐿
∑(𝐟𝑖 − 𝝁𝐟

(𝜃)(𝐳𝑙, 𝐠𝑖))
2

𝐿

𝑙=1

, 

(12) 

where 𝜎𝑖𝑗
(𝜙)

 denotes the 𝑗-th index of the M-element vectors 𝝈𝐳
(𝜙)(𝐟𝑖, 𝐠𝑖); similar notations 

are applied to 𝜎𝑖𝑗
(𝜃)

, 𝜇𝑖𝑗
(𝜙)

 and 𝜇𝑖𝑗
(𝜃)

. The expectation in Equation (11) is approximated by 

sampling 𝐿 instances of 𝐳 from the distribution 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖) as {𝐳𝑙: 𝑙 = 1, … , 𝐿}. 

2.4 Learning-based signal retrieval considering measurement consistency 

Section 2.3 presents a learning-based method, termed CVGN, to approximate the 

posterior distribution of possible images/signals given a specific measurement. The 
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training phase of CVGN draws samples 𝐳 from the recognition distribution 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖). 

During the reconstruction process, however, CVGN draws 𝐳 from the conditional prior 

distribution𝑝𝜃(𝐳|𝐠𝑖). This inconsistency between the recognition distribution and 

conditional prior distribution was also recognized in Ref.  [36].  When using the 

variational lower bound as the objective function, relying only on closing the KL-

divergence between 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖) and 𝑝𝜃(𝐳|𝐠𝑖) cannot provide effective training to the 

conditional prior. In the future, we plan to utilize the known measurement process in 

constructing a supplemental network to assist the training, as shown in Figure 3. 

 

Figure 3: Proposed directed graphical models of both inference model (a) and retrieval model (b). The 
signal retrieval process is parameterized by 𝜃. Training of the parameters 𝜃 is assisted by introducing (a) 

variational inference process 𝒒𝝓(𝐳|𝐟, 𝐠)  (dashed lines), (b) the known physical model  𝑨(⋅)  of the 

measurement process (dot-dashed line). Each arrow represents a conditional probability. Variables in gray 
contain observable data in their respective models. 

For the signal retrieval process, latent variable samples drawn from 𝑝𝜃(𝐳|𝐠𝑖) capture the 

variance of all signals 𝐟 that produce measurement 𝐠𝑖. Naively replacing 𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖) with 

𝑝𝜃(𝐳|𝐠𝑖) in the log-likelihood lower bound in Equation (11), in an attempt to keep 𝐳 

distribution consistency, amounts to comparing all possible signals 𝐟 = 𝝁𝐟
(𝜃)(𝐳𝑙, 𝐠𝑖) given 

the measurement 𝐠𝑖 with a single observation 𝐟𝑖 in the training set. To resolve this issue, 

we introduce the measurement process (dot-dashed line in Figure 3 (b)) to the signal 

retrieval process. The expected measurement, 𝐠  , is generated from 𝝁𝐟
(𝜃)(𝐳, 𝐠𝑖) via the 

(a)

𝐠 𝐠 𝐟

𝐳
(b)

𝐠 𝐟

𝐳
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forward process 𝐠 = 𝐴(𝝁𝐟
(𝜃)(𝐳, 𝐠𝑖) ). For all the 𝐳 sampled from 𝑝𝜃(𝐳|𝐠𝑖), we maximize 

the likelihood of generating the expected measurement 𝐠  given point 𝐠𝑖, as defined by 

the detection model. Applying Jensen’s inequality, a lower bound of this likelihood 

ℒ𝑟(𝜽; 𝐠
 , 𝐠𝑖) can be derived and used as the objective function of the retrieval process. 

log 𝑝(𝐠 |𝐠𝑖) = log∫𝑝𝜃(𝐠
 |𝐳, 𝐠𝑖)𝑝𝜃(𝐳|𝐠𝑖) 𝑑𝐳 ≥ ∫ log 𝑝𝜃(𝐠

 |𝐳, 𝐠𝑖) 𝑝𝜃(𝐳|𝐠𝑖)𝑑𝐳

= 𝐸𝑝𝜃(𝐳|𝐠𝑖)(log 𝑝𝜃(𝐠
 |𝐳, 𝐠𝑖))

≈ −
1

𝛼𝐿
∑(𝐴 (𝝁𝐟

(𝜃)(𝐳𝑙, 𝐠𝑖)) − 𝐠𝑖)
2

𝐿

𝑙=1

≔ ℒ𝑟(𝜽; 𝐠
 , 𝐠𝑖), 

(13) 

where we have assumed Gaussian noise model on the detector 𝐠 ~𝒩(𝐠𝑖, 𝛼𝐈). Notice 

that the Gaussian likelihood can be substituted with Poisson or binomial noise models in 

photon-limited detection [12,28]. The expectation 𝐸𝑝𝜃(𝐳|𝐠𝑖) in Equation (13) is 

approximated by sampling 𝐿 instances of from the conditional prior distribution 𝑝𝜃(𝐳|𝐠𝑖) 

as {𝐳𝑙: 𝑙 = 1,… , 𝐿}. By adding in the measurement processes, we essentially construct a 

variational autoencoder for measurement 𝐠, and the objective function promotes 

forward model consistency. The retrieval model can then be jointly trained alongside the 

inference model with a hybrid objective function [32] 

 ℒℎ(𝜙, 𝜃, 𝐟𝑖, 𝐠𝑖) = 𝛾ℒ(𝜙, 𝜃; 𝐟𝑖, 𝐠𝑖) + (1 − 𝛾)ℒ𝑟(𝜃; 𝐠
 , 𝐠𝑖), (14) 

where the hyperparameter 𝛾 balances the weight between the two models. 
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CHAPTER 3: PHOTON-COUNTING COMPUTED X-RAY IMAGING 

In this chapter we will apply the photon-counting statistics to X-ray imaging and discuss 

strategies to allocate a fixed photon budget for optimal region-of-interest reconstruction. 

3.1 Verification and calibration of photon-counting noise model 

We first verify the noise model of our photon-counting system and calibrate the incident 

photon flux 𝜆 with an X-ray projection measurement on a linear attenuation pattern, 

which was created by stacking multiple paper layers with identical thickness ℎ =

0.12mm. The pattern was divided in to 3 X 3 regions, with region 1 being air and region 

9 corresponding to 8 paper layers. We performed an X-ray-projection scan (Figure 4 

(a1)) covering all 9 regions of the paper pattern, and waited for the arrival of the 𝑟=256th 

photon at each scanning step. The sampling interval of the detector Δ𝑡 was10us. Figure 

4 (a2) plots the average and standard deviation of the time intervals, 𝐠, within each 

region in log scale. The signal-to-noise ratio, calculated as the ratio between the 

average and standard deviation fluctuates around 16.2, suggesting that the 

measurement uncertainty agrees with the shot-noise limit, the square root of photon 

counts. The linearity of the curve agrees with the exponential decay in the transmission 

as the thickness increases.  From the slope in Figure 4 (a2), we estimated the 

transmittance, 𝑡=93% per paper layer. To directly observe the distribution of time 

intervals, we varied the number of photons, 𝑟, to collect at each point. Figure 4 (b1-b4) 

plot the histogram of elapsed intervals 𝐠 within region 1 before the arrival of 𝑟=1, 2, 4 

and 8 photons. We fit a negative binomial model with one unknown, T, on each 
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histogram. The red curves plot the negative binomial distributions with fitted parameter, 

𝑇, as in Equation (2), which are 0.0127, 0.0128, 0.0129, and 0.0129 respectively in (b1)-

(b4). The high consistency signifies the same photon flux exhibited on all histograms. 

The incident photon flux 𝜆 can then be calibrated from the 𝑇 in region 1. 

 

Figure 4: Experimental observation of the photon-counting model. (a1) Number of time intervals before the 
arrival of 256th photon. (a2) Time intervals in each region. Red dots and error bars represent the mean and 
standard deviation. Blue dots represent the signal-to-noise ratio (SNR) (b1-b4) Histograms of the number 
of time intervals elapsed before 𝑟=1, 2, 4, and 8 photons are detected in region 1. 

 

3.2 Photon-counting CT imaging 

With the calibrated photon flux, photon-counting CT scans were performed on an acrylic 

resolution target and a mouse brain sample. The results demonstrated comparable 

reconstruction quality and reduced dose as conventional, time-integrating CT scans.  

Figure 5 shows the experimental results on a resolution target. A reference image was 

collected by measuring the photon counts within 1s (Figure 5 (a1), 𝐠=105). The average 
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number of photons per beam was 569. The reconstructed image (Figure 5 (b1)) was 

used as ground truth for evaluating low-photon-count images. Figure 5 (a2) and (a3) 

present two different low-photon-count measurements, one with constant acquisition 

intervals (a2, 𝐠=6250) and counts the number of detected photons, the other waits for 

constant photon counts (a3, 𝐫=16) and records the number of elapsed time intervals, for 

all the pencil beam measurements. The average detected counts per pencil beam in 

(a2) was 17.8, comparable to the counts in (a3). The reconstructed attenuation maps 

are shown in Figure 5 (b2, b3), respectively. The intensity profile of 0.7mm group is 

plotted in Figure 5 (c), which shows a visibility of 0.82 on reference image, and 0.68, 

0.60 for the reconstructed images in (b2) and (b3), respectively. The spatial resolution is 

limited by the 0.6mm spot size on the sample plane due to the beam divergence. With 

approximately the same average photon count, Figure 5 (b2) and (b3) have normalized 

mean square difference of 6.2% and 4.9% with respect to the reference image. We 

speculate that the smaller NMSE in Figure 5 (b3) is primarily attributed to the uniform 

SNR on the entire sinogram (Figure 5 (a3)), whereas in Figure 5 (a2), the central region 

of the sinogram suffers from low SNR.  
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Figure 5 Measurement (a) and reconstruction (b) of 1) reference image, 2) time-integration PC-CT scheme 
(17.8 photons/beam on average) and 3) time-stamp PC-CT (16 photons/beam) of a resolution target. (c) 
attenuation profile along the dashed line (0.7mm line-width group) in (b1-b3). 

Photon counting CT has the potential in radiation dose reduction, which is especially 

attractive for biomedical imaging applications. We compared the image of a mouse 

brain layer obtained from CT scans using photon-counting detector (PC-CT for short) 

and a flat panel detector (FPD-CT, for short). Figure 6 shows the reconstruction from 

FPD-CT (a, 12kV 40mA source power, 0.5s integrating time, 116.2 detector readout per 

beam on average) and time-stamp PC-CT (b, 16 photons per beam, 12kV 4mA source 

power). A comparison on the absorbed radiation doses between Figure 6 (a) and (b) 

was performed through Monte Carlo simulation. The irradiance of the source was 

calculated using XSPECT under experimental power settings. The radiation dose of 

time-stamp PC-CT was calculated via an equivalent tube current modulation to simulate 

different integration time for each pencil beam with ImpactMC [24]. Figure 6 (c) plots the 
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percentage of PC-CT radiation dose with respect to that in FPD-CT. The proposed PC-

CT reduces the dose to ~0.6% of FPD-CT, because the photon-counting detector 

eliminates the dark noise commonly found on panel detectors, and thus a much lower 

source flux could be used for image acquisition. Figure 6 (c) shows that the dose 

reduction on the surface is more prominent than the interior region. This is because the 

transmission signal from the interior region is weaker, and the photon-counting scheme 

would wait longer when scanning in the interior region until the pre-defined photon 

counts are received. 

 

Figure 6: Mouse brain sample imaged with (a) panel detector (FPD-CT, average 116.2 detector 
readout/beam) and (b) time-stamp PC-CT (16 photons/ beam). (c) Radiation dose ratio between time-stamp 
PC-CT and FPD-CT. (d) Reference image with 1s integration time per pencil beam (e) NMSE versus 
average photon counts per beam for time-stamp PC-CT and panel detector. 

To further evaluate the performance between PC-CT and FPD-CT, we acquired a 

complete photon time stamp spanning 1s integration time (1283 photon counts per 

beam on average) for the mouse brain sample, and reconstructed a reference image 

(Figure 6 (d)) from all the detected photons. Figure 6 (e) plots the normalized mean 

square difference between the reconstruction and the reference in log scale. The blue 
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and red circles on the plot correspond to FPD-CT and PC-CT in Figure 6 (a) and (b), 

respectively. For low photon counts, PC-CT consistently performs better than 

conventional CT. As the photon count increases, flat-panel detector eventually will have 

a comparable reconstruction error as that of PC-CT. This is because, in high-photon flux 

regime, the noise model of using the panel detector and photon counting module can 

both be approximated by a Gaussian distribution. 

3.3 Photon-allocation strategy for region-of-interest CT imaging 

In medical or industrial CT scan, the ultimate imaging task is often diagnosis or 

detection of a specific feature within a region-of-interest (ROI), rather than the whole 

volume reconstruction [25,26]. Task-specific image acquisition design can potentially 

shorten imaging time and reduce radiation damage to the region irrelevant to the 

diagnostic goal. Conventionally the image acquisition design for ROI reconstruction 

follows a scheme called “interior tomography” [2], which distributes the entire radiation 

dose budget exclusively to the ROI, resulting in a series of truncated projections. A 

unique and stable ROI reconstruction becomes a mathematical challenge. Another 

acquisition strategy is to use low-resolution projection from the exterior region to 

stabilize the ROI reconstruction [25,27]. This approach can be considered as a trade-off 

between reconstruction stability of whole CT scan and dose reduction benefit of 

truncated scan. Yet this trade-off has not been quantitatively studied, mainly because 

the illumination or integration time of each pencil beam is not easily adjustable in a 

conventional setup [28]. The photon-counting framework provides an opportunity to 
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study and design the strategy of allocating a fixed photon budget for an imaging-specific 

task, mainly the ROI reconstruction. Since the measurement is a random process under 

the presence of noise, the estimated 𝐟 is also a random variable, whose bias and 

variance dictates the error of the reconstructed image/signal of interest. This section 

derives the error of the estimator under different photon-allocation designs and 

discusses the strategy for optimal region-of-interest (ROI) reconstruction performance. 

To facilitate derivations on the distribution of the estimator 𝐟, we introduce auxiliary 

variables  

  𝐭 = {𝑡𝑗(𝐟) = log
𝜆

𝑇𝑗(𝐟)
=∑𝐴𝑗𝑖𝑓𝑖

𝑛

𝑖=1

, 𝑗 = 1,2, … ,𝑚}, (15) 

which can be interpreted as the CT line-integrals. By setting the derivative of the 

negative binomial measurement (Equation (2)) with respect to 𝑇𝑗 to 0 and applying the 

invariance principle, the maximum likelihood (ML) estimation for 𝑡𝑗 is achieved at 

 �̂�𝑗 = log
𝜆𝑟𝑗

𝑔𝑗
. (16) 

A change of variable in the distribution (Equation (2)) from 𝐠 to �̂�, and a Taylor-

expansion on the resulting �̂� distribution to the second order around 𝐭 gives a normal 

distribution that each element 𝑗 in �̂� approximately follows �̂�𝑗~𝒩(𝜇�̂�𝑗 , 𝜎�̂�𝑗
2 ), where 𝜇�̂�𝑗 

equals the ground truth of CT line integral 𝑡𝑗, and the variance 𝜎�̂�𝑗
2 = 1/𝑟𝑗 is inversely 

proportional to the photon count received at that pencil beam [29]. Next, we apply 

Taylor-expansion to the negative binomial likelihood in Equation (7) around the 
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estimated line-integral �̂� (Equation (16)), and reduce the MAP estimator in Equation (5) 

to a least-square problem weighted on photon count 𝐫  [29] 

 

𝐟(�̂�; 𝐫) = argmin
𝐟′

{ 𝐿(𝐟′|𝐠; 𝐫)} 

≈ argmin
𝐟′

{
1

𝟐
‖𝑑𝑖𝑎𝑔(√𝐫)(𝐀𝐟′ − �̂�)‖

2

2
+ 𝜏‖𝐃𝐟′‖2

2}, 

(17) 

where the zero-order terms in 𝑦𝑗 are independent of 𝐟, and can thus be neglected in the 

optimization; 𝑑𝑖𝑎𝑔(√𝐫) denotes the diagonal matrix constructed from the vector √𝐫. The 

resulting objective function in Equation (17) ε(𝐟) =
1

𝟐
‖𝑑𝑖𝑎𝑔(√𝐫)(𝐀𝐟 − �̂�)‖

2

2
+ 𝜏‖𝐃𝐟‖2

2 has 

a gradient 

 ∇ε(𝐟) = 𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)(𝐀𝐟 − �̂�) + 2𝜏𝐃𝑻𝐃𝐟 (18) 

and Hessian matrix 

 𝐇(𝐫) = 𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)𝐀 + 2𝜏𝐃𝑻𝐃. (19) 

For a properly chosen regularization matrix 𝐃, 𝐇 is positive-definite and can thus be 

conceived as the inverse covariance of the posterior distribution 𝑝(𝐟| �̂�). Equation (17) 

has an explicit solution similar to a Tikhonov regularization [30] weighted on 𝐫 

 𝐟(�̂�; 𝐫) = 𝐇−1(𝐫)𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)�̂�, (20) 

where 𝐇−1(𝐫) denotes the inverse of Hessian matrix 𝐇(𝐫). Since the estimator 𝐟 is a 

linear superposition of Gaussian variables �̂�, the distribution of 𝐟 thus follows a 

multivariate Gaussian distribution with mean 
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 𝛍𝐟(𝐫; 𝐟) = 𝐇
−1(𝐫)𝐀𝑇𝑑𝑖𝑎𝑔(𝐫)𝐀𝐟 (21) 

and covariance 

 𝚺𝐟(𝐫) = 𝐇
−1(𝐫)𝐀𝑻𝑑𝑖𝑎𝑔(𝐫)𝐀𝐇−1(𝐫). (22) 

The MSE of the estimator consists of the bias square and the variance of the pixels 

within ROI 

 𝑀𝑆𝐸𝐟(𝐫; 𝐟) = ‖(𝛍𝐟(𝐫; 𝐟) − 𝐟)𝐰‖
2 + 𝑡𝑟[𝑑𝑖𝑎𝑔(𝐰)𝚺𝐟(𝐫)]. (23) 

Equation (23) provides an analytical expression of the MSE of the estimator with 

respect to 𝐫, the number of photons to wait at each pencil beam. For a given total 

photon budget 𝐼0, the optimal strategy minimizes the ROI reconstruction MSE 

 𝑀𝑆𝐸 = 𝐰⨀𝑀𝑆𝐸𝐟(𝐫; 𝐟), (24) 

subject to  

 ∑𝑟𝑗
𝑗

= 𝐼0, (25) 

where the weight 𝐰 is 1 inside ROI, and 0 outside ROI; ⨀ represents elementwise 

product.  
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Figure 7: Photon allocation strategies parameterized by the parameter 𝛽  and 𝛾 . (a) Photon allocation 
profiles at 𝛾=1, 4 and 16 under 0° projection. (b) two-dimensional photon allocation maps for 𝛽=0, 0.5 and 

1, 𝛾=1, 4 and 16. 

Because it is impossible to enumerate all possible photon allocation strategies 𝐫, we 

confine our choice of the photon allocation strategies to a trapezoid function in the 

translation and rotation dimensions, which can be expressed by 

 

𝑟𝑗𝑠,𝑗𝜙

=
𝐼0(1 − 𝛽)

𝑚𝜙

+

{
 
 

 
 

1

𝑚𝜙

𝐼0𝛽𝛿𝑥

2𝜎 + Δ
 , |𝑗𝑠𝛿𝑥 − 𝑠𝑐| ≤ 𝜎

1

𝑚𝜙

𝐼0𝛽𝛿𝑥

2𝜎 + Δ

𝜎 + Δ − |𝑗𝑠𝛿𝑥 − 𝑠𝑐|

Δ
, 𝜎 < |𝑗𝑠𝛿𝑥 − 𝑠𝑐| < (𝜎 + Δ)

0, |𝑗𝑠𝛿𝑥 − 𝑠𝑐| ≥ (𝜎 + Δ)

 

𝑗𝑠 = 1,2, … ,𝑚𝑠 

𝑗𝜙 = 1,2, … ,𝑚𝜙 

(26) 

where 𝛿𝑥 is the translation step size; 𝜎 is the radius of ROI; 𝛽 controls the 

interior/exterior ratio; Δ denotes the width of the transition region where the photon 
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number drops from maximum to the minimum; when Δ=0, the photon allocation profile 

becomes a rectangular shape. In our simulation, we define 𝛾 = 𝜎/Δ as the shape 

parameter that describes the slope of the photon allocation profile across the ROI 

boundary. 𝑠𝑐 is the center coordinate of ROI at different projections, and is calculated 

via 

 𝑠𝑐 = 𝑠𝑜𝑓𝑓𝑠𝑒𝑡 sin(𝜙 + 𝜙𝑜𝑓𝑓𝑠𝑒𝑡), (27) 

where 𝑠𝑜𝑓𝑓𝑠𝑒𝑡 is the offset between the ROI center and the rotation center; 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 is the 

azimuthal coordinate of the ROI center with respect to the rotation center. Figure 7 plots 

the photon allocation profile along the translation direction, 𝑠, under 0° projection, as 

well as the 2D photon map when different projections angles are considered. 

Comprehensive simulation results in Ref. [29] have shown that the reconstruction MSE 

in ROI region mainly depends on the 𝛽 parameter, the portion of photon budgets 

allocated to the ROI, when the shape parameter 𝛾 is larger than 1. The optimal ratio is 

primarily determined by the size of ROI region. Strategies with 𝛾 = 1 is not preferred as 

it would allocate too many photons to the vicinity of ROI, reducing the overall SNR in 

ROI. The “interior tomography” scheme can be incorporated into our framework as a 

special case 𝛽 = 1, 𝛾 →  ∞. We found 𝛾=16 is large enough to avoid allocating any 

photons outside ROI. 

Since it is possible to analytically predict the ROI reconstruction error, we tested our 

strategy on an experimental phantom in Figure 8. Figure 8(a) shows a full-scan CT 

image of an acrylic resolution target acquired with 1s integration time and an average 
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photon count of 589 per pencil beam, which was used as the reference. The ROI 

reconstruction was performed at various photon allocation strategies with 16 photons 

per beam on average. For each strategy, we calculated the bias and variance with 6 

regularization parameters 𝜏 ranging from 101~103.5, and selected the one giving minimal 

predicted MSE for use in the SPIRAL reconstruction. Figure 8 (b) plots the analytically 

predicted reconstruction MSE (compared to the reference in (a)) inside the ROI as a 

function of interior/exterior ratio 𝛽 and the shape parameter 𝛾. From our prediction, the 

smallest ROI reconstruction error was attained at 𝛽=0.7, 𝛾=4 with the regularization 

parameter 𝜏=102. Figure 8 (d, e) shows the measured time intervals 𝐠 (d1-d3) and 

reconstructions (e1-e3) from 3 photon allocation maps 𝐫 (c1-c3), corresponding to 

uniform (c1), optimized (c2) and interior (c3) strategies, respectively. The optimized 

strategy had a reconstruction NMSE of 2.8% at ~30 times reduced photon budget 

compared to the reference image. 
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Figure 8: Comparison between different photon allocation strategies for the resolution target. (a) Full-scan 
CT image of the resolution target. The ROI covers the 0.6mm line-width group. (b) Predicted reconstruction 
MSE in ROI with respect to different photon allocation strategies, expressed in terms of the interior/exterior 
ratio  𝛽  and the shape parameter  𝛾 . (c–e) Examples of the photon allocation strategies, experimental 
measurements and the corresponding ROI reconstructions from (1) uniform photon counts (2) optimized 
photon allocation map (3) interior measurement with 𝛽=1, 𝛾=16. The average photon count was 16 per 
beam. All scale bars represent 2mm. The ROI is marked by the red, dashed circle in (a) and (e). The 
numbers in the left bottom of each reconstruction indicate the MSE within ROI. 
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CHAPTER 4: STATISTICAL ATTOSECOND PULSE RETRIEVAL 

The key to statistical image/signal reconstruction is finding the posterior distribution, 

which describes the distribution of all plausible images/signals given a specific 

measurement. In the previous chapters we have demonstrated analytical derivation of 

the posterior distribution and construction of MAP estimator, for a linear measurement 

process. In this chapter we will apply learning-based approach, namely “conditional 

variational generative network” (CVGN), to capture this posterior distribution for a 

nonlinear measurement process, attosecond pulse retrieval from noisy streaking traces, 

which does not have a closed form of posterior distribution. Conventional attosecond 

pulse retrieval has been solved with FROG-CRAB [3] and its derived algorithms. 

However, these algorithms have made a series of assumptions described below, which 

prevented them from reconstructing pulses shorter than atomic unit of time [31]. We will 

demonstrate the capability of CVGN that can incorporate a complete attosecond 

streaking process and model the reconstruction uncertainties, both of which are 

desirable capabilities not yet possessed by conventional FROG-CRAB-derived 

algorithms. 

4.1 Attosecond streaking process 

Here we consider the complete physical process of attosecond streaking. The streaking 

trace is a series of photoelectron spectra 𝑦(|�⃗� |, 𝜏) generated from the interaction 

between an attosecond XUV pulse 𝐸𝑋𝑈𝑉(𝑡) and a femtosecond infrared (IR) pulse 𝐸𝐼𝑅(𝑡) 

in a gaseous medium with various time delays 𝜏. Both XUV and IR pulses are polarized 
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along the axis of time-of-flight (TOF) spectrometer. Once the gas atoms with ionization 

potential 𝐼𝑝 absorb the energy from an XUV pulse, photoelectrons with momentum �⃗�  

(and hence kinetic energy 𝑊 = |�⃗� |
2
/2) are produced via dipole transition 𝑑(�⃗� ). The 

dressing IR field introduces a momentum shift to the photoelectrons, which is 

manifested in the form of a phase modulation, 𝜙𝐺, on the photoelectron wave packet. 

The spectrogram 𝑆(�⃗� , 𝜏) is described by Equation (28) in atomic units 

 
𝑆(�⃗� , 𝜏, 𝜃) = | ∫ 𝐸𝑋𝑈𝑉(𝑡

∞

−∞

− 𝜏)𝑑�⃗� exp (i𝜙𝐺(�⃗�
 , 𝑡)) exp(i(𝑊 + 𝐼𝑝)𝑡) 𝑑𝑡|

2

, 

(28) 

 
𝜙𝐺(�⃗� , 𝑡, 𝜃) = −∫(|�⃗� |𝐴(𝑡

′) cos 𝜃 + |𝐴(𝑡′)|2/2)𝑑𝑡′

∞

𝑡

, (29) 

where 𝐴(𝑡) = −∫ 𝐸𝐼𝑅(𝑡
′)𝑑𝑡′

𝑡

−∞
 is the vector potential of the IR field along the TOF 

spectrometer; 𝜃 is the observation angle between the photoelectron momentum, �⃗� , and 

the TOF axis. If we denote the angular distribution of the photoelectron against the TOF 

axis as 𝑓(𝜃), the ideal streaking trace, 𝐼, expressed in terms of photoelectron energy 𝑊 

and delay 𝜏 between XUV and dressing IR pulse, is the integral over all the directions 

of �⃗�  that fall within the maximum collection angle 𝜃𝑚𝑎𝑥 of the TOF spectrometer 

 
𝐼(𝑊, 𝜏) = ∫ 𝑆(�⃗� , 𝜏, 𝜃)𝑓(𝜃) sin(𝜃) 𝑑𝜃

𝜃𝑚𝑎𝑥

𝜃=0

, 
(30) 

where 
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 𝑓(𝜃) = 1 +

𝛽

2
(3 cos2 𝜃 − 1), (31) 

where 𝛽 is a parameter that accounts for the asymmetry distribution of the 

photoelectrons ionized from different gas atoms [32]. Experimentally obtained traces 

typically contain shot noise due to the low photoelectron flux. If the ideal trace (Equation 

(30)) is normalized by its maximum intensity, and the experimental average peak count 

of the trace is 𝜆, for each energy channel 𝑊 and delay 𝜏, the measured count 𝑦 on the 

trace follows Poisson statistics 

 
𝑝(𝑦|𝐼) =

(𝜆𝐼)𝑦exp (−𝜆𝐼)

𝑦!
, (32) 

where the parameter 𝜆 is determined by the photoelectron flux and the integration time. 

In most FROG-derived pulse retrieval methods, the dipole transition element, 𝑑, is 

assumed to be constant. This assumption does not hold for low energy photoelectrons, 

which are subject to additional energy-dependent group delays from Coulomb-laser 

coupling [33,34]. This delay can be expressed as a phase term 

 𝑑(𝑊) = exp(i𝜂(𝑊)) exp(i𝛿(𝑊)), (33) 

where the energy 𝑊 is expressed in atomic unit; 𝜂(𝑊) = arg {Γ(2 − i/√2(𝑊 − 𝐼𝑝))} is 

the phase delay from the Coulomb potential [34], Γ[⋅] representing the complex gamma 

function; 𝛿(𝑊) = ∫ (2𝑊′)3/2(2 − ln(𝑊′𝑇𝐼𝑅))𝑑𝑊′
𝑊−𝐼𝑝
0

  is the phase delay from the 

interaction with IR dressing field [33], where 𝑇𝐼𝑅 = 2𝜋𝑐/𝜆𝑐 is the oscillating period of the 

IR field in atomic unit. 
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4.2 CVGN training and pulse retrieval from attosecond streaking trace 

To construct the dataset for training the CVGN, XUV and IR pulses were represented by 

a set of parameters, 𝐱. Because the spectral density of the XUV pulse, 𝑆𝑋𝑈𝑉(𝜖) was 

measured experimentally, the XUV field can be uniquely determined by its spectral 

phase 𝜙𝑋𝑈𝑉(𝜖), which was expressed as a 5th order Taylor series in our model,  

 
�̃�𝑋𝑈𝑉(𝜖) = √𝑆𝑋𝑈𝑉(𝜖) exp 𝕚∑𝑘𝑖𝜖

𝑖

5

𝑖=1

. 
(34) 

The XUV pulse in spectral domain were Fourier transformed into time-domain for streak 

calculation. In addition, 4 elements representing the carrier envelop phase, central 

wavelength, pulse duration and peak intensity [35] were used to characterize the IR 

dressing pulse, totaling the number of XUV and IR pulse parameters to 9. 

The training data were generated by adding noise to the ideal, noise-free traces from 

the physics model. We first created 10000 ideal traces with random pulse 

parameters, 𝐱, and normalized their intensities to the range between 0 and 1. Poisson 

noise was added to each ideal trace 𝐲0 to simulate noisy traces in experiments 

 𝐲~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐲0), (35) 

where the parameter 𝜆 is the average peak count of the Poisson distribution. The 

training data contained a mixture of 5 different Poisson noise levels, 𝜆=10, 32.5, 55, 

77.5 and 100. An additional 1000 ideal traces were used to test the trained model, 

which consisted of 10 different Poisson noise levels, 𝜆, ranging from 5 to 100.  



32 
 

The structure of CVGN used for attosecond streaking trace retrieval was constructed 

according to that in Ref. [22]. It is worth noting that the output (label) of this CVGN 𝐱 is a 

vector with the 9 pulse parameters, instead of the real and imaginary part of the XUV 

spectrum in Ref. [22]. After the training, 25 instances of pulse parameters �̂� were 

retrieved from the distribution  𝑝𝛾(𝐱|𝐳, 𝐲) by sampling {𝐳𝑙: 𝑙 = 1,… ,25} from the 

conditional prior distribution 𝑝𝛾(𝐳|𝐲). The time- and frequency-domain XUV pulses were 

then reconstructed from these pulse parameters. 

The retrieved XUV pulses from both test dataset and experimental streaking traces 

using a trained CVGN are presented in Figure 9 to show the accuracy at various noise 

levels. Figure 9 (a1-a3) shows three simulated streaking traces from the same noise-

free test trace with 𝜆=5, 21 and 100. For each trace, 25 instances of the pulse 

parameter set, �̂�, were retrieved from the posterior distribution 𝑝𝛾(𝐱|𝐲, 𝐳). The frequency 

(Figure 9 (b1-b3)) and time-domain (Figure 9 (c1-c3)) XUV pulses were then 

reconstructed from these retrieved pulse parameters, and streaking traces (Figure 9 

(d1-d3)) were generated from the retrieved XUV pulses using the physical model. Error 

bars on Figure 9 (b, c) represent the variance of the 25 instances of retrieved XUV 

pulse. 

The reconstructed streaking traces and the full-width-at-half-maximum (FWHM) of the 

time-domain XUV pulse were compared with the ground truth. The mean squared error 

(MSE) of the 25 reconstruction instances was used as the error metric to evaluate the 

performance under various noise levels. The reconstructed and ideal streaking traces 
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were all normalized to facilitate the comparison among various 𝜆. For the errors on 

pulse duration, the MSE was normalized by the FWHM of the XUV ground truth. Figure 

10 (a, b) plot the MSE on the reconstructed streaking traces and pulse FWHM with 

respect to 𝜆, averaged over the whole test dataset. 

 

Figure 9: Pulse retrieval from a simulated streaking trace. (a) Input streaking traces. (b, c) Retrieved XUV 
pulse in (b) frequency domain and (c) time domain. The dashed red curves on (b) and (c) indicate the 
ground truth of time-domain XUV pulse and spectral phase. Error bars on (b), (c) represent the variance of 
the retrieved pulse instances. (d) Reconstructed streaking trace from the retrieved pulses. The MSE 
indicates the error between the reconstructed streaking trace and the ground truth. 

X
U

V
 t
im

e
 d

o
m

a
in

5 counts

X
U

V
 f
re

q
u

e
n

c
y
 d

o
m

a
in

21 counts 100 counts

In
p

u
t 
s
tr

e
a

k
in

g
 t
ra

c
e

time (as)

In
te

n
s
it
y
 (

a
.u

.)
In

te
n

s
it
y
 (

a
.u

.)

P
h

a
s
e

 (
ra

d
)

Energy (eV)

E
n

e
rg

y
 (

e
V

)

delay (fs) delay (fs) delay (fs)

Energy (eV) Energy (eV)

R
e

c
o

n
s
tr

u
c
te

d
 t
ra

c
e

delay (fs)

E
n

e
rg

y
 (

e
V

)

MSE=0.00087 MSE=0.00032

delay (fs)

time (as) time (as)

MSE=0.00026

delay (fs)

a1) a2) a3)

b1) b2) b3)

c1) c2) c3)

d1) d2) d3)



34 
 

Results from Figure 10 show that as the average peak count, 𝜆, exceeds 32.5, the MSE 

of the reconstructed streaking trace decreased and remained below 3.5×10-4. The MSE 

of pulse duration also decreased from ~80% (𝜆=5) down to 6% (𝜆 = 32.5). The results 

suggest an average peak Poisson SNR of at least 6 to achieve satisfactory pulse 

retrieval. It is worth noting that for low photon count (5 counts), the retrieved instances 

showed increased bias in pulse profile, which is an indication of strong 

regularization [29]. This is the effect of using the training data with mixed noise level, 

which can be reduced by training with traces with same noise level or implementing 

additional mechanism to adjust the posterior distribution based on noise level.    

 

Figure 10: Normalized MSE of (a) reconstructed streaking trace (b) FWHM of retrieved time-domain XUV 
pulse at various Poisson noise levels. The error bars represent the MSE fluctuation within the whole test 
dataset. 
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measurement process. From Equation (28), it is clear that pulses differ only in the 

carrier envelop phase, 𝑘0, will produce the same measurement. This carrier phase 

ambiguity cannot be easily resolved in conventional neural networks with a deterministic 

structure and will adversely affect the performance of those deterministic neural 

networks. 

For the retrieval of ambiguity instances, we additionally generated 10 ambiguity 

instances of each ideal streaking trace by changing the 𝑘0 term within 0 and 2𝜋, based 

on the 10000 traces in the training dataset. As a comparison, we also constructed a 

deterministic neural network by combining the encoding 𝝁𝐳
(𝜃)(𝐠) and decoding 𝝁𝐟

(𝜃)(𝐠, 𝐳) 

structures in CVGN, and removing the sampling process 𝐳~𝑞𝜙(𝐳|𝐟𝑖, 𝐠𝑖). Both 

deterministic neural network and CVGN were trained on this dataset that contained 

ambiguity. 



36 
 

 

Figure 11: Reconstructions from the ultrafast pulse retrieval experiment: (a) Ground truth of the real and 
imaginary part of the XUV spectrum and its simulated streak trace. The IR spectrum is not shown in the 
figure. (b-d) Three instances of CVGN-retrieved XUV spectrum (b1-d1), their phase-shifted variant (b2-
d2), and the streaking trace (b3-d3) calculated from each instance. (e) Retrieved XUV spectrum, its 
phase-shifted variant and streak trace from the deterministic network. 

Figure 11 displays the real and imaginary part of the CVGN-retrieved XUV spectrums to 

highlight the differences among ambiguity instances. An ideal streaking trace (Figure 11 

(a2)) generated from a test XUV pulse (Figure 11 (a1)) was fed into the trained CVGN. 

Three instances of the CVGN-retrieved XUV spectrums are shown in Figure 11 (b1-d1), 

with MSE of 0.27, 0.086 and 0.026, respectively, compared with the ground truth in 

Figure 11 (a). Figure 11 (b3-d3) show the traces reconstructed from retrieved pulses 

(b1-d1), and the fidelity with respect to the ground truth in Figure 11 (a2). 
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The high measurement fidelities suggest that instances in Figure 11 (b1-d1) belong to 

the phase-shift ambiguities of the same streaking trace. To verify this, we shifted the 

carrier envelop phase 𝑘0 by the average phase difference within 100~300eV. The 

resulting pulse spectra (Figure 11 (b2-d2)) match the retrieved XUV spectrum and 

ground truth with good consistency. The amount of phase-shift was 1.65, 0.84 and -0.39 

radians, respectively for Figure 11 (b2-d2), with MSE of 2.0 × 10−3, 2.1 × 10−3 and 

6.8 × 10−3after the phase shift. In contrast, the deterministic network generates identical 

reconstructions similar to the average of all ambiguity instances. The XUV spectrum in 

Figure 11 (e1) cannot be phase-shifted to match the ground truth and exhibits poor 

fidelity (Figure 11 (e3)) compared with the true streaking trace. Table 1 summarizes the 

average MSE of the retrievals from the test dataset. CVGN demonstrates good fidelity 

as it resolves the individual ambiguity instances, a capability unmatched by 

deterministic network. To reach similar retrieval fidelity, a deterministic network requires 

manually removing the ambiguity instances from the training data. 

Table 1: MSE of retrieved pulses and reconstructed traces using deterministic network and CVGN 

MSE of Deterministic network CVGN 

Pulse 7.8× 10−3 4.1× 10−3 

Trace 4.9× 10−3 7.1× 10−4 
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CHAPTER 5: CONCLUSION 

In this dissertation, we have established a statistical estimation framework for 

computational image reconstruction from photon-counting measurements. The 

statistical image reconstruction process models the posterior distribution of the plausible 

images/signals given an observed measurement, and outputs the solution, or multiple 

solutions in case of measurement ambiguity, with the highest likelihood. The presented 

framework incorporates the image-formation process and noise statistics of the imaging 

system to produce reconstructed images/signals that are consistent with the 

measurements. This versatile approach can be applied to estimate images/signals of 

interest in a wide variety of problems including photon-counting CT, region-of-interest 

tomography, and attosecond pulse retrieval. The statistical reconstruction framework 

has demonstrated capabilities unmatched by conventional reconstruction algorithms. In 

X-ray CT, high fidelity image reconstructions can be performed with as low as 16 

photons per pixel, significantly reducing the radiation exposure to the sample compared 

with conventional CT system. We have also derived the optimal photon allocation 

strategy based on the MSE of the estimator. In attosecond pulse retrieval, the statistical 

retrieval framework demonstrates an SNR of 6 or better for satisfactory pulse retrieval 

results, which provides a guideline to future attosecond streaking experiments. 

Moreover, estimating all the possible pulses given an observed trace resolves the 

carrier phase ambiguity intrinsic to the streaking process. We envision that further 

development on the learning-based framework can enable fast, high-fidelity 
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image/signal reconstruction with the full inclusion of the physical model in the 

conditional variational generative network. 
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