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ABSTRACT 

The emergence and evolution of channel networks are controlled by the competition 

between the hillslopes and fluvial processes on the landscape. Investigating the geomorphic 

and topologic properties of these networks is important for developing predictive models 

describing the network dynamics under changing environment as well as for quantifying the 

roles of processes in creating distinct patterns of channel networks. In this dissertation, the 

response of landscapes to changing climatic forcing via numerical-modeling and field 

observations was investigated. A new framework was proposed to evaluate the complexity 

of catchments using two different representations of channel networks. The structural 

complexity was studied using the width function, which characterizes the spatial 

arrangement of channels. Whereas, the functional complexity was explored using the 

incremental area function, capturing the patterns of transport of fluxes. Our analysis reveals 

stronger controls of topological connectivity on the functional complexity than on structural 

complexity, indicating that the unchannelized surface (hillslope) contributes to the increase 

of heterogeneity in transport processes. 

Furthermore, the channel network structure was investigated using a physically-

based numerical landscape evolution model for varying hillslope and fluvial processes. 

Different magnitudes of soil transport (𝐷) and fluvial incision (𝐾) coefficients represent 

different magnitudes of hillslope and fluvial processes. We show that different combinations 

of 𝐷 and 𝐾 result in distinct branching structure in landscapes. For example, for smaller 𝐷 
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and 𝐾 combinations (mimicking dry climate), a higher number of branching channels was 

observed. Whereas, for larger 𝐷 and 𝐾 combinations (mimicking humid climate), a higher 

number of side-branching channels is obtained. These results are consistent with the field 

observations suggesting that varying climatic conditions imprint distinct signatures on the 

branching structure of channel networks. 

  



 

v 
 

 

 

 

 

 

 

 

 

 

 

 

 

To my lovely parents  

For all your support and encouragements 

  



 

vi 
 

ACKNOWLEDGMENT 

I would like to express my thanks to my advisor Dr. Arvind Singh, for his guidance 

throughout my research. I am extremely thankful for all of our discussions, meetings, and 

your support during my academic adventure. I would also like to say special thank you to Dr. 

Dingbao Wang and my other committee members Dr. Talea Mayo and Dr. Vladimir Boginski 

for their insightful comments and help.  

I would like to thank my past and present colleagues at CHAMPS lab for always 

sharing their opinions and insights regarding my research in the past four years. Working in 

the CHAMPS lab was an amazing and inspiring experience for me. Most importantly, I am 

thankful of my lovely parents and sister and Alireza Hajibagheri who supported me during 

this journey.  

  



 

vii 
 

TABLE OF CONTENTS 

 

LIST OF FIGURES ................................................................................................. ix 

LIST OF TABLES ................................................................................................ xvii 

CHAPTER 1: INTRODUCTION ............................................................................ 1 

CHAPTER 2: DEPENDENCE OF RIVER NETWORK BRANCHING 

STRUCTURE ON CLIMATE ACROSS SCALES .................................................. 5 

2.1 Width function ....................................................................................................... 8 

2.2.................................................................................................................................... 9 

2.3 Entropy .................................................................................................................. 9 

2.4 Multiscale Entropy .............................................................................................. 11 

2.5 Fuzzy Multiscale Entropy ................................................................................... 19 

2.6 Data and site description ..................................................................................... 21 

2.7 Results and discussion ......................................................................................... 24 

CHAPTER 3: ROLE OF VARYING CLIMATE ON GEOMORPHIC AND 

TOPOLOGIC CHARACTERISTICS OF CHANNEL NETWORKS .................... 36 

3.1 Landscape evolution model ................................................................................. 40 

3.2 Topographic analysis of natural basins ............................................................... 42 

3.3 Results ................................................................................................................. 44 

3.4 Discussion ........................................................................................................... 55 



 

viii 
 

CHAPTER 4: EXPLORING THE ROLE OF TOPOLOGICAL 

CONNECTIVITY ON THE STRUCTURAL AND FUNCTIONAL 

COMPLEXITY OF RIVER NETWORKS ............................................................. 63 

4.1 Constructing W(x) and IA(x) of the studied catchments .................................... 66 

4.2 Quantifying the topology of a CN ....................................................................... 67 

4.3 Results and discussion ......................................................................................... 70 

CHAPTER 5: COMPLEXITY OF RIVER BED ELEVATION 

FLUCTUATIONS ................................................................................................... 80 

5.1 Description of experiments ................................................................................. 82 

5.2 Surrogate generation ........................................................................................... 84 

5.3 Structure function analysis .................................................................................. 85 

5.4 Results and discussion ......................................................................................... 86 

CHAPTER 6: SUMMARY AND CONCLUSION .............................................102 

REFERENCES .......................................................................................................110 

 

  



 

ix 
 

LIST OF FIGURES 

Figure 1. Schematic representation of hypothetical basins with the same drainage density 

(assigning an equal drainage area and an equal total drainage length for basin 1 (a) and basin 2 (b)) 

but distinct width function. Numbers on the left side of each basin show the number of channel 

pixels that have the same distance from the outlet in each basin. Width functions of basin 1 (solid 

line) and basin 2 (dashed line) are plotted in subplot (c). Stream orders (ω) are represented by 

different colors. Basin 1 contains channels up to order 3 whereas basin 2 contains 4th order 

channels......................................................................................................................................... 11 

Figure 2. A sample width function series W (x) used to demonstrate the steps involved in the sample 

entropy calculations. In this example m = 2 [Costa et al., 2002; 2005]. The first m-point pattern 

(sequence) is represented by 𝑤1-𝑤2 (red-green) and m+1-point pattern by 𝑤1-𝑤2-𝑤3 (red-green-

blue). The dashed lines around the data points represent 𝑤1 ± 𝑟 (red), 𝑤2 ± 𝑟 (green), and 𝑤3 ±

𝑟 (blue), and indicate the tolerance for counting similar patterns. For the pattern with length m = 2 

where the first point is 𝑤1 (red) and the second point is 𝑤2 (green), we count all the 𝑤1-𝑤2 

sequences, i.e. we count the number of times that a green data point appears right after a red data 

point. The number of the pairs that match the first 2-point pattern is referred to as 𝐷𝑚 and in this 

example 𝐷𝑚 = 6. Next, we add another point to the previously considered m-point pattern. This 

3-point pattern (m+1 or longer pattern) can be represented by the sequence of 𝑤1-𝑤2-𝑤3 (shown 

as red-green-blue). We count the number of red-green-blue sequences and refer to it as 𝐷𝑚 + 1. 

In this example 𝐷𝑚 + 1= 2. Following m-point and m+1-point patterns are 𝑤2-𝑤3 and 𝑤2-𝑤3-



 

x 
 

𝑤4, respectively. After computing 𝐷𝑚 and 𝐷𝑚 + 1 for every m-point and m+1-point patterns, the 

total number of repetition can obtained using Eqs. (2.5) and (2.6). ............................................. 15 

Figure 3. Multiscale entropy (MSE) computed for theoretical signals, i.e.  1/f noise, white noise, 

and fractional Brownian motion (fBm) with Hurst components of 0.6 and 0.8. Each MSE curve 

was computed and averaged for 15 signals each individually containing 10,000 data points using 

MATLAB 2016. For all cases, m and r were 2 and 0.15, respectively. ........................................ 19 

Figure 4. The locations of the dry and humid basins across the United States. ............................ 23 

Figure 5. The width functions and river networks of two basins located in humid (blue) and dry 

(red-dashed) regions. The two basins were selected based on similar longest channel length for 

illustration purposes. Notice, it is difficult to distinguish, visually, climate conditions from the 

corresponding width functions. ..................................................................................................... 23 

Figure 6. a) Average MSE curves for 13 dry (dashed red) and 13 humid (blue) basins. Thin dashed 

red and blue curves show the 25th and 75th percentile curves for dry and humid basins respectively. 

m, r and z are set to 2, 0.15, and 2, respectively, based on Costa et al. [2002; 2005] and Chen et al. 

[2007]. The x-axis shows the scales representing the length of non-overlapping windows for 

coarse-graining the original width function [Hooshmand et al., 2018]. b) The average total fuzzy 

number of repetitions (frequency) for patterns with m data points, 𝜂𝑚 (dashed) and with m+1 data 

points, 𝜂𝑚 + 1 for both dry (red) and humid basins (blue).  𝜆𝐷 and 𝜆𝐻  represent the rate of 

decrease of average 𝜂𝑚 and  𝜂𝑚 + 1as a function of scales, for dry and humid basins, respectively.

....................................................................................................................................................... 27 

Figure 7. a) Total channel length versus drainage area for the 26 study basins. Humid and dry 

basins are shown with blue and red (solid) circles, respectively. b) The pdfs of junction angles for 



 

xi 
 

humid (blue circle) and dry basins (red triangle). Inset in (b) shows hypothetical dry and humid 

sub-basins. It is assumed that channel length is same but junction angles are different. The red-

dashed line represents channels in the dry basin and the blue line represents channels in the humid 

basin. The grey lines inside the hypothetical basins represent the pixels that have the same distance 

from the outlet. Kolmogorov-Smirnov test was used to determine if the two distributions are 

significantly different. Results show that within the 95% confidence interval the dry basins have 

larger angles than humid basins (P-value=0.03). .......................................................................... 30 

Figure 8. a) Length of channels versus drainage area for 1st order (a), 2nd order (b), and 3rd order 

(c) channels. d), e) and, f) show the pdfs of junction angles for 1st, 2nd, and 3rd order channels, 

respectively. The red and blue vertical lines in the right panels show median values. ................ 34 

Figure 9. (a) Average elevation profiles of the simulated landscapes in original, dry and humid 

scenarios. The thick yellow line shows the average profile of the landscape from original scenario, 

and the dashed lines (colder colors) are associated with the landscapes where 𝐷  and 𝐾  are 

increased (humid scenario), whereas solid lines (warmer colors) correspond to the landscapes in 

where 𝐷 and 𝐾 are decreased (dry scenario). (b) Plot of the ratio of mean relief (Rc) in humid and 

dry scenarios and the mean relief of the landscape in original scenario (R0), versus percent change 

in 𝐷 and 𝐾 parameters in humid and dry scenarios. ..................................................................... 50 

Figure 10. Schematic representation of three different landscapes with the same 𝑃𝑒. The original 

landscape (which is referred to as original scenario) is generated using 𝐷0 = 0.003523 and 𝐾0 =

0.00023 and the set of parameters shown in Table 4. Different colors represent the elevation of 

the surface. The domain size is shown by Lx and Ly. The landscape with the lowest relief 

corresponds to a case in humid scenario (60% increase in 𝐷 and 𝐾), whereas the landscape with 



 

xii 
 

the highest relief is associated with a case in dry scenario (60% decrease in 𝐷 and 𝐾). As can be 

seen, the relief change for dry scenario is much larger than that in humid scenario. ................... 51 

Figure 11. (a) Drainage density, 𝐷𝑑, (b) number of junctions, (c) number of branching junctions 

and, (d) number of side-branching junctions of the landscape in original scenario compared with 

their average in humid and dry scenarios. Insets in (c) and (d) show the exceedance probability of 

branching and side-branching junctions in all landscapes of humid and dry scenarios during the 

evolution, respectively. From the insets in (c) and (d) it can be observed that the number of 

branching junctions is higher for the dry scenario landscapes compared to the humid scenario 

landscapes and the number of side-branching junctions increases when the landscape transitions 

to a more humid conditions (i.e. changing from original scenario to humid scenario). (e) and (f) 

show examples from the landscapes in dry and humid scenarios, respectively. The 1st, 2nd, and 3rd-

order channels are shown in blue, red, and black, respectively. ................................................... 55 

Figure 12. (a) Drainage density, 𝐷𝑑, (b) number of junctions, (c) number of branching junctions, 

and (d) number of side-branching junctions for every humid and dry scenario. The x-axis shows 

the percentage change in 𝐷 and 𝐾 for each scenario. 0 on the x-axis implies the original scenario. 

Horizontal dashed bars show the average quantities for dry (red) and humid (blue) scenarios. (a0) 

and (b0) are schematic representations of a simple channel network. (a1) and (a2) are two different 

ways of increasing 𝐷𝑑 from (a0). (b1) and (b2) are two different ways of increasing the number of 

junctions from (b0). The error bars represent one standard deviation from the mean computed for 

multiple simulations starting with different initial noise. ............................................................. 58 

Figure 13. (a), (b), and (c) show the relationship between c-value, diffusion coefficient (𝐷), and 

advection coefficient (𝐾) with MAP, respectively. (d) and (e) show the relationship of diffusion 



 

xiii 
 

coefficient (𝐷) and advection coefficient (𝐾) with c-value. For (a), (b), and (c) as shown in the 

figures although the Pearson correlations coefficient, R is not extremely high, further statistical 

tests indicate that the correlations are significant. However, for (d) and (e) the correlations are not 

significant (based on P-value). ...................................................................................................... 60 

Figure 14. Four examples of natural basins located in different climatic conditions exhibiting 

different branching patterns. Basin (A) is located in dry climate and basin (B) is located in humid 

climate; while they have similar 𝐿𝑐 , basin (B) contains more side-branching compared to basin 

(A). Similarly, basin (C) is located in dry climate and basin (D) is located in humid climate; while 

basins (C) and (D) have similar 𝐿𝑐, basin (D) contains more side-branching compared to basin (C).

....................................................................................................................................................... 62 

Figure 15. (a) Schematic of a 4th-order channel network. (b) exponential function fitted to K-1 and 

𝑇𝑘. This channel network exhibits Tokunaga self-similarity with a c-value of 1.73. .................. 70 

Figure 16. Sample examples of natural catchments, (a) catchment A and (b) catchment B used for 

complexity analysis with superimposed channel networks. (c) and (d) show the width function 

W(x) for catchments A and B, respectively. x-axis represents the flow distance from the outlet and 

0 on the x-axis represents the outlet. y-axis in these figures represents the number of channels at a 

certain distance from the catchment outlet. (e) and (f) show the incremental area function IA(x) 

for the catchments A and B, respectively. Note that IA(x) has been flipped (from right to left) in 

order to be consistent with W(x). y-axis indicates the incremental change in the contributing area 

as one moves on the main channel. Insets (e) and (f) show the IA(x) on a log-scale. .................. 72 

Figure 17. (a), (b), and (c) demonstrate the structural complexity versus c-value; (d), (e), and (f) 

exhibit the functional complexity versus c-value at spatial-scales of 5, 10, and 20 m, respectively. 



 

xiv 
 

Structural complexity is computed as the entropy of W(x), whereas functional complexity is 

computed as the entropy of IA(x). Note that for all the scales the slope of increase is larger for the 

functional complexity compared to structural complexity (see slopes of linear regressions provided 

in each subplot). ............................................................................................................................ 75 

Figure 18. (a) Slope of entropy (E) versus Tokunaga index (c-value) across spatial-scales for both 

W(x) (blue circles) and IA(x) (red circles). The insets in (a) show the schematic representations of 

catchment B at scales 𝑠1 and 𝑠2, where 𝑠1 <  𝑠2 . (b) The difference between slope obtained from 

W(x) and IA(x). The inset shows the diffusion coefficient (D) versus c-value for 40 natural 

catchments. (c) Elevation profiles along four channels of catchment B from drainage divide to the 

outlet. The inset shows catchment B with superimposed channel network. These channel profiles 

are extended to the drainage divide by dotted black lines to represent hillslope length. .............. 79 

Figure 19. Time series of bed elevation at the discharges of (a) 1500 L/s, (b) 2600 L/s, and (c) 

2800 L/s. The bed elevation data were sampled at a temporal resolution of 5 sec. Notice the 

increase in variability with increasing discharge. ......................................................................... 89 

Figure 20. Power spectral density (PSD) of bed elevation for the discharges of 1500 L/s (blue line), 

2600 L/s (green line), and 2800 L/s (red line). PSDs of discharges for 1500 L/s and 2800 L/s are 

displaced vertically for better visualization by multiplying their PSD values by 5 × 10 − 2 and 

5 × 102, respectively. ................................................................................................................... 90 

Figure 21. Multiscale entropy (MSE) of bed elevation for different discharges. The blue, green, 

and red solid lines show the MSE of bed elevation time series for the discharges of 1500 L/s, 2600, 

and 2800 L/s, respectively. The blue, green, and red dashed lines show the averaged MSE for the 

synthetically generated surrogates of bed elevation time series for the discharges of 1500 L/s, 2600 



 

xv 
 

L/s, and 2800 L/s, respectively. The average MSEs of surrogates were computed from 50 

surrogates for each discharge. The surrogates were generated using the IAAFT algorithm. The 

shaded area around the dashed lines depicts the variability around the average MSE of surrogates 

(one standard deviation). The inset shows the MSE of bed elevation for the discharge of 600 L/s 

for comparison purposes. (b) Difference between the MSE of the original bed elevation time series 

and the surrogates for each discharge. .......................................................................................... 91 

Figure 22. (a), (b) and (c) Extracted bedform heights above a certain threshold for the discharges 

of 1500, 2600, and 2800 L/s, respectively. The inset in (a) shows the extracted bedforms for the 

discharge of 600 L/s. ..................................................................................................................... 93 

Figure 23. Scaling exponents 𝜁(𝑞) estimated from the log-log linear regressions within the scaling 

regions shown with black lines in the insets of each plot for (a) bed elevations series of discharge 

1500 L/s, (b) the surrogates of bed elevations series for discharge 1500 L/s, (c) bed elevations 

series of discharge 2600 L/s, (d) the surrogates of bed elevations series for discharge 2600 L/s, (e) 

bed elevations series of discharge 2800 L/s, and (f) the surrogates of bed elevations series for 

discharge 2800 L/s. The curves in the insets show the statistical moments of the fluctuations of 

bed elevation time series as a function of scale. In particular, different curves in the insets represent 

the log of 𝑀(𝑞, 𝑠) computed using Eq. 5.3 for a given 𝑞 across different scales. As shown in (a), 

(c), and (e), the 𝑐2 value increases with increasing discharge indicating a more heterogeneous bed 

elevation fluctuation structure compared to the lower discharge. The 𝜁(𝑞) of the surrogates for 

different discharges shown in (b), (d), and (f) is the mean 𝜁(𝑞) computed for 50 surrogate series. 

The average 𝑐1 and 𝑐2 values and their standard deviations are also presented in the sub-figures.

....................................................................................................................................................... 98 



 

xvi 
 

Figure 24. Asymmetry ( 𝐴 ) of bed elevation increments and their surrogates for different 

discharges. The blue, green, and red solid lines show the asymmetry of bed elevation time series 

for the discharges of 1500 L/s, 2600 L/s, and 2800 L/s, respectively. The blue, green, and red 

dashed lines show the average asymmetry for the surrogates of bed elevation time series for the 

discharges of 1500 L/s, 2600 L/s, and 2800 L/s, respectively. The asymmetry of the surrogates 

shown here is the average asymmetry computed from the 50 surrogate series. The variability is 

shown via error bars which are one standard deviation from the mean values at each scale. .... 101 

 

  



 

xvii 
 

LIST OF TABLES 

Table 1. Climate aridity index, total channel length, drainage area, drainage density, concavity 

index, and relative relief of the basins used in this study. ............................................................ 24 

Table 2. Statistical characteristics of river network topology and geometry. 𝐿, 𝐴 and 𝛼 represent 

the median length, area, and junction angle. 𝐽𝑑 represents the average junction density defined as 

the number of junctions normalized by the total channel length. Branching percentage represents 

channels that follow Horton-Strahler ordering [Horton, 1945], whereas side branching indicates 

the percentage of channels of order 𝜔 intersecting channels with order 𝜔′ > 𝜔. To compare dry 

and humid basins for all the parameters, the larger values are indicated with bold numbers. 

Numbers in subscripts and superscripts represent 25th and 75th percentiles, respectively. ........... 29 

Table 3. Significance test (T-test) performed to differentiate distribution of angles at the 95th % 

confidence interval. ....................................................................................................................... 35 

Table 4. Model parameters, which are constant in this study. ...................................................... 46 

Table 5. Summary of different scenarios and their 𝐷 and 𝐾 coefficients. .................................... 46 

Table 6. Hydraulic and statistical properties of bed elevation time series. 𝐷 : average flow depth, 

𝑆𝑤: water surface slope, ℎ𝑅 : hydraulic radius,𝜏 ∗ 𝑏: dimensionless shield stress, 𝑡ℎ𝑏𝑓: average 

bedform height, 𝑠𝑡𝑑ℎ𝑏𝑓: standard-deviation of bedform heights, 𝑡ℎ𝑏𝑓: mean bedform inter-arrival 

time ± one standard-deviation, 𝛽: spectral slope, 𝑐2: intermittency. Note that the bedform statistics 

are computed for the same length (~ 6 hrs) of bed elevation time series for different discharges.

....................................................................................................................................................... 94 

 



 

1 
 

CHAPTER 1: INTRODUCTION 

Landscapes evolve as a result of the interaction between uplift and erosion. This 

interaction leads to the emergence of hillslopes and fluvial processes that are dynamically 

connected while initiating and evolving channel networks. Channel networks transport 

water, sediment, and nutrients. Investigating the structural, topological and geometrical 

properties of river networks is important to understand and quantify the components 

affecting the formation of distinct patterns during the landscape evolution as well as to 

develop predictive models describing the network dynamics under the changing 

environment [Abed-Elmdoust et al., 2016; Basso et al., 2015; Biswal and Marani, 2010; Czuba 

and Foufoula-Georgiou, 2015; Dietrich et al., 1993; Goren, 2016; Hansen and Singh, 2018; 

Howard, 1994; Rodriguez-Iturbe and Rinaldo, 2001; Rodriguez-Iturbe et al., 2009; Sarker et 

al., 2019; Shelef and Hilley, 2014; Tejedor et al., 2017a]. Due to dissimilar balance between 

uplift and erosion, different shapes of landscapes are observed across the world. It has been 

argued that climate is one of the primary sources of erosion resulting in different surficial 

processes e.g. sediment transport on the landscapes [Perron, 2017]. Thus different climatic 

conditions may leave distinct fingerprints on the landscape such as its forming river 

networks. River networks’ geometrical and topological structure can be described by several 

indices such as drainage density [Abrahams, 1984; Rinaldo et al., 1995a; Tucker and 

Slingerland, 1997], Horton ratios [Horton, 1932; 1945], branching angle [Devauchelle et al., 
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2012; Hooshyar et al., 2017], branching and side branching percentages and width function 

[Leopold, 1971; Snell and Sivapalan, 1994; Veitzer and Gupta, 2001].   

The quantitative classification of channel network’s structure has been extensively 

studied over the past decades beginning with Horton’s concept of studying channels by their 

orders [Horton, 1932; 1945]. Strahler [1952] modified Horton’s theory which resulted in 

defining the Horton-Strahler’s ratios of bifurcation, length, and area. Horton-Strahler laws 

have been used for channel network classification to study their self-similar nature [Abed-

Elmdoust et al., 2017; Rodriguez-Iturbe et al., 1994; Tarboton, 1996; Tarboton et al., 1988] 

and scaling properties [Peckham and Gupta, 1999; Veitzer and Gupta, 2000]. Hooshyar et al. 

[2017] and Seybold et al. [2017] suggested that junction angle is also a signature of climate 

on the channel network and can be used as a diagnostic tool to compare the channel 

network’s geometry and topology.  

Studying the influence of the past climate on the landscape for characterizing the 

effects of future climate on the landscape. In this research, we investigate the response of 

landscape to changing climatic forcing via numerical modeling and field observations. The 

goal of this research is to understand and quantify the response of landscapes to the 

changing climatic forcing. We hypothesize that “climate imprints distinct signature on river 

network geometry and topology”. 

In chapter 2, we investigate the effects of climatic forcing on river network topology 

and geometry beyond 𝐷𝑑 . For this, we selected 26 basins across the United States with 

equal 𝐷𝑑 , however, different climate aridity index (defined here as the ratio of mean annual 

potential evaporation to precipitation). The river networks of these basins were extracted, 
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using a curvature-based method, from high-resolution (1 m) digital elevation models, and 

several metrics such as width functions, branching angles, and side branching ratio were 

computed. We used a multiscale entropy approach to quantify the geometric and topologic 

irregularity and structural richness of these river networks[Ranjbar et al., 2018]. 

In chapter 3, we use a physically-based numerical landscape evolution model to 

investigate the channel network structure for varying hillslope and fluvial processes 

represented by different magnitudes of the soil transport ( 𝐷 ) and fluvial incision (𝐾 ) 

coefficients. We show that landscapes with the same Péclet number (defined as the ratio 

between the timescales of advective (fluvial) to diffusive (hillslope) processes) and thus the 

same characteristic length scale, may exhibit different geomorphic and topologic 

characteristics [Ranjbar et al., 2020b]. 

In chapter 4, we propose a new framework based on a multi-scale entropy approach 

to evaluate the complexity of catchments using two different representations of channel 

networks. First, we investigate the structural complexity using the width function, which 

characterizes the spatial arrangement of channels. Second, we utilize the incremental area 

function along the main channel to study the functional complexity that captures the 

patterns of transport of fluxes [Ranjbar et al., 2020a]. 

In chapter 5, we employ the multiscale entropy (MSE) approach to characterize the 

observed variability in the fluctuations of bed elevation time series (e.g. a much smaller scale 

in rivers) under variable discharges obtained from a field-scale laboratory flume [Ranjbar 

and Singh, 2020]. Entropy is a measure of complexity and quantifies the lack of information 
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in a system. We use a refined definition of entropy, MSE, which accounts for the sequence of 

data points and characterizes the randomness in a series.  

In chapter 6, we include a summary of each chapter and the concluding remarks as 

well as some future research directions.  
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CHAPTER 2: DEPENDENCE OF RIVER NETWORK 

BRANCHING STRUCTURE ON CLIMATE ACROSS 

SCALES  

River networks are important spatially distributed features that affect catchment-

scale runoff response, low-flows, sediment, and solute transport and allow quantification of 

various catchment properties and their interaction with physical, ecological, and biological 

processes operating upon the network [Basso et al., 2015; Biswal and Marani, 2010; Collins 

and Bras, 2010; Czuba and Foufoula-Georgiou, 2015; Dietrich et al., 1993; Goren, 2016; 

Horton, 1932; Howard, 1994; Rodriguez-Iturbe and Rinaldo, 2001; Rodriguez-Iturbe et al., 

2009; Shelef and Hilley, 2014; Troch et al., 2009; Tucker and Slingerland, 1997; Wagener et 

al., 2010; Willett et al., 2014]. It is crucial to investigate the structural, geometrical and 

topological properties of river networks to understand and quantify the components that 

create these distinct patterns of river networks as well as for developing predictive models 

for better understanding of network dynamics under changing environment [Abed-

Elmdoust et al., 2016; Bertuzzo et al., 2008; Peckham, 1995; Shelef and Hilley, 2014; Tejedor 

et al., 2017a; Willett et al., 2014; Willgoose et al., 1991].  

River networks emerge as a result of interaction between factors such as climate, 

tectonics, erosion, and vegetation [Abrahams and Ponczynski, 1984; Kirkby, 1971; 
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Montgomery and Dietrich, 1992].  Their network geometry and topology can be depicted by 

several indices such as Horton ratios [Horton, 1932; 1945], drainage density [Abrahams, 

1984; Rinaldo et al., 1995a; Tucker and Slingerland, 1997], branching angle [Devauchelle et 

al., 2012; Hooshyar et al., 2017], and width function [Leopold, 1971; Snell and Sivapalan, 

1994; Veitzer and Gupta, 2001].  Among these metrics, drainage density (𝐷𝑑), defined as the 

total length of channel per unit area, is an extensively used practical measure to characterize 

different landscapes and quantify runoff characteristics. Several studies have identified and 

quantified the controlling factors of 𝐷𝑑  at different spatial and temporal scales [Abrahams, 

1984; Istanbulluoglu and Bras, 2005; Melton, 1957; Rinaldo et al., 1995a; Sangireddy et al., 

2016; Tucker and Slingerland, 1997]. Observations from natural catchments have revealed 

the controls of climate on 𝐷𝑑 . For instance, using catchments located in relatively dry 

regions, Melton [1957] observed that 𝐷𝑑  generally increases as the climate gets dryer. On 

the other hand, Madduma Bandara [1974] used data from relatively humid areas and 

reported the increasing trend of 𝐷𝑑  as the climate gets more humid. Combining the data from 

Melton [1957] and Madduma Bandara [1974], Abrahams [1984] observed a U-shape 

relationship between 𝐷𝑑   and climate; therefore, it is possible to have river networks with 

the same drainage density but in different climates (see also Sangireddy et al. [2016]). In this 

study, we utilize the width function to capture the shape and the topology of the river 

networks extracted from 5-m resolution digital elevation models (DEMs).  We investigate 

the effects of varying climate on the topologic and geometric properties of river networks 

using width function signals from 26 basins across the United States with approximately 

equal 𝐷𝑑  but distinct long-term climatic conditions. The climatic condition of the basins is 
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differentiated by the climate aridity index (AI), defined as the ratio of mean annual potential 

evaporation (𝐸𝑝) to precipitation (𝑃) [Budyko, 1974]. The main focus of this study is to 

detect the possible signatures of climate on the topology and geometry of river networks. In 

order to analyze the characteristics of the width function across different spatial scales, we 

use multiscale entropy, which measures complexity in a series (here width function) and is 

able to capture the meaningful structural richness of width functions. In recent years, the 

concept of entropy has been used in several studies pertaining to the field of hydrology [Liu 

et al., 2013; Mishra et al., 2009; Nourani et al., 2015; Porporato et al., 2007; V P Singh, 1997]. 

However, to the best of our knowledge, there is limited literature about the use of entropy in 

the field of river networks. For example, Leopold and Langbein [1962] applied the entropy 

concept to obtain additional information about the energy distributions in a river network 

and their relevance with spatial and temporal changes of landforms. They used an entropy 

approach to explain the paths taken by the movement of water particles on the uplifted 

landmass. Fiorentino et al. [1993] used an entropy-based approach in the morphological 

analysis of river basin networks assuming that the only available information on a drainage 

basin is its mean elevation and showed that the mean basin elevation has a linear 

relationship with the basin entropy. More recently, Tejedor et al. [2017b] developed an 

entropy measure for quantifying the partitioning in water and sediment flux delivery to the 

shoreline in delta channel networks.  
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2.1 Width function 

In general, the width function W(x) represents the number of channelized pixels that 

have the same distance from the basin outlet where the distances are measured along the 

flow path i.e., 

 𝑊(𝑥) = #{𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑧𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑃: 𝑥 ≤ 𝑙(𝑃) ≤ 𝑥 + 𝑑𝑥} (2.1) 

where, 𝑙(𝑃) is the distance of pixel P from the outlet and 𝑑𝑥 represents the length of 

bins for counting the number of pixels with the same distance from the outlet; in this study, 

dx is 5 m. In other words, the width function represents the two-dimensional river network 

as a one-dimensional signal, capturing the branching structure of a river network. This one-

dimensional signal enables us to achieve a comprehensive understanding of a river 

network’s scaling properties [Abed-Elmdoust et al., 2016; Lashermes and Foufoula-

Georgiou, 2007; Marani et al., 1994]. 

The width function is a powerful tool for understanding the geomorphic structure of 

river network and its control on the basin’s hydrologic response [Gupta and Mesa, 1988; 

Snell and Sivapalan, 1994; Troutman and Karlinger, 1985], and has been used to investigate 

catchments’ characteristics for assessing channel network properties at different spatial 

scales [Black et al., 2012; Lashermes and Foufoula-Georgiou, 2007]. The concept of the width 

function was first introduced by Kirkby [1976] and several studies have investigated the 

properties of river networks using this concept. For example, Rodríguez‐Iturbe and Valdes 

[1979] argued that assuming constant flow velocity within a basin, the width function can 

represent the geomorphological unit hydrograph (GUH) and the distribution of travel times 

(see also, Gupta and Mesa [1988]). Therefore, the width function provides a reasonable 
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alternative approach for deriving the hydrological responses in ungauged basins [Moussa, 

2008; Rodriguez-Iturbe and Rinaldo, 2001]. Marani et al. [1994] used width functions to 

examine the fractal structure of real basins and argued that the spatial patterns of 

aggregation share some common properties with random cascades. Random cascades are 

models used to analyze systems that contain fluctuations over several ranges of scales. More 

recently, Lashermes and Foufoula-Georgiou [2007] investigated the multifractal properties 

of width functions of real networks and studied the common properties of them with the 

stochastic self-similar trees. Furthermore, Moussa [2008] studied the morphometric 

properties controlling the shape of width function.  

2.2 Entropy  

In general, entropy quantifies the amount of information in a signal based on the 

probability of each value of the signal [Shannon, 1948]. In other words, entropy measures 

uncertainty in the occurrence of events over a space or time domain. Mathematically, the 

Shannon entropy of a signal represented by a vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑁] can be expressed as: 

 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)

𝑁

𝑖=1

 (2.2) 

where 𝑝(𝑥𝑖) is the probability of 𝑥𝑖 and N is the sample size.  

The entropy measure defined in Eq. (2.2) is not sensitive to the sequence of the 

values. However, in geomorphic or environmental signals, such as the width function of a 

river network, the sequence of data points directly represents the structural pattern of the 

topology of the river network. For example, Figure 1 shows two hypothetical basins with 
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approximately equal drainage area and cumulative drainage length (therefore, equal 

drainage density). The width function series of basins 1 and 2 as shown in Figure 1 can be 

expressed as 𝑊1 = {1, 1, 2, 2, 4, 5, 4, 5, 5, 6, 5, 6, 7}  and 𝑊2 = {1, 1, 2, 5, 6, 4, 7, 5, 2, 6, 5, 4, 5} , 

respectively (see Figure 1c for a graphical representation). From these width functions, one 

can compute the Shannon entropy using Eq. (2.2 by calculating the probability of each value 

of the width function. 

Although these two networks have a distinct structural arrangement of channels and 

junctions, as is visually evident in Figure 1a and b, the entropy (Shannon) computed using 

Eq. (2.2) results in the same value (i.e.  𝐻(𝑊1) = 𝐻(𝑊2) = 0.74) for both cases. This example 

clearly demonstrates that the Shannon entropy measure cannot capture the difference in the 

structural organization of channels in a river network and thus the physical processes that 

create these complex patterns since the width functions of these basins contain the same 

numerical values but different ordering sequences. 

To capture the structural arrangement of channels embedded in the width function 

and overcome the limitation of Shannon Entropy, we use multiscale entropy [Costa et al., 

2002; 2005] as a measure of complexity [Abedin et al., 2017] that can capture the structural 

richness of river networks.   
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Figure 1. Schematic representation of hypothetical basins with the same drainage density 

(assigning an equal drainage area and an equal total drainage length for basin 1 (a) and basin 2 

(b)) but distinct width function. Numbers on the left side of each basin show the number of 

channel pixels that have the same distance from the outlet in each basin. Width functions of 

basin 1 (solid line) and basin 2 (dashed line) are plotted in subplot (c). Stream orders (ω) are 

represented by different colors. Basin 1 contains channels up to order 3 whereas basin 2 contains 

4th order channels.  

2.3 Multiscale Entropy 

Sample entropy, 𝑆𝐸 , first proposed by Richman and Moorman [2000], is an alternative 

measure of entropy which considers the sequence in a series while computing its uncertainty 

and complexity. 𝑆𝐸  represents the probability that two similar patterns containing m 
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sequential points in the signal remain similar if another point is added to the patterns (i.e. 

by increasing pattern length to m + 1). Here, the patterns with m sequential points are 

defined as vectors of size m that are moving through the length of the signal. The similarity 

in patterns is delineated by a tolerance denoted as 𝑟, which determines whether two vectors 

can be considered equal or close to each other. Particularly, the maximum difference across 

the components of the two vectors is defined as the distance d between two sequences. When 

d satisfies the condition 𝑑 ≤ 𝑟, the two vectors are considered as “close to each other within 

the tolerance 𝑟”.  𝑆𝐸  can be computed as: 

 
𝑆𝐸(𝑚, 𝑟, 𝑁) = − ln

𝑛𝑚+1(𝑁, 𝑟)

𝑛𝑚(𝑁, 𝑟)
 (2.3) 

where m is the number of data points in a pattern (also referred to as vector); r is the 

similarity criterion or tolerance; N is the length of the main series; and 𝑛𝑚(𝑁, 𝑟)  and 

𝑛𝑚+1(𝑁, 𝑟) are the total numbers of repetitions of vectors of length m and m+1 (m-point and 

m+1-point patterns), respectively. The total number of repetitions is defined as the number 

of times a pattern (vector of length m or m+1) has been repeated along the series with a 

tolerance r. For a series 𝑊 of length N, the steps for calculating 𝑆𝐸  are provided below: 

1. Define m-point vectors 𝑊𝑚
𝑖 ,  𝑊𝑚

𝑗
 as: 

𝑊𝑚
𝑖 = {𝑊𝑖 , 𝑊𝑖+1, … , 𝑊𝑖+𝑚−1},     1 ≤ 𝑖 ≤ 𝑁 − 𝑚      

𝑊𝑚
𝑗

= {𝑊𝑗 , 𝑊𝑗+1, … , 𝑊𝑗+𝑚−1},     1 ≤ 𝑗 ≤ 𝑁 − 𝑚  

where 𝑖 ≠ 𝑗   . 

2. Compare pairs of m-point vectors (𝑊𝑚
𝑖 , 𝑊𝑚

𝑗
) to determine whether they have a 

distance d smaller than the specified tolerance r. To compute the number of 
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repetitions (𝐷𝑚) for each m-length template vector, 𝑆𝐸  uses a Heaviside function 

as: 

 
𝐷𝑚

𝑖,𝑗
(𝑟) = {

1     𝑑𝑚
𝑖,𝑗

≤ 𝑟

0      𝑑𝑚
𝑖,𝑗

> 𝑟 .
 (2.4) 

For example, for m=2, 𝑊2
1 = {𝑊1, 𝑊2} and 𝑊2

2 = {𝑊2, 𝑊3}. Distance d is computed 

as 𝑑2
1,2 = 𝑚𝑎𝑥{|𝑊1 − 𝑊2|, |𝑊2 − 𝑊3|}. If 𝑑2

1,2 < 𝑟, then 𝐷2
1,2(𝑟) = 1 and 𝑊2

2 is refered to as 

a forward match (matched pair) for the pattern 𝑊2
1 = {𝑊1, 𝑊2}. 𝐷𝑚

𝑖,𝑗
(𝑟) is computed for 

every pair of i and j (1 ≤ 𝑖 ≤ 𝑁 − 𝑚 and 1 ≤ 𝑗 ≤ 𝑁 − 𝑚). Note that for a series with N data 

points only N-m vectors with length m are considered as the patterns, although N-m+1 

patterns with length m exist in the series. This is in order to ensure that for a vector i with 

length m, where 1 ≤ 𝑖 ≤ 𝑁 − 𝑚, the corresponding m+1 length vector also exists. 

Costa et al. [2002] suggested a value of r as 15% of the standard deviation of the main 

series. Using r as a percentage of the standard deviation makes the value of 𝑆𝐸  independent 

of the absolute values and variance of the main series. However, the sequential ordering of 

values creating the original series is the essential factor affecting 𝑆𝐸 . In case of a large value 

of r, the vectors will be less distinguishable from each other and the signal appears to be 

more regular than it is. In other words, increasing r will decrease the accuracy of the analysis. 

3. Sum the numbers of similar vectors (matched pairs) for every (𝑊𝑚
𝑖 , 𝑊𝑚

𝑗
) to obtain 

the total number of repetition, i.e. 𝑛𝑚(𝑁, 𝑟), for the m-point pattern. 

 𝑛𝑚(𝑁, 𝑟) = ∑ 𝐷𝑚
𝑖,𝑗

(𝑟) (2.5) 
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4. Repeat steps 1 to 3 for vectors with length m+1. The total number of repetition 

for the m+1 -point pattern thus can be expressed as: 

 𝑛𝑚+1(𝑁, 𝑟) = ∑ 𝐷𝑚+1
𝑖,𝑗

(𝑟) (2.6) 

5. Compute sample entropy using Eq. (2.3). 

A smaller ratio of 
𝑛𝑚

𝑛𝑚+1
 indicates i) more regularized features of a series, i.e. the 

locations where the m-point pattern is present, the m+1-point pattern is likely to be present; 

and ii) the signal is more self-similar. This approach requires an initial normalization to 

ensure 𝑆𝐸  is dependent on the distinct organizational structure but not on the variances of 

the two series. Therefore, signals were centered by subtraction of the mean and normalized 

to standard deviation [Richman and Moorman, 2000]. Figure 2 briefly illustrates the 

computation of sample entropy using a simple example. 
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Figure 2. A sample width function series W (x) used to demonstrate the steps involved in the 

sample entropy calculations. In this example m = 2 [Costa et al., 2002; 2005]. The first m-point 

pattern (sequence) is represented by 𝑤1-𝑤2 (red-green) and m+1-point pattern by 𝑤1-𝑤2-𝑤3 (red-

green-blue). The dashed lines around the data points represent 𝑤1 ± 𝑟 (red), 𝑤2 ± 𝑟 (green), and 

𝑤3 ± 𝑟 (blue), and indicate the tolerance for counting similar patterns. For the pattern with 

length m = 2 where the first point is 𝑤1 (red) and the second point is 𝑤2 (green), we count all the 

𝑤1-𝑤2 sequences, i.e. we count the number of times that a green data point appears right after a 

red data point. The number of the pairs that match the first 2-point pattern is referred to as 𝐷𝑚 

and in this example 𝐷𝑚 = 6. Next, we add another point to the previously considered m-point 

pattern. This 3-point pattern (m+1 or longer pattern) can be represented by the sequence of 𝑤1-

𝑤2-𝑤3 (shown as red-green-blue). We count the number of red-green-blue sequences and refer to 

it as 𝐷𝑚+1. In this example 𝐷𝑚+1= 2. Following m-point and m+1-point patterns are 𝑤2-𝑤3 and 

𝑤2-𝑤3-𝑤4, respectively. After computing 𝐷𝑚 and 𝐷𝑚+1 for every m-point and m+1-point 

patterns, the total number of repetition can obtained using Eqs. (2.5) and (2.6). 
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The 𝑆𝐸  approach only quantifies pattern irregularity at one scale; however, natural 

systems such as river network width functions exhibit variability across a range of scales. 

Moreover, the 𝑆𝐸  approach assigns higher entropy values to surrogate signals (with 

increments Gaussian distributed) of the main series than the main series, although main 

series (also referred here to as original signal/series) may contain structural nonlinearity 

than in a surrogate signal where the nonlinearities are destroyed by randomizing the signal 

[Costa et al., 2005; A Singh et al., 2009a]. Note that the surrogate series maintain the 

probability density function (pdf) and the linear correlation structure of the original series. 

Costa et al. [2002; 2005] also used sample entropy to evaluate white noise [Hosking, 1981; 

Mandelbrot and Van Ness, 1968]  versus 1/f noise (pink noise [Costa et al., 2002; 2005])  and 

observed that sample entropy assigned a higher value to white noise compared to 1/f noise. 

However, 1/f noise encompasses more complex structure due to its long-range correlation.  

In order to resolve this limitation, Costa et al. [2002] proposed to evaluate sample 

entropy at multiple scales considering the interrelationship between scales and entropy. The 

multiscale entropy (MSE) computation includes two steps: i) generating the consecutive 

coarse-grained signals corresponding to each scale, and ii) computing the sample entropy 

for each coarse-grained series that is generated in the previous step. Thereafter, a series of 

entropy values is generated which reveals the amount of complexity in a signal at multiple 

scales. Note that, r is not recalculated throughout each scale and remains the same for all 

scales. 
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For coarse-graining the original series, the series is divided into non-overlapping 

windows of length equal to scale s, and the data points within each window are averaged. 

Generally, each data point of the coarse-grained series at each scale s is computed as: 

 

𝜔𝑗
𝑠 =

1

𝑠
∑ 𝑊𝑖

𝑗𝑠

𝑖=(𝑗−1)𝑠+1

,   1 ≤ 𝑗 ≤
𝑁

𝑠
 (2.7) 

where 𝜔𝑠 = {𝜔1, 𝜔2, … , 𝜔𝑗 , … , 𝜔𝑁

𝑠

} is the coarse-grained series at scale s. For example, 𝜔1 =

{𝜔1 = 𝑊1, 𝜔2 = 𝑊2, … , 𝜔𝑁

1

= 𝑊𝑁}  is the coarse-grained series at scale 1, 𝜔2 = {𝜔1 =

𝑊1+𝑊2

2
, 𝜔2 =

𝑊3+𝑊4

2
, … , 𝜔𝑁

2

=
𝑊𝑁−1+𝑊𝑁

2
} is the coarse-grained series at scale 2, and 𝜔3 =

{𝜔1 =
𝑊1+𝑊2+𝑊3

3
, 𝜔2 =

𝑊4+𝑊5+𝑊6

3
, … , 𝜔𝑁

3

=
𝑊𝑁−2+𝑊𝑁−1+𝑊𝑁

3
} is the coarse-grained series on 

scale 3.  

Although only m = 2 and m + 1= 3 patterns are considered in our analysis, 

considering patterns corresponding to these m values at higher scales, indirectly allows 

examination of larger m patterns. For example, at the 2nd aggregation scale, the original width 

functions are averaged in non-overlapping windows of length 2 data points. 

Correspondingly, m = 2 in 2nd aggregation scale includes 4 data points of the original width 

function; whereas, m+1 = 3 at the same scale includes 6 points. The reason for not using 

higher values of m is the fact that within a series it is highly improbable to find a pattern of 

length 4, 5, or larger exactly being repeated throughout the series. In this case, there may not 

be any forward matches for the longer length patterns which will result in 𝑛𝑚(𝑁, 𝑟) = 0 

and/or 𝑛𝑚+1(𝑁, 𝑟) = 0. Thereafter, the ratio of  
𝑛𝑚+1(𝑁,𝑟)

𝑛𝑚(𝑁,𝑟)
 will be undefined. Thus, the choice 
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of coarse-grained series with a higher length of non-overlapping windows, instead of using 

higher values of m, partly prohibits from obtaining undefined entropy. 

Essentially, using the MSE approach one can demonstrate that the correlated random 

signals such as 1/f noise exhibit more complexity than white noise, which is an uncorrelated 

random noise. For example, as shown in Figure 3, for the first few scales the amount of 

entropy for white noise is higher than that for 1/f noise. However, with an increase in scale 

the entropy for white noise decreases monotonically; whereas, for the 1/f noise, it remains 

constant at almost all scales > 4. This distinct behavior can be explained by considering the 

complex structures (correlations) over multiple scales. For example, in white noise as the 

length of the coarse-graining window increases, the average value within each window 

converges to a fixed value such that no new information is revealed at the higher scales. 

Whereas, in the case of 1/f noise with increasing scale, the statistical properties of the values 

inside the window do not converge to a constant value since new information is aggregated 

in each scale (see for more details [Costa et al., 2002]). Figure 3 also shows examples for 

increment series of fractional Brownian motion (fBm) with Hurst exponent H = 0.6 and H = 

0.8. As the signal with H = 0.8 contains more correlation structure than H = 0.6 [A Singh et 

al., 2009a], the MSE approach is able to identify this complexity by assigning higher entropy 

values to H = 0.8 as compared to H = 0.6. Thus MSE enables us to quantify the difference 

between random noise and structural complexity of a signal across a range of scales. 
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Figure 3. Multiscale entropy (MSE) computed for theoretical signals, i.e.  1/f noise, white noise, 

and fractional Brownian motion (fBm) with Hurst components of 0.6 and 0.8. Each MSE curve 

was computed and averaged for 15 signals each individually containing 10,000 data points using 

MATLAB 2016. For all cases, m and r were 2 and 0.15, respectively. 

2.4 Fuzzy Multiscale Entropy 

In the MSE calculation, 𝑆𝐸  is not defined if no forward matches occur, i.e. if no pairs of 

template vectors satisfy 𝑑𝑚 ≤ 𝑟 or 𝑑𝑚+1 ≤ 𝑟 . This may occur when the length of a signal 

(e.g. width function here) and/or the similarity criterion (r) is small [Chen et al., 2007; 

Richman and Moorman, 2000]. Therefore, the robust computation of the MSE, as discussed 

above, requires long signals of data. However, physical data such as the width functions may 

have limited length due to the size of the basin and/or the resolution of DEMs. Chen et al. 

[2007] developed fuzzy entropy approach in order to prevent obtaining undefined entropy 
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values by employing an exponential function (Eqs. (2.6) and (2.7)) as the fuzzy 

measurement [Abedin et al., 2020; Zadeh, 1965] of the two template vectors’ similarity (𝒟𝑚, 

𝒟𝑚+1) instead of the Heaviside function used in 𝑆𝐸  calculation (see also, Azami et al. [2017]). 

The closer the 𝒟𝑚 and 𝒟𝑚+1 values are to 1, the more similar are the template vectors. 𝒟𝑚 

and 𝒟𝑚+1 can be expressed as: 

 
𝒟𝑚(𝑧, 𝑟) = exp (−

(𝑑𝑚)𝑧

𝑟
)     (2.8) 

 
𝒟𝑚+1(𝑧, 𝑟) = exp (−

(𝑑𝑚+1)𝑧

𝑟
) 

(2.9) 

where, z determines the gradient of the boundary of the exponential function. Chen et al. 

[2007] suggested using z=2. The total fuzzy numbers of repetition for m-point and m+1-

point patterns are computed using the fuzzy number of repetition, 𝒟𝑚 and 𝒟𝑚+1  and can be 

defined as: 

 𝜂𝑚(𝑁, 𝑟, 𝑧) = ∑ 𝒟𝑚
𝑖,𝑗

(𝑟) (2.10) 

 𝜂𝑚+1(𝑁, 𝑟, 𝑧) = ∑ 𝒟𝑚+1
𝑖,𝑗

(𝑟) (2.11) 

The fuzzy sample entropy at each scale (hereafter called MSE) is computed using 𝜂𝑚 

and 𝜂𝑚+1, characterizing the total fuzzy number of repetition for m-point and m+1-point 

patterns as: 

 
𝐸(𝑚, 𝑟, 𝑁, 𝑧) = − ln

𝜂𝑚+1(𝑁, 𝑟, 𝑧)

𝜂𝑚(𝑁, 𝑟, 𝑧)
 

(2.12) 

To accommodate shorter lengths of signals, we incorporate fuzzy entropy approach 

Eq. (2.12), in the MSE calculations that abstain undefined entropy by employing an 
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exponential function for counting similar patterns  (see, Chen et al. [2007] and  Azami et al. 

[2017]). Note that Fuzzy MSE demonstrates the same results (Figure 3) analyzing the white 

and 1/f noises as MSE discussed in section 2.3 [Azami et al., 2017]. 

2.5 Data and site description 

In this study, we investigate the structure of the width function for basins under 

different climatic conditions. In order to understand the distinct geometric and topologic 

signature of climate on river basins, we selected 26 basins with equal drainage density 

located in 9 states across the United States, 13 basins in dry, and 13 basins in humid climate, 

based on the availability of LiDAR data [Hooshyar et al., 2016; Lashermes et al., 2007; 

Passalacqua et al., 2010; Rajabi, 2018; Rajabi et al., 2018]. The LiDAR data was obtained from 

https://lta.cr.usgs.gov/lidar_digitalelevation. Figure 4 shows the locations of basins used in 

this study. Note that the drainage density 𝐷𝑑𝑖
 is defined as total drainage length over the 

total basin area, i.e. 𝐷𝑑𝑖
=

𝐿𝑇𝑖

𝐴𝑖
  (here constant), where 𝐿𝑇𝑖

 is the total length of channels for 

basin i with a total drainage area 𝐴𝑖. The average drainage density used in this study was 

10.5 𝑘𝑚−1 , with the standard deviation of  1.4 𝑘𝑚−1  and the long-term climate was 

quantified based on the AI. Here, basins with 3.10≤
𝐸𝑝

𝑃
≤10.64 are referred to as dry basins; 

whereas basins with 0.25 ≤
𝐸𝑝

𝑃
≤ 1.36 are considered humid basins. These ranges are 

determined based on previous studies [Arora, 2002; Budyko, 1974; Ponce et al., 2000]. For 

example, based on Budyko [1974], regions where the aridity index is higher than 1 are 

generally classified as dry since the evaporation demand cannot be compensated by 

precipitation (water-limited). Whereas, regions with aridity index less than 1 are classified 
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as humid regions (energy-limited). The aridity index has also been related to broader range 

climatic regimes; i.e., arid, semi-arid, sub-humid, and humid which are categorized as 12 >

𝐴𝐼 ≥ 5, 5 > 𝐴𝐼 ≥ 2,   2 > 𝐴𝐼 ≥ 0.75 , and 0.75 > 𝐴𝐼 ≥ 0.375 , respectively [Arora, 2002; 

Ponce et al., 2000]. In this study, arid and semi-arid regions are referred to as dry regions 

and sub-humid and humid areas are considered as humid regions.  

Table 1, shows the properties of the studied basins such as climate aridity index, total 

channel length, drainage area, drainage density, concavity index and relative relief. The 

drainage networks of the selected basins were extracted using a curvature-based method 

developed by Hooshyar et al. [2016] using high-resolution topographic data. The width 

function of each basin was computed based on the extracted river networks using bins of 5-

m distance and the length of the width function depended on the longest flow length in the 

basin. Figure 5 shows two river basins with superimposed river networks in dry (red) and 

humid (blue) climatic conditions and associated width functions. The two selected basins, 

shown for visualization purposes, have approximately the same longest flow length (i.e. ~ 

600 m). Relative relief was computed as the ratio of the maximum elevation of the basin to 

the length to the outlet in each basin. Concavity index was computed as the slope of a linear 

line regressed through the log-log plot of channel slope (percent rise) versus drainage area 

(𝑚2).  
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Figure 4. The locations of the dry and humid basins across the United States. 

 

Figure 5. The width functions and river networks of two basins located in humid (blue) and dry 

(red-dashed) regions. The two basins were selected based on similar longest channel length for 

illustration purposes. Notice, it is difficult to distinguish, visually, climate conditions from the 

corresponding width functions. 
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Table 1. Climate aridity index, total channel length, drainage area, drainage density, concavity 

index, and relative relief of the basins used in this study. 

Climate 

Basin 

ID 
Climate Aridity 

Index (Ep/P) 
Total Channel 

Length (km) 

Drainage 

Area (km
2
) 

Dd 

(km/km
2
) 

Concavity 

Index 
Relative 

Relief 

Humid 

1 0.25 14.39 1.38 10.44 -0.11 0.67 

2 0.30 10.57 1.16 9.09 -0.14 0.24 

3 0.39 9.35 1.03 9.06 -0.11 0.42 

4 0.46 4.18 0.52 8.07 -0.14 0.30 

5 0.73 22.43 2.28 9.84 -0.29 0.27 

6 0.96 1.81 0.18 9.84 -0.18 0.23 

7 0.96 24.77 2.00 12.41 -0.26 0.06 

8 1.11 24.84 2.34 10.60 -0.16 0.05 

9 1.12 29.65 2.56 11.58 -0.18 0.06 

10 1.13 24.80 2.19 11.35 -0.21 0.04 

11 1.17 26.09 2.27 11.49 -0.28 0.13 

12 1.34 20.97 2.11 9.95 -0.20 0.13 

13 1.36 23.46 2.33 10.07 -0.17 0.13 

Dry 

14 3.10 5.06 0.54 9.33 -0.28 2.02 

15 3.72 3.29 0.37 8.97 -0.22 2.34 

16 4.73 7.93 0.77 10.34 -0.25 0.66 

17 5.15 3.12 0.39 7.99 -0.29 0.83 

18 5.27 5.01 0.60 8.29 -0.29 0.59 

19 8.42 2.56 0.21 12.45 -0.26 0.95 

20 8.53 2.79 0.23 12.04 -0.25 1.15 

21 8.92 3.12 0.27 11.56 -0.13 2.01 

22 9.16 1.25 0.10 12.49 -0.25 1.72 

23 9.32 1.49 0.14 10.48 -0.23 1.42 

24 9.73 2.70 0.25 10.87 -0.18 1.04 

25 10.19 0.93 0.07 12.43 -0.10 1.83 

26 10.64 11.77 0.96 12.23 -0.16 0.47 

 

2.6 Results and discussion 

The MSE approach discussed in section 2.4 was used to compute the scale-dependent 

entropy of the width functions of 26 basins under different climatic conditions. Figure 6a 

shows the average entropy curves for 13 dry (red curve) and 13 (blue curve) humid basins. 

The MSE was computed with parameter settings of  𝑚 = 2 , 𝑟 = 0.15 × 𝜎 (𝜎 is the standard 

deviation of the signal) and z = 2 as suggested by Costa et al. [2002; 2005] and Chen et al. 
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[2007]. Figure 6b shows the total number of repetition (𝜂𝑚+1 and 𝜂𝑚) curves for 13 dry (red 

curve) and 13 (blue curve) humid basins.  

From Figure 6a, the following observations can be made: 1) the average scale-

dependent entropy of width functions increases with scale for both dry and humid basins; 

2) the entropy across all scales is higher for dry basins as compared to humid basins; and 3) 

the rate of increase in entropy is much larger for dry basins as compared to humid basins. 

The increase in entropy with scale is since the number of longer sequences (m+1=3) 

reduces, for both dry and humid basins, at a rate comparatively larger than the number of 

shorter sequences (m=2). However, both smaller (m-point) and larger (m+1-point) 

patterns coexist with much similar frequencies across scales in humid basins indicating a 

more homogeneous (regularized) channel branching structure (Figure 6b). Note that a 

constant 𝑀𝑆𝐸 curve represents a perfectly regularized branching structure, i.e. both m and 

m+1 patterns are repeated with the same frequency across all scales.  

The higher entropy observed in dry basins across all scales suggests that dry basins, 

in general, contain more complex (less regular) organizational structure of channels in river 

networks over multiple scales. In particular, as discussed above, a larger entropy value, i.e. 

larger 
𝜂𝑚

𝜂𝑚+1
, indicates that the total number of repetitions for the shorter patterns (m-point) 

is considerably larger than the longer pattern (m+1-point), i.e. 𝜂𝑚 > 𝜂𝑚+1, suggesting a less 

regularized channel branching pattern. This can be seen from Figure 6b where the difference 

between the two patterns’ repetition represented by 𝜂𝑚 and  𝜂𝑚+1 curves is slightly larger 

in dry basins as compared to humid basins. In addition, the slope, depicting the rate of 

decrease of average 𝜂𝑚 and  𝜂𝑚+1 as a function of scales, denoted by 𝜆𝐷 and 𝜆𝐻 for dry and 
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humid basins, respectively, is larger in dry basins than humid basins, again suggesting higher 

structural irregularity in dry basins than humid basins.   

The difference between MSE curves (Figure 6a) of dry and humid basins increases 

more rapidly at larger scales specifically at scales greater than ~ 65 m which corresponds to 

the median length of second order channels in all the study basins (66 m, see Table 2). This 

increase in MSE at larger scales in dry basins suggests a higher degree of heterogeneity at 

larger scales compared to smaller scales. Along with this, in addition, the higher overall 

entropy in dry basins indicates that the observed structural heterogeneity across scales may 

be manifested in junction angles and channel lengths. Junctions’ angles are formed by two 

intersecting channels and are detected as the pixels with more than one immediate upstream 

pixels (see, Hooshyar et al. [2017]). The channel length here is referred to as the link length. 

To further investigate the causes of organizational irregularity (i.e. heterogeneity) in dry 

basins as compared to humid basins, we explore the geometry and topology of the river 

networks expressed in channel lengths and junction angles. We remind the reader again that 

the basins considered in this study correspond to similar drainage density which can be seen 

from the plot of the total length versus their total drainage area for both dry and humid 

basins (Figure 7a). The data points in Figure 7a follow a linear trend with slope ≈ 1, which 

indicates almost equal drainage density (10.5 𝑘𝑚−1 ) for all the basins. 
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Figure 6. a) Average MSE curves for 13 dry (dashed red) and 13 humid (blue) basins. Thin 

dashed red and blue curves show the 25th and 75th percentile curves for dry and humid basins 

respectively. m, r and z are set to 2, 0.15, and 2, respectively, based on Costa et al. [2002; 2005] 

and Chen et al. [2007]. The x-axis shows the scales representing the length of non-overlapping 

windows for coarse-graining the original width function [Hooshmand et al., 2018]. b) The 

average total fuzzy number of repetitions (frequency) for patterns with m data points, 𝜂𝑚 

(dashed) and with m+1 data points, 𝜂𝑚+1 for both dry (red) and humid basins (blue).  𝜆𝐷 and 𝜆𝐻 

represent the rate of decrease of average 𝜂𝑚 and  𝜂𝑚+1as a function of scales, for dry and humid 

basins, respectively. 

Figure 7b shows the pdfs of junction angles for dry and humid basins indicating that 

dry basins have larger junction angles compared to humid basins (see, Hooshyar et al. [2017] 

for details about junction angle computation). These pdfs showed significant difference 

which was tested using Kolmogorov-Smirnov test at 95% confidence interval (P-values = 

0.03). This characteristic of dry basins, i.e., exhibiting larger junction angles, makes them 
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restricted to containing only the smaller patterns (m-point sequences) and not the larger 

patterns (m+1-point sequences) in width function. In other words, dry basins, due to larger 

junction angles, have higher complexity since the shorter and longer patterns are not being 

repeated with a similar frequency at each scale. Figure 7b (inset) further illustrates 

schematically how the junction angle can affect the repetition of patterns in dry and humid 

basins. Considering two small tributaries (1st order links) in dry and humid basins, for equal 

distance lines (grey lines in Figure 7b), both m and m+1 patterns exist in the humid basin 

with similar frequencies (i.e. 𝜂𝑚 ~ 𝜂𝑚+1). However, in the dry basin, the junction angle is 

larger such that the channel does not intersect the last distance line. Note that channel length 

is equal for both dry and humid basins in this example. The larger junction angle may cause 

an increase in the area or the width of the basin, which was independently verified using 

aspect ratio (basin-width/basin-length) that showed higher average aspect ratio for dry 

basins as compared to humid basins (Table 2). 

Based on the above discussion, branching pattern of river networks, especially the 

structural organization of channels is related to the link (channel segments) length and 

channel junction angle, and is manifested in the width function. This indicates that the 

channel length and the bifurcation angle that these channels are intersecting at can affect the 

shape of the width function. However, the width function does not distinguish between 

channels of different orders. To explore the relationship between the channel characteristics 

of different orders and their junctions, we decompose the channel networks as a function of 

orders ( 𝜔 ) and compare the geometric properties such as length-area relationship in 

different orders across varying climates. 



 

29 
 

Table 2. Statistical characteristics of river network topology and geometry. 𝐿, 𝐴 and 𝛼 represent 

the median length, area, and junction angle. 𝐽𝑑 represents the average junction density defined as 

the number of junctions normalized by the total channel length. Branching percentage represents 

channels that follow Horton-Strahler ordering [Horton, 1945], whereas side branching indicates 

the percentage of channels of order 𝜔 intersecting channels with order 𝜔′ > 𝜔. To compare dry 

and humid basins for all the parameters, the larger values are indicated with bold numbers. 

Numbers in subscripts and superscripts represent 25th and 75th percentiles, respectively. 

`  L (m) A (m2) α Aspect 

ratio 

Jd Branching 

(%) 

Side-

branching (%) 

 

ω1 

Dry 𝟓𝟎31
84 𝟑𝟑𝟎𝟒1690

6453 𝟔𝟒51
75 1.16 7.5 28 72 

Humid 2714
56 1326339

4026 6048
74 1.15 9.6 25 75 

 

ω2 

Dry 6632
148 𝟏𝟓𝟔𝟕𝟓7913

30507 𝟕𝟐55
79 0.67 1.6 33 67 

Humid 
6627

145 100884317
27856 6553

79 0.55 1.9 30 70 
   

 ω3 

Dry 
𝟑𝟎𝟖140

595 𝟏𝟏𝟔𝟎𝟖𝟐62337
224200 𝟕𝟕69

85 0.41 0.15 38 62 
Humid 

17768
396 6291921596

159137 6550
82 0.39 0.53 33 67 
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Figure 7. a) Total channel length versus drainage area for the 26 study basins. Humid and dry 

basins are shown with blue and red (solid) circles, respectively. b) The pdfs of junction angles 

for humid (blue circle) and dry basins (red triangle). Inset in (b) shows hypothetical dry and 

humid sub-basins. It is assumed that channel length is same but junction angles are different. The 

red-dashed line represents channels in the dry basin and the blue line represents channels in the 

humid basin. The grey lines inside the hypothetical basins represent the pixels that have the same 

distance from the outlet. Kolmogorov-Smirnov test was used to determine if the two distributions 

are significantly different. Results show that within the 95% confidence interval the dry basins 

have larger angles than humid basins (P-value=0.03). 

Figure 8a, b and c show the length of 1st, 2nd and 3rd order channels (referred to as 

channel links, interchangeably) versus the corresponding drainage area [Rigon et al., 1996]. 

Note that these data have been binned along the horizontal axis with the bin size of 0.3 𝑚2 

for demonstration purposes. Although some basins contain channels with order higher than 

3, to be consistent, we only show results up to 3rd order. In addition, the effect of climate is 
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more likely associated with smaller channel orders as compared to larger orders [Mutlu et 

al., 2019; Zanardo et al., 2013]. 

Figure 8a, b and c show the power-law exponent fitted to the length-area plots which 

is akin to Hack’s exponent [Biswal and Marani, 2010; Rigon et al., 1998; Rigon et al., 1996]. 

Fo all three orders, this exponent is relatively higher for dry basins compared to humid 

basins. For example, average slope, i.e. the average of slopes of all three orders shown in 

Figure 8a, b and c, for dry basins is 𝛽𝐷=0.73 as compared to the average slope of humid 

basins, which is 𝛽𝐻=0.60. In addition, Figure 8d, e, and f show a larger average junction angle 

for dry sub-basins as compared to humid sub-basins for all channel orders indicating that 

dry sub-basins are in general wider than humid sub-basins under the constraint of 

equivalent drainage density, as observed above for the basins. Note that, although the 

drainage density was equal for the dry and the humid basins in this study, the dry basins 

exhibited a higher relative relief and higher concavity index compared with the humid basins 

(Table 1). Also note that the T-test was performed to quantify whether the two distributions 

shown in Figure 8d, Figure 8e, and Figure 8f were significantly different. For all cases, the P-

values were found to be < 0.05 at 95 % confidence interval (Table 3), suggesting the pdfs 

are indeed significantly different. 

The slope difference in the length-area relationship of humid and dry basins further 

indicates a lack of similarity in the topologic and geometric structure of the channel 

networks in distinct climatic conditions. River basins might be distinguishable based on the 

fundamental difference in their behavior in terms of forming river networks with specific 

junction angles, drainage lengths, and drainage areas. The maximum slope difference in 
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length-area curves (Figure 8) between humid and dry basins is observed for the 2nd order 

channels where the median length of channels is 66 m in both humid and dry basins. For this 

order (𝜔 =2), the slope of the length-area curve for dry basins is ~ 0.85 whereas for humid 

basins this slope is 0.66. This observation of larger slope difference is consistent with the 

scale ~ 65 m at which a transition is observed in MSE curve of the dry basin, suggesting the 

essential difference in the topologic organization between dry and humid basins is more 

persistent at scales larger than this scale (~65 m).  

Based on Figure 8a, b, and c, for the majority of 1st, 2nd and 3rd order channels, for a 

given length, the channels in dry basins have larger drainage areas. For example, for 𝜔 = 2, 

96% and for 𝜔 = 3, 77% of channels in dry basins, on an average, have a larger area than 

humid channels for the same channel length. Note that, however, for 𝜔 = 1, 30% of channels 

in dry basins and 58% of channels in humid basins follow similar characteristics. Also note 

that, these percentages were computed for a given length below the intersection point of dry 

and humid curves which refers to the range of length scales in which for a given link 

(channel) length, the link in dry basin corresponds to a larger area than humid basins (see 

also inset in Figure 7b). Furthermore, Table 2 shows that the junction density 𝐽𝑑  (defined 

here as the ratio of number of junctions to total channel length of a basin) in humid basins, 

on an average, is larger than the junction density in dry basins. Given a constant 𝐷𝑑  and 

smaller junction angle in humid basins, this observation suggests that the humid basins/sub-

basins are, in general, relatively smaller in size than dry basins (see also Table 2). Moreover, 

these results suggest, that the only way to have a larger junction density 𝐽𝑑  and smaller 
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junction angle (for a constant 𝐷𝑑) is to have smaller link length (channel length of a given 

order) which was independently calculated and shown in Table 2. 

In contrast to the junction angle, the percentage of side branching, i.e. merging of 

branches (channel links) of different orders, in humid basins is higher than that in dry basins 

(Table 2). For example, for 𝜔 =1, 2 and 3, the percentage of side branching is 75%, 70% and 

67% for humid basins; whereas, for the dry basin, it is 72%, 67% and 62%, respectively. This  

observation of increasing side branching is consistent with findings of Zanardo et al. [2013] 

where they showed that with increasing rainfall the Tokunaga parameter c increases, 

suggesting higher channel feathering in humid conditions. This inference of less feathering 

in dry basins together with observation that for a given incremental change in contributing 

area (a proxy for discharge or precipitation), the change in channel length is larger in dry 

basins than humid basins (Figure 8a, b and c), further suggest that dry basins may have 

higher potential to change under external forcing (e.g. climate) and are more dynamic as 

compared to the humid basins [Zaliapin et al., 2010; Zanardo et al., 2013]. 
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Figure 8. a) Length of channels versus drainage area for 1st order (a), 2nd order (b), and 3rd order 

(c) channels. d), e) and, f) show the pdfs of junction angles for 1st, 2nd, and 3rd order channels, 

respectively. The red and blue vertical lines in the right panels show median values. 
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Table 3. Significance test (T-test) performed to differentiate distribution of angles at the 95th % 

confidence interval.   

pdf (angle) P-value (T-test) 
Total junction angle (dry vs humid) 0.0004 

First order junction angle (dry vs humid) 0.0060 
Second order junction angle (dry vs humid) 0.0225 
Third order junction angle (dry  vs humid) 0.0272 

 

In contrast to the junction angle, the percentage of side branching, i.e. merging of 

branches (channel links) of different orders, in humid basins is higher than that in dry basins 

(Table 2). For example, for 𝜔 =1, 2 and 3, the percentage of side branching is 75%, 70% and 

67% for humid basins; whereas, for the dry basin, it is 72%, 67% and 62%, respectively. This  

observation of increasing side branching is consistent with findings of Zanardo et al. [2013] 

where they showed that with increasing rainfall the Tokunaga parameter c increases, 

suggesting higher channel feathering in humid conditions. This inference of less feathering 

in dry basins together with observation that for a given incremental change in contributing 

area (a proxy for discharge or precipitation), the change in channel length is larger in dry 

basins than humid basins (Figure 8a, b and c), further suggest that dry basins may have 

higher potential to change under external forcing (e.g. climate) and are more dynamic as 

compared to the humid basins [Zaliapin et al., 2010; Zanardo et al., 2013]. 
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CHAPTER 3: ROLE OF VARYING CLIMATE ON 

GEOMORPHIC AND TOPOLOGIC CHARACTERISTICS 

OF CHANNEL NETWORKS 

Landscapes emerge as a result of the interaction between uplift, erosion, subsidence, 

and sedimentation. This interaction leads to hillslope and fluvial processes which are 

dynamically coupled while initiating and evolving erosional paths (i.e. channel network). 

Erosion occurs through two distinct sediment transport processes: fluvial incision and soil 

creep. Erosion caused by overland flow is described by advection which creates concave-up 

topographic profiles in the downslope direction. Whereas, erosion caused by soil creep such 

as resulting from rain splash on hillslopes is described by diffusion which dampens the 

perturbations and leads to concave-down profiles near the drainage divide [Gilbert, 1877; 

Hooshyar et al., 2019a; Howard, 1994; Kirkby, 1971; Perron et al., 2009; Perron et al., 2012; 

Tucker and Slingerland, 1997; Tucker and Bras, 1998].   

Previous studies showed the existence of a characteristic length scale in drainage 

basins and its relation to the transition from hillslopes to fluvial processes. Arguing that the 

development of uniform spacing in landscapes is tied to the competition between hillslope 

and fluvial processes, Perron et al. [2008] showed that the valley spacing in a landscape is 

mainly controlled by a quantity Péclet number (𝑃𝑒), defined as the dimensionless ratio of 

advection to diffusion timescales by analogy to a linear advection-diffusion system.  

However, it remains unclear whether the landscapes with the same 𝑃𝑒 exhibit different 
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channel branching structure although they may have the same valley spacing. The same 𝑃𝑒  

for two landscapes can imply that the competition between hillslope and fluvial processes in 

these landscapes is similar although the magnitudes of them can be significantly different 

which may result in distinct branching patterns of channel networks. 

Channel networks are erosional features that transport environmental fluxes such as 

runoff, sediment, and nutrients [Basso et al., 2015; Biswal and Marani, 2010; Collins and 

Bras, 2010; Czuba and Foufoula-Georgiou, 2015; Dietrich et al., 1993; Goren, 2016; Horton, 

1932; Howard, 1994; Kelly et al., 2016; Rodriguez-Iturbe and Rinaldo, 2001; Rodriguez-

Iturbe et al., 2009; Shelef and Hilley, 2014; Troch et al., 2009; Wagener et al., 2010; Willett et 

al., 2014]. Several metrics have been used to characterize channel networks’ branching 

pattern. For example, drainage density (𝐷𝑑), shows the degree of dissection in the landscape. 

A large body of studies have investigated the relationship between  𝐷𝑑  and different 

processes such as climate, tectonics, soil creep, and fluvial incision [Abrahams, 1984; Collins 

and Bras, 2010; Hooshyar et al., 2019b; Istanbulluoglu and Bras, 2005; Kirkby, 1971; 

Madduma Bandara, 1974; Melton, 1957; Moglen et al., 1998; Sangireddy et al., 2016; Tucker 

and Slingerland, 1997; Tucker and Bras, 1998]. For example, using catchments located in 

relatively dry regions, Melton [1957] observed that as the climate aridity index (AI) 

increases, 𝐷𝑑  generally increases. AI is defined as the potential evaporation divided by the 

precipitation. Thus, a higher AI represents a drier climate, whereas a lower AI is associated 

with a more humid climate [Budyko, 1974; Wang and Tang, 2014; Zomer et al., 2007]. On the 

other hand, Madduma Bandara [1974] used data from relatively humid areas and reported 

that 𝐷𝑑  shows an increasing trend, as the climate gets more humid. Combining the data from 
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Melton [1957] and Madduma Bandara [1974], Abrahams [1984] observed a U-shape 

relationship between 𝐷𝑑   and climate in which an increase or decrease in AI results in an 

increase in 𝐷𝑑 . Kirkby [1987] studied the relationship between the source area and valley 

gradient and predicted a positive relationship between 𝐷𝑑  and relief for humid and an 

inverse relationship for semi-arid regions. Schumm [1956] observed a positive relationship 

between 𝐷𝑑  and relief in humid badlands. In contrast to the above findings, Oguchi [1997] 

detected an inverse relationship between 𝐷𝑑  and relief in a humid steep mountainous area 

in Japan. More recently, Hooshyar et al. [2019a] showed that there is a strong power-law 

relationship between the characteristic length and 𝐷𝑑  exhibiting two scaling regimes with 

slopes of -0.63 and -1.01. 𝐷𝑑  provides meaningful information about the concentration of 

channel networks in a specific drainage area; however, it does not describe the spatial 

topologic arrangement and pattern of these branching networks (i.e. branching structure). 

The branching structure of channel networks is related to various hydrologic, 

geomorphic, and environmental properties of the land surface [Kirkby, 1976; Rodriguez-

Iturbe and Valdes, 1979; Rodriguez-Iturbe and Rinaldo, 2001]. Knowledge of the structural, 

topological and geometrical properties of the channel networks is important to understand 

and quantify the components affecting the formation of distinct patterns during the 

landscape evolution as well as to develop predictive models describing the network 

dynamics under changing environment [Abed-Elmdoust et al., 2016; Devauchelle et al., 

2012; Hooshyar et al., 2017; Horton, 1932; Leopold, 1971; Snell and Sivapalan, 1994; 

Tokunaga, 1966; 1978; Veitzer and Gupta, 2001]. Zanardo et al. [2013] studied the topology 

of river networks of catchments across the United States using the Tokunaga self-similarity 
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framework and revealed a significant dependence of the degree of side-branching on the 

hydro-climatic variables. Ranjbar et al. [2018] used an entropy-based approach to analyze 

the width functions of the natural basins with the same 𝐷𝑑  which were located in different 

climates. Width function is the one-dimensional representation of a two-dimensional 

channel network and contains critical information about the arrangement of channel 

networks [Kirkby, 1976; Lashermes and Foufoula-Georgiou, 2007]. They showed that width 

functions of the channel networks in dry climate exhibit higher entropy. Higher entropy 

implies higher complexity and heterogeneity in branching patterns of channel networks. 

Although these studies provide novel insights about the structure of channel networks under 

different climates, the knowledge of the quantitative relationship between the emergence of 

the distinct branching patterns of channel networks and the erosional mechanisms (such as 

soil creep and fluvial incision) resulting in these patterns is still lacking.   

The goal of this chapter is to identify the signature of the varying climate on the 

topography. As the topographic evolution can be modeled using a numerical landscape 

evolution model, we assume that different combinations of soil transport and fluvial incision 

coefficients mimic different climates. Note that transport processes (hillslope and fluvial 

processes) can be controlled by climate and/or material properties, however here we focus 

on how the fluvial incision coefficient (𝐾) and the soil transport coefficient (𝐷) may be 

influenced by climate instead of other factors, such as bedrock type.  In particular, we assume 

that increasing 𝐷  and 𝐾  mimic an increase in the rainfall intensity and thus humid 

conditions. Whereas, decreasing 𝐷  and 𝐾  is assumed as a proxy of decreasing rainfall 

intensity and thus mimicking dry conditions [Perron, 2017; Richardson et al., 2019]. By 
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changing 𝐷  and 𝐾  systematically in the governing equation of our landscape evolution 

model (LEM), we show that having the same 𝑃𝑒 we obtain different geomorphic (e.g. 𝐷𝑑) 

and topologic (e.g. number of junctions and number of branching and side-branching 

junctions) characteristics. We define junctions as the intersection of two channels (links) 

and use Horton-Strahler scheme to define the channel orders. When two channels with the 

same order 𝜔 meet at a junction they result in a downstream channel with order 𝜔 + 1; this 

junction is defined as a branching junction. Whereas, when two channels with different 

orders meet at a junction, the junction is referred to as a side-branching junction [Abed-

Elmdoust et al., 2016; Horton, 1945; Peckham, 1995]. 

3.1 Landscape evolution model 

We model the landscape evolution using the following nonlinear advection-diffusion 

equation: 

 𝜕ℎ

𝜕𝑡
= 𝐷𝛻2ℎ − 𝐾(𝐴𝑚|𝛻ℎ|𝑛 − 𝜃𝑐) + 𝑈,  (3.1) 

where h and t denote the surface elevation and time, respectively; 𝐷  is the soil 

transport coefficient; 𝐾  is a constant characterizing fluvial transport and 𝑚  and 𝑛  are 

exponents; 𝐴 is the upslope contributing area; 𝜃𝑐 is the fluvial incision threshold; and 𝑈 is 

the uplift rate [Han et al., 2015; Han et al., 2014; Howard, 1994; Rinaldo et al., 1995b; Shelef, 

2018; Smith and Bretherton, 1972]. The first term on the right-hand side of Eq. (3.1) is a 

linear diffusion term that characterizes soil creep caused by the mass movement of sediment 

and naturally smooths the perturbations which can result in increasing (deposition) or 

decreasing (erosion) the elevation depending on the sign of the Laplacian of the elevation. 



 

41 
 

The second term is the advection term that characterizes the channelized fluvial erosion and 

is a nonlinear term since 𝑛 can be a non-unity number. Also, this term contains 𝐴 which is a 

non-local quantity and a function of both position and time. The advection term in Eq. (3.1) 

can only result in erosion. The third term, tectonic uplift rate 𝑈, is the source term that feeds 

the evolution processes through time. In order to investigate how different terms of Eq. (3.1) 

control the model topography, Perron et al. [2008] proposed a dimensional analysis by non-

dimensionalizing Eq. (3.1) with two physical properties of surface topography. Using the 

relief R, as a vertical length scale and defining l as the characteristic horizontal length scale, 

the parameters of Eq. (3.1) can be non-dimensionalized and compared with each other. The 

ratio of dimensionless 𝐾 and 𝐷 describes the strength of channel incision relative to soil 

creep at a chosen scale l. This ratio is analogous to the 𝑃𝑒 in a linear advection-diffusion 

system [Hooshyar et al., 2019a; Perron et al., 2008; Yao et al., 2018]. For 𝜃𝑐 = 0, 𝑃𝑒 can be 

calculated as: 

 
𝑃𝑒 =

𝐾𝑙2(𝑚+1)−𝑛

𝐷𝑅1−𝑛
, (3.2) 

where l is the horizontal length scale of the basin. When n = 1, Eq. (3.2) can be written as 

[Perron et al., 2009; Willgoose et al., 1991]: 

 
𝑃𝑒 =

𝐾𝑙2𝑚+1

𝐷
;   (3.3) 

and Eq. (3.1) can be expressed as: 

 𝜕ℎ

𝜕𝑡
= 𝐷𝛻2ℎ − 𝐾(𝐴𝑚|𝛻ℎ|) + 𝑈.  (3.4) 
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From Eq. (3.2) it can be seen that 𝑃𝑒 is a function of relief, R when 𝑛 is not equal to 1. 

However, the effect of relief is eliminated from 𝑃𝑒 as shown in Eq. (3.3) when 𝑛 is assumed 

to be equal to 1. In this case, varying the advection and diffusion coefficients with the same 

ratio does not affect the 𝑃𝑒 value, while leading to significant variations in the vertical scale 

(relief) but no change in the valley spacing (see Figure 9). Note that with 𝑛 ≠ 1 , 𝑃𝑒 

calculation requires the knowledge of relief. However, the relief is not known a priori, and it 

is not clear how different features of topography emerge as the landscape evolves based on 

the nonlinear model (Eq. (3.1)). Thus, it is not possible to select landscapes with the same 

𝑃𝑒 only based on their model parameters when 𝑛 ≠ 1. We use 𝑛 = 1,  in order to eliminate 

the relief from  𝑃𝑒  calculation. 

Setting 𝑃𝑒 = 1 and solving Eq. (3.3) for l yields a characteristic length shown in Eq. 

(3.5) that can be defined as the length at which the timescales of diffusive and advective 

transports are equal. 

 

𝐿𝑐 = (
𝐷

𝐾
)

1
2𝑚+1

.    (3.5) 

3.2 Topographic analysis of natural basins 

In order to understand the branching behavior in channel networks, we studied 100 

natural basins across the United States with various climatic conditions. The study sites 

covered a wide range of mean annual precipitation (MAP) from 130 mm to 1641 mm and 

the AI from 0.25 (more humid) to 4.45 (drier). The drainage area of these sites ranged from 

0.04 to 4.44 km2. The sites were chosen based on the availability of LiDAR data and minimal 

anthropogenic activities. We calculated 𝐷 and 𝐾 from digital elevation models (DEMs) based 
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on the method proposed by Perron et al. [2009] describing the properties of the landscape 

in terms of advective and diffusive transports. A summary of this method is presented 

through the Eq. (3.6) to (3.8). The DEMs were sampled at a resolution of 1 m. The diffusion 

term 𝐷∇2ℎ (see Eq. (3.1)) characterizes the sediment transport on hillslopes; whereas the 

advection term 𝐾𝐴𝑚|∇ℎ|𝑛 is responsible for the sediment transport in channels [Dietrich et 

al., 1993; Dietrich et al., 2003; Roering et al., 2001; Smith and Bretherton, 1972; Tucker and 

Slingerland, 1997]. In order to calculate the local slope (|∇ℎ|) and laplacian (∇2ℎ) from the 

DEMs, central finite difference discretization was used. For a steady-state condition, Eq. (3.4) 

can be expressed as 
𝜕ℎ

𝜕𝑡
= 0, therefore: 

 𝐷

𝑈
=

1

𝛻2ℎ
(

𝐾

𝑈
𝐴𝑚|𝛻ℎ| − 1),  (3.6) 

where 
𝐷

𝑈
  can be computed based on the pixels that have a negligible 𝐴𝑚|𝛻ℎ|. The average 

laplacian of those pixels ( 𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅) can be represented as: 

 𝐷

𝑈
= −

1

𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅

   . 
(3.7) 

∇2ℎ0
̅̅ ̅̅ ̅̅  is calculated from the curve of ∇2ℎ  versus 𝐴|𝛻ℎ| . Using the calculated 𝐷 

parameter (Eq. (3.7)), Eq. (3.4) can be expressed as: 

 𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅ − 𝛻2ℎ

|𝛻ℎ|𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅

=
𝐾

𝑈
𝐴𝑚 . (3.8) 

Thus, the parameters 
𝐾

𝑈
 and 𝑚 can be further computed by fitting a power function to 

the curve of  
𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅−𝛻2ℎ

|𝛻ℎ|𝛻2ℎ0
̅̅ ̅̅ ̅̅ ̅  versus 𝐴. 
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3.3 Results 

In order to investigate the landscapes that have the same 𝑃𝑒  but different soil 

transport and fluvial incision, we simulate 19 different landscapes within a fixed grid with a 

𝑃𝑒 equal to 2600 which is in the defined range of 𝑃𝑒 for the branching landscapes (see 

Perron et al. [2008]). This 𝑃𝑒 falls in the range where landscapes contain a well dissected 

branching structure (at least 3rd order channel network). The goal of this chapter is to 

explore the effects of different hillslope and fluvial processes on the branching structure of 

the landscapes that exhibit the same 𝑃𝑒 . The main hypothesis we put forth is that 

“landscapes with the same 𝑃𝑒  (competition between hillslope and fluvial processes, i.e. 

erosional processes) can contain different branching patterns representing distinct 

signatures of climate on channel network topology”. We solve Eq. (3.3) for 
𝐾

𝐷
 using 𝑃𝑒 =

2600 . Parameter l is determined based on the model domain size (Figure 10). Also, 

parameter 𝑚 is selected based on previous studies [Montgomery and Foufoula-Georgiou, 

1993; Perron et al., 2008; Perron et al., 2009].  In order to consider different soil creep and 

fluvial incision, multiple values of 𝐷 and 𝐾 are selected to satisfy the obtained ratio of 
𝐾

𝐷
 and 

be in the physically possible range, with known 𝑚 and l. This way we achieved different 

landscapes maintaining a constant 𝑃𝑒 and 𝐿𝑐 . For all of our simulations 𝐿𝑐 = 5.5 𝑚  . Note 

that for all simulated landscapes, model parameters including 𝑚, l and 
𝐾

𝐷
 are kept constant 

and the only varying parameters are 𝐷 and 𝐾. Table 4 shows the LEM parameters, whereas 

Table 5 shows the different 𝐷 and 𝐾 for all the scenarios considered in this study. 
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In particular, we select our first set of 𝐷 and 𝐾 (original landscape) based on the 𝐷 

and 𝐾 of natural basins computed using the framework presented in section 3.2 and then: i) 

increase both 𝐷 and 𝐾, and ii) decrease both 𝐷 and 𝐾 systematically with increments of 

10%, while all other parameters are kept constant such that 𝑃𝑒 and 𝐿𝑐  are constant for the 

entire parameter sets. For example, a 10% increase in 𝐷 and 𝐾 implies that 𝐷10% inc = 1.1 ×

𝐷original  and  𝐾10% inc = 1.1 × 𝐾original ; whereas, 10% decrease in 𝐷  and 𝐾  denotes 

𝐷10% dec = 0.9 × 𝐷original and 𝐾10% dec = 0.9 × 𝐾original, respectively.  
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Table 4. Model parameters, which are constant in this study. 

Description                   Parameter 
Advection exponent 𝑚 0.3 
Advection exponent 𝑛 1 
Used for solving eq. 4 𝑑𝑡 (𝑦𝑟) 370 
Cell size 𝑑𝑥 (𝑚) 5 
Number of cells in x direction 𝑁𝑥 300 
Number of cells in y direction 𝑁𝑦 300 
Uplift rate 𝑈 (𝑚 𝑦𝑟−1) 0.0001 
Péclet number 𝑃𝑒 2600 
Characteristic length 𝐿𝑐 (𝑚) 5.5 

 

Table 5. Summary of different scenarios and their 𝐷 and 𝐾 coefficients. 
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After calculating 𝐷 and 𝐾, we simulate the landscape using the LEM discussed in 

section 3.1. A constant uplift rate 𝑈 = 0.0001 m/year  was used in these modeling 

experiments. The LEM governed by Eq. (3.4) was solved numerically using a finite difference 

discretization (central in space and forward in time) with a 5-m discretization size in both x 

and y directions. The stability of the Eq. (3.4) is only dependent on that of the advection term 

since the diffusion term is unconditionally stable. The stability of the numerical solutions to 

the kinematic wave equations is subject to the Courant-Friedrichs-Lewy stability criterion. 

This criterion for the advection term of Eq. (3.4) can be expressed as (see Perron et al. 

[2008]): 

 √2𝐾𝐴𝑚|𝛻𝑧|𝑛−1𝑑𝑡

𝑑𝑥
≤ 1. 

(3.9) 

In order to satisfy the stability criterion, a sufficiently small 𝑑𝑡  was used in 

simulations that satisfies Eq. (3.9) over the entire domain for all simulations. The simulation 

domain was 300 by 300 cells (𝑁𝑋 = 𝑁𝑦 = 300) with a grid size of 5 m (𝑑𝑥 = 5 𝑚) which 

resulted in a 1.5-km by 1.5-km rectangular grid and a 1-m relief and superimposed random 

noise as the initial conditions [Hooshyar et al., 2019a; Shelef, 2018]. Dirichlet boundary 

conditions (constant elevation) at two lower boundaries and periodic boundary conditions 

at the other two sides were imposed as the boundary conditions. Periodic boundary 

conditions in the longitudinal axis (here, x-axis) imply that the x-direction of the studied grid 

is periodic, i.e. the ridgeline of the x-direction in the model periodically extends to infinity 

with a period of 𝑁𝑋𝑑𝑥. The 𝐷∞ algorithm was used to calculate the upslope area [Tarboton, 

1997].  
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Previous studies have investigated the relationship of 𝐷 and 𝐾 with climate proxies. 

For example, Hanks [2000] and Hurst et al. [2013] suggested that 𝐷 may be larger in more 

humid climates. Richardson et al. [2019] compared 𝐷 with MAP and AI and observed a 

power-law relationship between 𝐷 and both MAP and AI. Ferrier et al. [2013] found that 𝐾 

for Kauai’s rivers increases as a power function of MAP. In contrast, Molnar [2001] suggested 

that dry landscapes may experience higher 𝐾 due to changes in flood frequency even though 

dry landscapes receive less rainfall. More recently, Perron [2017] showed that both 𝐷 and 𝐾 

exhibit a power-law relationship with MAP. In summary, 𝐷  and 𝐾  may exhibit varying 

trends. However, in this study, in order to investigate the landscapes with the same 

characteristic length, but different 𝐷 and 𝐾, we assume that the proportional increase in 𝐷 

and 𝐾 implies a more humid basin. As mentioned before, we selected our first 𝐷 and 𝐾 based 

on 𝐷 and 𝐾 computed for the natural basins. We selected the average 𝐷 and 𝐾 parameters of 

the basins with an AI close to 1 as the first set of parameters in a way that they satisfy 𝑃𝑒 =

2600 with known m, l, and 
𝐾

𝐷
. We refer to this landscape as the original landscape. 

Consequently, increasing 𝐷 and 𝐾 may imply more humid climates whereas decreasing 𝐷 

and 𝐾  may imply drier climates. We refer to the scenarios with increased 𝐷  and 𝐾  (9 

landscapes) as “humid scenario”, and the scenarios with decrease 𝐷 and 𝐾 (9 landscapes) as 

“dry scenario”. 

Figure 9(a) shows the average profiles of the topographic elevation of the simulated 

landscapes. Note that all of our simulated landscapes have the same 𝑃𝑒 and 𝐿𝑐 . The relief 

profile of the original scenario is shown by a yellow solid line. The 9 profiles shown with the 

dashed lines (colder colors) are associated with the landscapes where 𝐷 and 𝐾 are increased 
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(humid scenario), whereas solid lines (warmer colors) correspond to the landscapes where 

𝐷 and 𝐾 are decreased (dry scenario). As demonstrated in Figure 9(a), landscapes with the 

same 𝑃𝑒 but different 𝐷 and 𝐾 exhibit different reliefs. When 𝐷 and 𝐾 of the humid and dry 

landscapes are compared to those of the original scenario, it can be observed that a 

systematic increase and decrease in 𝐷 and 𝐾 of the original scenario, result in a decrease and 

increase in the relief, respectively. The relief change varies for the increase and decrease of 

𝐷 and 𝐾. Figure 9(b) shows the ratio of the average relief (measured from main drainage 

divide to the outlet) in the landscapes with increased (cold colors) and decreased (warm 

colors) 𝐷 and 𝐾 to the original (yellow) landscape, versus the percent change in 𝐷 and 𝐾 

compared to the original landscape. For the landscapes with increased 𝐷 and 𝐾, the decrease 

in the relief is much smaller and follows almost a linear relationship (exponent of the fitted 

exponential curve is close to zero; see Figure 9(b)). In contrast, the increase in the relief of 

the landscapes with decreased 𝐷 and 𝐾 follows an exponential behavior with an exponent of 

0.02, representing higher rate of change in relief.  

Figure 10 shows the schematic view of three landscapes obtained by the LEM 

discussed in section 3.1: i) the original landscape (yellow in Figure 9), ii) 60% increase in 

both 𝐷 and 𝐾 (a case in humid climate), and iii) 60% decrease in both 𝐷 and 𝐾 (a case in dry 

climate). As shown in this figure, by increasing 𝐷 and 𝐾 with the same percentage, the relief 

of the landscape decreases and by decreasing 𝐷 and 𝐾 with the same percentage the relief of 

the landscape increases (although much drastic in the case of decrease in 𝐷 and 𝐾).  

  



 

50 
 

 

Figure 9. (a) Average elevation profiles of the simulated landscapes in original, dry and humid 

scenarios. The thick yellow line shows the average profile of the landscape from original 

scenario, and the dashed lines (colder colors) are associated with the landscapes where 𝐷 and 𝐾 

are increased (humid scenario), whereas solid lines (warmer colors) correspond to the landscapes 

in where 𝐷 and 𝐾 are decreased (dry scenario). (b) Plot of the ratio of mean relief (Rc) in humid 

and dry scenarios and the mean relief of the landscape in original scenario (R0), versus percent 

change in 𝐷 and 𝐾 parameters in humid and dry scenarios. 
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Figure 10. Schematic representation of three different landscapes with the same 𝑃𝑒. The original 

landscape (which is referred to as original scenario) is generated using 𝐷0 = 0.003523 and 𝐾0 =

0.00023 and the set of parameters shown in Table 4. Different colors represent the elevation of 

the surface. The domain size is shown by Lx and Ly. The landscape with the lowest relief 

corresponds to a case in humid scenario (60% increase in 𝐷 and 𝐾), whereas the landscape with 

the highest relief is associated with a case in dry scenario (60% decrease in 𝐷 and 𝐾). As can be 

seen, the relief change for dry scenario is much larger than that in humid scenario. 

To identify the effects of relief change on the evolved landscapes with different 

combinations of 𝐷  and 𝐾 , however, with the same ratio (same 𝑃𝑒 ), we compared their 

channel branching structures via commonly used geomorphic (e.g. 𝐷𝑑) and topologic (e.g. 

number of junctions and number of branching and side-branching junctions) properties of 

the landscapes. Note that although the simulations achieved steady-state (the mean 

elevation does not change [Hack, 1957; A Singh et al., 2015]; here achieved at ~ 5 Myr for the 

elevation) earlier, the simulations were run for a longer time (40 Myrs) in order to minimize 
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the 𝐷𝑑  fluctuations (i.e. to achieve a steady behavior of 𝐷𝑑  with time). The DEMs were 

recorded at each time step.  

The drainage networks of the landscapes were extracted at every 370,000 years using 

a curvature-based method developed by [Hooshyar et al., 2016]. In this method, the surface 

convergence is computed by the curvature using equation 10. 

 
𝜅 = ∇.

∇ℎ

|∇ℎ|
. (3.10) 

This equation quantifies the divergence/convergence of the water flow and 

represents the contour curvature. In order to compute the curvature, the DEMs were 

smoothed using the Perona-Malik nonlinear diffusive filter [Perona and Malik, 1990]. The 

pixels with a curvature higher than a threshold at which the distribution of the curvature 

deviates from normal distribution were defined as the convergent pixels [Lashermes et al., 

2007; Passalacqua et al., 2010] 

After extracting the channel networks of the simulated landscapes, 𝐷𝑑  was computed 

for the original landscape and compared with the average  𝐷𝑑  of the landscapes with i) 

increased 𝐷  and 𝐾 , and ii) decreased 𝐷  and 𝐾 . Figure 11(a) shows that 𝐷𝑑  increases, 

compared to the original landscape, either by increasing 𝐷 and 𝐾 (landscapes from humid 

scenario) or by decreasing 𝐷 and 𝐾 (landscapes from dry scenario). ‘Humid’ and ‘Dry’ in this 

figure represent the average 𝐷𝑑  for all 9 landscapes in humid and dry scenarios, respectively.  

As shown in Figure 11(b) for both cases of increasing and decreasing 𝐷 and 𝐾, the 

number of junctions increases. However, the additional junctions emerged in these 

landscapes are a consequence of two distinct combinations of erosional processes. 
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Therefore, they may contain information about the formative processes. We categorize them 

into branching and side-branching junctions and calculate their numbers in the simulated 

landscapes. Figure 11(c) shows the number of branching junctions in the landscape for the 

original scenario and compares it with the average number of branching junctions in the 

landscapes for humid and dry scenarios. The number of branching junctions increases when 

𝐷 and 𝐾 are decreased. However, this number does not change when 𝐷 and 𝐾 are increased. 

This observation suggests that the extra junctions added to the river network in the case of 

increasing 𝐷  and 𝐾  are mostly side-branching junctions since the number of branching 

junctions remains almost unchanged.  

The inset in Figure 11(c) shows the comparison between the exceedance 

probabilities of the number of branching junctions for landscapes of humid and dry 

scenarios. From this figure, it can be seen t 

hat more than 50% of the humid scenario landscapes have more than 37 branching 

junctions. Whereas, more than 50% of the dry scenario landscapes have more than 45 

branching junctions. Based on this figure, it can be inferred that the number of branching 

junctions is generally higher in the landscapes of dry scenario compared to the landscapes 

of humid scenario. Note that this figure contains every recorded landscape through time for 

all 9 landscapes in humid and dry scenarios. Similar to the number of side-branching 

junctions, the percentage of side-branching junctions defined as the number of side-

branching junctions divided by the total number of junctions is also larger for the landscapes 

in humid scenario (not shown here for brevity). 
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Figure 11(d) shows the comparison of the number of side-branching junctions for the 

landscape of original scenario and the average number of side-branching junctions for the 

landscapes in humid and dry scenarios. From this figure, it can be seen that the number of 

side-branching junctions is the largest for the landscapes from humid scenario. The inset in 

this figure shows the exceedance probability of number of side-branching junctions for 

humid and dry scenarios. For instance, more than 50% of the landscapes in humid scenario 

have more than 230 side-branching junctions. However, for dry scenario, more than 50% of 

the landscapes have more than 210 side-branching junctions. Figure 11(e) and (f) show 

simulated landscapes and their superimposed channel networks as examples from the dry 

and humid scenarios, respectively. 
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Figure 11. (a) Drainage density, 𝐷𝑑, (b) number of junctions, (c) number of branching junctions 

and, (d) number of side-branching junctions of the landscape in original scenario compared with 

their average in humid and dry scenarios. Insets in (c) and (d) show the exceedance probability 

of branching and side-branching junctions in all landscapes of humid and dry scenarios during 

the evolution, respectively. From the insets in (c) and (d) it can be observed that the number of 

branching junctions is higher for the dry scenario landscapes compared to the humid scenario 

landscapes and the number of side-branching junctions increases when the landscape transitions 

to a more humid conditions (i.e. changing from original scenario to humid scenario). (e) and (f) 

show examples from the landscapes in dry and humid scenarios, respectively. The 1st, 2nd, and 

3rd-order channels are shown in blue, red, and black, respectively. 

3.4 Discussion  

In Figure 12, we show the results of the simulated landscapes at the steady-state 

condition for every 19 simulations. As can be seen from Figure 12 (a), 𝐷𝑑  increases in almost 

all scenarios including 9 humid and 9 dry scenarios compared to the original landscape. The 

average increase in 𝐷𝑑  is approximately 4 % for both scenarios. Figure 12(a1) and (a2) 

demonstrate schematic representation of two different possible ways of increase in 𝐷𝑑: i) by 
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increasing the link length without adding new junctions in the river network (as depicted by 

extended dashed lines in Figure 12(a1)), and ii) by adding new junctions to the river network 

(Figure 12(a2)). 𝐷𝑑  can also increase as a combination of (i) and (ii). In order to detect how 

𝐷𝑑  increases for the humid and dry scenarios, the number of junctions for every scenario is 

computed and shown in Figure 12(b). As can be seen from this figure, for both humid and 

dry scenarios, on average, the number of junctions increases as compared to original 

landscape. This increase for the dry scenario is 8.5 % whereas for the humid scenario it is 8 

%. Therefore, extending the link length for increasing 𝐷𝑑 , without adding new junctions as 

shown in Figure 12(a1) is not the case for either of the scenarios. New junctions are added 

to the channel networks in both humid and dry scenarios. As mentioned above, a junction 

can be branching or side-branching. Figure 12(b1) and (b2) show schematically, two 

different possible ways of increase in the number of junctions in a channel network. In Figure 

12(b1) the number of junctions is increased by adding new branching junctions, whereas, in 

Figure 12(b2) it is increased by adding new side-branching junctions to the channel network. 

In order to explore how the number of junctions has increased in humid and dry scenarios, 

we show the number of branching and side-branching junctions in every humid and dry 

scenarios.  

As can be seen from Figure 12(c) and (d), the number of branching is higher on 

average in dry scenarios, suggesting the case shown in Figure 12(b1). The increase in the 

branching junctions for the dry scenario is about 18 %. However, in humid scenarios the 

number of side-branching junctions is higher, therefore, may represent the case shown in 

Figure 12(b2). The increase in the side-branching junctions in humid scenario is about 11 %. 
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From Figure 12, it can be concluded that when the soil creep and fluvial incision increase, 

more side-branching junctions are added to the channel network (Figure 12(b2)). However, 

in the case of decreasing the soil creep and fluvial incision, more branching junctions are 

added to the channel network (Figure 12(b1)). It should be noted that, in general, the channel 

networks in different cases of dry and humid scenarios remained 3rd-order channels and the 

order did not change compared to the original scenario. The increase in the number of 

branching junctions in dry scenarios is a consequence of new channels added to the 1st-order 

channels. Whereas, in humid scenarios the new channels (e.g. 1st-order channels) are added 

to the higher-order channels, i.e. 2nd or the 3rd-order channels as side-branching channels. In 

other words, our results indicate that decreasing 𝐷 and 𝐾 influences smaller scale features 

(i.e. by branching 1st-order channels) whereas increasing 𝐷 and 𝐾 results in side-branching 

that may influence larger-scale features (e.g. by 1st-order channels attaching themselves to 

higher-order channels). A similar observation can be made from Figure 11(e) and (d) where 

zoomed-in landscapes obtained from numerical modeling are shown. For example, Figure 

11(e), a case from dry scenario where 𝐷 and 𝐾 are decreased, contains more branching 

junctions as evidenced from larger number of 2nd-order channels, whereas Figure 11(f), a 

case from humid scenario where 𝐷  and 𝐾  are increased, contains more side-branching 

junctions and less number of 2nd-order channel.  
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Figure 12. (a) Drainage density, 𝐷𝑑, (b) number of junctions, (c) number of branching junctions, 

and (d) number of side-branching junctions for every humid and dry scenario. The x-axis shows 

the percentage change in 𝐷 and 𝐾 for each scenario. 0 on the x-axis implies the original scenario. 

Horizontal dashed bars show the average quantities for dry (red) and humid (blue) scenarios. (a0) 

and (b0) are schematic representations of a simple channel network. (a1) and (a2) are two 

different ways of increasing 𝐷𝑑 from (a0). (b1) and (b2) are two different ways of increasing the 

number of junctions from (b0). The error bars represent one standard deviation from the mean 

computed for multiple simulations starting with different initial noise. 

To further illustrate the relationship between the branching structure and climate, 

we performed an analysis on 100 natural basins across the United States to characterize the 

branching structure quantitatively. One formal way to characterize branching river network 

is via Tokunaga self-similarity (see section 4.2). Note that, the robust calculation of Tokunaga 
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parameter requires channel networks > 4th or 5th order; therefore, Tokunaga analysis was 

only performed on natural basins. 

Figure 13(a) shows the correlation between the Tokunaga parameter (c-value) of the 

studied basins with MAP. It can be seen that the c-value is positively correlated with MAP for 

100 studied basins with various climatic conditions. The correlation is evaluated by the 

Pearson linear coefficient, r. Further statistical tests show that the correlation is 

considerably significant (P-value = 0.001). This suggests that changing to humid conditions 

the basin initiates new channels that are side-branched rather than branched. This further 

implies that, under changing climate to a more humid climate, for a basin to account for 

additional water and sediment to be drained, new channels may need to emerge and one way 

for the basin to accomplish this is via initiating side-branching.  

In Figure 13(b) and (c) we analyzed the relationship between 𝐷 and 𝐾 obtained from 

the natural DEMs and climate (MAP) of these study basins. From these figures, it can be seen 

that basins with higher precipitation exhibit higher 𝐷 and 𝐾. Although the correlation values 

are not extremely high, further statistical analysis show that the correlation is significant (i.e. 

P-value < 0.01 for Figure 13(b) and P-value ~ 0.05 for Figure 13(c)). The observations from 

Figure 13(b) and (c) confirm that by increasing both 𝐷 and 𝐾 parameters the landscape may 

experience a more humid climate, whereas by decreasing 𝐷 and 𝐾 one may mimic drier 

climatic conditions. The observed scatter in these plots (Figure 13) might be due to the fact 

that the studied catchments are located in spatially distinct environments with varying 

geologic and hydrologic conditions. 
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Figure 13. (a), (b), and (c) show the relationship between c-value, diffusion coefficient (𝐷), and 

advection coefficient (𝐾) with MAP, respectively. (d) and (e) show the relationship of diffusion 

coefficient (𝐷) and advection coefficient (𝐾) with c-value. For (a), (b), and (c) as shown in the 

figures although the Pearson correlations coefficient, R is not extremely high, further statistical 

tests indicate that the correlations are significant. However, for (d) and (e) the correlations are 

not significant (based on P-value). 

We further investigate the correlation between 𝐷 and 𝐾 and c-value. The results are 

shown in Figure 13(d) and (e). It can be seen that although an increasing trend exists for the 

correlation of c-value with 𝐷 and 𝐾, the correlation is not that significant (P-value is > 0.05 

at 95% confidence interval). This implies that although c-value is significantly correlated 

with MAP, it may not be only controlled by 𝐷 and 𝐾 in natural basins; other geomorphic 

processes operating on landscape evolution in nature, such as groundwater and landslides, 

may also influence c-value. Hooshyar et al. [2019b] suggested a relation between 𝐷𝑑 , link 

lengths and channel junction angles (see also [Hooshyar et al., 2017]). Seybold et al. [2017] 

found that channel junction angles vary with climate. They concluded that these differences 



 

61 
 

are due to more humid landscapes being dominated by groundwater seepage while arid 

landscapes primarily experience incision by overland flow. In our model, we assume that 

landscape evolution is only governed by fluvial incision and soil creep. Therefore by 

increasing both 𝐷 and 𝐾 which implies more humid climate, the side-branching increases.  

For the purpose of visualization, in Figure 14 we show four natural basins with 

varying shapes and sizes located in different climates. Basins (A) and (B) have 

approximately the same 𝐿𝑐  (as assumed in our model) but are located in dry and humid 

climates, respectively. As shown in this figure, the river network of the basin in dry climate 

is less feathered (contains less side-branching) than the river network of basin (B) which is 

located in a relatively humid climate. The c-values of basins (A) and (B) are 0.8 and 3.22, 

respectively. Higher c-value indicates higher side-branching.  

Similar observations can be made from basins (C) and (D) which have higher  𝐿𝑐  than 

basins (A) and (B). Here, again the basin located in humid climate (D) exhibits higher side-

branching represented by a larger c-value compared with the basin (C) which is in dry 

climate. The percentage of side-branching in basin (D) is 70% whereas for basin (C) it is 

60%. In general, the average percentage of side-branching and branching junctions in the 

studied natural landscapes is observed to be ~ 70% and 30%, respectively. Note that, the 

average percentages of side-branching and branching junctions in the simulated landscapes 

are 85% and 15%. The difference in the branching and side-branching proportions of the 

simulated and natural basins is likely to be related to their 𝐿𝑐 . The average 𝐿𝑐  of the natural 

basins was computed as ≈ 13 m whereas the 𝐿𝑐  of simulated landscapes is equal to 5.5 m. 𝐿𝑐  

controls the valley spacing and to some extent, the width of the emerged basins. A larger 
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width can provide the channel enough area to branch easily. However, for basins with 

smaller widths, there is not enough space for branching and thus may result in side-

branching channels.  

 

Figure 14. Four examples of natural basins located in different climatic conditions exhibiting 

different branching patterns. Basin (A) is located in dry climate and basin (B) is located in humid 

climate; while they have similar 𝐿𝑐 , basin (B) contains more side-branching compared to basin 

(A). Similarly, basin (C) is located in dry climate and basin (D) is located in humid climate; 

while basins (C) and (D) have similar 𝐿𝑐, basin (D) contains more side-branching compared to 

basin (C). 
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CHAPTER 4: EXPLORING THE ROLE OF 

TOPOLOGICAL CONNECTIVITY ON THE STRUCTURAL 

AND FUNCTIONAL COMPLEXITY OF RIVER 

NETWORKS 

Landscapes contain fundamental natural features such as channel networks that 

exert significant control on catchment hydrology [Bonetti et al., 2020; Gupta and Mesa, 1988; 

Horton, 1932; Rodriguez-Iturbe and Valdes, 1979; Snell and Sivapalan, 1994]. These 

dendritic features are known to deliver environmental fluxes to the outlet via multiple 

pathways that are highly complex in structure (consisting of topology and geometry) 

resulting from both internal dynamics and external forcing (e.g. climate and tectonics) 

[Dietrich and Dunne, 1993; Dietrich et al., 2003; Hack, 1957; Hooshyar et al., 2016; Horton, 

1945; Kirkby, 1976; Lashermes et al., 2007; Leopold, 1971; Marani et al., 1994; Orlandini et 

al., 2011; Passalacqua et al., 2010]. The channel network (CN) evolved in a catchment reflects 

the interplay between different geomorphic processes. Understanding and quantifying the 

complexity in structural and functional patterns emerged in catchments is important for 

developing quantitative models to predict the catchment behavior in various climatic 

conditions as well as identifying the roles of different processes in creating these complex 

patterns [Casagrande et al., 2015; Gilbert, 1877; Howard, 1994; Kirkby, 1971; Paik and 

Kumar, 2010; Perron, 2017; Tucker and Bras, 1998].   
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Width functions (W(x)) and area functions (A(x)) are the one-dimensional 

representations of a two-dimensional CN. Troutman and Karlinger [1984] examined the 

mean properties of W(x) for the random topology model. Veitzer and Gupta [2001] 

established the relationship between W(x) and Horton’s scaling properties and used W(x) 

as a topologic and geometric descriptor to study self-similarity of CNs. Czuba and Foufoula-

Georgiou [2015] used a response function to explore the CN’s hierarchical branching 

structure and its relation with the heterogeneity of flux distribution in a catchment. 

Gangodagamage et al. [2014] argued that the incremental increase in the contributing area 

along the mainstream of rivers is directly related to the spatial heterogeneity of 

environmental fluxes entering the CN from hillslopes and side tributaries, whereas Zaliapin 

et al. [2010] suggested a relation between river network’s branching structure and its 

environmental transport by describing the transport on the river network using a dynamic 

tree approach.  

As discussed above, a catchment may exhibit significant complexity on different 

aspects of the CN, i.e., the complexity in organization of channels (topology; defined as the 

connectivity between channels and junctions in a network) and their geometry and the 

complexity in the flux transport (dynamics) on the CN. We refer to the complexity in channel 

organization and flux transport as the structural complexity and functional complexity, 

respectively [Knudby and Carrera, 2005; Larsen et al., 2012; Yang et al., 2017].  In this 

chapter, we aim to study the structural and functional complexity of catchments using two 

different representations of their CN: width function W(x) and incremental area function 

IA(x). W(x) is defined in section 2.1. W(x) characterizes patterns of organization of channels 
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and how they are distributed structurally in a drainage catchment [Czuba and Foufoula-

Georgiou, 2015; Lashermes and Foufoula-Georgiou, 2007; Ranjbar et al., 2018]. On the other 

hand, IA(x) determines the incremental increase in the contributing area along the main 

channel in a CN and depicts the patterns of flux delivery to the outlet of a catchment from the 

tributary junctions by also accounting for the transport on unchannelized surface (hereafter 

referred to as hillslope) [Duncan et al., 2009; Gangodagamage et al., 2011; Gangodagamage 

et al., 2014; Rodriguez-Iturbe et al., 2009]. Tributary junctions are locations on the CN where 

water, sediment, nutrients, and pollutant fluxes increase abruptly. They also reflect the 

ecologic and morphologic transitions and discontinuities [Convertino et al., 2007; Richards-

Pecou, 2002]. Assuming that the fluxes are proportional to the drainage area that generates 

them, IA(x) provides additional insights into the spatial heterogeneity and scaling of the 

mentioned environmental fluxes and how the flux on a CN is being transported along the 

main channel. 

In this study, we focus on the complexity of CN using W(x) and IA(x) and the factors 

contributing to their complexity such as topology. Characterizing CNs’ structure based on 

their topological properties provides significant information for identifying the signatures of 

existent processes and forcing in the past and predicting the future. One way to characterize 

the topology of a CN is via Tokunaga self-similarity model [Tokunaga, 1966; 1978]. Tokunaga 

self-similarity has been studied not only in hydrology but also as a benchmark criterion in 

network modeling [Mcconnell and Gupta, 2008; Turcotte et al., 1998]. This model describes 

the degree of side-branching in a CN with two constants. Zanardo et al. [2013] showed that 
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the river networks across the United States obey the Tokunaga self-similarity. According to 

Cui et al. [1999], the influence of regional controls on CN is related to Tokunaga parameters. 

In order to study the complexity, we use an entropy-based method at multiple scales 

[Fiorentino et al., 1993; Leopold and Langbein, 1962; Porporato et al., 2007; V P Singh, 1997], 

which characterizes the variability in fluctuations of a series by computing the repetition of 

the embedded patterns (see section 0 to 2.4) [Costa et al., 2002; 2005]. The questions we 

address in this chapter are: i) does the topology, or more specifically the degree of side-

branching influence the structural and/or functional complexity in CNs and, ii) what physical 

processes/features contribute to increase in complexity?  

4.1 Constructing W(x) and IA(x) of the studied catchments 

In order to perform the complexity analysis, we selected 40 catchments across the 

United States. The criteria for selecting these catchments were the longer channel length and 

the order of the CN. The selected catchments contained between 3rd and 6th order channels. 

Also, the selected catchments were all in natural conditions. CN of these catchments was 

obtained from a 5 m resolution digital elevation model (DEM) using a curvature-based 

method developed by Hooshyar et al. [2016] (see also Lashermes et al. [2007] and 

Passalacqua et al. [2010]). After extracting the CN, W(x) was computed using Eq. (2.1). 

For IA(x), we start from the channel head on the main channel (i.e., the longest 

channel in the catchment) and move towards the outlet and measure the incremental 

contributing area at every 𝑑𝑥. Thus, IA(x) captures the lateral contributing area from the 

hillslopes and tributary junctions. IA(x) can be expressed as: 



 

67 
 

 𝐼𝐴(𝑥) = 𝐴(𝑥 + 𝑑𝑥) − 𝐴(𝑥),     (4.1) 

where 𝐴(𝑥) is the contributing area on the main channel at a distance 𝑥 from the longest 

channel’s head [Gangodagamage et al., 2014]. It should be noted that both W(x) and IA(x) 

contain information about the CN. W(x) captures the integrated number of channels from all 

sub-basins located at a flow path of 𝑥 and 𝑥 + 𝑑𝑥 from the outlet; while IA(x) captures the 

flux contribution from the hillslopes and newly added tributaries along the main channel 

located between the distances 𝑥 and 𝑥 + 𝑑𝑥. It has been shown that W(x) can be derived 

from a convolution of the individual sub-basin IA(x) of all tributaries as they join the main 

channel (for details, see Gangodagamage et al. [2014]). 

4.2 Quantifying the topology of a CN 

CNs have been recognized to exhibit self-similar structure for a range of scales. 

Characterizing CNs’ structure based on their topological properties provides significant 

information for identifying the signatures of existent processes in the past and predicting 

future. It has long been known that CNs control natural processes such as sediment and 

nutrient transport, sediment size distribution, and freshwater biodiversity. Central to 

comprehending the scaling properties of CN is the ordering system used to categorize the 

channels. Horton [1945]and Strahler [1957]developed a stream-ordering framework to 

classify the CNs. Based on this framework, two same order (𝜔) channels at a junction form a 

channel with an order of 𝜔 + 1. However, two channels with different orders (𝜔 and 𝜔′) at 

a junction form a channel with the order of max(𝜔, 𝜔′). Horton’s scaling laws, bifurcation, 

length and area ratios are defined as the number of channels, average length of channels, and 
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average contributing area in channels with orders of 𝜔 divided by those of order 𝜔 − 1. 

Kirchner [1993] showed that the Hortonian scaling laws are statistically inevitable and 

describe virtually all possible networks; thus do not compel any particular conclusion about 

the origin and structure of the CN. He argued that these scaling laws are indifferent to the 

network structure and are the consequence of Strahler ordering scheme. Tarboton [1996] 

showed that Horton’s laws are statistical descriptors of self-similarity and only hold on 

average.  He argued that the channels of different orders meeting more than one order higher 

channels, introduce a downward bias into the bifurcation ratio and this bias can only be 

avoided if the structure of the CN is Hortonian (channels only can meet one order higher 

channels). Tokunaga [1978] introduced a framework for describing the CN structure 

without the above problem. This framework characterizes the topological connectivity in a 

network and is based on two assumptions; first, the mean number of 𝑇𝑖𝑗 branches of order i 

connecting to randomly selected branch of order j is independent of the branch orders and 

it only depends on the difference i-j. 𝑇𝑖𝑗 can be expressed as 𝑇𝑖(𝑖+𝑘) = 𝑇𝑘. The mean number 

of branches of order i joining branches of order j can be computed as:  

 
𝑇𝑖𝑗 =

𝑁𝑖𝑗

𝑁𝑗
 (4.2) 

where 𝑁𝑖𝑗  is the number of channels of order i joining channels od order j; and 𝑁𝑗  is the total 

number of channels of order j.  

Second, 𝑇𝑘 has an exponential relationship with K as: 

 𝑇𝑘 = 𝑎𝑐𝑘−1 (4.3) 
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where a and c  are constants. The parameter c is called the Tokunaga parameter (hereafter 

referred to as c-value) which describes the degree of side-branching. 

Figure 15 shows an example of a 4th-order Tokunaga self-similar channel network. 

Tokunaga parameters for this channel network can be calculated as follows: As can be seen 

from this figure, the number of 1st, 2nd, 3rd, and 4th-order channels is 𝑁1 = 54, 𝑁2 = 13, 𝑁3 =

3, and 𝑁4 = 1. The number of 1st-order channels joining other channels is 𝑁12 = 13, 𝑁13 =

12, 𝑁14 = 3. The number of 2nd-order channels connecting to other channels is 𝑁23 = 3, 

𝑁24 = 4. Similarly, the number of 3rd-order channels joining 4th-order channels is 𝑁34 = 1. 

𝑇𝑖𝑗 can be calculated as: 

𝑇12 =
𝑁12

𝑁2
=

13

13
= 1, 𝑇23 =

𝑁23

𝑁3
=

3

3
= 1, 𝑇34 =

𝑁34

𝑁4
=

1

1
= 1 

𝑇13 =
𝑁13

𝑁3
=

12

3
= 4, 𝑇24 =

𝑁24

𝑁4
=

4

1
= 4 

𝑇14 =
𝑁14

𝑁4
=

3

1
= 3  

Therefore, 𝑇𝑘 values can be obtained as: 

𝑇1 =
𝑇12+𝑇23+𝑇34

3
=

3

3
= 1  

𝑇2 =
𝑇13+𝑇24

2
=

8

2
= 4  

𝑇3 =
𝑇14

1
=

3

1
= 3  

Based on calculated 𝑇𝑘 values, a and c (Tokunaga parameters) can be calculated by 

fitting an exponential curve to K-1 and 𝑇𝑘. In this example, c-value is 1.73. 
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Figure 15. (a) Schematic of a 4th-order channel network. (b) exponential function fitted to K-1 

and 𝑇𝑘. This channel network exhibits Tokunaga self-similarity with a c-value of 1.73. 

4.3 Results and discussion 

Figure 16 shows the CNs, W(x) and IA(x) for two selected catchments for 

demonstration. These catchments have similar longest channel length (Figure 16(a) and 

(b)); thus the ranges of x for W(x) (Figure 16(c) and (d)) and IA(x) (Figure 16(e) and (f)) 

are also similar. The difference in the density of channels along the main channel can be 

observed from Figure 16(c) and (d). For example, the maximum channel density is at a 

distance of 1200 m in catchment A and 1600 m in catchment B from the catchment outlet; 
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however, the number of channels from that peak decreases gradually in catchment A but 

abruptly in catchment B. The IA(x) for the two catchments are plotted in Figure 16(e) and 

(f), respectively, showing the difference in the flow accumulation patterns along the main 

channel. The IA(x) for catchment B contains a higher number of large spikes compared to 

catchment A, implying that there are more lateral tributaries connected to the main channel 

in catchment B. For visualization purposes, the insets in Figure 16(e) and (f) show the IA(x) 

on log-scale, exhibiting significant fluctuations in IA(x).  

We use MSE to analyze the characteristics of W(x) and IA(x) signals of CN, which 

quantifies the complexity in a series and captures the information about emerged patterns 

in that series at different scales. The emerged patterns in W(x) provide meaningful 

information about how the density of the channels is distributed in a catchment; whereas, 

the emerged patterns in IA(x), describes how the environmental fluxes contribute to the 

main channel through side channels and hillslopes. 
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Figure 16. Sample examples of natural catchments, (a) catchment A and (b) catchment B used 

for complexity analysis with superimposed channel networks. (c) and (d) show the width 

function W(x) for catchments A and B, respectively. x-axis represents the flow distance from the 

outlet and 0 on the x-axis represents the outlet. y-axis in these figures represents the number of 

channels at a certain distance from the catchment outlet. (e) and (f) show the incremental area 

function IA(x) for the catchments A and B, respectively. Note that IA(x) has been flipped (from 

right to left) in order to be consistent with W(x). y-axis indicates the incremental change in the 

contributing area as one moves on the main channel. Insets (e) and (f) show the IA(x) on a log-

scale. 

 

 

 

 

 



 

73 
 

In order to investigate the influence of side-branching (i.e., 𝑖𝑡ℎ-order stream meeting 

a 𝑗𝑡ℎ -order stream, where 𝑗 >  𝑖) on the structural and functional complexity of CN, we 

compute the entropy (i.e., MSE) of W(x) and IA(x) for 40 natural catchments at multiple 

spatial-scales and plot entropy E versus their Tokunaga index, c-value (Figure 17).  

Figure 17 shows the relationship between E and the c-value for W(x) and IA(x) at 

different spatial-scales for 40 catchments. Note that different spatial-scales refer to the 

coarse-grained W(x) and IA(x) computed using Eq. (2.7) , representing different resolutions 

of DEM (see schematic representations of catchment B at 2 different spatial-scales as insets 

in Figure 18(a)). For brevity, we only plot E versus c-value at the scales of 5, 10, and 20 m. 

As can be seen from Figure 17(a), (b), and (c), the entropy of W(x) increases with the c-value 

at all the scales. From Figure 17(d), (e), and (f), it can be seen that entropy of IA(x) also 

increases with the c-value at each scale. The correlations shown in Figure 17 have been 

evaluated by Pearson’s correlation coefficients and the associated P-values (shown inside 

each figure). Based on Taylor [1997]  which classifies the correlations as not significant (P-

value > 0.05), significant (0.01 < P-value < 0.05) and highly significant (P-value < 0.01), the 

correlations shown in Figure 17 can be considered as highly significant [Orlandini et al., 

2006; Orlandini et al., 2011]. 

This implies that both structural and functional complexities increase with more 

complex side-branching in CN across various spatial-scales. Note that higher c-value implies 

a more complex side-branching arrangement [Tokunaga, 1966; Zanardo et al., 2013]. We 

remind the reader that the structural complexity is referred to the emerged complex 

patterns in the channel organization and how these patterns are being repeated along the 
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main channel. Whereas, functional complexity depicts the complexity of flux transport along 

the main channel. Functional complexity includes channels’ and hillslopes’ information and 

describes the flux transport patterns from the side tributaries. The increasing relationship 

between the c-value and both structural and functional complexity highlights the importance 

of the role of side-branching in controlling the complexity of channel organization and flux 

transport on CN. Since the c-value exhibits significant relationship with hydro-climatic 

parameters and represents the regional controls on the network topology [Cui et al., 1999; 

Zanardo et al., 2013], our analysis offers the possibility to estimate the behavior of CN in 

terms of channel reorganization and flux transport under varying external forcing such as 

climate.  

Comparing the values (y-axis) of entropy of W(x) and IA(x), one can conclude that 

functional complexity of CNs is, in general, larger than structural complexity. The additional 

complexity which appears in the IA(x) may be due to contribution from hillslopes since the 

IA(x) includes information from both channels and hillslopes, whereas W(x) includes 

information only about the channel’s structural arrangement. The contribution of hillslopes 

to the complexity of catchments is invariant with drainage basin size. In other words, a 

significant relationship is not observed between the complexity due to hillslopes and the 

drainage basin size. Also, note that the robustness of the complexity analysis was validated 

for several smaller sub-basins of the original catchments. 
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Figure 17. (a), (b), and (c) demonstrate the structural complexity versus c-value; (d), (e), and (f) 

exhibit the functional complexity versus c-value at spatial-scales of 5, 10, and 20 m, respectively. 

Structural complexity is computed as the entropy of W(x), whereas functional complexity is 

computed as the entropy of IA(x). Note that for all the scales the slope of increase is larger for 

the functional complexity compared to structural complexity (see slopes of linear regressions 

provided in each subplot). 

 For any given spatial-scale, the slope of increase in entropy with c-value is smaller in 

the case of W(x) compared with IA(x) (see slopes of regression lines in Figure 17) indicating 

that in general, functional complexity is more influenced by complex side-branching patterns 
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compared to the structural complexity. This observation suggests that catchments with 

different c-values contain more distinct patterns of flux transport compared with the 

patterns of channel organization. In other words, topology influences the interaction 

between hillslopes and channels more than only the channel organization.  

 Figure 18(a) shows the slope of E versus c-value (𝑆𝑙𝑜𝑝𝑒𝐸−𝑐) as a function of scales 

obtained from the linear regression for 40 catchments. It can be seen from this figure that 

there is an increase in 𝑆𝑙𝑜𝑝𝑒𝐸−𝑐  with scales for both W(x) and IA(x). As can be seen from this 

figure, 𝑆𝑙𝑜𝑝𝑒𝐸−𝑐  is larger for IA(x) across all spatial-scales compared to W(x). This 

observation suggests that across multiple spatial-scales, functional complexity increases 

with c-value much faster compared to structural complexity. In addition, the slope increases 

logarithmically for IA(x) whereas it increases exponentially for W(x). The difference 

between the slopes can be attributed to the contribution of hillslopes to the functional 

complexity.  

Based on Figure 18(a) the slope difference between IA(x) and W(x) (∆𝑆𝑙𝑜𝑝𝑒𝐸−𝑐) (i.e., 

the difference between the slopes shown in Figure 17 obtained from 40 catchments for W(x) 

and IA(x)) is different across different scales. Figure 18(b) shows the ∆𝑆𝑙𝑜𝑝𝑒𝐸−𝑐  across 

spatial-scales. It can be seen from this figure that the ∆𝑆𝑙𝑜𝑝𝑒𝐸−𝑐  generally increases with 

scales and peaks at a scale of ~ 45 m. This implies that the effect of hillslope processes is 

overall higher in larger spatial-scales. The additional entropic content observed by 

∆𝑆𝑙𝑜𝑝𝑒𝐸−𝑐  further indicates that predictive models of hydrological processes at the 

watershed scale must account for hillslope-scale complexity [Sivapalan, 2003].   
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To compare the studied catchments’ hillslope processes magnitude, we computed 

their diffusion coefficient 𝐷 , which characterizes hillslope processes, using a method 

proposed by Perron et al. [2008]. The inset in Figure 18(b) shows the relationship between 

𝐷 and c-value for our studied catchments where an increasing trend is observed. Although 

the correlation is not very high (R=0.32), further statistical analysis shows that the 

correlation is significant within 95 percent confidence-interval (P-value<0.05). As can be 

seen from the inset, the magnitude of diffusive processes (hillslopes) is larger in the 

catchments with more complex side-branching behavior (i.e., higher c-value), indicating the 

increase in hillslope effect with c-value, further manifesting itself in functional complexity 

across multiple spatial-scales.  

In addition, the peak in ∆𝑆𝑙𝑜𝑝𝑒𝐸−𝑐, occurring at a spatial-scale of ~ 45 m, suggests the 

scale where the influence of hillslopes on the complexity is maximum. This peak can be 

attributed to the hillslope length (𝐿𝐻) in natural catchments. Horton [1932] introduced the 

hillslope length parameter as the average distance that water must travel from a random 

point in a catchment to reach a channel (see also Tucker et al. [2001]). This parameter is also 

referred to as overland flow length and is of great hydrological importance due to its relation 

to flood intensities. It has been shown that the hillslope length has an inverse relationship 

with Dd, i.e., 𝐿𝐻 ≈ (2𝐷𝑑)−1. 

Figure 18(c) shows the elevation profile of catchment B (inset) for four random 

channels on its CN. The red channel is of the maximum channel length (i.e., the main 

channel). Note that the W(x) and IA(x) have been computed along this channel for this 

catchment. The hillslope length computed for a catchment can be related to the average 



 

78 
 

distance from all channel heads in a CN to the drainage divide (shown with dotted black lines 

extending the CN, as examples) as the hillslopes vary in shapes, sizes and the underlying 

subsurface heterogeneities [Grieve et al., 2016; Sivapalan, 2003].  

The average hillslope length computed for 40 natural catchments used in this study 

is 56.5m. This observation further confirms the increase in entropy at the scale ~ 45m 

independently identified via entropy analysis (see Figure 18(b)) and suggests that indeed 

hillslopes contribute to higher complexity in a catchment. Hillslopes initiate tributaries on 

lateral slopes of the main channel [Horton, 1932] and the average length of them controls 

the spatial-scale at which the difference between the rate of increase of functional and 

structural complexity with topology (c-value) is maximum. This may imply that hillslopes 

introduce a significant amount of complexity to catchment compared to the complexity 

introduced only by the CN.  
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 Figure 18. (a) Slope of entropy (E) versus Tokunaga index (c-value) across spatial-scales 

for both W(x) (blue circles) and IA(x) (red circles). The insets in (a) show the schematic 

representations of catchment B at scales 𝑠1 and 𝑠2, where 𝑠1 <  𝑠2 . (b) The difference between 

slope obtained from W(x) and IA(x). The inset shows the diffusion coefficient (D) versus c-value 

for 40 natural catchments. (c) Elevation profiles along four channels of catchment B from 

drainage divide to the outlet. The inset shows catchment B with superimposed channel network. 

These channel profiles are extended to the drainage divide by dotted black lines to represent 

hillslope length. 
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CHAPTER 5: COMPLEXITY OF RIVER BED ELEVATION 

FLUCTUATIONS 

Bedforms evolve spatially and temporally as a result of a complex interaction 

between the turbulent flow field, sediment transport, and fluvial bed topography, and vary 

with local bed shear stress and grain size distribution. They have been shown to exhibit 

scale-dependent geometrical and statistical properties. Investigating their spatial 

characteristics and evolution is important for river management and interpreting past 

sedimentary strata, as well as for predictive modeling of sediment transport rates [Best, 

2005; Drake et al., 1988; McElroy and Mohrig, 2009; Nelson et al., 1993; Nikora and Walsh, 

2004; Nikora et al., 2002]. 

Several studies have focused on investigating the statistical structure of bedforms at 

multiple spatio-temporal scales. However, factors resulting in specific sequential 

arrangement in bed elevation patterns are not fully understood. Identifying the existing 

patterns in the bed elevation fluctuations under varying flux conditions can provide 

significant information for predicting the behavior of rivers under changing environment. 

The fluctuations of bed elevations have been studied via correlation functions, or second-

order structure functions which characterize the second-order moments. However, the 

probability density function (PDF) of these fluctuations has been shown to exhibit a scale-

dependent shape [Marion et al., 2003; Smart et al., 2004]. To account for the change of PDF 

across scales, Nikora and Walsh [2004] suggested to use higher-order statistics to analyze 
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the characteristics of bed elevations in water-worked gravel surfaces and demonstrated that 

the topography of gravel surfaces exhibits multiscale behavior which is sensitive to the flow 

direction. A Singh et al. [2009b] analyzed the multiscale statistical structure of highly 

variable bed elevation time series and documented scaling behavior and intermittency and 

their relation with simultaneously sampled sediment flux. 

One way to characterize the variability of fluctuations for a natural process is via 

entropy. Shannon [1948] defined entropy as a measure of variability, uncertainty, and 

complexity. The concept of entropy has been used in various fields of science and 

engineering including hydrology and geomorphology, such as basin geomorphology, water 

distribution systems, surface and subsurface hydrology, and water quality assessment 

[Fiorentino et al., 1993; Goodwell and Kumar, 2017; Leopold and Langbein, 1962; Pincus, 

1991; V P Singh, 1997; Tejedor et al., 2017b]. For example, Mishra et al. [2009] employed an 

entropy-based approach to investigate the spatio-temporal variability of monthly, seasonal, 

and annual time series of precipitation for the State of Texas, USA, and observed distinct 

spatial patterns in annual series and different seasons. Their results show that high 

disorderliness in the amount of precipitation and number 

of rainy days caused severe droughts during the 1950’s in Texas. More recently, 

Chembolu and Dutta [2016] analyzed the relationship between entropy and energy 

dissipated in braided river systems. They showed that a 4-year return period flood results 

in disorderness in the river planform and increases the entropy. Wrzesiński [2016] proposed 

uncertainty measures derived from the Shannon entropy to characterize the river runoff 

regime. However, Shannon entropy is solely based on the PDF of a series and does not 
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consider the arrangement or the sequence of the data points in a series. These above-

mentioned studies use the Shannon entropy which is a classical probabilistic approach 

analyzing the randomness of the generating process of a series and not the randomness of a 

series itself. In other words, Shannon entropy is a metric to study the process of the data, and 

the order of the generated data does not have any influence on this metric [Chaitin, 1975; 

Delgado-Bonal and Marshak, 2019]. 

In this chapter, we are interested in understanding and quantifying the underlying 

dynamics of the bed elevation series for varying flow conditions. We study the complexity of 

rivers from a different point of view and a much smaller scale i.e. bed elevation fluctuations 

using an entropy-based approach. 

5.1 Description of experiments 

The experiments presented here were conducted in the Main Channel facility at the 

St. Anthony Falls Laboratory, University of Minnesota. The data reported consist of time 

series of bed elevation fluctuations which were collected along the center-line at three 

different discharges of Q = 1500 L/s,  Q = 2600 L/s, and Q = 2800 L/s corresponding to the 

dimensionless bed shear stresses of 0.049, 0.080, and 0.099, respectively. In addition, we use 

data of bed elevation collected at a lower discharge, i.e. 600 L/s, in the same flume for 

comparison purposes [Keylock et al., 2014]. The bed for this discharge was a planar bed 

compared to the other three discharges. 

The main channel was 84 m long, however, the section used was 55 m long, 2.75 m 

wide, and 1.8 m deep. The channel was filled with a 0.45 m thick layer of sediment. For the 
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sediment, a mixture of gravel and sand with a median particle size diameter d50=7.7 mm was 

used. The overall grain size distribution was characterized by d16=2.2 mm and d84=21.2 mm. 

To achieve dynamic equilibrium in transport and slope adjustment for both water surface 

and sediment bed, a constant water discharge was fed into the channel prior to the data 

collection. This dynamic equilibrium state was evaluated by checking the stability of the 60 

min average total sediment flux at the downstream end of the test section. Although 

experiments were run for longer duration (~20 hrs), here we use continuous bed elevation 

data corresponding to ~ 6 hrs to maintain similar length of bed elevation time series at each 

analyzed discharge. 

The bed elevation data presented here were sampled at point location with a 

temporal resolution of 5 sec at the downstream end of the flume. This high temporal 

resolution enabled us to capture a range of bedform scales. Bedform heights were extracted 

based on the method described in [A Singh et al., 2011]. In this method, first, the high-

frequency fluctuations corresponding to the very small bedforms were filtered out from the 

bed elevation using the Fourier transform. Second, the differences between the consecutive 

local maxima and minima of the filtered signal were computed. Finally, the bedforms with a 

height above a certain threshold (i.e. 2 d50) were extracted for each discharge. Note that the 

bedforms' statistics here, at different discharges, were extracted for the same length of time 

series. More details about the experimental facility and the data collection can be found in [A 

Singh et al., 2012a; A Singh et al., 2009b; A Singh et al., 2013]. 
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5.2 Surrogate generation 

Surrogates are the linearized representations of the original data. They preserve the 

linear autocorrelative properties of the data while destroying the inherent nonlinearity. 

Inherent nonlinearity implies nonlinearity resulting from internal processes. In other words, 

for an inherent nonlinear process, the nonlinearity is not a result of nonlinear transformation 

applied to a linear process, but it is related to its dynamics. The nonlinearity appeared as a 

result of multiplicative cascade generator in the popular phenomenological model used for 

turbulence is an example of inherent nonlinearity [Parisi and Frisch, 1985]. Since 

nonlinearity is the necessity of chaos, it is important to identify whether a time series is 

generated by a linear or inherently nonlinear process. Surrogates are used to test for the 

presence of nonlinearity by comparing the original series with them. The Iterated, Amplitude 

Adjusted, Fourier Transform (IAAFT) method was developed by [Schreiber and Schmitz, 

1996] to generate surrogates of a signal and has been applied to characterize various 

environmental processes [Basu et al., 2007; Keylock, 2012; A Singh et al., 2009a]. In this 

method, first the Fourier transform of the discretely sampled data series (here bed elevation 

time series), ℎ(𝑡), with a sampling interval of ∆𝑡 is computed as: 

 

𝐹̂(𝜔) = ∑ ℎ(𝑡) exp[2𝜋𝑖𝜔∆𝑡] = 𝐴0(𝜔)exp [𝑖𝜑0(𝜔)]

𝑁

𝑛=1

 (5.1) 

where 𝐴0(𝜔) are the original amplitudes which are stored and 𝜑0(𝜔) are the original phases 

that are replaced with 𝜑𝑟𝑎𝑛𝑑(𝜔) which are the phases from a random sort of data. Second, 

the inverse Fourier transform is taken and a rank-order matching procedure is used to 

substitute the new values for original values in ℎ(𝑡) to obtain ℎ1(𝑡). Therefore, ℎ(𝑡) and 
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ℎ1(𝑡) are similar in terms of their histograms. The difference between them is only the 

position of particular values in the data series which is changed due to the phase 

randomization. Taking the Fourier transform of ℎ1(𝑡), 𝐴1(𝜔)exp [𝑖𝜑1(𝜔)] is obtained. We 

take the inverse Fourier transform of 𝐴0(𝜔)exp [𝑖𝜑0(𝜔)] and impose the rank-order 

matching to compute the ℎ1(𝑡). Mentioned steps are iterated until a convergence criterion is 

satisfied (at the 𝑖𝑡ℎ iteration), with the amplitudes in 𝐴0(𝜔)  combined with 𝜑𝑖(𝜔) , the 

inverse Fourier transform and rank-order matching that gives ℎ𝑖(𝑡). For more details, see 

Keylock et al. [2014]; Schreiber and Schmitz [1996]; A Singh et al. [2009a]. 

5.3 Structure function analysis 

In order to analyze the multiscale structure of the bed elevation series ℎ(𝑡), the bed 

elevation increments are used and can be defined as: 

 ∆ℎ(𝑡, 𝑠) = ℎ(𝑡 + 𝑠) − ℎ(𝑡) (5.2) 

where 𝑡 is the time and 𝑠 is the scale. Note that although ℎ(𝑡) is always positive, the 

increments ℎ(𝑡, 𝑠) can acquire both negative and positive values. The structure function 

𝑀(𝑞, 𝑠) is defined as the estimates of the 𝑞𝑡ℎ-order statistical moments of the absolute values 

of the increments at scale 𝑠: 

 

𝑀(𝑞, 𝑠) =
1

𝑘
∑|∆ℎ(𝑡, 𝑠)|𝑞

𝑘

𝑖=1

 (5.3) 

where 𝑘  represents the number of data points of the series at scale 𝑠 . The statistical 

moments 𝑀(𝑞, 𝑠) describe the shape of the PDF of the increments of the bed elevation series 

at scale 𝑠. 𝑀(𝑞, 𝑠) follows a power-law relationship with the scales, 
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 𝑀(𝑞, 𝑠)~𝑠𝜁(𝑞) (5.4) 

where 𝜁(𝑞) is the scaling exponent function. In a scale-invariant series, the variations of the 

increments' PDF with scales are delimited by the function 𝜁(𝑞). For most processes, the 

nonlinear relationship describing 𝜁(𝑞)  can be characterized as a polynomial quadratic 

approximation as: 

 𝜁(𝑞) = 𝑐1𝑞 −
𝑐2

2
𝑞2 (5.5) 

Thus, the variations of the PDF over a range of scales are characterized using 𝑐1 and 

𝑐2. 𝑐1 represents the average roughness of the series and 𝑐2 is the intermittency parameter. 

A non-zero value of 𝑐2 implies that across different scales, the tails of the PDF stretch in a 

way different from the body. In other words, pockets of high magnitude fluctuations are 

distributed over the signal's domain in complicated ways. More details about the structure 

function analysis can be found in Parisi and Frisch [1985] and Marion et al. [2003]. Also, note 

that for 𝑐2 = 0, 𝑐1  represents the Hurst exponent (𝐻) which characterizes the degree of 

linear correlation within a signal, and can be related to the spectral slope (𝛽) of the power 

spectral density as  𝛽 =  2𝐻 + 1 [A Singh et al., 2012b]. 

5.4 Results and discussion 

As discussed above, river bed topography exhibits variability across a range of scales. 

The power spectral density (PSD) is a common way of characterizing variability of a signal 

(energy distribution or variance) at different scales and shows the strong and weak scales 

contributing to the signal variance. The PSD of a discrete signal ℎ(𝑡) can be defined as: 
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𝑠(𝜔) = |
1

√2𝜋
∑ ℎ(𝑡)𝑒𝑥𝑝[−𝑖𝜔𝑡]

∞

−∞

|

2

=
𝐻̂(𝜔)𝐻̂∗(𝜔)

2𝜋
 (5.6) 

where 𝐻̂(𝜔)  represents the discrete Fourier transform of ℎ(𝑡) , 𝐻̂∗(𝜔) is the complex 

conjugate and 𝜔 is the wave number [Stoica and Moses, 1997]. 

Here, temporal bed elevation fluctuations for three different discharges are analyzed 

using the PSD. Note that the temporal bed elevation data are more likely to exhibit 

complexity compared to spatial data series. This is because the nonlinearity in temporal data 

series appears at much smaller scales due to accumulation of large scale features 

(bedforms), depending on the length of temporal duration, as opposed to available spatial 

series for these experiments where only a few large scale features (bedforms) are present. 

More specifically, the gradual rise and sudden fall (i.e. ramp and cliff features or stoss and 

lee sides of dunes or ripples) are more dominant in temporal series than in spatial series. In 

order to be able to characterize the complexity in spatial data series, one needs sufficiently 

long data series, which is not practical to obtain in terms of experimental setups. In summary, 

if spatial data are used, only as many bedforms as fit in the experimental domain can be 

obtained, whereas in the case of temporal data, from one location one can keep collecting 

data until required bedforms needed for a robust statistical analysis pass through that 

measurement location. 

Figure 19 shows the bed elevation data collected for three different discharges of 

1500, 2600, and 2800 L/s. As can be seen visually, the variability in bed elevation 

fluctuations increases with increasing discharge. Figure 20 shows the PSD of the bed 

elevation series for the discharges of 1500, 2600, and 2800 L/s  as a function of time scales. 
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The PSD for all cases follow a power-law relationship for a range of scales (~0.22 min to 6.7 

min) with a slope of 𝛽 1.83 for the discharge of 1500 L/s, 𝛽 ~ 2.21 for the discharge of 2600 

L/s  and 𝛽 ~ 2.29 for the discharge of 2800 L/s, suggesting the presence of statistical scaling 

in the bed elevation time series. The estimated spectral slopes are statistically different 

based on the t-test hypothesis testing (p-value < 0.00001).   

The increase in the slope of the PSD with increasing discharge has been argued to 

imply that bedforms of comparable energy move faster at higher discharges [A Singh et al., 

2012b]. Also, note that the higher spectral slope at higher discharge indicates a higher auto-

correlation in bed elevation of 𝑄 = 2800 L/s. The PSD characterizes the behavior of variance 

(second-order moment) at different time scales. Variance quantifies the aggregated 

variability or the spread in observations (data) around the mean and does not consider or 

give any information about the dispersion (the magnitude of probabilistic strength assigned 

to each fluctuation) in the fluctuations of a signal. Unlike variance which measures the 

concentration only around the mean, entropy measures dispersion and quantifies the 

diffuseness of the PDF without considering the location of the concentration [Ebrahimi et al., 

1999]. 
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Figure 19. Time series of bed elevation at the discharges of (a) 1500 L/s, (b) 2600 L/s, and (c) 

2800 L/s. The bed elevation data were sampled at a temporal resolution of 5 sec. Notice the 

increase in variability with increasing discharge. 
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Figure 20. Power spectral density (PSD) of bed elevation for the discharges of 1500 L/s (blue 

line), 2600 L/s (green line), and 2800 L/s (red line). PSDs of discharges for 1500 L/s and 2800 

L/s are displaced vertically for better visualization by multiplying their PSD values by 5 × 10−2 

and 5 × 102, respectively. 

 

In order to compare the complexity of bed elevation time series for the three different 

discharges, we used the MSE approach. Figure 21(a) shows the MSE of bed elevation series 

for the discharges of 1500, 2600, and 2800 L/s. The x-axis represents the scales which show 

the length of the coarse-graining windows. For example, the scale of 6 min represents a time 

series with data points corresponding to the average of 6 min non-overlapping windows 

from the original time series (i.e. 72 data points from the original time series with 5 sec 

sampling interval). 
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Figure 21. Multiscale entropy (MSE) of bed elevation for different discharges. The blue, green, 

and red solid lines show the MSE of bed elevation time series for the discharges of 1500 L/s, 

2600, and 2800 L/s, respectively. The blue, green, and red dashed lines show the averaged MSE 

for the synthetically generated surrogates of bed elevation time series for the discharges of 1500 

L/s, 2600 L/s, and 2800 L/s, respectively. The average MSEs of surrogates were computed from 

50 surrogates for each discharge. The surrogates were generated using the IAAFT algorithm. The 

shaded area around the dashed lines depicts the variability around the average MSE of surrogates 

(one standard deviation). The inset shows the MSE of bed elevation for the discharge of 600 L/s 

for comparison purposes. (b) Difference between the MSE of the original bed elevation time 

series and the surrogates for each discharge. 
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 From the results shown in Figure 21(a), the following observations can be made: 

1. The MSEs of bed elevation for the discharges of 1500, 2600, and 2800 L/s do not 

follow the same behavior across different scales. This observation suggests the presence of 

different sequential arrangement in bedform patterns across a range of scales. The MSEs of 

higher discharges (2600 and 2800 L/s) are higher than the MSE of lower discharge (1500 

L/s) at almost all scales. Higher MSE represents higher complexity and thus less 

predictability. Our results show that the bed elevation (and thus related processes, e.g. 

erosion and deposition) at higher discharges are less predictable than the bed elevation at 

lower discharge. It has been shown that the complexity has an inverse relationship with 

vulnerability. Tejedor et al. [2015] investigated the quantitative relationship between an 

entropy based complexity measure and vulnerability and suggested that a more complex 

system is more robust to a change. Higher complexity in the bedforms at higher discharges 

implies that channel beds with higher discharges and their characteristics are less 

vulnerable to changes in external forcings. 

The increase in entropy with increasing discharge can be due to bedforms' spatial 

(bedform heights) and temporal (bedform time period) characteristics. Figure 22 shows the 

extracted bedforms at different discharges used in this study. From this figure, it can be seen 

that bedform height increases with increasing discharge. The average bedform height for the 

discharges of 1500, 2600 and 2800 L/s is 29.9, 51.3 and 68.9 mm, respectively. In addition, 

the variability of bedform heights (measured by standard deviation) also increases with 

discharge (Table 6) resulting in complex patterns for the bed elevations at higher discharges.  
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Figure 22. (a), (b) and (c) Extracted bedform heights above a certain threshold for the discharges 

of 1500, 2600, and 2800 L/s, respectively. The inset in (a) shows the extracted bedforms for the 

discharge of 600 L/s. 
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Table 6. Hydraulic and statistical properties of bed elevation time series. 𝐷 : average flow depth, 

𝑆𝑤: water surface slope, ℎ𝑅 : hydraulic radius,𝜏∗
𝑏: dimensionless shield stress, 𝑡ℎ𝑏𝑓

: average 

bedform height, 𝑠𝑡𝑑ℎ𝑏𝑓
: standard-deviation of bedform heights, 𝑡ℎ𝑏𝑓

: mean bedform inter-arrival 

time ± one standard-deviation, 𝛽: spectral slope, 𝑐2: intermittency. Note that the bedform 

statistics are computed for the same length (~ 6 hrs) of bed elevation time series for different 

discharges. 

Q [L/s] D [m] Sw hR [m] τ*
b 

hbf 

[mm] 

std(hbf) 

[mm] thbf [min] β c2 

600 0.21 0.005 0.18 0.085 24.8 4.7 51.2 ± 40.8 1.31 0.05 

1500 0.43 0.00195 0.33 0.049 29.9 9.1 24 ± 16.7 1.83 0.09 

2600 0.62 0.0024 0.43 0.08 51.3 29.3 12.8 ± 4.2 2.21 0.12 

2800 0.64 0.0029 0.44 0.099 68.9 36.4 14.8 ± 6.8 2.29 0.14 

 

2. At the smaller time scales (scales ≥ 0.3 min), the bed elevation for all discharges 

have similar MSEs indicating that the ratio of total number of matches for smaller patterns 

(𝑛𝑚) and larger patterns (𝑛𝑚+1) are almost equivalent at all discharges (see Eq. ((2.1)). This 

observation indicates that the information revealed by the three sets of bed elevation series 

is not clearly distinguishable at the smaller scales since the same entropy is obtained for 

them implying the presence of similar patterns in the bed elevations of different discharges.  

Note that in this case, if large and small patterns are not similarly repeated (i.e. 

random structure as in white noise) a higher entropy would be observed at smaller scales. 

This can be seen from the MSE of bed elevations for Q = 600 L/s (see the inset in Figure 

21(a)) which exhibits more random bed elevation fluctuations similar to white noise and the 
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bedforms are considerably smaller compared to other discharges. For example, the average 

bedform height for 600 L/s is 24.8 mm. Furthermore, based on the entropy at smaller scales, 

it is difficult to infer whether the bed elevations at 600 L/s are more complex than other 

discharges since smaller scales may not always reflect the amount of complexity due to the 

presence of random fluctuations. In contrast, for sufficiently larger (intermediate) time 

scales, a lower entropy value is obtained for the 600 L/s suggesting that bed elevation at 600 

L/s contain less complex dynamics compared with higher discharges. This is consistent with 

the behavior shown by the MSE of white noise.  

3. The entropy of the bed elevation for higher discharges continues to increase and 

peak at a scale of approximately 5-7 min, similar to the half of the mean inter-arrival time of 

bedforms (see Table 6). The peak observed at the scale smaller than the mean inter-arrival 

time could be due to bedform features, such as stoss and lee features, as they result in 

transition in the bedform profile. However, the entropy of the bed elevation for lower 

discharge attains almost a constant value across the time scales between 3 and 6 min. This 

observation indicates that the bed elevation of higher discharges, in comparison to the lower 

discharge, continues to reveal different structural arrangement from scales 3 to 6 min, 

whereas the bed elevation of lower discharge reveals the same amount of information 

(change in the arrangement of the elevations) from scale 3 to 6 min. 

4. Although for scales < 6 min the bed elevation series at higher and lower discharges 

exhibit an increasing trend of MSE in general (except for 3 to 6 min for Q = 1500 L/s), the 

overall slope of this increase is different. A higher rate of increase is observed for the bed 

elevation of higher discharges compared to the bed elevation of lower discharge for the same 
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time scale (between the time scales of 5 sec to 8 min), implying that the rate of addition of 

complexity (information) to these scales is higher for higher discharges compared to the 

lower discharge. 

In order to further investigate the causes of the emergence and increase in complexity 

across different scales, several different measures (e.g. surrogate time series, structure 

functions, and asymmetry) are computed. The surrogates of bed elevation series for higher 

and lower discharges were generated using the IAAFT method (see section 5.2). Figure 21(a) 

shows that the MSEs of the surrogates, which represent the MSEs of original bed elevation 

resulting only from linear correlation, are smaller than the original bed elevation series for 

different discharges. We argue that the difference between the MSEs of the surrogates and 

the original time series (shown in Figure 21(b)) is the amount of complexity resulting from 

the inherent nonlinearity. This is due to the fact that the correlation structure (auto-

correlation) of the bed elevation time series does not have any contribution to this share 

(nonlinearity) of complexity since the effect of correlation is isolated by removing the 

entropy content of the surrogate time series. 

As can be seen from Figure 21 the MSE of surrogates is much larger than the 

difference between surrogates and the original bed elevation. This suggests that a significant 

portion of the complexity in bed elevation series is due to the correlation structure (auto-

correlations) in the time series since the complexity of the surrogates is only due to the linear 

correlation. Note that the MSEs of the surrogates are smaller than the original bed elevation 

series for different discharges. Also, the surrogates of bed elevation at higher discharges 

(also exhibiting higher spectral slope; see Figure 20) show higher complexity compared to 
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the lower discharge. This is consistent with observations of Costa et al. [2002; 2005] where 

they have shown that the pink noise with higher spectral slope contains higher complexity. 

From Figure 21(b), it can be concluded that for scales < 0.8 min, the effect of 

nonlinearity on the complexity of the bed elevation is more significant for the higher 

discharge. At scales > 0.8 min, the effect of nonlinearity increases considerably for the lower 

discharge until scales of ~ 3 min.  

In order to understand the role of nonlinearity in inducing the complexity in bed 

elevation time series, their increments (Eq. (5.6)) were analyzed using the structure function 

analysis discussed in section5.3. This analysis evaluates the manner in which various 

statistical moments of the local fluctuations in the bed elevation time series change with 

scales. The scaling exponents 𝜁(𝑞) for moments 𝑀(𝑞, 𝑠) are shown in Figure 23 for different 

discharges and their surrogates. For the original bed elevation time series, a deviation from 

the simple scaling is observed for all discharges, implying the presence of temporal 

heterogeneity in the local roughness which is referred to as intermittency in the bed 

fluctuations [A Singh et al., 2009b]. In the case of surrogates, Figure 23(b), (d), and (f), a 

significant deviation from the linearity is not observed, indicating and confirming that the 

nonlinearity in the surrogate bed elevation series is destroyed.  

A value of 𝑐2 ≠ 0 implies a spatially heterogeneous arrangement of fluctuations in the 

bed elevation time series. 
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Figure 23. Scaling exponents 𝜁(𝑞) estimated from the log-log linear regressions within the 

scaling regions shown with black lines in the insets of each plot for (a) bed elevations series of 

discharge 1500 L/s, (b) the surrogates of bed elevations series for discharge 1500 L/s, (c) bed 

elevations series of discharge 2600 L/s, (d) the surrogates of bed elevations series for discharge 

2600 L/s, (e) bed elevations series of discharge 2800 L/s, and (f) the surrogates of bed elevations 

series for discharge 2800 L/s. The curves in the insets show the statistical moments of the 

fluctuations of bed elevation time series as a function of scale. In particular, different curves in 

the insets represent the log of 𝑀(𝑞, 𝑠) computed using Eq. 5.3 for a given 𝑞 across different 

scales. As shown in (a), (c), and (e), the 𝑐2 value increases with increasing discharge indicating a 

more heterogeneous bed elevation fluctuation structure compared to the lower discharge. The 

𝜁(𝑞) of the surrogates for different discharges shown in (b), (d), and (f) is the mean 𝜁(𝑞) 

computed for 50 surrogate series. The average 𝑐1 and 𝑐2 values and their standard deviations are 

also presented in the sub-figures. 
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From Figure 23(a), (c) and (e) it can be seen that 𝑐2 increases with increasing 

discharge indicating that the bed elevation with higher discharges contains more 

heterogeneous fluctuation structures (measured via 𝑐2) compared to the bed elevation of 

lower discharge. This inhomogeneity manifests itself in the MSE of bed elevation time series 

where the arrangement of the extreme fluctuations contributes to the increase in the 

complexity of the series. 

Bed elevation fluctuations have also been shown to exhibit asymmetric PDFs 

especially in the presence of bedforms [Aberle and Nikora, 2006; A Singh et al., 2012a; Wong 

and Parker, 2006]. 

To further explore the effect of asymmetry in the PDFs of bed elevation increments 

on the emergent complexity of bed elevation time series, we computed the asymmetry of bed 

elevation increments (Eq(5.2)) expressed as: 

 
𝐴(𝑠) =

〈∆ℎ(𝑡, 𝑠)3〉

〈|∆ℎ(𝑡, 𝑠)3|〉
 (5.7) 

 

where the angled brackets are a mean value and 𝐴 (𝑠) denotes the asymmetry index as a 

function of scale 𝑠  [Basu et al., 2007; Malecot et al., 2000]. Figure 24 shows the asymmetry 

index for the increments of the bed elevation and their surrogates. As can be seen from this 

figure, at the smaller scales, the asymmetry of bed elevation has a higher value compared to 

the larger scales in contrast to the complexity shown in Figure 21(a) where MSE peaks at 

intermediate scales. This indicates a lack of a direct relationship between the asymmetry and 

MSE of the bed elevation time series. This is related to the fact that MSE is based on the 
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sequential arrangement of the data points in a series and aggregated changes in the PDF are 

not captured by the MSE. In addition, it can be seen from Figure 24 that i) asymmetry peaks 

at a smaller scale for the higher discharges (scale ~ 0.3 min) than for the lower discharge 

(asymmetry peaks at scale ~ 1 min), and ii) asymmetry is larger for higher discharge at 

scales smaller than 0.9 min suggesting more asymmetric PDF at higher discharge. The 

increase and then decrease of asymmetry at smaller scales (approximately < 1.2 min) for 

different discharges need further investigation and will be the focus of a future study. We 

argue that the higher asymmetry at smaller time scales and higher entropy at larger time 

scales correspond to bedform time scales. Bedform time scale refers to the average time scale 

at which a characteristic scale bedform passes a channel cross-section. This suggests that 

there might be a lagged relationship between the asymmetry and MSE. The high asymmetry 

at smaller time scales is the manifestation of larger slopes (increments) from the ramp-cliff 

(stoss-lee) structures at smaller scales (i.e. the small fluctuation in bed elevation time series. 

At larger scales, these slopes are smoothed out. However, in the case of MSE, the peak is 

observed at bedform scales. The results of asymmetry together with entropy analyses 

suggest that both small and large scale features (information) should be included for 

accurate predictive modeling of sediment transport. 
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Figure 24. Asymmetry (𝐴) of bed elevation increments and their surrogates for different 

discharges. The blue, green, and red solid lines show the asymmetry of bed elevation time series 

for the discharges of 1500 L/s, 2600 L/s, and 2800 L/s, respectively. The blue, green, and red 

dashed lines show the average asymmetry for the surrogates of bed elevation time series for the 

discharges of 1500 L/s, 2600 L/s, and 2800 L/s, respectively. The asymmetry of the surrogates 

shown here is the average asymmetry computed from the 50 surrogate series. The variability is 

shown via error bars which are one standard deviation from the mean values at each scale. 
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CHAPTER 6: SUMMARY AND CONCLUSION  

Natural drainage networks emerge as an interplay between several external and 

internal factors such as climate, tectonics, and vegetation. Climate has been identified as one 

of the most significant controls on landscape evolution. Several studies revealed that 

drainage density is influenced by the long-term climate and has U-shape relationship 

between drainage density and climate [Abrahams, 1984; Madduma Bandara, 1974; Melton, 

1957]. The U-shape relationship suggests that two different basins can exhibit similar 

drainage densities, although, in a different climate. 

In chapter 2, we investigate the effects of different climatic conditions on structural 

patterns (geometry and topology) of river networks obtained from basins with varying 

climate aridity index but equal drainage density. The structure of the two-dimensional river 

network was translated into a one-dimensional space using the concept of width functions. 

This transformation enabled us to study network structure by focusing on the complexity of 

the width function quantified using a multiscale entropy framework. 

Our analysis indicates that basins with dry climate have higher relative relief and 

higher channel concavity compared to humid basins. The dry basins exhibit higher entropy 

as compared to humid basins across several spatial scales. The higher entropy for dry basins 

suggests that dry basins, in general, contain a more complex organizational structure of river 

network over multiple scales. Higher entropy also suggests more heterogeneity of river 

network in dry basins. This heterogeneity is manifested in channels and their junctions 

resulting in larger junction angle, smaller junction density, and larger link length in dry 



 

103 
 

basins compared to humid basins. Given the fact that our study was focused on basins with 

equal drainage density, our observations clearly demonstrate that climate controls on 

drainage networks go beyond drainage density and cover several geometric and topologic 

features across multiple scales. In other words, by comparing basins with the same drainage 

density in very different climates, we show that it is not the drainage density which creates 

the network complexity but rather is the topology (arrangement of channels) together with 

geometry of the river network that create such complexity (see Ranjbar et al. [2018] for more 

details). 

In chapter 3, we used numerical simulations to investigate the branching structure of 

the channel networks. The parameters of the simulated landscapes can represent variable 

climatic conditions. For example, higher 𝐷  (diffusion coefficient) and 𝐾  (advection 

coefficient) may represent humid climate whereas lower 𝐷  and 𝐾  may represent dry 

climate. These assumptions were verified from 100 basins across the United States located 

in various climatic conditions quantified via mean annual precipitation (MAP).  

The initiation, evolution, and extent of a channel network is controlled by the 

competition between the advection and diffusion on a landscape controls and can be 

characterized by the ratio between the dimensionless diffusion and advection coefficients, 

commonly referred to as Péclet number, 𝑃𝑒 . However, with different magnitude 

combinations of diffusion and advection coefficients, the same 𝑃𝑒  and thus the same 

characteristic length scale can be obtained. Different magnitudes of diffusive and advective 

processes manifest themselves on the landscape with very different geomorphic and 

topologic properties.  
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In order to study the effect of changing climatic conditions on the channel network 

branching structure, we first simulated a landscape with a set of parameters (𝐷, 𝐾, and 𝑚), 

referred to as original scenario, chosen based on a 𝑃𝑒 equal to 2600. This value corresponds 

to the landscapes with branching channel networks (see Perron et al. [2008]). Keeping the 

ratio of 𝐷 and 𝐾 constant for the simulated landscapes, we performed two different sets of 

simulations referred to as humid and dry scenarios. For humid and dry scenarios, we 

increased (mimicking humid conditions) and decreased (mimicking dry conditions) both 𝐷 

and 𝐾 systematically from 10 to 90% with increments of 10%, respectively. This way, the 

competition between the soil creep and fluvial incision was maintained the same, and 

simultaneously different climatic conditions were simulated. Different morphologic and 

topologic behaviors were observed for the simulated scenarios. A slightly lower mean relief 

was observed for the landscapes of humid scenario whereas a considerably higher mean 

relief was obtained for the landscapes in dry scenarios compared to the landscape in the 

original scenario. The signature of different climatic conditions was not limited to the 

changes in relief only; it was also manifested in the branching structure of the channel 

networks of the simulated landscapes. For the landscapes from humid conditions, a more 

side-branched channel structure was observed compared to the landscapes from dry 

conditions. These results are consistent with the observations from natural basins where the 

Tokunaga parameter, c-value (implying side-branching) increases with increasing 

precipitation.  

From the above discussion, one can infer that landscapes with similar competition 

between the advective and diffusive processes might contain a completely distinct branching 
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channel network structure depending on the magnitudes of these processes. In other words, 

although the ratio between fluvial incision and soil creep (determined by the 𝑃𝑒) may be the 

same for different landscapes, the strength of these processes control the branching channel 

network structure of the landscapes, suggesting distinct signatures in different climatic 

conditions (for more details [Ranjbar et al., 2020b] under consideration). 

In chapter 4, we investigate the complexity of CN (i.e., complexity in channel 

organization and flux transport patterns) from 2 different perspectives. The complexity in 

channel organization and flux transport are referred to as the structural and functional 

complexity, respectively. Width function (W(x)) and incremental area function (IA(x)) are 

used to explore the influence of topology on structural and functional complexity. Tokunaga 

self-similarity model characterizes the topology of a CN by quantifying the degree of side-

branching. An entropy-based approach that computes the repetition of patterns in series 

(here W(x) and IA(x)) and quantifies the degree of randomness at different spatial-scales 

was used to assess the variability of W(x) and IA(x). Based on our results, functional 

complexity is higher than structural complexity across scales. The additional complexity 

emerged in IA(x) is attributed to the effects of hillslope processes, since unlike W(x), IA(x) 

considers the information of hillslopes and CN organization patterns. Both structural and 

functional complexities are influenced by topology based on the increasing relationship 

between c-value and entropy at all considered spatial-scales. However, due to a larger 

𝑆𝑙𝑜𝑝𝑒𝐸−𝑐, functional complexity is more influenced by topology compared to the structural 

complexity. More specifically, for catchments with different side-branching degrees (i.e., c-

value) the functional complexity may be significantly different compared to structural 
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complexity. The slope of increase in both structural and functional complexity versus 

topology increases with scales. The difference in the increase of slope with topology as a 

function of scales between W(x) and IA(x) also increases with scales and peaks at a spatial-

scale of~ 45 𝑚. The average hillslope length for the 40 natural catchments studied in here is 

56.5 m which is similar to the scale of peak of slope difference for W(x) and IA(x) computed 

by the complexity analysis via multiscale entropy approach. This result suggests that indeed 

hillslopes contribute to higher complexity in catchments compared to CNs.  

Finally, our analysis provides meaningful information (e.g. represented by the 

magnitude of difference between W(x) and IA(x) entropic contents) on how much hillslope-

scale complexity should be accounted for in predictive modeling of hydrological processes 

at the catchment scale (for more details see Ranjbar et al. [2020a] under consideration).   

In chapter 5, we investigate the underlying dynamics of rivers with varying flow 

conditions using their bed elevation time series. The data used in this study were collected 

from an experimental flume in the Main Channel facility at the St. Anthony Falls Laboratory 

at three distinct discharges of 1500, 2600, and 2800 L/s. The multiscale entropy (MSE) 

method is used to characterize the bed elevation fluctuations. Based on our results, bed 

elevations of higher discharges exhibit higher MSE compared to bed elevations of lower 

discharges. This indicates that the fluctuation pattern is more complex for the bed elevation 

of higher discharges compared to lower discharges suggesting that the bedform structure at 

higher discharge is less predictable compared with lower discharge and is attributed to both 

nonlinearity and linear correlation of the bed elevation series. 
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 The surrogates of the bed elevation time series were computed using the IAAFT 

algorithm to further explore the factors contributing to this complexity. The IAAFT method 

destroys any inherent nonlinearity but preserves the linear correlation structure of the 

original series. A lower MSE is observed for surrogates compared to the original series. The 

difference between the MSEs of the original and surrogate bed elevation time series indicates 

the presence of nonlinearity in the bed elevation time series which is due to the distinct 

spatial arrangement of extreme heterogeneous fluctuations. This is consistent with the 

presence of intermittency, computed based on structure function analysis and indicates the 

relative contribution of inherent nonlinearity to the overall complexity. In other words, our 

results suggest that the entropy of bed elevation series across different scales is a function 

of both linear correlation and heterogeneous arrangement of fluctuations. We also show that 

the MSE of bed elevation surrogates is higher in the case of higher discharge compared to 

the lower discharge. This is related consistent with results of the spectral slope of PSD 

observed in Figure 20 where a higher spectral slope is observed for the bed elevation of 

higher discharges compared to the lower discharge. In addition, the asymmetry analysis of 

the bed elevation increments, suggests that the asymmetry may not contribute to the 

complexity directly. In summary, our complexity analysis can provide useful insights into 

various riverine processes and their interactions with river bed topography and can be 

further used for developing better predictive models of sediment transport. Our results 

indicate the amount of information on physical processes (e.g. multiscale migrating velocity, 

bedform height and bedform length variabilities) that should be included in the predictive 

modeling of sediment transport (for more details see Ranjbar and Singh [2020]). For 
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example, a higher entropy in bed elevation fluctuations at higher discharges indicates that 

for the accurate prediction of sediment transport at higher discharges one needs to account 

for multiscale variability in bedform characteristics [Nikora and Hicks, 1997] 

Some interesting research directions for future work are listed below: 

1. Explore the effects of initial conditions on basin formation and evolution. The 

ability of landscapes to preserve different types of drainage perturbation can be 

characterized throughout the evolution process as the memory of its initial 

condition. 

2.  Explore the role of variabilities in the ecosystem such as vegetation and 

biodiversity in rivers on the structural and functional complexities on channel 

networks. Also, the impact of changing climate and human activities can be 

considered explicitly by comparing the functional and structural complexities in 

catchments for example located in arid versus wet climate as well as comparing 

the river networks of natural versus urbanized areas which can be a subject for 

future studies.  

3. The MSE approach has the potential to discern the signature of perennial and 

ephemeral streams of a river network based on flow duration curves [Ghotbi et 

al., 2020]. In addition, the MSE approach can be used to explore the role of 

changing hydrologic forcing (e.g. hurricane and drought) on wetlands dynamics.  

Wetlands offer numerous imperative functions by supporting a large diversity of 

lifeforms and act as interacting tissues between upland (e.g. river networks) and 

coastal areas [Sandhu et al., 2016; Tahsin et al., 2020].   
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4. Using the stratigraphic data i.e. the spatial and temporal distribution of 

sedimentary layers, one could investigate the complexity in depositional patterns 

and the factors resulting in complexity such as bedforms. 
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