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ABSTRACT

In this dissertation we consider ephemeral behaviors of two small-scale living systems, mosquitoes

and citrus fruit reservoirs. While these two systems share few obvious commonalities, they both

express life events that are complex and conclude within approximately 50 milliseconds. We uti-

lize high-speed videography, between 1,000-16,000 fps, to detail how complex behavior can be

modeled as classical engineering systems. Beginning with the larger organism we assessed the

landing and takeoff behavior of Aedes aegypti mosquitoes to ascertain the secrets of their covert

interaction with humans. At takeoff, mosquitoes decrease pushing contact time with substrates

of low friction through a modified takeoff behavior of striking the substrate with a hind-leg prior

to a classic push phase. We propose a 2D analog where the striking leg acts as a rotating can-

tilever about a fixed end that generates upward momentum with a small penalty in body rotation.

Landing mosquitoes are filmed in 2D and modeled as a mass-spring-damper system whose natural

frequency, damping coefficient, ratio, and spring constant are determined experimentally and val-

idated through a nonlinear least square solver fitting of the free vibration ODE’s general solution.

Results indicate mosquitoes behave as an underdamped system to scrub their incoming momentum

through extending impact duration, effectively reducing temporal impact force. Shrinking in scale

we proceed to characterize citrus reservoir rupture as a passive system capable of microjetting

oil through expanding orifices at accelerations greater than 5000 gravities. Citrus reservoirs are

modeled as ellipsoidal pressure vessels capped by a thin membrane of contrasting stiffness to the

surrounding ductile compressible albedo.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Complex organismal behaviors have influenced engineers for centuries. Their highly coordinated

kinematics, robust forms, and functions across both time and size scales require analysis. The

motivation of this dissertation is both theoretical and experimental, to determine for two species,

one active and another passive, classical engineering analogs that describe behaviors. We choose

a plant, citrus fruit, and an animal, mosquitoes, to detail behaviors that are both under 50 ms and

on the scale of 10 µm−10 mm. These time and size scales push the boundary of high-speed

videography requiring new filming and experimental techniques.

We begin our focus with the largest scale, the behavior of Aedes (Ae.) aegypti mosquitoes in

takeoff and landing phases. Their characterization allows for fabrication of bioinspired mechan-

ical designs, an emergent field in the twenty-first century [4, 5]. Foreseen applications are small

unmanned aerial systems (sUAS), whose utility range from swarming surveillance [6, 7] to recon-

naissance and exploration [8, 9]. While much has been gained in knowledge of how insects fly

[10, 11, 12], gauge distances [13, 14], and aggregate cohesively [15]; there is much more to be

understood about kinematics of takeoffs and landings on the millimetric scale. The understand-

ing of mechanics behind the interaction between mosquito and substrate may serve engineering as

biological inspiration for improving robustness of miniaturized unmanned technologies.

Decreasing in scale we detail the microjetting of citrus reservoirs under compression. An area

where engineering developed emergent and global technologies such as inkjet printing [16], drug

delivery [17] and microfabrication [18]. These engineered microjets require electronic controls,

pumps, and precision nozzles which carry high cost due to complexity and machining. Meanwhile,

1



fruits have been documented to produce high-speed microjets due to intrinsic biomechanics. Bio-

logical jetting is seen in organisms for a multitude of purposes, such as locomotion [19], defense

[20], and seed dispersal [21]. The microjetting of citrus fruits is unique in that its’ fluid accel-

eration magnitude is unrivaled in the plant kingdom, produced by an exploitation of contrasting

elastic moduli and a flexible membrane. Characterization of the biomechanics producing the high-

speed microjets may allow for the adaptation to the biomedical industry with fine tuning of the jet

properties [22].

1.2 Background

We start with the background for each subject covered in this thesis; insect takeoffs, landings,

citrus microjets, and aggregate motion.

1.2.1 Mosquito Takeoffs

Insect flight encompasses numerous kinematics for a plethora of procedures across species, yet in

order to fly all insects are required to perform takeoff and landing operations. The Traditional stud-

ies of insect takeoff kinematics have focused on insect morphology [23, 24, 25, 26, 27] and takeoff

stimulus [28, 29] without consideration of the role of surface conditions on takeoff mechanics. In

nature, insects launch from a vast variety of surfaces offering variation in roughness and surface

obstacles with which legs and wings must contend. As technology allows for the miniaturization of

robotic flyers, predicted to resolve many surveillance, reconnaissance, and exploratory challenges

[7, 30], takeoff conditions and takeoff surface topography pose a greater impact on flyer perfor-

mance. Small insects provide kinematic templates for successful launching from a vast array of

surfaces.
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Insect takeoff is both scenario and species dependent. Furthermore insect takeoff may be further

delineated into two categories, jumping and non-jumping, where one utilizes leg contributions and

the other relies predominantly on wing flapping lift. Mosquitoes are known [28] to employ a two-

step takeoff that is initiated with the legs prior to wing engagement, a shared behavior across scale

and species. Locust takeoffs are described by a ‘jump’ prior to the first wingbeat, lasting 33 ms,

whereby leg and wing actions are not overlapping [27]. In contrast, droneflies utilize wing and leg

thrust in synchrony, gradually increasing stroke amplitude, beginning 10 ms after takeoff initiation,

whilst monotonically decreasing leg output force through the twelfth wingbeat [24], exchanging

speed for a relatively smooth takeoff, leaving the ground in 40 ms. Other insects choose speed

over stability when startled [31], as common fruit flies perform two distinct takeoff strategies, one

voluntary and the other responsive [29].

Mosquitoes often require their flight operations be clandestine to avoid detection by large hosts,

thereby placing restrictions on forces transmitted to the takeoff surface. The threshold of mechanosen-

sory detection of forces by the nerves surrounding human hair is 70µN [32], which is widely

accepted to be the lightest detectable touch. In response, mosquitos have adapted ‘light-footed’

takeoff sequencing, which varies with weight as they feed [28]. A blood-fed Anopheles coluzzi

mosquito weighs approximately 3× its unfed bodyweight and adjusts its takeoff by utilizing more

wing-based lift and correspondingly slow extension of legs, resulting in a maximum surface reac-

tion force of 0.02 mN over a total takeoff time [28] of 26.3 ms.

Despite the extensive documentation of insect takeoff and external influences, missing from lit-

erature is a study that incorporates the affect of surface characteristics on the adaptive takeoff

sequence of flyers with multiphase takeoffs, such as mosquitoes. We compare the takeoffs of Ae.

aegypti mosquitoes, vector of the Zika and yellow fever viruses [33], from a surface the smooth-

ness of glass to a surface the roughness of human skin. Documenting two distinct sequences of

takeoff varied by surface roughness, both of the jump then flap behavior. The modification of leg
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dynamics is akin to shifting from a 4-leg evenly distributed push to a striking leg followed by 4-leg

push. We model the striking leg as a rigid cantilever beam striking the surface to generate upward

momentum prior to synchronous leg engagement. Whereby the upward momentum reduces the

contact time of the push phase and saves the energetic expense of slipping.

1.2.2 Mosquito Landings

Landings are unique from other flight maneuvers because they require matching the relative motion

of a target, which calls for highly-coordinated movements in response to visual, thermal, acoustic,

and olfactory signals [34, 13, 35, 36, 37, 38]. Landings are initiated to intercept prey, forage from

dynamic surfaces, and perch [39, 14]. Frequent feeding requires flying insects to engage dynamic

targets, from flowers swaying in a breeze to mammals in motion, and the mosquito provides an

example of an animal which engages both animate and inanimate nutrition sources. Mosquitoes are

notorious for covertly feasting on blood, a process which begins with landing and is accomplished

across a range of relative velocities and surface orientations. Aedes (Ae.) aegypti mosquitoes are

among the most prolific and dangerous mosquito species globally [40, 41], and like all mosquitoes,

rely on an albuminous diet for maturation of the ova [33, 42]. Remaining undetected by the host

during landing, feeding, and takeoff maximizes the probability of a successful meal. Despite their

relevance to society, passive and active mechanisms by which mosquitoes initialize this process are

understudied. The study of aerial landings across a variety of physiology, and under a plethora of

environmental pressures, is not only imperative to understanding biological mechanisms, but may

also be extended to the adaptation and survivability of small unmanned aerial systems (UAS).

A common method of smoothly engaging a landing surface by vertebrates is monitoring flight

speed and distance to collision simultaneously, while incrementally decelerating as the substrate

approaches, requiring binocular stereopsis for computing depth to target [43, 44, 45]. Many aves
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glide downward with a lowered tail and rectrices spread fanwise, inducing a deep stall which

allows them to drop onto their perch [46, 47], while exhibiting a variety of descent techniques.

Pigeons (Columba livia) either descend slowly with upward-sloped wings or rapidly by orienting

their bodies downward before engaging a stall maneuver in the final moments of flight [46, 48].

By contrast, the vampire bat (Desmodus rotundus), which feeds on the ground, initiates landing

by entering a quasi-hovering phase above the ground, then lowers forelimbs until their digits make

terrestrial contact and when landing in an arboreal perch, bats’ legs act as a fulcrum allowing for

downward body rotation [46, 49].

The landing strategies of invertebrates differ from those of vertebrates in both timescale, distance,

and speed due to highly contrasting anatomy and function. Insects’ immobile eyes and fixed focus

optics prevent binocular stereopsis to gauge the distance from a substrate outright [43, 50, 51].

Insects instead use image motion to determine substrate distance. They monitor object expansion

relative to their own motion, and control flight based on the rate of change of perceived object

size [13, 14]. Honeybees (Apis mellifera) decelerate to a hover 16 mm from a landing surface,

demonstrating that touchdown is indeed modulated through relative distance [14, 52]. Similarly,

hawk-moths (Macroglossum stellatarum) decelerate upon approaching a flower and hover before

initiating touchdown [53]. A female housefly (Musca domestica L.) approaches a landing surface

at a constant velocity until the object reaches a critical size on its retina to induce deceleration

[13]. In contrast, fruit flies (Drosophila melanogaster) accelerate towards their landing surface

and, upon touchdown, use leg forces to undergo nearly instant deceleration [54].

Detailed Ae. aegypti landing mechanics are absent from literature, to the authors’ knowledge, but

are likely unique from other insects due to diet, wing mechanics [11], physiological proportions,

and mass. A mosquito has 1%− 10% the mass of a housefly, honeybee, and hawkmoth [55,

14]. Their relatively low mass allows for survival of collisions with objects of much larger mass

traveling at greater speeds [56], but the influence of mass on landing has not been studied. Typical
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Figure 1.1: (a) Photographic landing sequence viewed from above. (b) Experimental setup of flight
arena and orthogonally-positioned high-speed video cameras. (c) Three-dimensional displacement plot of a
mosquito landing with 2.5 ms between each position marker.

mosquito flight posture is characterized by fore, mid, and hind-legs raised and splayed, perhaps

for the sake of streamlining [33]. The sub-topic of mosquito landing which has received the most

attention is their attraction to scents [57], patterns [58, 59], colors [60], and illumination [61].

We observe mosquito landings with high-speed cameras, seen in Fig.1.1, and digitize their motion

to quantify landing forces, the employment of various appendages, and the ability of mosquitoes

to cleave to surfaces across a range of relative velocities. We document the bounce strategy of

mosquito landings, modeling the first touch to rebound as a mass-spring-damper system. The pro-

boscis is modeled as a low stiffness cantilever beam that buckles under the load of landing. Landing

mosquitoes behave as an underdamped mass-spring-damper, extending the duration of impact in
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order to reduce force imparted to the substrate beneath the subcutaneous detection threshold [32].

1.2.3 Microjets of Citrus Reservoirs

Engineering provides fruitful analogs outside the class insecta and into the plant kingdom as we

extend into the genus of Citrus fruit and their microjetting properties. Liquid microjets have long

been of interest to the engineering community. While studies of synthetic microjet production

and use abound, few studies have considered microjets in nature, which may provide alternative

methods for robust jet production through the clever choice of material and geometry, and without

cumbersome supporting systems. Examples of microjets in nature include spitting termites of the

subfamily Nasutitermitinae that spit a viscous salivary toxin in defense of invertebrate attackers

[62, 63], and spitting spiders, Scytodes thoracica, emit venomous silk from vibrating fangs to

snare prey [64]. Outside the realm of arthropods, jetting in nature is commonplace and includes

urination in mammals [65], spitting of venomous snakes [66], and squirting cucumbers [21], but

these examples do not approach the microscale.

It is believed all fruits in the citrus family have been developed by cross-breeding three core fruits

in the last 1000 years: the mandarin orange, pummelo, and citron [67]. All citrus fruits tested

exhibited oil jetting behavior, but despite this shared characteristic, there remains no determinate

evolutionary function of the oil, and no mention of oil atomization in the literature to the authors’

knowledge. The volatile oils may be an attractant to pollinators [68], but are toxic to many arthro-

pods [69, 70, 71]. Citrus oils are known to be phytotoxic [72] and anti-microbial [73], and so

potentially able to protect the fruit and seeds from infection and select predation. Citrus fruits

experiencing blunt impact often suffer internal reservoir rupture leading to spoiled fruit as adjacent

cells burst in contact with oil [74]. Commercially, citrus oils are extracted for their aroma [75],

flavoring food [76], and cleaning products [77].
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Figure 1.2: Image of oil jets issuing from sub-surface oil glands in the highly bent peel of a navel orange.
The highly unstable jets issue at velocities that produce motion blur in the photo, giving the appearance of
jet stability over longer distances.

We observe the oil reservoir in response to external bending deformation, may rupture the outer

surface of citrus exocarp, producing high-speed microjets, by an exhaustive emptying of the fruit’s

aromatic volatile oil, as seen in Figure 1.2. These free jets are best witnessed after a fruit is peeled

and by bending the peel such that the flavedo, or rind, faces outward (Figure 1.2, Figure 1.3a).

Oil reservoirs reside in the mesocarp, or albedo, a compressible foam-like layer commonly known

as the ‘pith’ that fills the space between the fruit locules and the thinner, stiffer flavedo [78]. The

flavedo caps the reservoirs and shields the fruit from the environment. Gland placement within the

peel and relative size can be seen in Figure 1.3b,c. The spaces between glands house stomata, the

fruits’ gas exchange pores [79] that measure approximately 20 µm in diameter. A layer of glossy

boundary cells separates the oil in the reservoirs from the absorbent albedo [80], and is clearly
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seen in Figure 1.3b, where the window into the reservoir is a fortuitous result of cutting. Ruptured

reservoirs result from pressurizing the oil through externally applied forces. When its failure stress

is reached, the flavedo cracks, allowing the pressurized oil to escape and the albedo to expand into

the vacated space, deforming the reservoir, as seen in Figure 1.3d.

a

c
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Tension

b

500µm

Gland	
Cavity

Boundary	Layer	
Membrane	

Albedo

Flavedo

d

Ruptured	
Flavedo

Albedo

Flavedo

Gland	
Cavity

Figure 1.3: Microscopic images of (a) oil ejection from oil gland reservoir through the flavedo, (b) a cross-
sectional view of a singular oil gland with boundary layer membrane partially intact, (c) a group of unbroken
oil glands subjected to external bending, and (d) a cross-sectional view of an oil gland after rupture. The
gland in (d) appears slightly collapsed due to ingress of the albedo toward the flavedo during rupture.

We hypothesize citrus fruit jetting is made possible by the composite peel structure housing the oil

reservoirs, namely a soft reservoir boundary capped by a stiffer film. To test this hypothesis, we

purchase, peel, squeeze, and film the jetting of oil from five Citrus (C) species readily available

in most markets (Movie S1). These species, listed in Table 5.1, have a range of sizes and show
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large variability in bulk fruit and reservoir volume within a species. We find no dependence of

reservoir volume with fruit volume (Fig. C.4). Although comparative experiments are performed,

we focus much of our effort on one fruit, the Florida navel orange, C. sinensis. We buy cold-

pressed, commercially available orange oil for rheological measurement, and find it has a density

ρ = 0.823± .010 g/mL (N=10), dynamic viscosity µ = 0.96±0.02 cP (N=12), and surface tension

γ = 29.4±0.3 dynes/cm (N=5).

1.3 Thesis Outline

In this thesis we investigate the behavioral mechanics of citrus fruit and Ae. aegypti mosquitoes to

develop analogs to classical engineering systems. We select our engineering analogs as ellipsoidal

pressure vessels, mass-spring-damper systems, and cantilever beams in expressing the events of

mircojetting, landing kinematics, and leg-strikes in takeoff. We develop novel experimental tech-

niques to discover the biomechanics by which our chosen species engage their environment. This

dissertation is primarily derived from recent publications and submissions [81, 82, 15]. Chapter 2

details the experimental procedure and setup for each subsequent chapter, as techniques are reused

and modified for following research topics.

In Chapter 3 we begin the mosquito to substrate interaction analysis by filming the takeoff sequence

of Ae. aegypti mosquitoes on substrates of contrasting surface roughness, from roughness of human

skin to glass. Mosquito takeoff strategies have two distinct kinematics, a traditional quadrupedal

push with subsequent wing engagement and a modified push where upward momentum is gener-

ated by a leg-strike before quadrupedal push is engaged. These strategies were dependent upon

surface roughness with reduction in substrate contact time through a leg-strike. We rationalize the

modified behavior as a means of building momentum through swinging a non-contacting leg, mod-

eled as a cantilever beam, in order to reduce the energy expenditure of slipping on the substrate.
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In Chapter 4 we present experimental results for behavior of mosquitoes throughout the landing

phase of flight, complimentary to Chapter 3 in understanding all phases of insect to substrate inter-

actions outside the blood-meal. We model the behavior as an underdamped mass-spring-damper

system where the mosquito clings throughout the residual undulation. We notice a buckling under

landing load of the proboscis which agrees with the forces imparted in the initial contact of our

model system. We predict landing velocities for mosquitoes to remain clandestine in human in-

teraction, matching the majority of experimental landing velocities recorded, explaining the well

documented human experience of not feeling a mosquito until after a blood-meal has ceased.

In Chapter 5 we examine our second species, citrus fruit, and their capabilities of microjetting.

Through high-speed videography and imaging we characterize the biomechanics behind the jetting

of oil reservoirs within the rind of citrus fruit. We detail the jet kinematics by modeling the jet as

a collection of spherical oil droplets moving throughout space and solve for the velocity decay

for subcritical Reynolds numbers. Using an ellipsoidal pressure vessel model we then calculate

the bursting pressure through two means, hoop stress and fluid kinematics, which agree with a

simulation of an ellipsoidal pressure vessel housed within a ductile membrane capped by a stiff

outer membrane. Noting the stomata acting as a perforated edge surrounding the capped end we

detail the rupture stress to be governed by Griffith’s crack criteria matching the scaling of jetting

velocity to elastic modulus. In Chapter 6 we conclude by discussing the implication of our work

along with suggesting future avenues of research.

11



CHAPTER 2: METHODOLOGY

The experimental methodologies for research topic in this dissertation, insect takeoff, landings,

and flight through insecticides.

2.1 Mosquito Takeoffs

We being by defining the research methodologies employed in the mosquito takeoff experiments.

2.1.1 Takeoff experiments

Takeoffs were filmed using Photron AX-100 and UX-100 high-speed cameras at 1000-4000 fps and

1/8000 shutter. The glass mosquito flight arena is shown in Figure 2.1 and measures 76×79×152

mm. A 7.5 mm ID glass tube is inserted 100 mm above the arena floor through which mosquitoes

walk to enter the the arena, emerging on a horizontal takeoff platform measuring 21 mm2.

High-speed camera

Horizontal test 
surface

High-speed camera
Glass enclosure

Mosquito insert

lighting

Figure 2.1: Image of mosquito flight arena experimental setup.
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Mosquitoes are transported with an aspirator to a larger diameter holding area at end of the tube

(not pictured), allowing mosquitoes to exit toward the arena under their own volition. The tube

dwell times ranged from 1-15 min. Mosquitoes preferred to exit the holding area when the ca-

pacity exceeded 15 mosquitoes. No anesthesia was used prior to takeoff experiments. Following

experiments, mosquitoes were anesthetized with carbon dioxide for removal from the flight arena.

Individuals were euthanized following trials to avoid pseudoreplication.

2.1.2 Surface characterization

Surface A is an unmodified, polished acrylic sheet. Surface B is made by roughening polished

acrylic with a 12.7-cm (5-inch) orbital hand sander using 220 grit sandpaper. Surface roughnesses

is measured using a KLA-Tencor Alpha-Step 500 profilometer in two dimensions to ensure surface

homogeneity. Scanning electron microscope (SEM) images were garnered with a Phenom G1

desktop SEM.

2.1.3 Mosquito mass measurements

Mass measurements were performed using a Sartorius Secrua 225D-1s microbalance using 20

anesthetized and fully-intact mosquitoes. Simultaneous mass measurement of 20 mosquitoes re-

duces the influence of instrument error. Leg mass is done by gender in a similar manner by anes-

thetizing a group of mosquitoes and extracting 20 rearmost legs, those used for the leg-strike

takeoffs. The center of mass of the leg was determined digitally using imageJ and by assuming the

density of leg tissue is uniform throughout. A binary image used to estimate a leg’s center of mass

and produced from Figure 3.1b is provided in Fig. S1.
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2.2 Mosquito Landings

2.2.1 Landing experiments

The landings of non-blood fed female Ae. aegypti mosquitoes are filmed within a plastic 3D-

printed flight arena affixed with acrylic walls. The arena measures 70 x 100 x 140 mm, as seen in

Figure 1.1b. A purple substrate equal to the container width and 40 mm in height is placed at one

end of the arena as a landing platform; darker hues elicit landings at a rate 9x higher than clear or

white substrates [61]. Mosquitoes are anesthetized with CO2 for placement into the flight arena,

and given sufficient time to recover from anesthetization before filming. A landing substrate is

suspended in the container and supported by external pillars. To encourage resting mosquitoes into

flight, the arena is vibrated at 25 Hz for up to 5 seconds. After cessation of vibration, only landings

that originate from an orthogonal distance greater than 10 mm is saved for analysis.

Landings are filmed using Photron AX-100 and UX-100 high-speed cameras at 2000-4000 fps

in single and dual camera configurations to extract kinematic measurements. In single camera

experiments, we view landings from above and measure the position and velocity in a horizontal

plane orthogonal to the landing substrate. Two cameras are utilized for 3D reconstruction, where an

additional camera is placed to view the landing surface in its entirety. 3D trajectories are extracted

from paired videos DLTdv7 in MATLAB [83]. The classic Euler angles of the mosquito is captured

using three coplanar points, reconstructed using Horn’s method to determine the yaw, pitch and roll

of the mosquito throughout it’s flight.

2.2.2 Proboscis characterization

The proboscis is modeled as an end-loaded cantilever beam. The proboscis is excised from the

head and affixed to a rigid rod with UV-curable glue. A Keyence VHX-900 digital microscope is
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used to measure its diameter and cantilevered length at a magnification of 150x, and when set to

record at 30 fps, films the accumulation of a water droplet produced by an ultrasonic humidifier.

The subsequent deflection of the proboscis under the weight of the droplet is measured in Tracker.

2.2.3 Leg damping analysis

Damping characteristics are determined by using a modified cubic flight arena of characteristic

length a = 37.5 mm to inhibit free flight and ground the mosquitoes. The mosquitoes are vibrated

at a fixed frequency of 25 Hz for a few seconds to establish sinusoidal behavior, and then vibration

is ceased. Videos are analyzed with Tracker.

2.3 Citrus Microjetting

2.3.1 High-speed image analysis and microscopy

All Citrus fruits used in experiments were obtained from local groceries. Once peeled, specimens

were used within 15 minutes to preserve material properties. Oil jets were filmed with Photron

Mini UX100 and AX100 cameras at 4,000 - 16,000 fps, depending on the scale and phenomenon

of interest. Jets were initiated by placing peels between stationary pliers. Jet velocity, diameter, and

breakup distance were measured digitally using Open Source Physics Tracker software. Pores from

which jets issue were imaged pre- and post-jetting with a Keyence VHX-900 digital microscope

with built-in area and dimension measurement capability.
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2.3.2 Material property measurements

Tensile testing is performed with a MTS Tytron 250, using a 50 N load cell, and pulled at a rate

of 0.3 mm/s. We prepare tensile test samples by mechanically separating flavedo and albedo with

a sharp blade immediately after peeling. Samples of flavedo and albedo are cut into a rectangular

sections 12 mm (polar) x 25 mm (equitorial). Flavedo samples to measure strain energy release

rate Gc are cut into rectangular sections 25 mm (polar) x 50 mm (equitorial), and given a 8− 15

mm manufactured flaw in the form of a thin cut orthogonal to the direction of applied loading.

Such flaws lie within 30−60% the width of the sample.

2.3.3 Finite element simulations

To simulate the bending of a citrus peel and measure the pressure field surrounding an oil reservoir,

we perform an analysis with ABAQUS (Dassault Systèmes) general static step, using a RVE with

rotational boundary conditions at the side walls. To avoid rigid body motion, we fix one node of this

unit cell on the middle symmetric plane and mesh with quadratic tetrahedron elements (C3D10)

around reservoir geometry and quadratic hexagonal elements (C3D20) in other regions. A linear

elastic material model was used for all simulations and gland fluid was modeled as incompressible.

2.3.4 Oil gland reservoir and fruit volume measurements

We image orange peel cross sections with a Nikon D850 SLR camera and digitally trace the outer

boundaries of gland reservoirs in images. We assume reservoirs are symmetric about the jet-

ting axis and use MATLAB to perform shell integration volume calculations for the coordinates

of reservoir boundaries captured in photos. Whole fruits volume measurements were taken by

recording the fluid displaced during complete submersion.
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CHAPTER 3: MOSQUITOES MODULATE LEG DYNAMICS AT

TAKEOFF TO ACCOMADATE SURFACE ROUGHNESS

In this combined theoretical and experimental study, we investigate the takeoffs, as seen in Fig-

ure 3.1a, of Ae. aegypti mosquitoes from surfaces of contrasting roughness. In §3.1, we present the

two observed takeoff kinematics, a push and a modified push dubbed a ‘leg-strike’. We present a

2D model for the kinematics associated with a leg-strike takeoff and determine the associated sub-

strate forces for both strategies. We rationalize takeoff techniques by comparing surface features

with those found on the mosquito tarsi, and discuss the implications of our study and avenues for

future research in §3.2. We provide a summary from our work in §3.3.

3.1 Results

We film 106 horizontal takeoffs of non-blood fed, male and female, Ae. aegypti mosquitoes at

1000-4000 fps in a custom flight arena in which mosquitoes emerge from a tube onto a platform of

varying surface roughness (see §2.1.1). Restriction of the tube diameter prevents flight inception

within the tube, mandating mosquitoes launch from the horizontal platform. Using this method, no

anesthetization was used to place mosquitoes onto the takeoff platform. Under voluntary takeoff

conditions, we observe Ae. aegypti mosquitoes employ two distinct takeoff strategies. The first,

dubbed a ‘push’, is described by the quick extension of legs to their maximum extent. Most com-

monly, all six legs participate in pushing but we occasionally observe a 4- or 5-legged push. Legs

consist of three sections, the femur, tibia, and tarsus, as shown in Figure 3.1b. During takeoff,

only the tarsi contact the ground. As the mosquito body moves upward, the tarsi slide inward, fre-

quently meeting before lifting off. The second strategy, a ‘leg-strike’, is initiated by the downward

swing of one elevated hind leg. The transfer of momentum from the subsequent strike against the
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Figure 3.1: Image of (a) multiple mosquitoes sitting at base platform with one mid-action takeoff and (b) a
composite image of a mosquito’s striking leg at 200x.

substrate initiates body lift. Following the leg-strike, a six-legged push commences, comparable to

a purely pushing takeoff. Below we compare the performance and substrate forces for both takeoff

types.

3.1.1 Pushes

Mosquitoes begin a pushing takeoff with their legs planted on the takeoff platform. In unison, the

legs straighten and draw inward, pushing the mosquito’s body upward as wingbeats commences.

This sequence of leg extension and body lift is displayed pictorially in Figure 3.2 and shown in

Movie S1. In the following calculations of force and power, we consider only the dynamics of
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female mosquitoes. The legs experience rapid extension during pushing, beginning with a con-

tracted angle of 88.5±16.9◦, N=5, and extending to 120.2±20.5◦, N=5, over the course of time

preceding the first wingbeat τw = 5.5± 2.2 ms, N=10, and corresponding to the leftmost region

of Figure 3.2. The resulting angular velocity, 16 rev/s, is sufficient to produce a lift velocity of

U = 0.38±0.17 m/s, N=10, generating an upward acceleration equivalent to 7 gravities (g).

first flap legs off 
ground

Figure 3.2: Steps defined for a push takeoff overlaid onto an elevation vs. time plot for abdomen and thorax
positions

We assume that each leg contributes equally to liftoff in our analysis. We likewise assume that

pushing forces are greatest before wingbeats begin, since the aerodynamic lift force created by

the wings is ∼1− 5 times greater than that of the legs [28], and so we only consider the short

moments prior to the first full wingbeat τw in our analysis of applied substrate forces. The total

time to tarsal liftoff τlift = 11.6±1.6 ms, N=10. Finally, we assume the force provided by the legs

remains constant throughout τw and that tarsi do not slip outwardly, as done in previous studies

[84, 85, 86, 87]. We discuss the implications of this assumption and provide an alternative in §3.2.

Conservation of momentum and impulse yields

FP =
m
6

(
U
τw

+g
)
, (3.1)
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where FP = 0.027 mN is the normal pushing force per leg exerted on the takeoff platform, m= 2.06

mg is the mosquito’s body mass, averaged over 30 individual females, and g = 9.81 m/s2 is the

acceleration due to gravity. We note this value is well below the cutaneous neuron mechanosensory

threshold of human hair [32], 0.07 mN, but greater than those previously measured for Anopheles

coluzzi [28]. The average power generated by a pushing leg during takeoff is given by

PP =
mU
6

(
U

2τw
+g
)
, (3.2)

where PP = 5.78 µW.

3.1.2 Leg-strikes

Leg-strike takeoffs are modifications to pushing takeoffs, and are of similar duration to purely

pushing takeoffs at τw = 9.6± 1.6 ms, N=10, and τlift = 13.1± 2.3, N=10. Achieving nearly

identical vertical body velocity at first wingbeat, U = 0.35±0.17 m/s, N=10. The takeoff begins as

an elevated rear leg swings rapidly downward and strikes the takeoff substrate at Uleg = 0.59±0.06

m/s, N=25, measured by tracking the ‘ankle joint’ of the leg as denoted in Figure 3.1b. The tracked

position on the leg is a surrogate for the leg’s center of mass, which is nearby and likewise denoted

in Figure 3.1b. The downward swing of the leg is pictured in Figure 3.3 and shown in Movie S2.

Through video analysis at 10,000 fps we measure leg swing distance ds = 1.8±0.4 mm, N=3, and

impact time τi = 0.8± 0.10 ms, N=3. Following impact of the swing, all legs push upward, and

generates a comparable ground reaction force. The force of the striking leg FLS = 0.025 mN and

is given by

FLS =
mlegUleg

τi
, (3.3)
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where the mass of the striking leg mleg = 33.5 µg . Like FP, FLS lies well below the mechanosen-

sory threshold in humans [32], and thus a striking leg is imperceptible to a human host. The

average power required to achieve Uleg is

PLS =
mlegU2

leg

2τs
, (3.4)

where the swing time from first movement until first contact with the ground is represented as

τs =
ds

χUleg
, (3.5)

and experimentally measured χ = 0.71 compensates for the ramp in leg speed up from zero to Uleg.

The resulting power given to the single striking leg PLS = 1.36 µW is considerably less than the

power required of a pushing leg according to Equation 3.2, PP = 5.78 µW.

leg swing

pushing 
before first 

flap

pushing 
while 

flapping

leg impact

legs off 
ground

dsw

Figure 3.3: Steps defined for a leg-strike takeoff overlaid onto a elevation vs. time plot for abdomen, thorax,
‘knee’ and ‘ankle’ joint positions.

A leg’s center of mass striking the ground at a perpendicular distance `= 2.58±0.14 mm from the
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body’s center of mass has consequences on body pitch and lift. If we estimate the center of mass

to lie midway between the aft of the abdomen and the base of the proboscis, we may calculate

the pitch of the body during the strike by first finding the angular acceleration α = (FLS/Ī)` =

18.7×103 rad/s2 imparted to the body during the leg’s impact time, for a cylindrical mosquito of

length L= 4.48±0.34 mm. The mass moment of inertia for a cylinder rotating longitudinally about

its center is Ī = mL2/12. The corresponding change in body angle during the ephemeral impact

time τi is a minuscule 0.34◦. Such as small rotation is not perceptible in tracking data. We calculate

the impulsive force of the striking leg generates an upward body velocity fo 0.01 m/s, which is 3%

the body velocity at first wingbeat. It may appear the leg-strike is a little consequence, but the result

is unloaded tarsi at the onset of the pushing phase, which is likely to retard tarsal engagement of

the surface when pushing commences, allowing for increased traction.

3.1.3 Surface roughness drives takeoff strategy

The two surfaces used in this study are pictured in Figure 3.4a,b, alongside an Ae. aegypti tarsus at

the same scale. Surface A (Figure 3.4a) is polished acrylic, having an arithmetic mean deviation

roughness Rq = 3.1 nm, the approximate roughness of glass [88]. Surface B (Figure 3.4b) is acrylic

roughened with sandpaper, and has Rq = 43 µm, approximately the roughness of human skin [89].

The mosquito tarsus (Figure 3.4c) is covered in feathery scales which aid in standing on a water

surface [90], roughly 10-15 µm in size according to our measurements.

Takeoff strategy is driven by surface roughness. As seen in Figure 3.4d, polished Surface A re-

sulted in leg-strikes (66%) dominating pushes (34%), N=44, when considering both male and

female mosquitoes. Surface B, the rougher of the two, evokes greater frequency of pushing (56%)

and leg-strikes (44%) in minority, N=62. We find takeoffs from these two surfaces to be statisti-

cally different when performing a Fisher’s exact test for contingency, with p = 0.0301. However,
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Figure 3.4: SEM images of (a) Surface A, polished acrylic, Ra = 3 nm, (b) Surface B, roughened acrylic
(Ra = 300 µm), and (c) the Ae. aegypti tarsus. The bar plat in (d) shows takeoff preference by percentage
of unfed Ae. aegypti from smooth (Surface A) and roughened (Surface B) takeoff platforms. Genders,
combined for this plot, are not statistically different.

no such strategy preference exists based on gender for either surface Surface A (p = 0.5350) or

Surface B (p = 0.5792).

We rationalize the shift in strategy preference by observations of purely pushing takeoff on polished

and roughened surfaces. When pushing from roughened Surface B, mosquitoes tarsi remain in
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place through the bulk of leg extension and draw inward as legs reach their maximum extent

(Figure 3.2). The alignment of the feathery structures on the tarsi likely provide anisotropic friction

and aid this maneuver. As seen in Figure 3.4c, the features on the tarsus match the scale of the

disparities on Surface B, but are larger than the disparities of Surface A. In contrast to Surface B,

pushing from Surface A may result in the outward slip of the tarsi (Movie S3), thereby reducing

the efficacy of the push. Traction on Surface A is so little that we observe some mosquitoes rest

their abdomen on the takeoff platform prior to takeoff due to the severe splaying of their legs.

3.1.4 Model for optimal leg-strike takeoff

Table 3.1: Takeoff measurements for push and leg-strike takeoffs (N=10).

m leg m body U  (m/s) U L (m/s) !bw (ms) !t (ms)
Push 0.38 ± 0.17 5.5 ± 2.2 11.6 ± 1.6

Legstrike 0.35 ± 0.17 0.59 ± 0.06 9.6 ± 1.6 13.1 ± 2.3
33.1 μg 2.06 mg

Mosquitoes may exercise a range of leg-striking speeds to initiate takeoff, as would any flyer

employing this method of launch. However, choice of leg-striking speed will influence takeoff

dynamics in both leg-strike and push phases of takeoff. A mosquito launching from a host should

do so quickly with sufficient velocity to escape the surface and do so undetected. Therefore, we

surmise mosquitoes instinctively keep total takeoff time consistent while minimizing force exerted

on the host. We rationalize the observed leg impact speed Uleg by modeling each portion of takeoff,

swing, impact, and push, while fixing time to first flap τw, takeoff speed U , leg swing distance ds,

and leg impact time τi to the average observed in experiments and provided in Table 3.1.

As a result of the leg striking the ground, the body is pushed upward at

U0 =Ulegmleg/m. (3.6)
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The time remaining for the pushing phase is τw− τs− τi, over which the six pushing legs need to

generate an additional upward body velocity of U −U0. Combining Equations 3.1, 3.3, 3.5, and

3.6, we develop a model by which we can vary Uleg and generate FLS, and the pushing force per

leg in the portion of takeoff following leg impact,

FP,LS =
m
6

(
U−U0

τw− τs− τi
+g
)

(3.7)

The curves for FLS and FP,LS are given in Figure 3.5a for a range of Uleg values. The upper bound

of Uleg is set such that the striking leg does not exceed the mechanosensory threshold of 0.07

mN. Slower Uleg values require greater forces by the pushing legs. This model, however, will not

predict the value of FP given by Equation 3.1 as Uleg → 0 because a very slow Uleg will require

very large pushing forces for a takeoffs constrained to τw. Therefore, we must apply a lower bound

Uleg, min = gτi(m/mleg) = 0.49 m/s, the minimum speed required to generate a force equal to the

mosquito weight, 0.02 mN. Below Uleg, min the striking leg cannot generate upward motion.

By choosing the intersection of the curves in Figure 3.5a, Uleg = 0.64 m/s and FP, LS = 0.027 mN, a

model mosquito minimizes the greatest force exerted on the host substrate, minimizing the chance

of detection. We note the force-minimizing leg-strike velocity predicted by our model is very close

to the observed average of 0.59 m/s.

The curves for power produced by a striking leg, PLS, and pushing leg, PP from Equations 3.2 & 3.4

respectively, are shown in Figure 3.5b. We note the intersection of these curves lies at Uleg = 0.69

m/s and 2.16 µW, less than half the pushing power of a leg in a purely push takeoff at 5.78 µW

(§3.1.1). According to our model, at the observed leg-strike velocity of 0.59 m/s, the force and

power of a pushing leg following the leg strike is 0.029 mN and 2.4 µW. We therefore conclude

the choice of Uleg is driven by reaction forces and not leg power.
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Figure 3.5: Model generated plots show the variance of leg-strike and pushing (a) forces and (b) power
across a range of leg-strike impact velocity. The model predicted impact velocity based on force of 0.65 m/s
is close to the observed average of 0.59 m/s
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3.2 Discussion

Our study reveals that Ae. aegypti mosquitoes employ two distinct takeoff strategies, a push and a

leg-strike, and each strategy’s proportion of utilization is influenced by takeoff surface roughness.

To combat tarsal slipping on smooth surfaces, a leg-strike provides an initial boost skyward, de-

creasing the effort required by the subsequent pushing phase. Leg-strikes also consume 75% more

time to execute than a purely push-based takeoff, while still producing a nearly identical vertical

velocity of∼ 0.35 m/s at the instant of first full wingbeat. The extra time is consumed by swinging

a hind leg downward, producing a force comparable to the force of a pushing leg.

A greater understanding of the leg dynamics in launching mosquitoes may lead to enhanced func-

tionality of sUAS and terrestrial robots alike. Robotic jumpers [91, 92, 93, 94, 95, 96, 97] utilize

the ubiquitous biological strategy of jumping to locomote across challenging terrain [92, 96, 98],

a strategy likely to be found in the next generation of extraterrestrial explorers [99, 100, 101, 102].

Jumping permits flyers to become airborne before engagement of in-flight thrust sources, while ter-

restrial jumpers gain the ability to navigate difficult terrain not suitable for more common wheel-

and track-based travel. Challenges robotic jumpers must overcome include takeoff angle modu-

lation, self-righting upon landing, sequential jumping, and steering. Certain robots, such as the

‘sand flea’ [103], are able to jump tens of feet. However, certain terrain stand to challenge robotic

design, which results in the inability to achieve maximum height and steering [91]. In the case of

a polished surface such as ice, the performance of jumpers may be compromised, but the utiliza-

tion of a leg-strike type jump may subvert detrimental slippage. Such takeoffs allow biomimetic

devices an enhanced ability to optimize launch behaviors for power and speed requirements when

encountering a myriad of terrain features.

Determination of pushing force and power

For takeoffs which employ as few as four pushing legs, the figures for force and power presented
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above must be recalculated. For purely pushing takeoffs, FP = 0.041 mN. For leg-strike takeoffs,

the pushing phase legs would exert FP = 0.043 mN. We note these values remain well below 0.07

mN limit [32], which suggests the choice in number of participating legs is more critical for takeoff

stability or direction than takeoff performance.

The assumption of constant FP over the entire course of pushing motion provides an average value.

If this assumption is violated, the average force value can be much less than the peak value. We may

alternatively find FP over the time course of takeoff by examining upward motion of the mosquito

body and assuming the body is rigid and not rotating. Second order numerical differentiation of the

thorax track in Figure 3.2 produces a temporal curve for FP given in Fig. S2, corresponding to an

upward body acceleration of 11.3 gravities (g). The peak force per leg is 0.038 mN, with an average

of 0.030 mN over 5.2 ms. We note this peak force is less than 0.07 mN and not dramatically greater

than the previously calculated FP = 0.027 mN. If only four legs are engaged in pushing, the peak

push force would be 0.058 mN per leg.

In comparison to fleas [104, 105] and leafhopper insects [85, 106], mosquitoes are not adept

jumpers. Fleas (Boreus hyemalis) and leafhoppers (Ulopa reticulata) generate accelerations as high

as 150 g and 235 g, respectively, by elastic recoil of a resilin spring within the thorax [104, 85]. In

leafhopppers, the corresponding power per muscle mass for the hind leg extensors is 25 mW/mg,

where muscle mass is taken to be 11% of the body mass [85]. At just 11.3 g and using all 6 legs, it

is unlikely mosquitoes employ elastic energy release when pushing, but instead use direct muscle

contraction as in flight [107]. The mass of the mosquito’s extensor muscles is unknown to the

authors, but if we conservatively assume the combined extensor muscle mass for all six legs is 5%

of the body mass, the mosquito would have a power per muscle mass value of 0.34 mW/mg, which

is comparable to the power density of the in-flight muscles of other insects [107].

Determination of leg-strike force
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During leg impact, the leg converts its kinetic energy into body lift over a sub-millisecond impact

time. Predictions of leg-strike velocity given by our impact model in §3.1.4 are sensitive to the

magnitude of leg impact time. An increase in the impact time of 1 ms requires a doubling of the

velocity of the striking leg. Fortunately for mosquitoes, this impact time is passively governed

by the material properties of their leg segments and joints. Leg deformation upon impact sets the

impact time. Mosquitoes possess tubular legs [33], enabling the legs to attain stiffnesses higher

than solid legs of the same mass. Greater leg stiffness shortens impact times and according to

Equation 3.3 enables more efficacious force transfer. Clever choice of leg materials and geometry

in sUAS will enable optimal takeoff performance by controlling leg deformation.

Prediction of slipping losses

As tarsi slip on Surface A, a bit of takeoff energy from pushing legs is lost to friction during

lateral motion. If we assume the mosquito generates the same force on Surfaces A and B, we may

estimate the pre-leg energy lost to friction as Eslip ≈ dslipFP = 0.054 µJ, where dslip = 0.6± 0.4

mm, N=5, is the distance of tarsal slip and Fd is estimated from Equation 3.1. The per-leg energy

used during a slip-free takeoff can be estimated as EP = FP∆z = 0.036 µJ, where ∆z ≈ 1 mm is

the change in height of the center of mass from a resting position to the first wingbeat. We note

this approximation for pushing energy is in agreement with τwPP = 0.025 µJ from Equation 3.2.

Therefore the mosquito is poised to use Eslip = (dslip/∆z)EP = 1.5EP for failure to choose the

appropriate takeoff technique. Leg-strike takeoffs reduce the energy lost to slipping by positioning

the legs closer to an orthogonal posture with the surface prior to the pushing phase of takeoff and

subsequently reducing dslip to < 1 mm.

Biological implications

As presented in §3.1.3, there is no statistical difference between female and male utilization of

takeoff procedure, implying the disparity in weight between the genders does not greatly impact
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takeoff preference. Furthermore, mosquitoes (Anopheles coluzzi) are able to modulate takeoff

kinematics following a blood meal, in which their mass grows by 3×, to maintain their liftoff

speed [28]. Blood-fed Anopheles coluzzi, weighing 80% more than the females we study, liftoff at

0.23 m/s. This suggests there may be an optimal vertical takeoff velocity envelope for insects at

the scale of mosquitoes, or with similar wingbeat kinematics, but this remains an area for future

research. If the Ae. aegypti used in this study were allowed to blood-feed, we likewise expect

wings to assume a greater role in takeoff force generation and vertical velocities at first wingbeat

to decrease.

While our study highlights the mechanics of leg-initiated takeoffs by mosquitoes, it does not an-

swer why takeoffs begin with leg motion. We surmise that leg-initiated takeoffs performed by

mosquitoes are not principally done for efficiency nor speed. Any energy savings gained by re-

ducing the number of wingbeats, O(10), performed is minute by comparison to the number of

wingbeats performed over a single flight, O(104). Wings, and membrane wings in particular, are

known to have increased performance near the ground [108] due to vortex interaction with a solid

surface. The unique wing stroke kinematics of mosquitoes [109] may induce instabilities near the

ground, but this is undetermined at this time. Time savings from using legs are likely meager

as well. The time of leg action prior to the first full wingbeat is less than 10 ms. If leg action

were to achieve the same dynamical consequences of 5 wingbeats, a mosquito beating its wings

at 608± 41 Hz, N = 3, would consume 8.2 ms to achieve a comparable elevation. Therefore, the

most likely cause for leg engagement is wing obstruction. As seen in Figure 3.6 and Movies S1-

S3, wings moving from their resting position to their flight posture need to traverse a plane that

intersects resting legs. By rapidly extending the legs downward, the legs leave the region occupied

by beating wings. In Movie S4, we provide an instance where a mosquito is able to flap into the

spaces between the middle and hind legs during leg extension, with wings contacting legs during

this action. It is not clear if such a strategy would be effective if legs remained completely static,
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but is clear that legs are extended prior to the first full wingbeat. In flight, outwardly extended legs

are positioned forward and aft of the stroke plane.

Figure 3.6: Photo of a resting mosquito with wings traced in red and left legs traced in yellow, showing the
obstruction of wing traversal to the flapping plane by the legs.

Mosquitoes engaging a leg-strike sacrifice time for a low-slip takeoff, similar to Drosophila trad-

ing stability for acceleration in escape takeoffs [31, 29]. The shift of takeoff strategy from one

surface to another suggests that insects are capable of judging the suitability of surface for takeoff,

a capability which likely extends to other families of insects. Examples of fine adjustments to

takeoffs may includes locust jumps from very loose sand or mosquitoes from liquid surfaces [90].

As takeoff surfaces become more complex, with surface features on the mesoscale, undiscovered

takeoff techniques may emerge. Future studies are needed explore the methods and limits of insect

evaluation of surface characteristics from temporal and topographical perspectives.

3.3 Chapter Summary

In this study we find Ae. aegypti mosquitoes taking off from horizontal surfaces employ two dis-

tinct strategies of takeoff, a ‘push’ and a ‘leg-strike’, the choice of which is influenced by surface

roughness. Both strategies produce similar upward body velocities as the insect begins to beat

its wings, 0.38 m/s and 0.35 m/s respectively, over brief timespans, 5.5 ms and 9.6 ms. On the

31



smoother surface tested, the majority of individuals (66%) employ a leg-strike action prior to a

pushing action, which reduces tarsal slip. On the rougher surface, leg-strikes frequency reduces

to 44%. The push takeoffs have one phase prior to wingbeat commencement, the extension of the

legs. The force exerted on the takeoff surface by each pushing leg remains below the mechanosen-

sory threshold of human skin, 0.07 mN. By comparison, leg-strike takeoffs have three phases, the

downward swing of a rear leg, the impact of the leg, and the subsequent extension of all legs. The

striking leg is modeled as a rotating cantilever beam attached to a cylindrical body where the values

for force and body rotation are determined. The forces exerted by the striking leg, 0.025 mN, and

pushing legs, 0.027 mN, likewise remain below the aforementioned threshold, with a minimal re-

sultant body rotation of 0.34◦. By fixing takeoff time and upward body velocity before the first full

wingbeat, we conclude that mosquitoes choose a leg-strike velocity that allows them to minimize

the peak force exerted to the takeoff substrate, potentially a human host.
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CHAPTER 4: LANDING MOSQUITOES BOUNCE WHEN ENGAGING

A SUBSTRATE

In this experimental study we reveal the passive mechanisms mosquitoes employ to engage hosts

undetected. We observe mosquito landings with high-speed cameras and quantify displacement,

landing forces, the employment of various appendages, and the ability of mosquitoes to cleave to

surfaces across a range of relative velocities. We begin §4.1.1 with a description of the landing

sequence and kinematics. We discuss the proboscis deformation upon landings §4.1.2 and model

the proboscis as a cantilever beam buckling under impact force. In §4.1.3 we model the mosquitoes

displacement at first contact with that of a classical mass-spring-damper system. We discuss impli-

cations of our results and propose future research avenues in §4.2, and provide concluding remarks

in §4.3.

4.1 Results

4.1.1 Description of landing and orientation preference

The walls of the flight arena are briefly vibrated to encourage flight of resting mosquitoes. Mosquito

landings are considered for analysis if a forward appendage (forelimbs or proboscis) initiates con-

tact with the landing surface. All analyzed landings are shown in Figure 4.1 as smoothed curves

and in Fig.S1 as raw curves. Temporal velocity for all landings are is plotted in Fig.S2. Mosquito

flight posture is characterized by both forelimbs projecting outward with θlegs = 118.4± 8.1◦,

N = 5 with respect to one another if measured from the thorax dorsal center. Typical flight pos-

ture is shown in Figure 4.2a,c (Movie S1). Such a foreleg posture avoids lateral engagement of

substrates up to an angle of incidence α = θlegs/2 = 59.2± 4.1◦. We limit our scope of analysis
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Figure 4.1: Normal-to-substrate displacement for all 20 analyzed landings. The tracked point on the
mosquito is the interface of the proboscis with the head. The final resting position the tracked point corre-
sponds to x = 0. First contact of any portion of the mosquito with the landing surface corresponds to t = 0.
Dashed-curves indicate the proboscis is the first member to contact the substrate, while solid lines indicate
tarsi initiate contact. Curves are smoothed with a Savitzky-Golay filter at 10% span.

to landings in which the angle of incidence of approach is less than α to eliminate landings which

were slowed, or otherwise influenced, by grazing contact of aft legs and wings prior to substrate

engagement.

Mosquitoes approach the test surface with a normal velocity vn = −0.24± 0.14 m/s, N = 20, as

shown in Figure 4.1 for t < 0. Upon tarsal contact with the substrate specimens rapidly decelerate,

shown graphically in Figure 4.1 and Figure 4.2a-b. Sensing of the substrate prior to touchdown

is likely done with a combination of vision and self-induced pressure wave detection [110]. En-

counters with the substrate intermittently occur proboscis first, shown in Figure 4.2d, and produce

compression of the forelegs and often buckling/deformation of the proboscis, lengthening impact

time, seen in Figure 4.2e. Mosquitoes bounce from the surface at a normal velocity 0.16±0.08 m/s,
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N=19, and reverse course back toward the substrate at an average distance of 1.7 mm. A bounce

is witnessed when the torso experiences movement away from the substrate. Landings in which

tarsi do not separate from the substrate following initial contact display a single bounce. A double

bounce landing is plotted in three dimensions in Figure 1.1c, two dimensions in Figure 4.2a, and

pictured in Figure 4.2f. Only a single trial displayed no bounce. Mosquitoes display a bounce pat-

tern which ceases when tarsal grip is sufficient to overcome bounce acceleration, within 3 bounces

(Movie S2). Every bounce and subsequent approach acts to reduce the mosquitoes’ incoming mo-

mentum by at least 50%, N=19. With forelimb tarsi securely in place, the abdomen and remaining

legs swing downward to contact the surface as the wings cease flapping. Once coming to their rest-

ing position, Figure 4.2g, wings then rotate inward at an average angular velocity 12,977±4,844

deg./s, N = 5 (left wing) and 12,943±4,932 deg./s, N = 4 (right wing) to rest atop the abdomen

approximately 100 ms after approach, as pictured in Figure 1.1a.

While we analyze only landings onto vertical surfaces in this study, we do quantify the frequency

of landings onto vertical and horizontal surfaces within our flight chamber. Over the time-course

of 5 minutes, beginning at the cessation of arena vibration, we count the number of landings onto

the purple substrate when oriented vertical and horizontal, in separate trials. For each trial, 50

female mosquitoes were placed in the arena simultaneously. We count 29± 3, N = 3, landings

on the vertical surface and a meager 3± 2, N = 3, landings on the horizontally oriented surface,

a result which is in line with previous observation of mosquito preference [40]. We note that

for many mosquito hosts, humans for example, vertically oriented surface area exceeds that of

horizontally-oriented surface area.
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Figure 4.2: Mosquito landing plots for (a) Normal-to-substrate displacement versus time. (b) Temporal
normal-to-substrate velocity. Data in plots (a) and (b) is smoothed with Savitzky-Golay filter at 10% span.
(c) Initial deceleration of mosquito. (d) First contact of proboscis. (e) Collapse of the proboscis with head
nearly contacting surface. (f) Maximum bounce displacement. (g) Final stabilization of landing position
with eminent wing retraction.

4.1.2 Impact energy and proboscis bending

As legs compress, wings flap, and proboscises deform, mosquitoes absorb their in-flight kinetic

energy Ek = mv2
n/2 = 0.061 µJ, where the average mosquito mass m = 1.66 mg, N=30. In the ab-

sence of detailed wing kinematics and computational fluid dynamics, parsing the energy absorbed

in the legs Ul from that absorbed by the wings Uw is not feasible, and is thus beyond the scope

of the current study. Therefore, we quantify the energy absorbed Up via proboscis deflection δp,

preceding the initial bounce, seen in Figure 4.3a,b (Movie S3). Proboscis deflection is not seen

in subsequent bounces and was present in 16 of 20 recorded landings. Altogether we may write

Ek =Up+Ul+Uw, and note that potential energy is neglected in our consideration of conservation
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of momentum in the direction perpendicular to the landing surface.
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Figure 4.3: Mosquito landing with proboscis (a) initiating contact with substrate, and deflecting from normal
force. (b) Modulus experiment with mosquito proboscis fixed on one end and loaded on free end with a water
droplet. (c) Diagram of measured parameters depicting proboscis deflection due to end load.

Deflection of the proboscis δp is measured approximately 5− 80%, N = 16, of proboscis length

L = 1.0− 2.1 mm. We acknowledge this degree of deformation very likely places the proboscis

outside the linear-elastic regime. However, to gain an understanding of the role proboscis de-

formation plays in the landing process without knowing precise deformed curvature, we employ

linear-elastic assumptions. We model the proboscis as an end-loaded cantilever beam where the

proboscis deflection stores elastic strain energy UP = keffδ
2
p /2 and force is applied normal to the

beam axis. The effective stiffness of the proboscis keff can be written in terms of elastic modulus

Ep, area moment of inertia I = πr4/4 = 2.16×10−6 mm4, and L, such that keff = 3EpI/L3, where

proboscis radius r = 43± 2 µm, N = 3. The elastic modulus of the proboscis is determined by
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measuring its deflection δD under the weight FD of a droplet (see §2), such that

Ep =
FD`

3

3IδD
, (4.1)

where the cantilevered proboscis length ` = 917±97 µm, N = 3 and δD = 3.2±1.3 µm, N = 3.

Deflection of a proboscis by a drop can be seen in Figure 4.3b, and schematized in Figure 4.3c.

We measure Ep = 1.56±0.16 MPa, N = 3, and from above,

Up =
3EpIδ 2

p

2L3 . (4.2)

For the maximum observed value of δp = 0.8L and L = 1 mm, Up = 0.0032 µJ. In the most

extreme cases the proboscis is able to absorb up to Up/Ek ≈ 5.4% of the kinetic energy of the

average mosquito approach.

If instead we consider an axially loaded proboscis, the critical buckling load Pcr required to produce

tip movement δp, analogous to buckling a column,

Pcr =
π2EPI

4L2 , (4.3)

we calculate Pcr = 8.3 µN, well below the human detection threshold, 70 µN [32]. The exact

energy calculation associated with buckling would require extensive post-buckling analysis and

is complicated by complex material behaviors at large deformation. Such characteristics are not

known for proboscises. Recent research in the crushing of slender structures indicates a rapid

collapse of load bearing capacity at the onset of instability for even complex structures under both

axial and bending loads [111, 112]. Conservatively, we assume linear force P degradation such that

P = Pcr at loading onset and P = 0 at complete collapse. The energy transferred to the proboscis

is the sum of the collapse energy Ucol ≈ PcrL/2 = 0.0042 µJ and the assumed negligible elastic
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energy. Thus, Ucol/Ek ≈ 6.9%. The agreement in values of Up and Ucol indicates the primary

mechanisms for dissipating energy associated with orthogonal flight motion are leg compression

and wing aerodynamics, discussed in §4.1.3.

4.1.3 Impact force mitigation by foreleg properties

Foreleg compression at touchdown lengthens impact time and reduces impact force by distributing

momentum across multiple joints. Modeling the mosquito as a simple mass-spring-damper, where

the legs act as the damped spring, allows for the determination of their effective damping coeffi-

cient c and stiffness k for comparison to those ideal for force reduction. To characterize dynamic

response we vibrate the box floor beneath standing mosquitoes at a fixed frequency, 25 & 50 Hz.

Upon nearly impulsive cessation of floor movement we measure free response of mosquito bodies

and solve the corresponding equation of motion,

ẍ+β ẋ+ω
2
n x = 0, (4.4)

where β = c/m and ωn =
√

k/m. The amplitude reduction factor provides the damping ratio ζ of

the mosquito,

ln
x1

x2
=

2nπζ√
1−ζ 2

, (4.5)

where n is the number of cycles between amplitude measurements x1 and x2 equal to unity in

our system (Figure 4.4a). Solving Equation 4.5 with both 25 and 50 Hz responses, ζexp = 0.36±

0.10, N = 8, indicating the mosquito behaves as an underdamped system, explaining mosquitoes’

propensity to bounce after first contact. The natural frequency of the mass-spring-damper analog

ωn = ωd/
√

1−ζ 2 = 256±39 rad/s, where ωd = 239±36 rad/s is measured from spatio-temporal

data. The spring constant k = mω2
n = 0.109± 0.002 N/m, the critical damping coefficient cc =
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√
4mk = 8.5± 1.2×10−4 N-s/m, and the actual damping coefficient c = ζ cc = 3.1± 0.5×10−4

N-s/m. The general solution to Equation 4.4 is,

x(t) = e−(β/2)t [Asin(γt)+Bcos(γt)], (4.6)

where γ = 1
2

√
4ω2

n −β 2, A = [βx(0)/2+ ẋ(0)]/γ , and B = x(0). Using the aforementioned values

of k and c, we plot Equation 4.6 in a dashed-black line next to a temporal track of a typical landing

event, in Figure 4.4b, matching the initial condition x(0) = 2 mm of the data. We note reason-

able agreement with experimental data through the first 20 ms of landing. Equation 4.6 does not

capture the influence of aerodynamic damping of the wings, the wing-in-ground effect, and poten-

tial coulomb damping in the joints. Moreover, Equation 4.6 predicts the mosquito will accelerate

slightly, a consequence of modelling legs as damped, outstretched springs.

x1

x2

a

1/fd

t (ms) t (ms)

x
(m
m
)

x
(m
m
)

b

Figure 4.4: (a) Mosquito displacement over time for a mosquito standing on the floor of a box vibrating at
50 Hz. The curve is smoothed with a Savitzky-Golay filter at 10% span. (b) Experimental landing data, Fit
1 based on Equation 4.6, and Fit 2 from Equation 4.7.

An improved fit may be garnered by prohibiting the virtual spring in the mosquito leg to be ex-
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tended prior to impact, adding a constant bias C, and phase shift φ ,

x(t) =C+De(−ζ ωnt) sin(ωdt +φ). (4.7)

Equation 4.7 is fit to the raw experimental data in Figure 4.4b with a nonlinear least squares solver,

where C, D, ζ , ωn, ωd, and φ are free parameters. We plot the best fit provided by Equation 4.7

with a red curve in Figure 4.4b. The resulting k = 0.07 N/m, c = 1.6×10−4 N-s/m, and ζ = 0.23

agree with those calculated from experiments of mosquito free vibration following an impulsively-

stopped vibrating floor (Equation 4.5).

By setting B = x(0) = 0 in Equation 4.6 and taking the second time derivative we produce an

equation for temporal substrate force that utilizes k, c, and ζ calculated through free vibration

experiments,

F(t) = mAe−(β/2)t
[

1
4

β
2 sin(γt)− γ

2 sin(γt)−βγ cos(γt)
]
. (4.8)

A range of ẋ(0) = vn is used plot the F against t in Figure 4.5. We plot only the first 10 ms,

sufficient time for rebound to begin, as seen in Figure 4.4b. We assume the mosquito distributes

the load uniformly between two front legs and neglect aerodynamic effects. The slowest mosquito

landing provides an impact acceleration of 0.6 gravities, while the fastest impact produces 5.5

gravities. The range of landing velocities in our study is in agreement with in-flight velocities

recorded in other studies [113, 114, 115]. The landing force of the average mosquito in our study is

approximately 40 µN, falling short of human detection. However, covert landings are not universal

as 3 trials (10%) record a magnitude of normal velocity greater than that which meets the human

force detection threshold [32], 0.42 m/s. This result aligns with authors’ experience of occasionally

sensing a landing mosquito, less common than sensing the mosquito bite.
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Figure 4.5: The temporal substrate force from Equation 4.8 for various landing velocities. Blue and red
curves represent the slowest and fastest observed velocities, respectively, while the purple cone denotes the
standard deviation around the average observed velocity.

4.2 Discussion

Our study reveals Ae. aegypti mosquitoes employ bouncing sequences, leg compression, and pro-

boscis deformation to engage landing surfaces. Unlike bees [52], houseflies [116], and fruit flies

[54], we do not witness mosquitoes prepare for landing by adjusting leg posture or body rotation.

Their substrate interactions often have head and torso contact with the substrate (Figure 4.2e), but

the associated forces are easily survivable and relatively small in the insect realm [56]. Prolifer-

ation mandates that landings are completed discreetly, below that which a host can sense, so that

blood meals are completed unencumbered. Thus a mosquito employs multiple appendages to scrub

momentum and reduce the force imparted by any one member. Any flyer, biological or engineered,

aiming to land discreetly may control the effective length xeff of impact over which flight is slowed

under constant acceleration. Rearranging the equation of motion and assuming no reactions other
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than those provided by the substrate,

xeff = mv2
n/F ′, (4.9)

where F ′ is the landing force not to be exceeded. For mosquitoes we calculate xeff = 1.4±0.5 mm

for initial impact if using F ′ = 70 µN. This value of xeff would be traveled in ∼6 ms, is ≈ 23%

of a mosquito body length [33], and ≈ 33% of the mosquito foreleg, which appear exceedingly

achievable. Yet, we observe greater compression distances by the proboscis alone, δP = 1.71

mm, an observation that may be tied to insect perception rather than kinetics. However, it was

recently discovered mosquitoes can sense sound pressure waves generated by their flapping wings

rebounding from nearby surfaces, a sensory cue that is used to divert from unavoidable surfaces

[110].

While the timescale over which landings occur is rapid, it is comparable to the timescale of takeoff

[82] and lengthy compared to the timescale of a single wingbeat [117]. Thus, it is possible leg

compression at landing is not wholly passive. Active engagement of leg muscles may contribute

to the discrepancy between our passive model and experimental response of a landing mosquito.

An active force modifier may be added to Equation 4.4 to better match mosquito responses, but

the magnitude and time-response of such a force is currently unknown and an area for future work.

Regardless of active contribution by legs to slow the mosquito, a passive model well-describes

mosquito landing.

The spread posture of mosquito legs during flight, the same as upon landing approach, may serve a

purpose beyond the previously proposed drag reduction benefits [33]. The oblique angle between

the two forward tarsi, θlegs, ensures that approach angles α . 60◦ toward a vertical surface result

in the contact of both forward tarsi. The engagement of the tarsi closest to the substrate induces

body rotation to produce foreleg-substrate contact within 8.2 ms. The pliability of a proboscis to
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absorb impact energy is meager in comparison to the complementary work of legs and wings, and

does not obstruct the foreleg tarsi from contacting the surface. The low critical force for proboscis

buckling, Pcr, allows the mosquito proboscis to collapse in the tangential direction at velocities

well below the average value of vn, ensuring the proboscis does not interfere with leg engagement.

We cannot confirm landings onto hosts are representative of those captured in this study, which

may be described as controlled crashing. Mosquitoes use a variety of thermal, olfactory, and

self-induced airflow cues in addition to vision to track their hosts [118, 110], but it is unclear

how non-visual cues aid in clandestine landing. Mosquitoes are also nocturnal, avoiding obstacles

invisible to their compound eyes [119]. We have witnessed activity in response to human attractants

to be rather uncontrolled crashes when mosquitoes probe nets for passage [40], suggesting such

behavior has no landing intent. Mosquitoes are likewise more qualitatively attracted to purple

than the polished and translucent acrylic trialed in preliminary experiments, and previous literature

suggests they can easily distinguish solid colors from patterns [42, 58, 120, 121]. The 40-mm high

purple landing strip should stand out against its background and change in size as the mosquito

approaches. If host landings differ from those on our surface, we expect they produce smaller

substrate forces than we calculate as mosquitoes more adequately prepare for impact.

4.3 Chapter Summary

In this study we find Ae. aegypti mosquitoes experience bouncing when engaging surfaces to dis-

perse in-flight momentum. In the first bounce, a mosquito will decrease its impact velocity by

approximately 50%, and passively rotate its body, by virtue of its in-flight posture, to engage both

pairs of fore- and mid-legs. Landings occur in approximately 100 ms from first contact to wing

retraction, and are accompanied by proboscis deflection, which crumples as mosquitoes strike

surfaces at an average normal-to-substrate speed of 0.24 m/s. We model the mosquito as a sim-
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ple mass-spring-damper, finding a damping ratio of 0.36±0.10, indicating mosquitoes behave as

an underdamped system when engaging a surface, explaining their propensity for bouncing af-

ter their initial, and occasionally, subsequent impacts. We solve the ODE for free vibration with

the assumption of uniform load distribution among both forelegs which indicates mosquitoes with

normal-to-substrate speeds below 0.42 m/s, or 0.94 mph, are unperceptible by humans.
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CHAPTER 5: HIGH-SPEED MICROJETS ISSUE FROM BURSTING OIL

GLAND RESERVOIRS OF CITRUS FRUIT

We now shift our focus to our smallest organismal structure, citrus oil reservoirs. In this experi-

mental and theoretical study we reveal the passive mechanisms permitting the jetting of minuscule

amounts of oil at accelerations greater than 5,000 gravities. We begin §5.1 describing the sequence

leading up to rupture, proceed to calculate the internal bursting pressure of reservoirs by hoop

stress and fluid statics, and then present our scaling model in of an elliptical pressure vessel being

capped by a stiff membrane. In §5.2 we present a discussion of our results and provide avenues of

future research. We conclude with a summary of our work in §5.3.

5.1 Results

5.1.1 Rupture process

The process leading to reservoir rupture begins by establishing a strain gradient through a cross-

section of a citrus peel. Physically, the gradient is established by bending a section of peel through

a large angle of deflection, as seen with the Florida navel orange in Figure 5.1a and Movie S2.

Bending increases stresses in the flavedo, with the most perceptible increase in the direction normal

to the dashed blue line drawn in Figure 5.1a-d. The surface of a gland, as seen looking down onto

a flavedo, can be seen in Figure 5.1b-d and outlined by a dashed black ellipse. As the magnitude of

bending increases, a failure precursor wrinkle forms on the flavedo surface atop the oil reservoir, as

seen in Figure 5.1c,e. Further bending induces the failure seen in Figure 5.1d, unveiling a channel

to the gland reservoir. A higher resolution photograph of flavedo failure at jetting can be found in

Fig.S2. The crack in Figure 5.1d begins atop the reservoir and is arrested by stomata surrounding
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the gland. Stomata are outlined in Figure 5.1e and are small, nearly circular voids in the flavedo.

d

b

c

300	!m

Figure	4

ea

Figure 5.1: The process of glandular rupture. The process begins with bending a peel (a). From an external
view of the flavedo, the unstressed gland in (b) is stressed to eminent failure in (c) and to failure in (d),
which shows the channel leading to the oil reservoir. A zoom box of a crack forming prior to failure is
shown in (e). Black dashes outline gland extents beneath the flavedo and the blue dashed lines represent the
line normal to externally applied stress.

5.1.2 Citrus jet kinematics

Through high-speed videography at 4,000−16,000 fps, we film and track microjet expulsion from

the five species of citrus hybrids listed in Table 5.1. Jets were produced by squeezing the exocarp

of peeled fruits with fixed pliers. The sequence of jetting lasts about 0.5 s, where some jets finish

before others begin. Digital tracking and measurement allows for characterization of initial jet

velocity, temporal velocity decay of ejected jet fronts, and diameters of intact and broken jets.

We measure jet exit velocities V0 across all hybrids within two weeks of purchase, finding a singular

minimum of 1.58 m/s (mandarin) and singular maximum of 29.65 m/s (orange), with an average

V0 = 8.47±4.03 m/s (N=545) across all species. The average, standard deviation, minimum, and
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Table 5.1: Citrus hybrid species used in this study and associated measurements. Velocity measurements
were taken within the first two weeks of purchase.

maximum V0 for each hybrid is presented in Table 5.1. We find average V0 for a citrus species to

be independent of reservoir and total fruit volume (Fig. S1).

Florida navel oranges serve as the model organism to characterize jetting kinematics because of

their attainability. Jet diameters are measured to be D0 = 102±20 µm (N=10), using three individ-

ual oranges. We note that diameter measurements were taken as if jets had circular cross-sections,

which is a simplification, as discussed in the Online Supplement. These measured jets have a

corresponding range of Re = ρV D0/µ = 349−1620, indicating laminar flow.

Following emergence from a reservoir at V0, jets rapaidly break up into streams of droplets, losing

all streamline velocity Vs(t) in less than 100 ms. We discuss jet instability in the Online Supple-

ment. The temporal decay of Vs(t) for a spherical droplet neglecting body forces can be expressed

[122] as

m
dVs

dt
=−3πµad fVs, (5.1)

where m is the droplet mass, d is droplet diameter, µa = 0.01845 cP is the dynamic viscosity of air,
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and f is the drag factor. Clift and Gauvin [123] provide an expression for f valid for subcritical

Red = ρaVsd/µa, where ρa = 1.184 kg/m3 is the density of air.

f = 1+0.15Re0.687
d +0.0175Rel

(
1+4.25×104Re−1.16

l

)−1
(5.2)

Integration of Equation 5.1 produces a curve for Vs(t) that captures the deceleration of droplets, as

seen in Figure 5.2a. Matching this model to experimental data is highly sensitive to the measure-

ment of d, which is difficult at this scale and velocity; pixelation, image blur, and glare artifacts

disrupt droplet outline clarity. For the droplet tracked in Figure 5.2a,b, we measure a droplet

on-screen to have d = 120 µm whereas the model suggests the droplet has d = 100 µm. More

generally, we measure orange jet droplets to have an average diameter d = 119±31 µm (N=50).

Additional sources of model departure may include droplet elongation while in flight, and non-

uniform shape as the droplets oscillate after breakup. We predict droplet evaporation does not

significantly impact droplet kinematics. From a quiescent pool, we measure the evaporative flux of

oil to be 0.156±0.035 mg/min-cm2 (N=5, 74◦F, 52% RH). While moving droplets will evaporate

more quickly, an evaporative flux 10x that measured for a quiescent pool yields a droplet volume

change of < 1% for a 100 µm diameter droplet over a 100 ms flight.

The model of temporal velocity decay in 5.1 also provides insight into the change in jet size due

to deceleration preceding breakup. While it is not possible to discern the exact breakup distance

for these small jets, we do observe discrete droplets 2 mm from the flavedo surface (Movie S3).

In the inset of Figure 5.2b, we plot the predicted velocity of a jet over the short distance relevant

to breakup. Over 2 mm from emergence, the jet with V0 = 8.55 m/s loses approximately 1% of its

initial velocity, translating into an increase of diameter near 1 µm.

Jet velocities will deviate from those observed when jets fire out of the plane of observation of
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Figure 5.2: Temporal tracks of (a) droplet velocity and (b) position show droplet deceleration is rapid after
expulsion from the gland.

the camera. This deviation is quantifiable such that the actual velocity V0,a = V0/cosφ , where φ

is the angle of deviation from the viewing plane. We average 5 frames to quantify V0, but combat

error in velocity measurements by constraining tracking to jets that remain in focus for at least 40

frames (10 ms) for the focal depth of our lens fd = 7 mm. A jet with V0 = 10 m/s will have an

average velocity Vavg = 6.62 m/s over the time of interest τ = 10 ms according to Equations 5.1 &

5.2, and could have a maximum velocity measurement deviation e = |cosφ −1| = 0.55%, where

φ = arctan( fd/τVavg) = 6.0◦. For V0 > 4 m/s, e < 2.9%. The slowest recorded jet at V0 = 1.58

m/s, e < 8.6%.

5.1.3 Bursting pressure

We assume changes in pressure within the reservoir are negligible from the instant of flavedo

rupture to the emergence of fluid into the atmosphere, which occurs over a period not observable

with our camera at 16,000 fps, less than 63 µs. We consider a streamline from the gland reservoir

center to the exocarp orifice, as seen in Figure 5.3a. The differential pressure between points 1 and

2 along the streamline may be expressed by a balance of static and dynamic pressures, neglecting
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body forces,

P1−P2 =
1
2

ρ
(
V 2

2 −V 2
1
)
+Γ, (5.3)

where P2 = 0 is atmospheric pressure, V1 = 0 is oil velocity at rest in the reservoir, V2 = V0 is

the oil velocity at bursting, and Γ is the excess pressure drop, namely the viscous loss imposed

by flow constriction through a microscale orifice. Hasegawa et al. (1997) provides experimental

data for pressure drop through orifices of comparable size and for 0 < Re < 1000 [124]. We

infer that Γ≈ 1.25ρV 2
0 at Re = 900, which is independent of orifice geometry at that scale. From

Equation 5.3 we calculate a gauge pressure for reservoir bursting Pburst = P1 = 1.75ρV 2
0 = 111 kPa

= 16 psi, for V0 = 8.76 m/s, as measured one day after purchase.
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Figure 5.3: Schematics of oil gland reservoirs corresponding to two methods for calculating internal bursting
pressure: (a) total pressure of flowing oil, and (b) hoop stress.

By measuring material properties of the flavedo, we may alternatively estimate Pburst from the hoop

stress; which predicts the static fluid pressure at the moment of bursting without considering fluid

flow,

Pburst =
σctfl

R
, (5.4)
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where σc is the critical stress to propagate a material flaw dictated by Griffith’s theory [125],

tfl is flavedo thickness, and R is the radius of curvature of the flavedo cap at rupture. We find

tfl = 84± 28 µm (N=10) for navel orange flavedos, and measure the radius curvature R ≈ 2− 4

mm upon bulk jetting inception, as seen in Figure 5.3b. Using tensile test data, we determine a

range of critical stresses σc = 2.22±0.23 MPa (N=3) for oranges tested 1 day following purchase.

Further discussion of the material properties of peels and the use of Griffith’s theory is given in

§5.1.4, and validation of hoop stress assumptions is given in §5.1.5. The range in values of R, tfl,

and σc yields Pburst = 28− 137 kPa = 4.0− 19.9 psi, which is in reasonable agreement with the

value of Pburst predicted by Equation 5.3. Due to this agreement, we infer the hoop stress in the

flavedo is very close to the hoop stress in the wall of the reservoir; the flavedo is extremely thin.

We are unable to measure hoop stress in the reservoir walls directly due to inability to measure σc

in the boundary layer membrane.

5.1.4 Relation of jet velocity to flavedo failure

Table 5.2: Stiffness and velocity values for all species tested at various times past purchase.

We hypothesize that high-speed jetting requires a soft, compressible base layer, and a stronger,

and stiffer external covering that withstands the buildup of fluid pressure in the reservoir and fails

abruptly. To test our hypothesis, we seek a relation between jetting velocity and flavedo stiffness,
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Efl. We begin by mechanically separating flavedo from albedo to perform independent tensile tests,

in contrast to previous studies which considered material properties of an intact peel [126, 127].

We find the albedo layer, averaging Eal = 790± 580 kPa across all test species, two orders of

magnitude less stiff than the flavedo layer, whose average stiffness at small strain ranges from

30−300 MPa, reported in Table 5.2 and Figure 5.4 for each species. A typical stress-strain curve

for an orange flavedo is seen in Figure 5.4a, and shows failure at engineering stress σeng = 53 MPa

at large engineering strain ε = 0.3. On average, orange flavedos exhibited Efl = 103 MPa for those

tested 1 and 8 days following purchase and experienced complete failure around σeng = 50 MPa,

which is comparable to the strength of acrylonitrile butadiene styrene (ABS).

a b

c

a
b

Figure 5.4: (a) Stress-strain curve for determining flavedo stiffness Efl in an orange, with schematic of test
specimen shown in the inset. (b) Stress-strain curve for crack propagation stress σc, with schematic of test
specimen shown in the inset. (c) The relation between jet exit velocity (N=9 for each point) and Efl (N=5 for
each point), for fruits measured 1 day (filled symbols) and 8 days (open symbols) after purchase to quantify
the effects of ripeness on jetting velocities and flavedo properties.

In §5.1.1, we describe that cracks in the flavedo begin atop the reservoir and are arrested by stom-
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ata surrounding the gland. Over the region of interest, the 100 µm opening through which a jet

emanates (Figure 5.1d), failure of the flavedo resembles the propagation of a flaw under remote

tensile stress. Based on the flavedo’s response under tension, as seen in Figure 5.4a,b, we treat the

flavedo as linearly elastic just prior to failure and apply Griffith’s theory [128, 129, 130] to form a

scaling relation between flavedo stiffness and fluid jet velocity.

Before presentation of the scaling model derived from Griffith’s theory, we address the impact of

curvature on the validity of its use. Curvature induces coupling between bending and extension,

which can result in deviation from the ideal flat material geometries used in traditional Griffith

theory [131]. However, for curved sheets with low radii of curvature, deviation from ideal behavior

is negligible. Folias (1970) [131] derived a scaling law to compare the ratio of near crack tip

stresses in curved and flat sheets, σcurved and σflat respectively. The ratio σcurved/σflat ≈ (1 +

0.49λ 2)−1/2 for λ < 1, where λ = a0[12(1− ν2)]1/4(Rt)−1/2 = 0.17, a0 = D0/2 = 50 µm is

half the flaw length, and t = tfl is the sheet thickness. We set Poisson’s ratio ν = 0.49 as done

by previous works [132, 133] on comparable materials. When applied to citrus flavedos we find

σcurved/σflat ≈ 0.99, indicating little influence of curvature on elastic behavior. Our use of D0 as

the length of the material flaw from which flavedo cracks begin is discussed in §5.1.5.

Griffith’s theory [128, 130, 129] predicts the critical stress needed to propagate a material flaw in

the flavedo and is expressed as,

σc =

√
EflGc

2a0π
. (5.5)

We address the variables in Equation 5.5 as dependent or independent of Efl.

The strain energy release rate Gc is related to fracture toughness and elastic modulus as [130]

Gc = K2
I E−1

fl , (5.6)
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where

KI = σc

√
2b tan

πa
2b
·

0.752+2.02
(a

b

)
+0.37

(
1− sin πa

2b

)3

cos πa
2b

(5.7)

is the stress intensity factor [130], accurate to within 0.5% for any a/b. The value of Gc across

the range of fruits used in the study is found by performing tensile fracture tests on peel samples

measuring approximately 20 mm x 45 mm with precut ‘cracks’ of length 0.2b≥ a≤ 0.40b, where

b is the width of the test sample (inset of Figure 5.4b). A typical stress-strain curve for crack

propagation tensile tests is shown in Figure 5.4b. We note the critical stress σc = 2.5 MPa occurs

at a moderate strain ε = 0.15 and is much less than the failure stress witnessed for uncut tensile

samples. For oranges, σc = 2.22±0.23 MPa (N=3), which dictates the value of Pburst, and accord-

ing to Equation 5.3 is related to V0. From Equations 5.6 & 5.7 we find Gc = 1−14 kPa-m across

all species, and find no clear trend between Gc and Efl (Fig.S3). We thus fix Gc as constant for our

scaling argument.

We consider characteristic flaw length 2a0 in unbroken peels to be the size of the jet opening, and is

fixed as constant for all species for our analysis . Therefore, from Equation 5.5 the scaling relation

may be written, σc ∼ E1/2
fl , and from Equation 5.3 we find Pburst ∼ ρV 2

0 . For the problem at hand,

ρ remains constant and is omitted from subsequent scaling relations. Likewise, we see no trend in

R from one fruit to another but find it is dependent on albedo thickness tal, which is highly variable

from one specimen to another and across individual fruits. We discuss the impact of variation in

tal in §5.2. Accordingly, Equation 5.4 provides the relation Pburst ∼ σc. Combining these relations

yields the prediction,

V0 ∼ E1/4
fl . (5.8)

We plot V0 against Efl, in Figure 5.4, and report the associated values in Table 5.2. The effect of fruit
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aging is quantified by testing subsets of individual fruit specimens on 1, 8, and 15 days following

purchase, such that these fruits produce both tensile test samples and velocity measurements. Data

for days 1 and 8 is plotted in Figure 5.4 while data for day 15 is plotted only in Fig.S4c; signs

of rot and excessive levels of material degradation are present two weeks after purchase. We fit

Equation 5.8 to the combined data with R2 = 0.94.

A power law best fit of the combined day 1 and 8 data yields

V0 ∼ E0.29
fl , (R2 = 0.96). (5.9)

Thus among these species, we observe a clear dependency of jet velocity on flavedo stiffness.

Generally the flavedos stiffen and jets attain higher velocities with age. It is noteworthy that the

predicted exponent (0.25) is within the 95% confidence intervals of our experimental best fit (0.29),

indicating excellent agreement between the predicted exponent and the measured one. We attribute

this small discrepancy, which scales as E0.04
fl , to simplifications in our model, most likely regarding

variation in peel properties across species and some nonlinear effects, discussed in §5.2. We report

pre-factors, exponents, and coefficients of determination for the aforementioned fits of the form

V0 = mEn
fl in Table 5.3. Days 1, 8, and 15 are all fit with Equations 5.8 & 5.9 separately in Fig.S4,

and include standard deviation bounds.

Table 5.3: Fitting parameter data corresponding to the curves in Figure 5.4 of the form V0 = mEn
fl .
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5.1.5 Exocarp bending simulation

A notable material property contrast between albedo and flavedo layers is elastic modulus. FE

simulations allow us to test a range of moduli and reservoir geometry to determine their impact

on Pburst. Additionally, FE modeling provides a view of the pressure distribution in the volume

surrounding the reservoirs and across the flavedo surface. We model a unit of peel comprised of

tal = 3.90 mm thick albedo containing a single oil gland reservoir covered by tfl = 100 µm of

flavedo, as seen in Figure 5.5. We assume the entire peel geometry can be reconstructed by tessel-

lating this representative volume element (RVE). The remote bending load on the peel (Figure 5.1a)

is transferred to the RVE by rotations on either side of the unit cell as denoted in Figure 5.5a. Oil

in the reservoir is modeled as static, incompressible and not subject to body forces. The reservoir

geometry is made to mimic that observed in peel cross sections, an ellipsoid with longitudinal

radius α and transverse radius β . Ratios α/β are chosen such that the volume of the reservoirs

remain a constant 1 mm3.

We set the values of Efl and Eal according to ranges in experimental data, and fix Poisson’s ratio

at 0.49 and 0.25 respectively, as done by previous works [132, 133] on analogous materials. For

a b

Figure 5.5: (a) Schematic of unit cell undergoing rotation at boundaries. (b) In-plane hoop stress showing
approximately uniform tensile conditions with a local maximum at the center. This region of greater stress
is most likely to fail first, which is supported by experiments. The white ellipsoid is the gland beneath the
flavedo.
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all simulated moduli and fluctuations in peel bending curvature ∆κ , in-plane hoop stress contours

across the flavedo indicate higher stress atop the oil reservoir, shown in Figure 5.5b, supporting the

previous calculation of Pburst by a hoop stress model in Equation 5.4 and our choice of a0 = D0/2.

Here, ∆κ = 0 corresponds to a round, and unperturbed fruit with R = 40 mm. We plot oil gland

reservoir pressure P as a function of bending severity, as ∆κ is increased from 0− 0.25 mm−1,

as seen in Figure 5.6a. The dotted lines show increasing P for greater curvature using range of

material stiffness ratio η = Efl/Eal = 100 (dashed line) and 500 (solid line), and α/β = 1.75.

Greater discrepancies in stiffness produce greater reservoir pressures. Pressures in the range of

80−160 kPa is in good agreement with the estimate for fluid pressure given by Equation 5.3, 111

kPa, and the range predicted by Equation 5.4, 28−137 kPa.
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Figure 5.6: Pressure in oil gland reservoir simulated by varying (a) change in curvature for fixed α/β = 1.75,
and (b) gland eccentricity α/β and material stiffness ratio η = Efl/Eal. The box in (b) bounds experimental
values of α/β .

By fixing ∆κ = 0.25 (mm−1), a highly bent peel, we can perform a parametric FE simulation to

understand the influence of reservoir shape (α/β ) and η on P. The phase plot in Figure 5.6b

shows that for α/β < 1, P remains low, even for large values of η . Pressures are highest for

vertically lobed reservoirs, such that α/β ≈ 2. Like Figure 5.6a, the plot in Figure 5.6b shows that

contrasting flavedo and albedo stiffness is likewise critical to the generation of high fluid pressure

and will elevate fluid pressure when α/β is slightly adverse. Experimentally observed ranges for
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α/β are bounded by the black box in Figure 5.6b.

5.2 Discussion

Our study elucidates the mechanisms underlying the high-speed microjets emitted from the exo-

carps of citrus fruit. The velocity of these jets is a result of quickly releasing internal oil gland

reservoir gauge pressures in the approximate range of 30− 140 kPa. The buildup and release of

pressure is made possible by the composite nature of the citrus peel, namely a thick, compress-

ible albedo that houses reservoirs and is capped by a thin, stiff flavedo. In general, fruit aging

causes flavedo modulus to increase and produce greater jetting velocities. A greater understanding

of this system may lead to technologies which mimic the bursting of oil reservoirs to disperse or

aerosolize small amounts of fluid and new tools to characterize fruit.

The choice of applying Griffith’s criteria in §5.1.4 requires simplifying assumptions. Using uni-

axial tensile test data, we find the flavedo is a nonlinear, stiffening material before failure, with

a small strain elastic modulus, Efl = 31− 302 MPa. While this is contrary to Griffith’s theory of

fracture [128, 129, 130], the flavedo does not exhibit pronounced ductile behavior. The reason

for brittle behavior following stiffening is unclear but could be a result of little resistance to crack

growth (flat R-curve) [125] offered by loosely held polymeric chains. This justifies the use of a sin-

gle fracture toughness parameter for the current study. In recent past, a computational study using

atomistic simulations captured strain stiffening, hyperelastic behavior on crack propagation, and

found significant influence of hyperelastic behavior on the crack tip dynamics but the fundamental

scaling law which we have used, σc ∼ E1/2
fl , was found to be valid [134]. For hyperelastic strain

stiffening materials (such as neo-Hookean or exponential hardening), recent work [135] has shown

that energy release rate remains very close to linear elastic fracture mechanics (LEFM) values for

moderate values of k = Gc/Ea0 (< 1) and moderate stress tri-axiality. According to Figure 5.4c,
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the fruits most critical to curve fitting lie the furthest from the origin. And so for limes, k ≈ 1/3.

The authors [135] found the agreement even better if the stiffening is exponential in nature. We

are thus justified in basing our scaling analysis on LEFM in this study.

This study highlights that citrus jet velocity is a function of flavedos’ fracture toughness, most

clearly demonstrated by Equation 5.4. Therefore, peeling citrus does not require careful extraction

of the albedo, nor does natural variation in albedo thickness across the fruit impact local jet veloc-

ities. However, the curvature of the peel during jetting is strongly dependent on albedo girth. The

line in Figure 5.6a, will decrease in slope with decreasing albedo thickness, therefore requiring

higher values of ∆κ to achieve a critical bursting pressure.

The size of citrus oil reservoirs and the velocity of oil ejection result in large accelerations by jetting

fluid. Liquid at rest in the pockets is accelerated to velocities in excess of 10 m/s over the distance

of approximately 1 mm. Assuming the fluid is incompressible and acceleration is constant, parcels

of fluid in the reservoir will experience 5,100 gravities (g) of acceleration before exit which is

comparable to the acceleration of a bullet leaving a rifle. In nature this acceleration is outdone

only be the mantis shrimp [136] (Stomatopoda) at over 10,000 g and Dung Cannon fungus [137]

(Pilobolus crystallinus) at 180,000 g, but is perhaps unmatched in the plant kingdom. A notable

contender in the plant kingdom is the bunchberry dogwood flower, which launches stamen at 2,400

g as petals open at 2,200 g [138].

Our results and FE investigations predict reservoir fluid pressures in agreement with Equations 5.3

& 5.4, but it would appear citrus fruits achieve suboptimal configuration from the standpoint of

achieving even higher pressures by not maximizing η . However, note that top right corner of the

phase plot would represent much stiffer flavedos. This material synthesis is likely limited due to the

biological origin of the material. Therefore, the system leverages reservoir geometry for enhanced

performance (high Pburst) indicating the observed values of α/β . Such is a recurring theme in
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many biological systems where the limitations of material properties are overcome by geometry

or topology of the structure [139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151]. In

contrast, an outer layer with very low strength would not withstand the stresses associated with

pressure rise in the small reservoirs, and would thus rupture at lower pressures and produce slower,

yet more stable jets.

5.3 Chapter Summary

In this study, we demonstrated that high-speed micro-jetting of oils contained in citrus exocarps

subjected to external bending stresses share commonality across citrus species. Oil jets emitted

from citrus peels are capable of achieving initial velocities greater than 10 m/s, and are propelled

by internal bursting pressures of 60− 190 kPa. The generation of such pressure is made possible

by the composite nature of the peel, a pliable albedo bed of modulus Eal = 790 kPa surrounding

each oil gland reservoir is capped by a stiffer, thin flavedo of Efl = 25−195 MPa. The stiffness of

the flavedo cap determines the internal bursting pressure of a gland and ensuing jet velocity. Finite

element simulations reveal oil gland reservoirs’ ellipsoidal geometry permit higher pressures than

do spherical reservoirs.
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CHAPTER 6: CONCLUSION

We have detailed the results of this combined theoretical and experimental dissertation on how

classical engineering systems are analogs to complex insect and plant biomechanics. We began

investigating the behavioral biomechanics between mosquitoes and substrates in Chapter 3 in their

takeoff phase of flight. Ae. aegypti mosquitoes taking off from horizontal surfaces employ two

distinct strategies of takeoff, a ‘push’ and a ‘leg-strike’, the choice of which is influenced by

surface roughness, where each strategy produces similar upward body velocities of 0.38 m/s and

0.35 m/s, respectively. The ‘leg-strike’ is a modified ‘push’ style that begins with a swinging

hind-leg that strikes the substrate at 0.59 m/s before engagement of quadrepedal pushing. We

model the swinging leg as a rotating cantilever beam and the mosquito body as a cylinder rotating

longitudinally, whereby the swinging leg produces an upward body velocity of 0.01 m/s with a

corresponding body rotation of 0.34◦. An analysis of the force imparted to the substrate for both

strategies reveals that mosquitoes remain clandestine, never exceeding the subcutaneous threshold

for detection. In Chapter 4 we assess the landing phase of mosquitoes and their subsequent rebound

off the substrate. The ‘bounce’ of the mosquito works to scrub momentum for subsequent landing

attempts, reducing incoming velocity by 50%. We modeled the motion of the mosquito upon

first contact as a mass-spring-damper system and solve for damping ratio, coefficient, and spring

constant experimentally. We detail that mosquitoes behave as an underdamped system, with a

damping ratio of 0.36, and validate the model by fitting the general solution of the ODE for free

vibrations to mosquito landing motion with a nonlinear least squares solver. We differentiate the

general solution and solve for the force imparted over a range of initial velocities to find mosquitoes

remain clandestine underneath a relative velocity of 0.42 m/s. Future researchers may determine

the trade in lift generation by the engagement of flapping wings in the takeoff phase and the effect

wing flapping has throughout the 90◦ rotation in body pitch through landing.
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In Chapter 5 we focus on our smallest organismal specimen, citrus reservoirs. We filmed the

microjets of 5 citrus species under compression using high-speed videography in 2D, and detail

how the peels composite nature allows for their production. We find the jetted oil accelerates out

the reservoir at rates greater than 5,000 gravities, and through fluid kinematics we determine an

internal bursting pressure range of 30−140 kPa. We compare this with hoop stress and find similar

results for internal bursting pressure, 28− 137 kPa. We propose a scaling model derived from

Griffith’s criteria that predicts initial jet velocity scales with elastic modulus to the quarter power,

and experimentally find the power-law best fit of 0.29 across our 5 citrus species. We hypothesize

that the pressure generation is due to the contrasting stiffness around a pressure vessel, where

the reservoir is modeled as an ellipsoidal pressure vessel surrounded by a compressible ductile

membrane (the albedo) and capped by a thin stiff membrane (the flavedo). A FE simulation is

done and confirms for highly bent peels (∆k = 0.25) with a contrasting stiffness ratio range of

100−500, the pressure generation produces between 60−160 kPa. Future researchers may look

to exploit the contrasting elastic moduli in fabrication of composite materials, where functional

jetting may be tuned by material stiffness ratio and fluid pocket eccentricity.

Organismal response to environmental pressures provide fruitful analogs for engineers to incorpo-

rate into their own designs. As engineering design and fabrication continue to explore the scales

of the meso, micro, and nano the research of organismal behavior at these scales will prove ad-

vantageous. It is my hope that this collection of investigations into ephemeral behavioral from

organisms on the mesoscale produce new avenues with which to contend with commonplace envi-

ronmental pressures. In this dissertation we have modeled both insect and citrus fruit behavior as

classical engineering system through high-speed videography.
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APPENDIX A: ORGANISMAL AGGREGATIONS DISPLAY FLUIDIC

PROPERTIES
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In this appendix we extend the classification of engineering analogs to that of collective motion

in insects, mammals, and fish. We propose fluidic behaviors are analogs to aggregate motion.

By reviewing published literature on collective behavior we draw parallels to fluidic properties.

We begin §A.1 by discussing how starling, locust, and ant aggregations display behavior which

parallels fluid phases. We proceed to compare aggregate response to both viscosity in §A.1.2 and

surface tension in §A.1.3. We conclude by summarizing the behaviors that drew close resemblance

to fluidic properties in §A.2.

A.1 Discussion

A.1.1 Phase

Density and compressibility

Density is defined as the degree of compactness of a substance and has physical units of mass per

volume. For fluids, large density is achieved by heavy and closely-packed molecules, and liquids

are thus denser than gases. In the context of organismal aggregations, density may be characterized

in a number of ways, to examine how inter-member spacing elicits particular aggregate behaviors.

In general, the grouping of conspecifics to a threshold density enables information transfer and

collective behavior through interactions between members [152, 153]. The simplest metric of

aggregation density ρ is the number of individuals N in a given area A (in two dimensions) or

volume V (in three dimensions), without regard to the mass of the individual. However, definition

of the boundary of the aggregation area or volume is not straightforward [154]. The presence of

inclusions within the aggregation or concave regions on the border mean that simple approaches

such as a convex hull poorly represent the true aggregation area or volume [3]. Instead, it is first

necessary to determine the minimum scale of concavities which characterize the aggregation and
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then to account for those using an alpha-shape algorithm which identifies concavities larger than

this minimum scale and excludes them from the area or volume [3]. An alternative metric of density

in organismal aggregations is the packing fraction, which takes into account both the aggregation

density and the organism area or volume. The need for this metric is motivated by observing that

the packing of an aggregation of 100 starlings in a cubic meter is much greater than the packing

of 100 bees in that same volume [154]. In three-dimensional aggregations, the volume occupied

by an organism often is represented by a sphere with radius r, and the packing fraction is thus

φ = 4/3πρr3, which is the ratio between the volume individually occupied by the collection of N

spheres and the aggregation volume as a whole. However, it should be noted that some elongated

organisms such as fish and bacteria are better represented by ellipsoids than by spheres [155], and

the corresponding ellipsoidal packing fraction would then be φe = 4/3πρabc, where a, b, and c are

the ellipsoid’s principal semi-axes. Gases are dilute and thus have a low packing fraction whereas

the packing fraction of liquids is substantially greater.

A related and possibly more biologically relevant parameter related to aggregation density is the

nearest neighbor distance. After all, each aggregation member does not have the capability to de-

termine the aggregation density as a whole but instead can sense the distance from itself to a small

number of neighbors [3] and adjust its own position accordingly. Nearest neighbor distances are

often expressed in terms of a characteristic body dimension such as body length or wingspan. For

starling flocks [3], Ballerini et al. (2008) determined nearest neighbor distance distributions from

three-dimensional reconstructions of two-dimensional images where individuals appear as parti-

cles as seen in Figure A.1a, much like experimental use of particle image velocimetry (PIV). These

researchers found that individual starlings retain a minimum average working distance from other

members of 1−4 wingspans [3]. The reason for this spacing is unknown but the minimum density

is likely bounded by communication limits and the maximum density bounded by high proba-

bility of collision with other members. Distributions of nearest neighbor distances in organismal
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Figure A.1: Images of (a) starling flock to be used for stereophotogrammetry (left) and the same image after
post-processing where birds are treated as particles (right) [1]. (b) partially submerged fire ant raft [2], (c)
fully submerged fire ant raft [2].

aggregations are often well described by log-normal distributions [155, 156, 157].

A characteristic which both organismal aggregations and fluids share is that the density may not be

homogeneous throughout the domain. For example, a compressible fluid droplet being acted upon

by an external surface force would experience a pressure gradient in the fluid reflecting the higher

density (or smaller distance between fluid molecules) in that region. A simple example of this phe-

nomenon would be the high-speed impact of an unyielding ball on an air-filled balloon. Similarly,

organismal aggregations have heterogeneous density. Starling flocks, for example, exhibit variable

density with anisotropic spacing throughout the flock volume [3]. Starling interactions rely on

topological distance, meaning they rely on the motion of 6−7 of their nearest neighbors to change

direction and respond to perturbations, independent of their interstitial spacing [158, 159, 160].

Heterogeneous density may be characterized in animal groups and in collections of particles by
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parameters such as the integrated conditional density and the pair distribution function [154].

Figure A.2: Starling flock volume as a function of flock population [3].

As with unbounded fluids, starling flock volume is independent of the number of members [158, 3].

For example, a particular flock of N = 530 members amassed a cubic volume V = 5470 m3,

whereas a similar flock of N = 1250 had V = 1840 m3. We plot V vs N data from Ballerini et

al (2008) in Figure A.2. Such a spread in density does not allow for the calculation of a com-

pressibility factor Z =C× (V/N), where C is an unknown constant, which we would expect to be

nearly constant for conspecifics operating in comparable conditions [161]. However, variability in

density may instead be akin to thermal expansion. Measurement of per member movement within

a flock as a function of density is an area for future research.

Locusts, specifically Locusta migratoria are known to amass swarms [162, 163] that dwarf star-

ling flocks and can cover > 105 acres. One study found the density of the airborne locust swarm

is 0.001−0.5 m−3, with roughly 2−4 m between neighboring flyers [164]. In contrast, a differ-
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ent study [165] documented localized density variations, with greater density in the aggregation

interior than on the edges. Swarm density for populations in excess of a billion members is criti-

cal for cohesion. Minimal working distance would logically be driven by collision avoidance and

maximum distance is capped when information transmission becomes imperceptible. Simulations

of massive locust swarms show a pure attraction between members is not effective in modeling

these swarms as the simulation tends to create tight spherical swarm models [166]. The addition

of a repulsive term weighted greater than the attraction term for short length-scales results in a

dispersed yet cohesive swarm model [163].

In contrast to flying aggregations, Solenopsis invicta ants form cohesive clumps by grappling onto

one another [2]. The clumps of ants can spread, drip, and withstand applied loads, displaying

elastic behavior [167]. A manifestation of this clump is the ant raft (Figure A.1b), which is formed

by colonies during floods for survival [2, 168]. Ant rafts are porous, allowing them to be both

strong and lightweight, and giving the raft buoyancy whilst prohibiting water ingress, as seen

in Figure A.1c. Paradoxically, ants cluster to greater densities (N/V) to form aggregate material

densities (mass/V) that are lower than the individual ants’ material density due to the ability of

the clump to entrap air when fully or partially submerged. This behavior is analogous to a fluid

immiscible with water and specific gravity less than unity floating atop a water surface. Unlike

fluid molecules, ants do not move radially as the raft forms, but on average travel via random

walks of 3.1 radii before settling on the raft edge [2].

Phase Transition

Transitioning between phases is a common occurrence in many working fluids used today. A fluid

may evaporate from a more organized phase (i.e. a liquid) to a less organized phase (i.e. a gas)

through the addition of energy from heat or the reduction of pressure. Organismal aggregations

also exhibit different levels of organization which can be characterized as different ‘phases.’ The

transition between phases occurs in a manner analogous to evaporation and condensation, which
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is accompanied by changes in temperature and pressure. Temperature is a measure of the thermal

motion of molecules, and pressure a measure of the physical molecular interactions in bounded

fluids. The organismal analog to temperature is the increased physical activity of individuals,

which increases the likelihood of physical interactions between members (pressure) so long as

there is no commensurate increase in aggregate volume.

Transition from one phase to another may be triggered by the need to forage or mate or in response

to external threats. However, the process by which this transition occurs is not well understood.

Animal aggregations provide many examples of phase transitions which are analogous to those

found in fluids. For example, the formation and dissolution of locust swarms is analogous to va-

por condensing into liquid and evaporating back to vapor. Though several studies have examined

locusts in their natural environment [169, 170, 171], field experiments with locust swarms are

difficult because of the immense size of their aggregations. For example, a single Locusta mi-

gratoria swarm may spread across 100 km2, exceed 1010 members, and its center of mass may

travel up to 100 km a day [162, 163, 166]. Thus an understanding of locust swarm formation has

begun to emerge from experiments performed in laboratory settings with the insects tethered or

enclosed in a small arena. Swarming develops as individuals cluster (O(10) members), growing to

form terrestrial ‘marching bands’ that collect additional members as they travel [172, 163]. Locust

movement in bands is accompanied by an increase in OP as solitary locusts congregate and dis-

play net migration. Locust nymphs, juvenile and flightless, utilize cannibalization when forming

marching bands to establish and maintain collective movement [165, 173]. When members get too

close, they bite one another, which in turn promotes motion. Adult marching bands take to the

air at a critical mass which is subject to wind, temperature, and sunlight, a complex relationship

which is not well-understood [163, 174, 175]. The process of locust aggregation and transition to

flight is comparable to the formation of raindrops, as low OP vapor molecules nucleate onto water-

insoluble particles in the atmosphere [176] during phase change. At a critical size, the droplet falls
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and continues to collect vapor molecules during its travel. Yet another analogy is the flocculation

and subsequent settling of suspended bacteria [177].

iii
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iv#

$

i→ii: Forced Crowding
ii→iii: Foraging
iii→iv: Dispersal
iv→i: Rest

Figure A.3: Temperature (T ) vs. specific volume (v) diagram relating locust phase change to phase change
in a typical two-phase working fluid.

Schistocerca gregaria locusts likewise provide an analogue of phase transitions in fluids. These

insects have two phases, a gregarious (liquid) and solitary (vapor) phase, each of which is asso-

ciated with changes in behavior [174, 178]. To illustrate the resemblance to fluidic phase tran-

sition, we employ a generic temperature-specific volume (T -v) diagram in Figure A.3. A rise in

in temperature and pressure corresponds to increases in internal energy, and increases in specific

volume denote reduction in locust aggregate density. The cyclic nature of swarm formation and

disbandment begins at (i), a saturated vapor, the point where solitary locusts are poised to assem-

ble. Accompanying such a phase change is a decrease in internal energy, i.e. depleted levels of

stored food energy. In a vapor, a drop in energy reduces molecular motion, resulting in a phase

transition, with accompanying organization and cohesion (liquid). Forced crowding, which raises

insects’ serotonin levels, occurs as the insects transition from phase (i) to (ii). Serotonin is pro-
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duced as a result of tactile, visual, and olfactory detection of other locusts. Within approximately

2 hr of forced crowding [178, 166] the serotonin levels increase sufficiently to elicit full transition

to the gregarious phase, state (ii). Foraging commences at (ii) and continues to (iii) as the cohesive

swarm [162] rolls through thousands of acres increasing internal energy (stored food energy), tem-

perature, and pressure, until the locusts are satiated at (iii). Next, the swarm dissolves as members

leave the group and transition back to a solitary state, from (iii) to (iv). From (iv) to (i), the locusts

expend energy to the point where internal energy drops sufficiently to drive the cycle again.

Changes in phase also may be tied to changes in the behavior of organisms within an aggrega-

tion. For example, crowd density heavily influences individual human behavior [179]. A crowd

of pedestrians can be treated as a continuum so long as the typical distance between members is

much less than the characteristic length scale of the space in which they are moving [179, 180].

At sufficient velocities, humans exhibit flow separation around flow obstacles [180]. Crowds are

approximately locally homogeneous, forming body-centric square patterns with high degrees of

polarity [181]. In the 1990s, studies of crowd motion abandoned the use of Navier-Stokes equa-

tions and derived equations which merge unsteady continuity and social theories, including func-

tions for walking speed and discomfort as a function of density [179, 180]. These nonlinear partial

differential equations are amenable to an analytic solution and are applicable to unsteady flows.

Furthermore, they result in two flow regimes, subcritical (tranquil) and supercritical (rapid) flow,

defined by wave-like motion that can appear in the flow, similar to highway patterns [182]. Thus,

crowds maintain a strong parallel to open channel flow [183, 184]. At very high crowd densi-

ties, the equations of motion resemble two-dimensional Navier-Stokes equations with Newtonian

friction replaced by Rayleigh-like friction, and generally neglect advective terms.
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A.1.2 Viscosity

Viscosity is the resistance of a fluid to deformation in response to an externally applied shear stress.

A fluid’s viscosity allows neighboring fluid particles to influence one another through this shear

stress. Here, we highlight how members of aggregations ‘shear’ one another, through physical

contact, or social pressures and interactions between neighbors. Near-neighbor interactions give

aggregations form and responsiveness, and allow boundary conditions to impact the behavior of the

entire group. Clumps of Solenopsis invicta ants provide such an example. Researchers measured

the continuum property of viscosity of ant clusters by considering ants as molecules and subjecting

the clusters to rheometry tests. The viscosity of ant groups was measured as ∼ 106 cP by allowing

a sphere to settle into a beaker of ants, as a sphere might sink into a viscous fluid [167], with a

corresponding shear rate of γ̇ = 1.9× 10−3 s−1. In a plate-plate rheometer, the stress required to

maintain the imposed ant flow was approximately constant at 70 Pa for γ̇ = 10−3 s−1 to 101 s−1.

Thus, the ant aggregations shear thin dramatically with increasing shear rate. Experiments with

live and dead ants produce identical values of viscosity, indicating that ants become passive when

forced to flow. Live ants subjected to a constant stress creep and maintain constant strain rates. A

ball of ants, for example, placed on water surface, slumps to form a flattened raft, much like when

a drop of viscous fluid spreads on a solid surface [2], behaving as a porous material [2, 185, 186]

with density of ≈ 0.2 g/mL. Under oscillatory strain, ant aggregations are viscoelastic, able to

store and dissipate energy, similar to colloidal gels of Brownian particles in a solvent [167]. The

possibility of viscoelastic behavior in aggregations of animals which flow in response to external

perturbations but are unable to link together does not seem to have been explored.

In organismal aggregations which do not physically link with each other, such as flocks of birds

and schools of fish, viscosity may be analogous to social forces. For example, humans in crowds

do not enjoy being in contact with one another. As crowd density increases, motion slows as if the
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crowd’s viscosity increases, strengthening the friction as individuals slide past one another [187].

Rates of passage though halls and doors drop dramatically if this viscous nature is not controlled

[188]. A particularly high profile example is the fatal 2015 Mina stampede that occurred on the

Jamaraat Bridge in Saudi Arabia, a result of critically high crowd congestion [189]. This disaster

followed a similar incident [190] and bridge redesign in 2004. Surprisingly, placing a barrier in a

flow of pedestrians at a building exit can decrease the travel time of all those exiting by preventing

jamming at the door threshold and increase flow rate through the exit [188]. This phenomenon,

known as Braess’ paradox, can perhaps be extended to preventing clogs of particle-laden flows

with high Bagnold numbers [191], Ba = ρpd2λ 1/2γ̇/µ , where ρd is the particle density, d is the

particle diameter, λ is the linear particle concentration, and µ is the interstitial fluid viscosity.

Such an extension to particle-laden flow jamming has not been explored in the literature to the

authors knowledge. Herds of sheep and cattle also likely experience a type of viscosity as they

flow through a gate into a pen or along a fence. This viscosity seems to be a result of closely

packed (e.g. congested) neighbors interfering with their neighbors ability to locomote freely.

A.1.3 Surface tension

Surface tension refers to the propensity of liquids to behave elastically at a liquid-air interface

and arises from intermolecular attraction. A liquid is more attracted to itself than the surrounding

gas. Surface tension enables droplet cohesion and the ability to reform shape after perturbation.

The same can be said for organismal aggregations such as schools, flocks, and clumps of ants that

have coherent boundaries and maintain structure throughout aggregate motion. Individuals within

these groups are similarly more attracted to their neighbors than to the surrounding void. This

attraction may comprise physical links or a social force between conspecifics. These groups thus

have the ability to self-heal and reform in response to environmental perturbations and threats.

The aggregative social dynamics which cohere animal groups through a surface tension-like force
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have long been used to model the collective movement of animal groups. The Boids model, for

example, successfully recreated realistic flocking behavior by requiring members steer to avoid

crowding nearby conspecifics, steer so as to align with nearby conspecific, and steer towards the

center of mass of the aggregation [192]. This last rule is a useful analogue of surface tension as it

provides an inward pull towards the group center.

a d

e

Figure A.4: (a) Ants pouring from a teapot, and SEM images of ant-to-ant linkages (b) with mandible-
tarsus [2], and (c) tarsus-tarsus linking [2], and (d) a cluster of ants being compressed between two parallel
plates and regaining form when compression is released. Photo credits: Nathan Mlot & David Hu, Georgia
Institute of Technology.

Ants are well known for their ability to collectively accomplish tasks ranging from foraging to

tunneling to construction [2, 193, 194, 168, 167]. The method by which ants build bridges [195]

and floating rafts [2], by grappling onto nearest neighbors [193], is particularly pertinent to this

review as it illustrates how organismal aggregations can resist external forces and maintain shape.

While individual ants do not behave like fluid molecules and while the interactions between ants

75



grappling onto one another are quite different from molecular interactions, the contiguous mass

created by this behavior exhibits surface tension-like properties. Grappling ant groups will, for

example, drip from a downward hanging point like water droplets dripping or flow from a leaky

faucet [186, 185], like that seen in Figure A.4a. When shaken about in a beaker, ants readily grap-

ple together and form a ball which may be stretched and pulled apart by hand [2]. The strength of

the ‘ant-fluid’ material is a function of the number of grappling connections ants make with neigh-

bors and the length of those linkages [193], as seen in Figure A.4b,c. On average, an ant connects

at 6 points to its neighbors and is connected to 4.8 different neighbors. If a ball of ants is briefly

compressed between two plates, they will spring back to nearly its original shape once the external

force is removed [167], as seen in Figure A.4d. This repeatable behavior corresponds to how a

water droplet behaves when compressed between two superhydrophobic surfaces. Researchers es-

timated the surface tension of a cluster, σ = F/δ ∼ 103 dyn/cm by measuring ant grappling force

F and spacing δ , and found a value that is 10 times the surface tension of water for a raft that

is one-fifth the density of water [2]. The resulting capillary length for ants is 3 cm. A fluid with

such properties would have a droplet spreading time of 103 seconds, nearly an order of magnitude

greater than the spreading time of an ant raft. The tendency of some prey fish species, such as

herring (Figure 5.1k,l) to form into cohesive balls [196], large spherical aggregations on which

dolphins, orcas [197, 198], and seabirds feed, also reveals an aggregative social force analogous to

the surface tension which pulls a small water droplet into a spherical shape [199].

Stationary midge swarms by Dasyhelea flavifrons, Corynoneura scutellata, and Cladotanytarsus

atridorsum provide surface tension-like behavior, but are in stark contrast to ants, as members

do not grapple one another. Instead, social forces provide the attraction needed to keep a cohesive

aggregation. Midge swarms are comprised primarily of males and seek to attract females for repro-

duction [200, 201, 202]. The swarms have a zero mean velocity [203] and assemble at landmarks

[204]. They take the shape of columns which are generally 2-m above ground, range from 1− 5
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m in height, and are comprised of approximately 102 - 104 members [205]. It has been shown that

midges influence each other’s motion far beyond their nearest neighbors [200]. Member attraction

to the center of the swarm enables cohesion [200, 203], and is a result of non-polar alignment with

one another. Non-polarizing behavior is comparable to freely moving particles which rebound at

the surface to reorient for ballistic flight toward the center [203]. Within the swarm, midges fly

in a zig-zag pattern both horizontally and vertically [206] and experience 3− 4 g when changing

direction at the swarm surface, where acceleration is highest [207, 203]. Acceleration is zero as

midges pass through the center. Maximum speed in laboratory conditions was found [207] to be

around 1.1 m/s, corresponding to a Reynolds number range of Re = 240−280.

A.2 Summary

In this Chapter we review collective motion to detail how documented aggregate behavior displays

fluidic properties. We propose that locust migratory swarms from formation to separation behave

as a working fluid on a traditional T −v diagram transitioning from collective (liquid) to individual

motion (vapor). We also detail how groups of fire ants display resistance to flow (viscosity) and

elastic behavior while maintaining self attraction through linkages (surface tension). We detail

how human motion in groups also display viscosity, as density of crowding increased the ability

for like particles to flow past one another decreased as such as with highly viscous fluids.
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Journal papers

Smith, N. M., Ebrahimi, H., Ghosh, R., & Dickerson, A. K. (2018). High-speed microjets is-

sue from bursting oil gland reservoirs of citrus fruit. Proceedings of the National Academy of

Sciences, 115(26), E5887-E5895.

Smith, N. M., Clayton, G. V., Khan, H. A., & Dickerson, A. K. (2018). Mosquitoes modulate

leg dynamics at takeoff to accommodate surface roughness. Bioinspiration & Biomimetics, 14(1),

016007.

Smith, N. M., Dickerson, A. K., & Murphy, D. (2019). Organismal aggregations exhibit fluidic

behaviors: a review. Bioinspiration & Biomimetics, 14(3), 031001.

Smith, N. M., Dickerson, A. K., & Balsalobre, J. (Submitted). Landing mosquitoes bounce when

engaging a substrate.
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Conference presentations

Smith, N.M. and Ghosh, R. and Dickerson, A.K. “Citrus Jets" Society for Integrative and Compar-

ative Biology. Jan 2017. New Orleans, LA

Smith, N.M. and, Ghosh, R. and Dickerson, A.K. “Microjets of citrus fruits" American Physical

Society: Division of Fluid Dynamics. Nov 2017. Denver, Colorado

Smith, N.M. and Clayton, G. and Dickerson, A.K. “Mosquitoes modulate takeoff to accomadate

surface irregularities" Society for Integrative and Comparative Biology. Jan 2018. San Francisco,

CA

Smith, N.M. and Balsalobre, J. and Dickerson, A.K. “Mosquitoes utilize multples bounces to en-

gage landing substrates " Society for Integrative and Comparative Biology. Jan 2020. Austin, TX
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C.1 Mosquito Takeoffs

C.1.1 Supplementary Movie Captions

Movie S1: Video of a female Aedes aegypti mosquito utilizing a leg-strike takeoff, slowed 33x.

https://youtu.be/cVOF19JkTNY

Movie S2: Video of a female Aedes aegypti mosquito utilizing a push takeoff, slowed 133x.

https://youtu.be/erTRIi5kUMM

Movie S3: Video of a female Aedes aegypti mosquito utilizing a push takeoff on a polished acrylic

surface with tarsi slipping during pushing action, slowed 133x.

https://youtu.be/sOsMBITdmks

C.2 Mosquito Landings

C.2.1 Supplementary movie captions

Movie S1: A female Ae. aegypti mosquito landing on a purple substrate with negligible tangential

velocity and experiencing minor proboscis deformation. Tarsi do not leave the substrate following

first contact, resulting in a single bounce. Slowed 133x.

https://youtu.be/0iZbOvcpRfE

Movie S2: A female Ae. aegypti mosquito landing on a purple substrate with significant tangential

velocity, body rotation, and large proboscis deformation. Tarsi leave the substrate after initial

contact, resulting in two bounces. Slowed 133x.
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https://youtu.be/_2h5hdSpxRY

Movie S3: A female Ae. aegypti mosquito landing on a purple substrate with large proboscis

deformation and collapse. Slowed 133x.

https://youtu.be/kRa9rHNQCm4

C.2.2 Supplementary figures and table
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Figure C.1: Normal-to-substrate displacement for all 20 analyzed landings without smoothing. The tracked
point on the mosquito is the interface of the proboscis with the head. The final resting position the tracked
point corresponds to x = 0. First contact of any portion of the mosquito with the landing surface corresponds
to t = 0. Dashed-curves indicate the proboscis is the first member to contact the substrate, while solid lines
indicate tarsi initiate contact.
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Figure C.2: Normal-to-substrate velocity for all 20 analyzed landings. The tracked point on the mosquito is
the interface of the proboscis with the head. First contact of any portion of the mosquito with the landing
surface corresponds to t = 0. Dashed-curves indicate the proboscis is the first member to contact the sub-
strate, while solid lines indicate tarsi initiate contact. Curves are smoothed with a Savitzky-Golay filter at
10% span.

Table C.1: Free vibration properties of mosquitoes measured following the impulsive cession of a vibrating
floor at 25 and 50 Hz.

25 Hz (N = 4) 50 Hz (N = 4)
ζ 0.44±0.03 0.28±0.06
k (N/m) 0.118 0.103
c (N-s/m) 3.9×10−4 2.3×10−4

C.3 Citrus Jets

C.3.1 Citrus jet instability

Free jets issuing from circular orifices experience capillary instability and break up even when

orifices are perfectly circular, the fluid is inviscid, and flow is laminar [208]. Previous studies
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show that jet stability is influenced by inlet conditions and orifice geometry [209, 210, 211], and

that asymmetric jets are less stable, encouraging breakup. The orifice geometry through which

citrus jets issue is elliptical in nature, but shrouded by irregular edges of the torn flavedo. We

measure 10 orifices and find they have an eccentricity range of ε =
√

1−b2/a2 = 0.33− 0.99,

and hydraulic diameter of Dh = 114 µm on average. As witnessed with elliptical jets, the citrus oil

exhibits major and minor axes switching (Movie S3), a consequence of initial perturbations in the

jet imposed by eccentric orifices.

Figure C.3: Orifice shapes following two jetting events, with the orifice accentuated in red in the righthand
panels.

Instability in citrus jets may be classified into two breakup regimes, driven by jet velocity V0.

The initial breakup regime of Rayleigh instability begins when the liquid Weber number We =

ρV 2
0 dh/γ > 8, resulting in V0 > 1.6 m/s, also signaling the transition from dripping to jetting [212]

(Movie S4). The end of the Rayleigh breakup regime occurs when We > 137, corresponding

to V0 > 6.6 m/s, and triggering entrance into the first wind induced breakup regime. Citrus jets
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regularly pass this issuance velocity resulting in unpredictable breakup distances. Another source

of instability is the ragged office perimeters produced by the non-uniform tearing the citrus flavedo

upon jet issuance, as seen in Fig.C.3. The longest breakup distances we observe from citrus peels

approach 2 mm, far shorter than we were able to create artificially using orange oil shot through

needles with Dh = 160 µm (Movie S3).

C.3.2 Supplementary Movie Captions

Movie S1: Video sequence of oil jetting for all citrus species tested. (Citrus sinensis slowed 83x.

Citrus aurantifolia, Citrus paradisi, Citrus limon, and Citrus reticulata slowed 133x.)

https://youtu.be/9Zm2VGQ1SAw

Movie S2: Cross-sectional view of Florida navel orange peel bending to the point of jetting. The

albedo is compressed while the outer layer, or flavedo, experiences tension. (slowed 133x)

https://youtu.be/4vQjQ1hsfSk

Movie S3: Comparison of jet instability witnessed in natural (slowed 233x) and artificial (slowed

533x) orifices.

https://youtu.be/7VIwVjF47wU

Movie S4: An orange oil jet undergoing the transition from jetting to dripping. (slowed 266x)

https://youtu.be/eW9No75W-F8
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C.3.3 Supplementary Figures

We include supplementary figures to support the assertion that oil gland size and fruit size are

independent.
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b

c

Figure C.4: (a) The relation between gland volume (N= 100 for each species) and bulk fruit volume (N= 30
for each species). (b) The relation between jet exit velocity (N= 100 for each species) and bulk fruit volume.
(c) The relation between jet exit velocity and oil gland reservoir volume.
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Figure C.5: The relation between flavedo stiffness Efl (N= 5 for each species) and strain energy release rate
Gc (N= 5 for each species).
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