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ABSTRACT

Thin-ply composite laminates capable of enduring high strains are currently under investigation for

compliant deployable spacecraft structures. Deployable structures such as booms fabricated from

these materials can be flattened and coiled to high curvatures, achieving a compact configuration

for stowage. Once in orbit, they are released with minimal actuation for deployment, allowing the

operational geometry to be recovered. Previous studies have shown that the viscoelastic properties

of the composite epoxy matrix can negatively impact final shape accuracy due to stress relaxation

during stowage. In addition, since the strain energy stored is relied upon for deployment, consid-

erable relaxation can potentially result in deployment stall. Stress relaxation in composites and the

aforementioned effects it can have on deployment have not been analyzed sufficiently for space

applications. The objective of this thesis is to investigate the moment relaxation and curvature

recovery behavior of thin-ply composite laminates through a combination of analytical, numerical,

and experimental approaches. The viscoelastic Kirchhoff plate model that serves as the theoretical

basis of the analyses is first presented. An analytical solution for the recovery of a composite plate

after stowage is derived. The numerical integration of the viscoelastic plate constitutive equations

and its implementation as a user-defined subroutine in finite element programs is then described.

The subroutine allows relaxation of 3D thin-shell structures to be modeled, and is applied to simu-

late stowage and recovery of a thin-ply composite currently of interest for solar sailing applications.

The subroutine is then compared with results obtained from experiments for a thin-ply composite

for bending relaxation and curvature creep recovery after being unloaded.
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CHAPTER 1: INTRODUCTION

Deployable space structures are designed to be packaged and stowed for launch and subsequently

deployed into their operational geometry once in orbit. Although power, communication, and

propulsion demands typically require large structures to support mission capabilities, launch ve-

hicle mass and volume constraints must not be exceeded. To enforce the opposing dimensional

requirements of payload standards and mission performance, components such as solar arrays

and antennas can be integrated with a deployable supporting structure. Lattice deployable struc-

tures are commonly employed, which are comprised of rigid links connected by articulated joints

and hinges, allowing the structure’s configuration to be mechanically controlled [1]. However, as

spacecraft systems have become smaller, dramatic reductions in satellite size and cost have oc-

curred. Consequently, a demand for advanced deployable concepts has been realized to achieve

packaging ratios that traditional lattice structures with rigid links cannot achieve.

Strain energy deployable boom concepts have been developed for spacecraft applications since

the 1960’s [2] to achieve more efficient packaging, while reducing weight and complexity of de-

ployment mechanisms. These Collapsible Tubular Masts (CTMs), with a flight heritage since the

Apollo missions [3], can be flattened along their length and coiled for a compact stowage configu-

ration. The constraints applied to maintain this configuration are then removed, allowing the strain

energy acquired during the applied packaging deformation to initiate deployment. As a result,

very little actuation is required to achieve the final operational configuration, thereby reducing the

number of deployment elements required and increasing reliability. Although deformable booms

have historically been manufactured from thin metal sheets, carbon fiber reinforced plastic (CFRP)

materials have been of interest to improve deployable boom performance for the last few decades.

CFRP booms fabricated from high strain thin-ply laminates are currently under investigation by

1



NASA for CubeSat applications, namely solar sailing [4]. When compared to their metallic coun-

terparts, high strain thin-ply composite furlable booms are capable of enduring much larger cur-

vatures and can be rolled to a smaller diameter for compact stowage [5]. In addition, lay-ups

comprised of spread tow fabric, with ply thickness as small as 0.02 mm [6], are less likely to

acquire any damage or delamination during this packaging process. CFRP materials also posses

a near zero coefficient of thermal expansion, a property which must be especially considered for

metallic deployables in drastically fluctuating thermal environments such as low earth orbit [7].

Lastly, the large specific stiffness of composites allows for overall weight to be reduced while

maintaining deployed stiffness. With the low-cost of development and additional design freedom

to create optimal lay-up configurations, CFRP booms are an attractive option to increase CubeSat

potential, while maintaining the strict size and mass constraints enforced by secondary payload

adapters.

The effects of long-term stowage are a present matter of interest for deformable deployable booms,

as they can be subjected to stowage periods on the order of months or even years. The current in-

vestigations into the stowage problem for composite booms could be traced to the initial failed

deployment of the lenticular jointed MARSIS antenna on the Mars Express, where it was discov-

ered that significant stress relaxation during the two years it was packaged resulted in a complete

stall of boom deployment [8]. This event illustrated the need for careful consideration of creep and

stress relaxation effects during long-term stowage, particularly for booms which make use of pack-

aging strain for much of the deployment energy. Although these effects may not end in the severe

case observed by the Mars Express, accuracy of final deployed shape may be compromised, which

in turn can cause dramatic reductions in deployed stiffness if the cross section is not sufficiently

recovered.

The focus of this work is to implement and validate a numerical model so that it may be utilized

in the analysis of thin-ply composite deployable structures. For comparison, a similar approach
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previously taken towards acquiring an exact solution for relaxation and creep recovery of a vis-

coelastic structure is utilized for a thin-ply composite plate under pure bending. Furthermore, the

Column Bending Test is also modeled such that relaxation tests of thin-ply composite coupons can

be compared against the numerical model.
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CHAPTER 2: LITERATURE REVIEW

The mechanics and dynamics of a more simple form of self-deployable structural element, known

as tape springs, has been well researched and documented [9] [10]. These shell structures, which

are straight and transversely curved in their unloaded configuration as shown in 2.1, exhibit a

reversible buckling behavior when folded. Tape springs can return to their initial geometry by

simply releasing the folding constraints, utilizing the strain energy acquired during folding for

deployment.

Figure 2.1: Tape spring geometry

As CFRP laminates became of interest for self-deployable structures, an emphasis was placed on

investigating the effects of stress relaxation on deployment characteristics. Stress relaxation in

CFRPs are inherited from the viscoelastic properties of the polymer matrix, therefore initial efforts

were spent investigating the effect of a polymer’s viscoelastic properties on an isotropic tape spring

by Kwok et. al [11]. As a result of this work, deployment behavior of a tape spring after being

folded for varying time at different temperatures was able to be reasonably predicted by utilizing

the polymers viscoelastic properties in a finite element model.

Although deployment dynamics are an important characteristic of the structure, shape recovery af-

ter deployment determines the operational stiffness. Since post-deployment boundary conditions

are that of an unloaded structure, this phase consists of creep recovery behavior under zero forces
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and moments. Creep compliance of the material is not sufficient to determine this behavior, how-

ever, as Kwok has previously shown that the shape recovery of an isotropic viscoelastic beam also

depends on the relaxation modulus, applied deformation, and the total time and temperature during

deformation [12]. The analytical solution provided by this work gives insight into the shape recov-

ery of a viscoelastic structure, however, it’s application is limited to only isotropic materials under

small deformations (ie, one-dimensional linear viscoelasticity). Since large deformation numeri-

cal analysis of composite deployables is required, however, a more generalized material model is

desired.
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CHAPTER 3: METHODOLOGY

Theoretical background

In order to understand the behavior of thin structural elements fabricated from anisotropic vis-

coelastic materials, the constitutive equations of linear viscoelasticity is first reviewed. For mate-

rials exhibiting linear viscoelastic behavior, stress at any time t can be calculated by the Boltzman

superposition integral:

σi(t) =
∫ t

0
Ci j(t− τ)

dε j

dτ
dτ, (3.1)

where σ and ε are the stress and strain tensors in Voigt notation, Ci j is the 6x6 relaxation modulus

tensor, and τ is the variable of integration. Each entry in Ci j are functions of time and temperature,

and as in elasticity theory, the number of independent entries depends on material symmetry. The

reciprocal stress-strain relationship can be expressed in terms of the creep compliance tensor, Si j:

εi(t) =
∫ t

0
Si j(t− τ)

dσ j

dτ
dτ, (3.2)

Each entry of Ci j and Si j are represented by a prony series, so that their values can be calculated at

a particular time by:

Ci j(t) =Ci j,∞ +
K

∑
k=1

Ci j,k exp(
−t

atρk
) (3.3)

Si j(t) = Si j,0 +
K

∑
k=1

Si j,k[1− exp(
−t

atλk
)] (3.4)
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Where Ci j,∞ are the long term moduli, Si j,0 are the instantaneous creep compliances, Ci j,k and Si j,k

are the prony coefficients, K is the number of prony coefficients, and ρk and λk are the relaxation

and retardation times, respectively. Temperature effects are accounted for by a time shift factor, at ,

which can be approximated by the Arrhenious law equation:

log(at) =−
Ea

2.303R
(

1
T
− 1

T0
) (3.5)

where log is of base ten, Ea is the activation energy, R is the universal gas constant, T is the current

temperature, and T0 is the reference temperature. Utilizing Eq. (3.5) has the benefit of allowing

changes in temperature to be considered by a single additional parameter. Qualitatively, an increase

in temperature results in an acceleration of creep and relaxation effects, which is analytically ac-

counted for by a shift in time scale. If the same shift factor applies to all relaxation and retardation

times, the material is termed thermorheologically simple, which is assumed to apply to composites

herein. The validity of applying this assumption to thin composite laminates has been previously

been shown [13].

We begin constructing the viscoelastic plate model by invoking kirchoff plate assumptions, which

simplifies the strain field:

ε̄1 = ε̄1 + x3κ̄1 ε2 = ε̄2 + x3κ̄2 ε6 = ε12 (3.6)

ε̄3 = ε̄4 = ε̄5 = 0 (3.7)

where ε̄ and κ̄ are the strains and curvatures of the plate mid-surface, x3 is the out-of-plane dis-

placement from the mid-surface, and ε12 is the in-plane engineering shear strain. With this sim-

plification, the force and moment resultants N̄ and M̄ can acquired by integrating stresses over the
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thickness of the plate, h, in the following manner:

N̄1 =
∫ h

2

− h
2

σ1dx3 N̄2 =
∫ h

2

− h
2

σ2dx3 N̄3 =
∫ h

2

− h
2

σ6dx3 (3.8)

M̄1 =
∫ h

2

− h
2

σ1x3dx3 M̄2 =
∫ h

2

− h
2

σ2x3dx3 M̄3 =
∫ h

2

− h
2

σ6x3dx3 (3.9)

The strain fields given by Eqs. (3.6) and (3.7) are substituted into Eq. (3.1). The resulting stress

definitions are then plugged into the force and moment resultant defined by Eqs. (3.8) and (3.9) to

acquire the viscoelastic plate model:

N̄α(t) =
∫ t

0
Aαβ (t− τ)

¯dεβ

dτ
dτ +

∫ t

0
Bαβ (t− τ)

¯dκβ

dτ
dτ, (3.10)

M̄α(t) =
∫ t

0
Bαβ (t− τ)

¯dεβ

dτ
dτ +

∫ t

0
Dαβ (t− τ)

¯dκβ

dτ
dτ, (3.11)

where the A, B, and D matrices are the extensional relaxation stiffness, extension-bending coupling

relaxation stiffness, and bending relaxation stiffness, respectively, each with a size of 3-by-3. Here,

α and β range from 1 to 3, with 1 and 2 representing in-plane directions, and 3 is the in-plane shear

and twist for strain and curvatures, respectively. The reciprocal relationships to acquire strains and

curvatures is defined as:

ε̄α(t) =
∫ t

0
aαβ (t− τ)

¯dNβ

dτ
dτ +

∫ t

0
bαβ (t− τ)

¯dMβ

dτ
dτ, (3.12)

κ̄α(t) =
∫ t

0
cαβ (t− τ)

¯dNβ

dτ
dτ +

∫ t

0
dαβ (t− τ)

¯dMβ

dτ
dτ, (3.13)
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where a is the extensional creep compliance, b and c are the extension-bending coupling creep

compliances, and d is the bending creep compliance.

Numerical implementation

Since the form of the viscoelastic plate model is computationally expensive for a numerical model

with many elements, a more efficient method for employing Eqs. (3.10) and (3.11) in finite ele-

ment models is desired. In order to ensure finite element implementation of the viscoelastic plate

model remains practical, we must first convert it to a more numerically efficient form. In order to

accomplish this, the approach taken by Zocher et al. [14] towards Eq (3.1) is applied to Eqs. (3.10)

and (3.11) to acquire an incremental form, which is as follows

N̄α(tn+1) = N̄α(tn)+∆N̄α(tn+1) M̄α(tn+1) = M̄α(tn)+∆M̄α(tn+1) (3.14)

where N̄α(tn+1) and M̄α(tn+1) are the force and moment resultants of an individual element at

the current time increment and tn+1 and tn is the time at the current and previous increments,

respectively. The incremental change in force and moment resultants, ∆N̄α(tn+1) and ∆M̄α(tn+1),

are calculated by:

∆N̄α(tn) = A′
αβ

(tn+1)∆εβ (tn+1)+B′
αβ

(tn+1)∆κβ (tn+1)−∆NR
α(tn) (3.15)

∆M̄α(tn) = B′
αβ

(tn+1)∆εβ (tn+1)+D′
αβ

(tn+1)∆κβ (tn+1)−∆MR
α(tn) (3.16)

Here, ∆εβ and ∆κβ are the changes in shell section strains and curvatures between the previous
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and current increment, which are assumed be linear over time. The remainder of the terms in Eqs.

(3.15) and (3.16) are given by:

A′
αβ

= Aαβ ,∞ +
1

∆tn+1

K

∑
k=1

ρkAαβ ,k[1− exp(
−∆tn+1

ρk
)] (3.17)

B′
αβ

= Bαβ ,∞ +
1

∆tn+1

K

∑
k=1

ρkBαβ ,k[1− exp(
−∆tn+1

ρk
)] (3.18)

D′
αβ

= Dαβ ,∞ +
1

∆tn+1

K

∑
k=1

ρkDαβ ,k[1− exp(
−∆tn+1

ρk
)] (3.19)

∆NR
α(tn) =

K

∑
k=1

[1− exp(
−∆tn

ρk
)]

3

∑
β=1

[Tαβ ,k(tn)+Uαβ ,k(tn)] (3.20)

∆MR
α(tn) =

K

∑
k=1

[1− exp(
−∆tn

ρk
)]

3

∑
β=1

[Vαβ ,k(tn)+Wαβ ,k(tn)] (3.21)

where Tαβ , Uαβ , Vαβ , and Wαβ are vectors of length K, which are stored to be used at the next

time increment once they are calculated by:

Tαβ ,k(tn) = Tαβ ,k(tn−1)exp(
−∆tn

ρk
)+ρkAαβ ,k(

∆εβ (tn)
∆tn

)[1− exp(
−∆tn

ρk
)] (3.22)

Uαβ ,k(tn) =Uαβ ,k(tn−1)exp(
−∆tn

ρk
)+ρkBαβ ,k(

∆κβ (tn)
∆tn

)[1− exp(
−∆tn

ρk
)] (3.23)
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Vαβ ,k(tn) =Vαβ ,k(tn−1)exp(
−∆tn

ρk
)+ρkBαβ ,k(

∆εβ (tn)
∆tn

)[1− exp(
−∆tn

ρk
)] (3.24)

Wαβ ,k(tn) =Wαβ ,k(tn−1)exp(
−∆tn

ρk
)+ρkDαβ ,k(

∆κβ (tn)
∆tn

)[1− exp(
−∆tn

ρk
)] (3.25)

To consider temperature effects in the numerical model, time-temperature superposition can be

employed. The reduced time, t ′, is calculated by simply dividing the current time t by the shift

factor at as described in Eq. (3.5). As a result, the reduced time step ∆t ′ can be calculated simply

as:

∆t ′n =
∆tn
at

(3.26)

The jacobian, or tangent stiffness, of a finite element shell section, J, is a 6-by-6 matrix defined as

the derivative of the section forces and moments of the current time step with respect to the current

strains and curvatures, that is:

Jαβ =
∂Fα(tn+1)

∂Eβ (tn+1)
(3.27)

where

F =

N̄

M̄

 , (3.28)
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and

E =

ε̄

κ̄

 (3.29)

Applying Eq. (3.27) to Eqs. (3.15) and (3.16), only terms dependent on the current time step

remain. By default, the jacobian matrix is symmetric in Abaqus [15], thus reducing the number of

terms which must be computed. Non-symmetric tangent stiffness is not considered in this work.

The force/strain component of the stiffness matrix, which represents the upper left quadrant of the

jacobian, is given by:

∂Nα(tn+1)

∂εβ (tn+1)
= Aαβ ,∞ +

1
∆tn+1

K

∑
k=1

ρkAαβ ,k[1− exp(
−∆tn+1

ρk
)] (3.30)

Similarly, the bottom right portion of the jacobian, representing the moment/curvature portion of

the tangent stiffness, is also given by:

∂Mα(tn+1)

∂κβ (tn+1)
= Dαβ ,∞ +

1
∆tn+1

K

∑
k=1

ρkDnm,k[1− exp(
−∆tn+1

ρk
)] (3.31)

The iterative procedure described for calculating section forces and moments in terms of section

strains and curvatures was implemented in Abaqus 2017 via a user generalized shell section sub-

routine (UGENS). The subroutine was written in Fortran and is shown in Appendix A.
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Analytical solution for a composite viscoelastic plate

In order to validate the numerical model, an exact solution is desired. A simple case of a flat

composite plate under pure bending is examined for comparison. As illustrated by Eqs. (3.10)

and (3.11), the current state of viscoelastic material not only depends on the current loading or

deformation, but also their histories. Boundary conditions for strain energy deployable booms

would traditionally consist of applied displacements/rotations to achieve the stowage configura-

tion, then switching to a prescribed zero force/moment for deployment. To acquire the true creep

recovery after deployment, the entire history of the aforementioned boundary conditions must be

considered.

Beginning with a composite plate initially unloaded, the stowage configuration is assumed to be

achieved as a step input. The effects on neglecting the time history during which deformation is

applied has previously shown to be negligible after a period of ten times the loading history [12].

The time history of curvatures up to the end of stowage are therefore:

κ̄1 = κsH(0), κ̄2 = κ̄3 = 0, t < ts (3.32)

where κs is the curvature applied for stowage, ts is the stowage time, and H is the heaviside step

function. Plugging the time history into Eqs. (3.10) and (3.11), we acquire the force and moment

relaxation during stowage:

N̄α(t) = Bα1(t)κs (3.33)
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M̄α(t) = Dα1(t)κs (3.34)

As previously mentioned, force and moments must be defined as zero in order to achieve deploy-

ment. Again, we assume this occurs instantaneously to acquire the complete force and moment

time histories:

N̄α(t) = Bα1(t)κs[1−H(t− ts)] (3.35)

M̄α(t) = Dα1(t)κs[1−H(t− ts)] (3.36)

Plugging Eqs. (3.35) and (3.36) into Eq. (3.13), we achieve the following representation for bend-

ing creep recovery:

κ̄1(t) = κs[1− Iκ − IIκ ], t > ts (3.37)

where

Iκ = d1α(t− ts)Dα1(ts)+
∫ t

ts
d1α(t− τ)

dDα1

dτ
dτ (3.38)

IIκ = c1α(t− ts)Bα1(ts)+
∫ t

ts
c1α(t− τ)

dBα1

dτ
dτ (3.39)
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For a comparison between the exact solutions for moment relaxation during stowage and creep re-

covery in Eqs. (3.34) and (3.37) with the numerical approximation described in section 3, a finite el-

ement analysis is conducted for a square composite plate under pure bending. The ABD relaxation

matrix for a four-ply plain weave thin-ply CFRP fabricated from M30S fabric pre-impregnated

with Patz Materials and Technology’s F7 resin is utilized, which has been previously determined

[16]. Since this composite laminate is balanced and symmetric about the plate mid-surface, the B,

b and c coupling matrices are zero and thus the exact solution is simplified. The A and D relaxation

matrices were used in the UGENS subroutine previously described. The prony coefficients used

are shown in Table 3.1.

Table 3.1: Long term moduli and prony coefficients for a [0/90]4 plain weave thin-ply composite
in Newtons, millimeters, and seconds

i ρi(seconds) A11i (N/mm) A12i (N/mm) A33i (N/mm) D11i (N) D12i (N) D33i (N)
∞ - 15418.47 614.19 48.70 77.63 0.20 0.22

1 1.89E+01 37.19 9.43 14.41 0.13 0.05 0.06
2 1.00E+02 95.54 23.39 36.28 0.34 0.12 0.16
3 1.00E+03 139.44 30.92 50.08 0.48 0.16 0.22
4 2.00E+04 62.61 13.55 22.27 0.22 0.07 0.10
5 1.00E+05 98.06 19.31 33.01 0.33 0.11 0.15

6 1.95E+06 59.46 11.45 20.06 0.20 0.06 0.09

7 1.77E+07 47.94 8.63 14.94 0.15 0.05 0.07

8 1.74E+08 193.82 36.91 65.91 0.65 0.21 0.29

9 1.38E+09 280.85 33.67 72.31 0.79 0.24 0.32

10 1.00E+10 243.42 29.63 76.87 0.80 0.25 0.34

11 1.00E+11 571.16 4.30 85.60 1.13 0.28 0.38

12 1.00E+12 166.29 1.81E-09 84.63 0.85 0.27 0.38

13 1.00E+13 1943.60 4.44E-08 113.95 2.46 0.37 0.51

14 1.00E+14 683.26 1.54E-07 6.33 0.69 0.01 0.03
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A 100 mm x 100 mm plate was defined in Abaqus and meshed with 400 S4R elements with a

maximum dimension of 5 mm. To generate the entire history, the analysis was conducted in four

static steps: Bending, Stowage, Deployment, and Recovery. During the bending step, opposite

rotations of 45 degrees were applied to the top and bottom edges of the plate shown in Fig. 3.1

over a period of 10 seconds, and this configuration was maintained for two years for the stowage

step. For deployment, the bottom edge boundary condition was maintained, and reaction forces

and moments at the end of stowage were linearly ramped to zero over a period of 10 seconds. At

the end of the deployment step, the plate was allowed an additional one year to recover. Reaction

moments and end rotations were extracted during the stowage and recovery steps, respectively, to

compare with solutions acquired from Eqs. (3.34) and (3.37).

X

Y

Z

Figure 3.1: Finite element model of a composite plate

Column Bending Test

Up until recently, experimental testing of thin materials under bending have been challenging en-

deavor. With the development of the Column Bending Test (CBT) fixtures, however, the response

of a thin-ply composite laminate under pure bending can be characterized by a simple experiment
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utilizing any common uniaxial testing machine [17]. CBT equations can be used to calculate mo-

ment and curvature as a function of crosshead displacement (δ ), measured force (P), gauge length

(s), coupon thickness (t), fixture rotation (φ ), and dimensions of the CBT fixtures. The geometry

of the CBT experiment is shown in 3.2.

θ

s

L

L

2
δ

2
δ

2
ϕθ +

2
ϕθ +

ϕ

r

P

0r

Fixture

Figure 3.2: Column Bending Test geometry

The relationship between crosshead displacement and fixture rotations is given by:

δ = s[1− 2
φ

sin(
φ

2
)]+2L[cos(θ)− cos(θ +

φ

2
)] (3.40)
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Where L is the distance from pin axis to coupon clamped edge, and θ is the angle between the

loading axis and a straight line from fixture pin to the mid-plane of the coupon clamped edge. The

angle θ depends only on L and the coupon/pin axis offset at the beginning of the test r0,

tan(θ) =
r0

L
(3.41)

Using the thickness of the coupon, t, the initial offset between loading axis and coupon mid-plane,

r0:

r0 = 1.97866+
t
2

(3.42)

where r0 and t are in millimeters, and 1.97866 represents the perpendicular distance between load-

ing axis and nearest clamping surface. Once φ is determined, the curvature, κ at a particular

configuration can be calculated by:

κ =
φ

s
(3.43)

To calculate the moment corresponding to the current curvature, the moment arm r must first be

calculated as:

r =
s
φ
[1− cos(

φ

2
)]+Lsin(θ +

φ

2
) (3.44)

The moment can then be calculated by

M = Pr (3.45)
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A Column Bending Test experiment was performed on a 0.267 mm thick 4-ply plain weave thin-ply

coupon with a procedure similar to the previous flat plate bending simulations. Using a 25.51 mm

wide coupon with a gauge length (s) of 32.15 mm. The fixtures were initially aligned and pinned

in a Mechanical Testing System (MTS) uniaxial testing machine (Model C43-504), as shown in

Fig. 3.3, which was used to monotonically drive the top fixture downwards while the bottom

fixture remains fixed. Crosshead displacement and force measurements using a 25 N load cell

were acquired at rate of 2 Hz. Temperature was controlled throughout the test by containing the

coupon and fixtures assembly inside a Thermcraft environmental chamber (Model LBO-24-10-10-

1T-J14642/1A) with Inconel covered air heaters controlled by a Eurotherm temperature controller

(2404/CP/VH/LH/TC).

Figure 3.3: Column Bending Test setup
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Experiments were carried out in five steps: thermal soak, load, relaxation, unloading, and creep

recovery. During the thermal soak step, the chamber was heated to a temperature of 60◦ C and

maintained for a period of one hour. During this period, load control was executed to adjust the

crosshead and maintain a zero measured force, thus keeping the coupon unloaded. After the soak

period, the crosshead was then driven downwards to achieve a curvature of 0.05 mm-1 over a period

of 100 seconds. This configuration was then maintained for a period of one hour to observe the

relaxation of the coupon. At the end of the relaxation period, the load was then reduced at a rate

of 0.05 N/s until a zero force was measured by the load cell. This unloaded configuration was then

maintained for two hours by again adjusting crosshead to keep a zero measured force during the

creep recovery portion of the experiment.

The Column Bending Test geometry shown in Fig. 3.4 was modeled in Abaqus for a coupon with

gauge length (s) of 34 mm and width of 25.4 mm. The coupon was meshed with S4R elements

with a maximum dimension of 0.5 mm. To replicate the loading conditions, two reference points

were defined which coincide with the intersection of testing machine loading axis and rotation axes

of the CBT fixtures, which are offset from the plane of coupon in the initial configuration. The

reference points were placed on the mid-line of the coupons gauge length with a perpendicular

offset 25.4 mm from the free edge and 1.98 mm from the plane of the coupon. A rigid body tie

was defined between the coupon free edges and their respective reference nodes to simulate the

geometry of the CBT fixtures.b

The ABD relaxation matrix of the 4-ply plain weave composite was also used in the Column Bend-

ing Test simulation. To account for temperature changes in the material, Eq. (3.5) was utilized

in the subroutine, using the experimentally determined activation energy of the epoxy matrix (

Ea = 170kJ/mol ).
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  RP−2

  RP−1

Z

Y

X

Figure 3.4: Column Bending Test model

The CBT simulation was carried out with a near identical procedure as the experiments, however,

the thermal soak step was not simulated and instead the coupon was defined to be 60◦ C at the

beginning of analysis via a predefined field. For the entirety of the simulation, reference point

2 (shown in Fig. 3.4) was given a pinned condition by prescribing all translations and rotations

to be zero except for rotations about the x-axis, which was left free. The x-direction rotations

of reference point 1 was also left free for the entire simulation, and only y-displacements were

prescribed to simulate crosshead displacement. In the initial loading step shown in Fig. 3.5, a

displacement of 24.345 mm was applied to reference point 1 over 120 seconds. The configuration

at the end of the loading step was then maintained for one hour for the relaxation step. To unload

the coupon, the reaction force at the end of the relaxation step were ramped to zero over 120
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seconds.
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Figure 3.5: Longitudinal curvature during loading of Column Bending Test model in (a) initial
configuration (b) halfway through loading (c) final configuration
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CHAPTER 4: RESULTS

Moment relaxation results are compared in Fig. 4.1 for the exact solution and finite element simu-

lation of the 4-ply flat composite plate under pure bending. During the two year relaxation period,

almost no difference is observed between the two solutions. Similarly, in the one year period after

the plates are unloaded, the solutions for residual curvature in the initial unloaded condition and

their subsequent creep recovery are near identical, as shown in Fig. 4.2.
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Figure 4.1: Moment relaxation for exact solution and FE model

Column Bending Test equations are used to compare moment and curvature between experimental

and numerical results. Moment vs. curvature for both results are shown during the loading portion

in Fig. 4.3. A slightly higher bending stiffness is observed in the experiment, as illustrated by

the slightly steeper moment versus curvature line. This difference is attributed sample to sample

variance in laminate thickness, which is prevalent in composites. Coupon thickness was measured

to be 0.267 mm, whereas assumed thickness in the micromechanical model used to determine ABD
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relaxation was 0.228 mm.
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Figure 4.2: Creep recovery for exact solution and FE model

Contour plots of section moments at the beginning and end of the model relaxation portion is shown

in Fig. 4.6. Due to the difference in bending stiffness during the loading period, moment relaxation

becomes offset as shown in Fig. 4.7, however, the offset appears to be relatively constant. To better

compare relaxation behavior, moment relaxation is normalized by the initial moment at the end of

the loading step. Normalized moment relaxation is shown in Fig. 4.10, showing good agreement

between the experiment and simulation.

Curvature and moment over time during the unloading portion for the experiment and simulation

are shown in Figs. 4.5(a) and 4.5(b), respectively. Since force rate was used to control unloading

in the experiment, and a slightly higher forces was measured at the end of the relaxation period,

total time to unload in the experiment was slightly higher than that of the simulation. Also, as

shown in Figs. 4.6(a) and 4.6(b), the difference in moment/curvature paths during unloading is

attributed to the MTS software determining an initial crosshead rate to achieve the desired force
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Figure 4.3: Moment vs. curvature during loading for experiment and simulation

rate. However, since the relationship between force and displacement is not linear, a constant force

rate is not achieved in the entire unloading step. Fig. 4.6(b) illustrates the constant crosshead rate

used to achieve the desired force rate shown measured over the first 60 seconds.

Curvature creep recovery behavior after the coupon is unloaded is compared between results ob-

tained from the experiment and model is shown in Fig. 4.9. Despite the offset in moment relax-

ation, creep recovery of the unloaded coupon after the relaxation period shows good agreement

between experimental values and those obtained from the numerical model. However, noise en-

countered after 1000 seconds of the recovery portion of the experiment represents a difference in

crosshead position of approximately 0.045 mm, thereby adding some uncertainty in actual curva-

ture due to very small relative crosshead positions. Curvature recovery is visualized by a longi-

tudinal curvature contour plot during the first hour of the creep recovery portion of the Column

Bending Test model, shown in Fig. 4.8.
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Figure 4.4: Longitudinal section moments at (a) the beginning and (b) end of relaxation period
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Figure 4.5: (a) Curvature and (b) moment vs. time during unloading
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Figure 4.6: (a) Crosshead displacement and (b) reaction force vs. time during unloading
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Figure 4.7: Moment relaxation for experiment and simulation
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Figure 4.8: Longitudinal curvature during creep recovery in model (a) initially after being unloaded
(b) after 15 minutes (c) after one hour
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Figure 4.9: Creep recovery for experiment and simulation
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Figure 4.10: Normalized moment relaxation for experiment and simulation
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CHAPTER 5: CONCLUSIONS

A numerical method for considering viscoelastic characteristics of thin-ply composites in finite

element models was presented. The procedure utilizes an iterative process designed to reduce the

computational cost of numerically calculating viscoelastic integrals. The numerical model was

first applied to a square flat plate under pure bending for a relaxation and creep recovery analysis,

using a previously determined ABD stiffness relaxation matrix of a 4-ply plain weave laminate.

The results from the finite element analysis were compared against an exact solution which was

also derived for a viscoelastic composite plate under the same boundary conditions. With near

identical results acquired from the numerical model and exact solution, the validity and accuracy

of the iterative method was confirmed.

To further validate the numerical model and the accuracy of applying time-temperature superposi-

tion to a thin-ply composite, a relaxation and creep recovery experiment at an elevated temperature

of 60◦ C was conducted using Column Bending Test fixtures. A 4-ply plain weave thin-ply coupon

was bent to a curvature of 0.05 mm-1 and kept in this configuration for a period of one hour,

and subsequently unloaded such that a zero moment is applied. Once the coupon was unloaded,

residual curvature and it’s transient recovery was monitored over two hours with a zero load creep

period. The Column Bending Test was modeled in Abaqus and compared with experimental data,

using the curvature and moment values calculated from crosshead displacement and reaction force

for a more direct comparison. A slightly larger bending stiffness was measured during the loading

portion of the experiment than was observed in the finite element analysis. Due to the slightly

higher moment measured at the end of loading, an offset was observed during the relaxation por-

tion. Despite this offset, very similar curvature creep recovery was observed for both experimental

and numerical results. The difference between numerical and experimental stiffness is attributed

partly to a difference in coupon thickness versus the thickness assumed in the micromechanical
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model (0.267 mm vs. 0.228 mm, respectively).

In order to better capture the creep recovery behavior of a thin-ply composite coupon, photogram-

matric measurements will be made to confirm the calculated curvature of the coupon during the

recovery portion of future experiments. By measuring curvature directly using digital image cor-

relation, uncertainty in curvature can be reduced significantly. To also better understand stiffness

differences in experimental and numerical analysis, micrograph images will be taken of coupon

cross sections after being tested, thereby allowing for fiber distribution in the material, voids, and

other microscopic variances to be quantified and better explain numerical and experimental differ-

ences.
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APPENDIX A: USER GENERALIZED SHELL SECTION SUBROUTINE

33



*USER SUBROUTINES 
C*********************************************************************** 
C23456789012345678901234567890123456789012345678901234567890123456789012 
      SUBROUTINE UGENS(DDNDDE,FORCE,STATEV,SSE,SPD,PNEWDT,STRAN, 
     1 DSTRAN,TSS,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CENAME,NDI, 
     2 NSHR,NSECV,NSTATV,PROPS,JPROPS,NPROPS,NJPROP,COORDS,CELENT, 
     3 THICK,DFGRD,CURV,BASIS,NOEL,NPT,KSTEP,KINC,NIT,LINPER) 
 
      INCLUDE 'ABA_PARAM.INC' 
 
      CHARACTER*80 CMNAME 
      DIMENSION DDNDDE(NSECV,NSECV),FORCE(NSECV),STATEV(NSTATV), 
     1 STRAN(NSECV),DSTRAN(NSECV),TSS(2),TIME(2),PREDEF(*), 
     2 DPRED(*),PROPS(*),JPROPS(*),COORDS(3),DFGRD(3,3), 
     3 CURV(2,2),BASIS(3,3) 
 
c      INTEGER nProny 
      REAL*8 rhoi(14), n 
      REAL*8 A11inf, A12inf, A13inf, A22inf, A23inf, A33inf 
      REAL*8 D11inf, D12inf, D13inf, D22inf, D23inf, D33inf  
      REAL*8 A11i(14), A12i(14), A13i(14), A22i(14), A23i(14), A33i(14) 
      REAL*8 D11i(14), D12i(14), D13i(14), D22i(14), D23i(14), D33i(14)  
      REAL*8 W11(14), W12(14), W13(14), W21(14), W22(14), W23(14) 
      REAL*8 W31(14), W32(14), W33(14) 
      REAL*8 U11(14), U12(14), U13(14), U21(14), U22(14), U23(14) 
      REAL*8 U31(14), U32(14), U33(14) 
      REAL*8 N1, N2, N3, M1, M2, M3 
      REAL*8 NR1, NR2, NR3, MR1, MR2, MR3 
      REAL*8 de1, de2, de3, dk1, dk2, dk3 
      REAL*8 Ap11, Ap12, Ap13, Ap22, Ap23, Ap33 
      REAL*8 Dp11, Dp12, Dp13, Dp22, Dp23, Dp33 
      REAL*8 lamda(14), dt, a, Tref 
       
C-----PROPS DESIGNATION----------C 
C 
C     PROPS  1 - 12  :  %A11inf, A12inf, A13inf... %Long term moduli 
C     PROPS  13 - 19   : % relaxation times 
C     PROPS  20 - 26 : A11i          
C     PROPS  27 - 33 : A12i    
C     PROPS  34 - 40 : A13i 
C     PROPS  41 - 47 : A22i 
C PROPS  48 - 54 : A23i    
C     PROPS  55 - 61 : A33i  
C     PROPS  62 - 68 : D11i 
C     PROPS  69 - 75 : D12i 
C     PROPS  76 - 82 : D13i 
C     PROPS  83 - 89 : D22i  
C     PROPS  90 - 96 : D23i  
C     PROPS  97 - 103 : D33i  
           
C-----STATEV DESIGNATION----------C 
C 
C     STATEV  1 - 7    : W11i   % Moment Recursive terms (9 vectors of length nProny) 
C     STATEV  8 - 14   : W12i   
C     STATEV  15 - 21  : W13i 
C     STATEV  22 - 28  : W21i             
C     STATEV  29 - 35  : W22i   
C     STATEV  36 - 42  : W23i   
C     STATEV  43 - 49  : W31i   
C     STATEV  50 - 56  : W32i   
C     STATEV  57 - 63  : W33i 
C     STATEV  64 - 70  : U11i   % Force recursive terms (9 vectors of length nProny) 
C     STATEV  71 - 77  : U12i 
C     STATEV  78 - 84  : U13i 



C     STATEV  85 - 91  : U21i 
C     STATEV  92 - 98  : U22i 
C     STATEV  99 - 105  : U23i 
C     STATEV  106 - 112  : U31i 
C     STATEV  113 - 119  : U32i 
C     STATEV  120 - 126  : U33i 
C     STATEV  127 - 129  : NRi  Recursive Force 
C     STATEV  130 - 132  : MRi  % Recursive Moments 
C     STATEV  133 - 138 : N1, N2, N3, M1, M2, M3 %Forces and Moments from previous time step 
           
 
           
C-----material parameters---------C 
 
C Number of Prony terms 
      n = 14 
 
C Obtain long term modulus 
 
 A11inf=PROPS(1) 
 A12inf=PROPS(2) 
      A13inf=PROPS(3) 
      A22inf=PROPS(4) 
      A23inf=PROPS(5) 
      A33inf=PROPS(6) 
 D11inf=PROPS(7) 
 D12inf=PROPS(8) 
      D13inf=PROPS(9) 
      D22inf=PROPS(10) 
      D23inf=PROPS(11) 
      D33inf=PROPS(12) 
       
C     Obtain Prony coefficients  
       
      do i = 1,n 
        rhoi(i)=PROPS(i+12) 
        A11i(i)=PROPS(i + n*1 + 12) 
        A12i(i)=PROPS(i + n*2 + 12) 
        A13i(i)=PROPS(i + n*3 + 12) 
        A22i(i)=PROPS(i + n*4 + 12) 
        A23i(i)=PROPS(i + n*5 + 12) 
        A33i(i)=PROPS(i + n*6 + 12) 
        D11i(i)=PROPS(i+n*7+12) 
        D12i(i)=PROPS(i+n*8+12) 
        D13i(i)=PROPS(i+n*9+12) 
        D22i(i)=PROPS(i+n*10+12) 
        D23i(i)=PROPS(i+n*11+12) 
        D33i(i)=PROPS(i+n*12+12) 
      end do     
       
C----------Inputs from previous time step (recursive terms and forces/moments) 
    
C --------- Recursive Terms --------- C   
         
      do i = 1,n 
        W11(i)=STATEV(i) 
        W12(i)=STATEV(i + n) 
        W13(i)=STATEV(i + 2*n) 
        W21(i)=STATEV(i + 3*n)  
        W22(i)=STATEV(i + 4*n)  
        W23(i)=STATEV(i + 5*n)  
        W31(i)=STATEV(i + 6*n) 
        W32(i)=STATEV(i + 7*n) 
        W33(i)=STATEV(i + 8*n)  



        U11(i)=STATEV(i + 9*n)  
        U12(i)=STATEV(i + 10*n) 
        U13(i)=STATEV(i + 11*n) 
        U21(i)=STATEV(i + 12*n) 
        U22(i)=STATEV(i + 13*n)  
        U23(i)=STATEV(i + 14*n) 
        U31(i)=STATEV(i + 15*n) 
        U32(i)=STATEV(i + 16*n) 
        U33(i)=STATEV(i + 17*n) 
      end do 
         
      NR1=STATEV(252) 
      NR2=STATEV(253) 
      NR3=STATEV(254) 
      MR1=STATEV(255) 
      MR2=STATEV(256) 
      MR3=STATEV(257) 
      N1=STATEV(258) 
      N2=STATEV(259) 
      N3=STATEV(260) 
      M1=STATEV(261) 
      M2=STATEV(262) 
      M3=STATEV(263) 
  
C     incremental generalized section strains/curvatures   
       
      de1=DSTRAN(1) 
      de2=DSTRAN(2) 
      de3=DSTRAN(3) 
      dk1=DSTRAN(4) 
      dk2=DSTRAN(5) 
      dk3=DSTRAN(6) 
       
C --- Compute time increment dependent terms --- C 
      Tref=30 
       
      a=exp((170/(2.303*8.314462))*((1/TEMP)-(1/Tref))) 
       
      dt=DTIME*a        
    
      Ap11=A11inf 
      Ap12=A12inf 
      Ap13=A13inf 
      Ap22=A22inf 
      Ap23=A23inf 
      Ap33=A33inf 
 
      Dp11=D11inf 
      Dp12=D12inf 
      Dp13=D13inf 
      Dp22=D22inf 
      Dp23=D23inf 
      Dp33=D33inf 
 
      do i = 1,n   
        lamda(i)=(1-exp(-dt/rhoi(i))) 
        Ap11=Ap11+(1/dt)*(rhoi(i)*A11i(i))*lamda(i) 
        Ap12=Ap12+(1/dt)*(rhoi(i)*A12i(i))*lamda(i) 
        Ap13=Ap13+(1/dt)*(rhoi(i)*A13i(i))*lamda(i) 
        Ap22=Ap22+(1/dt)*(rhoi(i)*A22i(i))*lamda(i) 
        Ap23=Ap23+(1/dt)*(rhoi(i)*A23i(i))*lamda(i) 
        Ap33=Ap33+(1/dt)*(rhoi(i)*A33i(i))*lamda(i) 
        Dp11=Dp11+(1/dt)*(rhoi(i)*D11i(i))*lamda(i) 
        Dp12=Dp12+(1/dt)*(rhoi(i)*D12i(i))*lamda(i) 



        Dp13=Dp13+(1/dt)*(rhoi(i)*D13i(i))*lamda(i) 
        Dp22=Dp22+(1/dt)*(rhoi(i)*D22i(i))*lamda(i) 
        Dp23=Dp23+(1/dt)*(rhoi(i)*D23i(i))*lamda(i) 
        Dp33=Dp33+(1/dt)*(rhoi(i)*D33i(i))*lamda(i) 
      end do 
       
       
      
       
 
 
 
      do i = 1,n 
        STATEV(i)=W11(i)*(exp(-dt/rhoi(i)))+  
     & (rhoi(i)*D11i(i))*(dk1/dt)*lamda(i) 
        STATEV(i+1*n)=W12(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D12i(i))*(dk2/dt)*lamda(i) 
        STATEV(i+2*n)=W13(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D13i(i))*(dk3/dt)*lamda(i) 
        STATEV(i+3*n)=W21(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D12i(i))*(dk1/dt)*lamda(i) 
        STATEV(i+4*n)=W22(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D22i(i))*(dk2/dt)*lamda(i) 
        STATEV(i+5*n)=W23(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D23i(i))*(dk3/dt)*lamda(i) 
        STATEV(i+6*n)=W31(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D13i(i))*(dk1/dt)*lamda(i) 
        STATEV(i+7*n)=W32(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D23i(i))*(dk2/dt)*lamda(i) 
        STATEV(i+8*n)=W33(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*D33i(i))*(dk3/dt)*lamda(i) 
        STATEV(i+9*n)=U11(i)*(exp(-dt/rhoi(i)))+     
     & (rhoi(i)*A11i(i))*(de1/dt)*lamda(i) 
        STATEV(i+10*n)=U12(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A12i(i))*(de2/dt)*lamda(i) 
        STATEV(i+11*n)=U13(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A13i(i))*(de3/dt)*lamda(i) 
        STATEV(i+12*n)=U21(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A12i(i))*(de1/dt)*lamda(i) 
        STATEV(i+13*n)=U22(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A22i(i))*(de2/dt)*lamda(i) 
        STATEV(i+14*n)=U23(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A23i(i))*(de3/dt)*lamda(i) 
        STATEV(i+15*n)=U31(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A13i(i))*(de1/dt)*lamda(i) 
        STATEV(i+16*n)=U32(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A23i(i))*(de2/dt)*lamda(i) 
        STATEV(i+17*n)=U33(i)*(exp(-dt/rhoi(i)))+    
     & (rhoi(i)*A33i(i))*(de3/dt)*lamda(i) 
      end do 
 
      NR1=0 
      NR2=0 
      NR3=0 
      MR1=0 
      MR2=0 
      MR3=0 
       
 
      do i = 1,n 
        NR1=NR1+lamda(i)*(U11(i)+U12(i)+U13(i)) 
        NR2=NR2+lamda(i)*(U21(i)+U22(i)+U23(i)) 
        NR3=NR3+lamda(i)*(U31(i)+U32(i)+U33(i)) 
        MR1=MR1+lamda(i)*(W11(i)+W12(i)+W13(i)) 



        MR2=MR2+lamda(i)*(W21(i)+W22(i)+W23(i)) 
        MR3=MR3+lamda(i)*(W31(i)+W32(i)+W33(i)) 
      end do 
  
      STATEV(252)=NR1 
      STATEV(253)=NR2 
      STATEV(254)=NR3 
      STATEV(255)=MR1 
      STATEV(256)=MR2 
      STATEV(257)=MR3 
 
       
C     Force and Moment Outputs 
                   
      N1=N1+Ap11*de1+Ap12*de2+Ap13*de3-NR1    
      N2=N2+Ap12*de1+Ap22*de2+Ap23*de3-NR2 
      N3=N3+Ap13*de1+Ap23*de2+Ap33*de3-NR3 
      M1=M1+Dp11*dk1+Dp12*dk2+Dp13*dk3-MR1 
      M2=M2+Dp12*dk1+Dp22*dk2+Dp23*dk3-MR2 
      M3=M3+Dp13*dk1+Dp23*dk2+Dp33*dk3-MR3 
       
      FORCE(1)=N1 
      FORCE(2)=N2 
      FORCE(3)=N3 
      FORCE(4)=M1 
      FORCE(5)=M2 
      FORCE(6)=M3 
 
      STATEV(258)=N1 
      STATEV(259)=N2 
      STATEV(260)=N3 
      STATEV(261)=M1 
      STATEV(262)=M2 
      STATEV(263)=M3 
       
 
C-----update Jacobian (tangent stiffess)-----C 
 
       
      DDNDDE(1,1) = A11inf 
      DDNDDE(1,2) = A12inf 
      DDNDDE(1,3) = A13inf 
      DDNDDE(2,2) = A22inf 
      DDNDDE(3,3) = A33inf 
      DDNDDE(4,4) = D11inf 
      DDNDDE(4,5) = D12inf 
      DDNDDE(4,6) = D13inf 
      DDNDDE(5,5) = D22inf 
      DDNDDE(6,6) = D33inf 
       
 
      do i = 1, n 
        DDNDDE(1,1)=DDNDDE(1,1)+A11i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(1,2)=DDNDDE(1,2)+A12i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(1,3)=DDNDDE(1,3)+A13i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(2,2)=DDNDDE(2,2)+A22i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(3,3)=DDNDDE(3,3)+A33i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(4,4)=DDNDDE(4,4)+D11i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(4,5)=DDNDDE(4,5)+D12i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(4,6)=DDNDDE(4,6)+D13i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(5,5)=DDNDDE(5,5)+D22i(i)*lamda(i)/(dt/rhoi(i)) 
        DDNDDE(6,6)=DDNDDE(6,6)+D33i(i)*lamda(i)/(dt/rhoi(i)) 
      end do 
 



 
 
      DDNDDE(2,1)=DDNDDE(1,2) 
      DDNDDE(2,3)=DDNDDE(1,3) 
      DDNDDE(3,1)=DDNDDE(1,3) 
      DDNDDE(3,2)=DDNDDE(2,3) 
      DDNDDE(5,4)=DDNDDE(4,5) 
      DDNDDE(5,6)=DDNDDE(4,6) 
      DDNDDE(6,4)=DDNDDE(4,6) 
      DDNDDE(6,5)=DDNDDE(5,6) 
       
       
 
  
       
C      print *, DSTRAN(3) 
C----------update energy----------C 
 
C     update elastic strain energy in SSE 
      SSE = 0.0 
     
C     update plastic dissipation in SPD 
 SPD = 0.0 
  
      RETURN 
      END  
C*********************************************************************** 
C*********************************************************************** 
C23456789012345678901234567890123456789012345678901234567890123456789012 
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