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ABSTRACT 

Plume surface interactions (PSI) are caused by rocket exhaust impinging on planetary 

surfaces. PSI-induced environmental changes pose hazards to spacecraft and astronauts; thus, it 

is crucial to understand the gas-particle dynamics of these systems. We have conducted novel 

experimental and computational work to study PSI effects in relevant vacuum microgravity 

environments. To study flow effects and regolith instability we developed a computational model 

that describes the gas flow through a porous medium based on Darcy’s Law. This flow depends 

on regolith properties, and the resulting subsurface pressure distribution is used to estimate ejecta 

mass. We find flow behaviors and the resulting ejecta are significantly affected by the surface 

pressure distribution, pulse duration, and material properties. We have also developed an 

experimental apparatus, the Gas Regolith Interaction Testbed (GRIT), for studying PSI in 

vacuum microgravity in the UCF Center for Microgravity Research Drop Tower. It consists of a 

small, cylindrical vacuum chamber in which a cold gas jet interacts with a bed of regolith 

simulant. Video data is analyzed to determine PSI trends based on gravity level, nozzle distance, 

simulant type, and plume duration. We observe PSI effects ranging from perturbation of the 

granular media to ejection of the entire simulant mass. Phenomena are significantly more 

pronounced for experiments conducted at microgravity than at Earth gravity (1g). We measure 

peak ejecta velocities up to tens of m/s, and note how particle properties, jet distance, and pulse 

duration affect ejecta angle and cratering depth. Our numerical and experimental results have 

implications for the validity of existing studies of PSI that are conducted in 1g and under ambient 

conditions, and can be used to inform modeling, lander design, and risk assessment for future 

missions that will aim to land on or interact with planetary surfaces.   
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INTRODUCTION 

Earth, air, and gravity. Interaction between these components form the basis of this 

investigation into plume surface interactions (PSI). Earth, or more specifically granular material, 

resists general description and scaling laws because its properties vary widely. Fluid dynamics is 

notoriously difficult as solutions must be tailored to individual problems. Fluid dynamic 

equations do not typically admit analytic solutions and demand significant computing resources. 

Gravity is ostensibly simpler, mathematically speaking, but only a handful of people have 

intuition for what life is like in its absence. And gravity stubbornly refuses to cooperate when we 

might wish to shut it off for experiment’s sake. 

Granular media, gas, and gravity—or lack thereof. Understanding each individually is a 

challenge, and this investigation seeks to understand something of their interactions. We care 

because these are the types of interactions which do and will occur as spacecraft land on other 

planetary surfaces. Spacecraft landing on airless bodies must either use retro-propulsion to land 

or else mechanically dampen the landing impact force. When the former method is employed, 

rocket exhaust interacts with the planetary surface and may create hazardous conditions—either 

to the descending spacecraft itself, or to surrounding assets, or both. These interactions between 

a rocket exhaust plume and a nearby surface are aptly termed Plume Surface Interactions, or PSI. 

Planetary surface operations are on the rise. China has landed the second lunar rover in its 

Chang’e Project, and NASA’s Artemis Program aims to return humans to the lunar surface by 

2024. Indian and Israeli spacecraft recently attempted lunar landings. Japan’s space agency has 

recently collected samples from an asteroid with its Hayabusa2 mission, and it has another 

mission in the works to sample the Martian moon Phobos. NASA’s own OSIRIS-REx spacecraft 
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will make an asteroid sampling attempt in late 2020 of the asteroid Bennu. As missions to 

planetary surfaces become more frequent, understanding PSI becomes increasingly important.  

Physics Background 

A plume is the jet of exhaust gas expelled from a rocket engine, out the nozzle, into the 

engine’s environment. The behavior of rocket plumes is itself a subject of research, and their 

thermal and chemical effects must be considered in rocket design. For our purposes, however, 

the source of the plume is relevant only insofar as it determines plume properties: the 

composition, velocity, density, and temperature of flow, whatever its origin might be. Exhaust 

gasses from a rocket nozzle exit at supersonic speeds and are considered over- or under-

expanded based on the relative density of the exhaust gas to the ambient atmosphere. Over-

expanded plumes are less dense than ambient pressure and pressed inward after exiting the 

nozzle; under-expanded plumes grow in width after exiting. In either case, supersonic jets may 

produce a shock structure in the resulting plume which produces variations in pressure along the 

jet. Ideally, exhaust gas pressure matches ambient pressure when exiting a rocket nozzle, since 

over- or under-expansion reduces thrust efficiency. In the vacuum of space this means using the 

largest nozzle bell practicable, since the ambient pressure is effectively zero.  
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Figure 1: The exhaust plume trails out beneath this Atlas V rocket as it launches from the 

Florida coast. The edges of the plume are rough, indicating turbulent flow due to Earth’s 

relatively thick atmosphere. 

 

Source: NASA 

https://www.nasa.gov/image-feature/atlas-v-lift-off-for-osiris-rex-mission  

Besides affecting expansion of the exhaust plume, ambient pressure also affects 

collimation and dissipation of the flow. All other things equal, higher exhaust gas density is more 

likely to be turbulent. Figure 1 shows the turbulent exhaust flow due to a rocket launch from 

Earth. Thicker atmospheres will dissipate exhaust flows more efficiently. Thinner atmospheres 

less so, while still collimating flow. As the ambient pressure tends toward zero, flow is no longer 

collimated by the surrounding atmosphere and expands freely. This expansion may rarefy the 

flow, meaning gas molecules are more accurately treated as particles rather than a fluid. In the 

free-molecular flow regime, the Navier-Stokes equations, which describe fluid motion, are no 

https://www.nasa.gov/image-feature/atlas-v-lift-off-for-osiris-rex-mission
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longer applicable. In between, the flow is considered in a transition regime. The exhaust plume 

then, like PSI itself, is determined by the characteristics of the rocket engine and its environment.  

On reaching a surface, the flow impinges and imparts momentum to the surface. In our 

study, we consider gas jets directed orthogonally against a flat surface. In this case, flow away 

from this impingement centerline is axisymmetric. A stagnation region results directly 

underneath the engine, and flow is directed outward along the surface. This effectively produces 

an axisymmetric pressure distribution across the surface, into which gas will diffuse if the 

substrate is porous. This diffusion is described Darcy’s Law, which is derived from the Navier-

Stokes equation and calculates continuum flow of a fluid through a porous medium. We will 

discuss this equation and detail its use in the next chapter. 

Rocky planetary bodies do not typically have a uniform, solid surface. They are covered 

in regolith, lit. “blanket of stone”: unconsolidated material varying in grain size depending on the 

planet’s size, mechanics, evolution, and the presence of an atmosphere. This material is also 

often referred to as soil, dust, or even dirt, though not without some pushback. Soil on Earth 

implies the presence of life and organic material. As of yet, while organic matter has been found 

on other bodies, life is only known to exist on our planet. Dust has no clear definition, though it 

typically refers to fine material, and dirt is borrowed as a colloquial term. We will use some of 

these terms interchangeably where their descriptions are appropriately analogous to regolith. 

Our investigation is interested first in plume interactions with asteroid surfaces, but we 

also consider PSI experiments related to the lunar surface, and our results have applicability to 

PSI in general. Asteroid regolith properties vary considerably. Unlike depictions in popular 

media, most small asteroids are not monolithic structures, but rather aggregate structures of 

loosely consolidated material. The few exceptions to this are so-called metallic asteroids, which 
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may be the surviving cores of differentiated bodies. More commonly, asteroids formed by 

aggregation over the history of the solar system and the majority did not differentiate. Their 

surfaces, however, vary from the surface of Itokawa—with its regions of mm and cm size 

regolith (Susorney et al., 2019)—to the blocky regolith of Bennu with its high prevalence of 

boulders (Walsh et al., 2019) shown in Figure 2. Lunar regolith is fine grained and abrasive, 

pulverized by tiny meteoroids impacting the surface and churning it over the past few billion 

years (McKay et al., 1991). This process, termed impact gardening, variously fuses and breaks 

regolith grains, creating a glassy texture to individual particles. The surface is fluffy, low in 

density, and relatively impermeable due to small particle size. 
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Figure 2: The asteroid Bennu, seen from the OSIRIS-REx spacecraft. Approximately half a 

kilometer in diameter, Bennu’s surface is covered with unconsolidated regolith and 

boulders. Over 200 of these boulders exceed 10 meters in size (Walsh et al., 2019). 

 

Source: NASA/Goddard/University of Arizona 

https://www.nasa.gov/press-release/nasa-s-newly-arrived-osiris-rex-spacecraft-already-

discovers-water-on-asteroid 

PSI as a whole, the focus of our endeavor, combines two complex phenomena—rocket 

plumes and planetary surfaces—and as such resists general description or analysis. This is why, 

as we will see shortly, efforts to study PSI so far have primarily focused on studying specific 

missions. The work that has been done, however, reveals a few distinct behaviors. The erosive 

and cratering interactions between rocket exhaust and a particulate medium have been classified 

https://www.nasa.gov/press-release/nasa-s-newly-arrived-osiris-rex-spacecraft-already-discovers-water-on-asteroid
https://www.nasa.gov/press-release/nasa-s-newly-arrived-osiris-rex-spacecraft-already-discovers-water-on-asteroid
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into five phenomena (Mehta, 2010). Bearing capacity failure (BCF) results when downward 

plume pressure exceeds the strength of the medium. Viscous shear erosion (VSE) is caused by 

gas drag across the surface of the medium, such as during an Apollo lunar landing shown in 

Figure 3. Exhaust gasses moving through the regolith cause diffusion driven flow (DDF). In the 

event of engine shutdown, diffuse gas erosion (DGE) may result. Most recently, a subset of DGE 

was identified in the case of engine pulsing; this was termed diffuse gas explosive eruption 

(DGEE) (Mehta, 2010).  

Gas flow may occur in two different states—continuous or discrete—and granular 

materials behave in solid-like or fluid-like fashion, depending on grain size, packing density, and 

other physical properties. As PSI combines these two complex phenomena, which themselves 

resist prediction, we should not be surprised to see similar complexity in its behavior. We gain 

insight, however, by conducting a systematic test of PSI as a general investigation into its 

phenomena.  
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Figure 3: Apollo 11 landing on the Moon. The Lunar Module obscures the bottom of the 

frame, while the lunar surface is seen in the upper two-thirds of the image. Radial streams 

of dust entrained in the exhaust flow move up and left across the frame. 

 

Source: NASA/GoneToPlaid 

https://www.hq.nasa.gov/alsj/a11/video11.html 

 

https://www.hq.nasa.gov/alsj/a11/video11.html
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Prior Research 

Historically, many studies into PSI effects have been tailored to fit a specific mission. 

Research into PSI began in support of the Apollo and Surveyor programs. A preliminary PSI 

theory was developed by Roberts (1964), which attempted to predict soil erosion due to shear 

stresses on regolith caused by gas flow. He developed semi-empirical equations to calculate 

plume impingement pressure in a vacuum and then applied these to erosion predictions for the 

lunar surface (Roberts, 1964).  

Cold gas PSI experiments were conducted in vacuum at NASA’s Langley Research 

Center (LaRC) (Land & Clark, 1965; Land & Scholl, 1969), taking advantage of LaRC’s large, 

spherical vacuum chambers. The former of these conducted tests aluminum oxide particles with 

a supersonic jet and surface pressures ranging from 80 to 112 kPa. They determined cratering 

rate increased with particle size, and cratering profiles show a depth maximum off-center; that is, 

a minor peak sits in the center of the ejecta region. Experiments reported in the latter study used 

a helium gas thruster mounted on a track to simulate the lunar landing. These experiments were 

also conducted in ambient vacuum, with glass beads and gravel as simulant. The researchers note 

that erosion increases significantly with thrusting duration and recommended as fast a descent as 

possible to minimize erosive effects. In both cases, the mission-focused mindset is clear by the 

researcher’s priorities: visibility beneath the plume is a primary focus, and the latter study gives 

its results in units scaled up to full-size from the model test conducted. We will return to latter 

this study in the next chapter as we compare our computational results to their experiment. 

 Other cold gas and hot fire tests were conducted at ambient pressure (Alexander et al., 

1966). These used glass beads and various soils as material substrates and describe erosive 

phenomena similar to that of Land and Clark (1965). Above a certain thrusting threshold, 
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however, they describe a different set of phenomena: after a brief pocket is formed in the surface, 

jet impingement produces explosive soil blowout, followed by erosive action which deepens but 

does not as significantly widen the erosion crater. 

Contemporary to this work, researchers developed a physics model for understanding gas 

flow through regolith (Scott & Ko, 1968). It employs Darcy’s Law, the equation governing fluid 

flow through granular media, to give insight into the phenomena of PSI and quantitatively 

estimate regolith ejecta. It is Scott and Ko (1968) who first define and label three of the five PSI 

mechanisms we described above: viscous erosion, diffused gas erosion, and bearing capacity 

failure. Scott and Ko posit pressure differentials caused by gas diffusion as causing instability 

which then ejects regolith. Their key insight is into the nature of gas flow, and the nature of soil 

instability, which may occur on or off center depending on pulse duration Their model forms the 

basis for our investigation, and we will return to it in more detail in the next chapter. 

The next series of investigations concerned the Viking missions, and were concerned 

with how PSI might affect those spacecraft’s landings. A brief investigation by Clark found 

canted thrusters reduce the volume eroded by PSI, compared to engines pointed directly 

downward (Clark, 1970). Three years later, a more comprehensive investigation would follow—

a two-part report on site alteration effects predicted by the Viking spacecraft landing (Romine et 

al., 1973). Part I was concerned with site alteration effects, or PSI, and tested an array of rocket 

nozzle designs to mitigate these potential effects. They note a shift in PSI behavior from viscous 

erosion to either bearing capacity failure or diffused gas erosion as nozzle distance to the surface 

decreases in time. 

A gap in the literature extends from the early 1970’s until the early 2000’s. As PSI 

research was primarily mission-driven, there was a gap in interest during these years. The next 
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study to take up PSI was a conference paper in by Donahue et al. (2005), where aside from a 

loosely related hydraulics paper, the authors pick up by citing the body of work conducted for 

the Lunar and Martian exploration campaigns. The hydraulics paper studied crater formation 

from impinging water jets and found crater depth increases with the logarithm of time 

(Rajaratnam & Beltaos, 1977). Donahue et al. (2005) test the time-dependence of crater 

formation during PSI in 1g and find it also increases with the logarithm of time . 

The most recent work on PSI is divided between interest in various destinations. The 

work of Philip Metzger and others has focused on the moon as a destination as the Constellation 

program was ramping up. Work out of Kennedy Space Center was performed to analyze Apollo 

landing video and determine dust ejection angles and particle densities (Immer et al., 2011). 

Later experimental and forensic analysis of the lunar landings determined problems with 

Robert’s (1964) understanding of soil erosion by shear stresses, as he assumed ideal transfer of 

momentum from gas to grains (Metzger et al., 2008). Later experimental and computational 

work on crater formation (Metzger et al., 2010) confirmed the cratering depth/time relationship 

seen by Donahue et al. (2005). This work also noted how transport within a deepening crater 

occurs tangential to the crater’s surface, carried along by gas flow as it circulates back up and out 

of the forming crater. 

As Mars was again the target of interest for the Phoenix and Mars Science Laboratory 

missions, work to study PSI effects in this environment was conducted by Manish Mehta, 

published in his dissertation (Mehta, 2010) and in a paper on the Phoenix landing itself (Mehta et 

al., 2011). His experimental work discovered the fifth PSI effect described above, Diffuse Gas 

Explosive Eruption, which occurs during pulsed thrusting and caused significantly higher erosive 

effects. 



38 

 

Research Outline 

Our work expands on previous PSI investigations by conducting novel research into a 

previously unexamined regime of PSI: interactions in vacuum microgravity. The microgravity 

environment provides insight into so-called “masked phenomena;” behaviors that go unnoticed 

or simply do not appear in 1g. We also benefit from systematizing our experimental approach to 

understand PSI phenomena generally, rather than targeting a desired mission outcome. We seek 

to understand, what are the underlying physics to PSI? 

In Chapter 2, we conduct computational investigations into PSI. We pick up where the 

work Scott and Ko (1968) left off, exploring the role of gas diffusion in regolith instability and 

ejecta. Motivated by the Asteroid Redirect Mission concept, we developed a gas diffusion and 

regolith instability solver to estimate ejecta mass and crater size. This was compared applied to a 

notional landing on an asteroid to determine whether or not a powered landing would produce 

hazardous ejecta. Results from this code were then applied to the experimental results of Land 

and Scholl (1969)in their 1g, vacuum chamber investigations of PSI to compare predictions of 

ejecta mass and crater shape. 

Chapter 3 describes our novel experimental apparatus, Gas Regolith Interaction Testbed 

(GRIT), for studying PSI in vacuum microgravity in the UCF Drop Tower. It allows us to 

address the question, what are the effects of gas-jet interactions in vacuum microgravity, and 

how do they differ from interactions in 1g? We conducted an experiment campaign with four 

simulants, at two nozzle distances, and five pulse durations, in both microgravity and at 1g. The 

phenomena observed in this campaign are described and characterized in this chapter. 
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Chapter 4 describes the quantitative analysis performed on our dataset. Particle velocities, 

and crater size and mass are characterized. We then compare our results to prior work, and to the 

trends found in our own computational modeling. 
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MODELING PLUME SURFACE INTERACTIONS 

Portions of this chapter and several figures are taken from “Regolith Instability Caused by Gas Diffusion: A Case Study 

of the Asteroid Redirect Mission” (Chambers & Metzger, 2016). This material is included with the permission of ASCE and may 

be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This 

material may be found at https://doi.org/10.1061/9780784479971.008.  

 

The Python Regolith Instability Calculator, or PyRIC, has been developed to predict 

regolith ejecta due to exhaust-plume interactions by modeling gas diffusion through a regolith 

substrate and determine potential instability from the resulting pressure gradients. When rocket 

exhaust impinges on a porous surface, it diffuses into the medium at a rate determined by the 

impingement pressure, exhaust gas properties, and the physical properties of the regolith. The 

flow of gas through a porous medium is described by Darcy’s Law. Diffusing gas creates a 

pressure differential between the regolith and ambient atmosphere, destabilizing the region 

where gas flows, and lofting material if cohesion and gravity are insufficient to prevent ejecta. 

Model development was initially motivated by the possibility of an off-nominal powered ascent 

for NASA’s Asteroid Redirect Mission (ARM), and this is the first case study we examine. Our 

broader goal, however, is to develop a physics-based model that allows rapid calculation of 

ejecta caused by plume surface interaction. We model this regolith destabilization by expanding 

on the method of Scott and Ko which uses Darcy’s Law to calculate exhaust gas diffusion 

through regolith (1968).  

Method and Model Description 

Consider a rocket engine pointed toward the center of a cylindrical container of regolith. 

The engine may move vertically along this center axis. Its exhaust gasses impinge on the surface 

of the regolith and flow through the medium. This flow results in a subsurface pressure 

https://doi.org/10.1061/9780784479971.008
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distribution which we use as a proxy for regolith instability. PyRIC consists of three 

components: a surface pressure calculator or data input, a flow solver, and an instability 

calculator. We will treat the flow solver first, then discuss surface pressure as an upper boundary 

condition, and finally discuss treatment of regolith instability. 

Solving Darcy’s Law 

Gas flow through a porous medium is described by Darcy’s Law. We apply it to rocket 

exhaust flowing through unconsolidated regolith. Because the engine points straight down at the 

surface, we may assume an axisymmetric surface pressure distribution, and use the axisymmetric 

version of Darcy’s Law given by Equation 1. 

𝝏𝟐𝒑𝟐
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Here 𝑝 is the gas pore pressure, 𝑟 is the radial distance from the engine centerline, 𝑧 is the 

depth beneath the surface, 𝑛 and 𝑘 and the porosity and permeability of the medium, 

respectively, and 𝜇 is the dynamic viscosity of the exhaust gas (Scott & Ko, 1968).  

Finite Difference Method 

Darcy’s Law is solved in Python by implementing a finite difference method (FDM). The 

solution area is represented on a square grid with dimensions of radius and depth. The FDM 

algorithm given by Scott and Ko (1968) to solve Darcy’s Law on a square grid is given by 

Equations 2 to 5. The pressure, radius, and depth in Equation 2 have been divided by 

characteristic pressure and length scales as shown in Equation 4. The time variable is 

nondimensionalized by these factors as shown in Equation 5. The resulting constant derived from 
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these parameters (𝑛, 𝜇, 𝑘) collectively form a characteristic time which governs the rate at which 

gas diffuses through the medium. 
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This characteristic time, or time constant, gives us a sense of how the physical properties 

of the material will affect gas flow. The time constant increases with porosity and gas viscosity. 

Most important to note is permeability, which varies over orders of magnitude depending on 

regolith or simulant properties. When regolith is impermeable, the value for permeability is 

small, and the time constant large. Permeable regolith results in a small time constant and rapid 

flow; thus the characteristic time gives us a sense of the temporal scale on which flow will occur. 

The size of our computational grid is chosen either to match the experiment itself or, 

when simulating a real-world ascent or landing, large enough to mitigate or avoid edge effects 

due to the grid boundary. The upper boundary condition is a surface pressure distribution cause 

by impinging gas; we discuss this separately below. The lower and outer boundaries of the 

simulation grid are treated as hard surfaces. Equation 6, also given by Scott and Ko (1968), is 
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used for the innermost grid squares as there is no flow across the centerline, and the equations 

above are not valid for a radius of zero.  

𝑃0,𝑇+Δ𝑇 = 𝑃0 + 𝑀[𝑃2
2 + 𝑃4

2 + 4𝑃1
2 − 6𝑃0

2] ( 6 ) 

Algorithm Stability and Model Improvements 

The factor M described above depends on both the choice of time step and grid size. The 

stability of our numerical solution depends on the size of this factor. Choosing too small a grid 

size or too large a step size leads to computational errors. We do not have an analytic solution to 

algorithmic stability for this form of the equation, so stability is achieved by a trial and error 

approach, and find stable solutions generally obtain for 𝑀 =
1

10
, though we also use smaller 

values to increase computational accuracy. 

As noted by Scott and Ko (1968), sources of error in the FDM algorithm are rounding 

errors inherent in computational solutions, and truncation error due to the neglect of higher order 

terms in the approximation. Each of these necessitates a smaller simulation timestep, which 

increases computation time. In order to speed calculation time and improve stability, later 

version of our code implement adaptive time-stepping by pressure grid scaling.  

Our algorithm becomes unstable when events happen too rapidly to calculate accurately. 

This happens when pressure gradients are at their highest. The timing of this maximum depends 

on whether the engine is ascending, descending, or stationary, and must be determined by trial 

and error. In this part of the simulation, we want a small time-step to accurately calculate the gas 

flow. Later on, however, as the simulation nears steady state, we may take larger time steps 

without significant loss of accuracy. 
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The maximum pressure in the simulation grid is used as a proxy for the maximum 

pressure gradient, as these two typically coincide. At each computational step, the simulation 

pressure grid is normalized by the maximum pressure, and the next time step is calculated using 

this scaled pressure. In this way, we maintain algorithm stability but also allow larger time steps 

as the simulation progresses, lower pressures are reached, and the resulting gradients shrink. We 

realize a significant reduction in computational time from this modification.  

Surface Pressure Distribution 

The upper boundary condition for the simulation grid is determined by the surface 

pressure distribution due to the rocket exhaust. This surface pressure distribution may be 

specified by the user if experimental data are available. When the data are incomplete, we may 

interpolate to fill out the boundary layer.  

In some cases engine parameters are known but experimental data are unavailable. In this 

case we generate a surface pressure distribution according to Robert’s (1964) semi-empirical 

model, given by Equations 7 and 8. 

𝑝 = 𝑝𝑟
𝑘+2

2
(

ℎ

𝑟𝑛
)

−2
(cos 𝜃)𝑘+4 ( 7 ) 

𝑝𝑟 = 𝑝𝑐(1 + 𝛾𝑀𝑛
2) (1 +

𝛾−1

2
𝑀𝑛

2)
−

𝛾

𝛾−1
  ( 8 ) 

In these equations, 𝜃 is the angle as measured from the engine centerline, ℎ is the height 

of the engine above the surface, 𝑝𝑐 is the engine chamber pressure, 𝑟𝑛 is the engine nozzle radius, 

𝑀𝑛 is the exhaust Mach number, 𝛾 is the exhaust heat capacity ratio, and 𝑘 ≡ 𝛾(𝛾 − 1)𝑀𝑛
2. This 

distribution may be treated as static or vary with time to simulate engine ascent, descent, or 

pulsing behaviors. Below the critical engine height where the surface pressure equals the 
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stagnation pressure, we treat the surface pressure distribution as equal to the stagnation pressure 

directly under the nozzle, and zero elsewhere. 

Properties of Porous Materials 

There several models in the literature for calculating regolith permeability. These all 

depend on the square of the mean particle diameter, meaning they differ by a constant factor, and 

estimates are typically within an order of magnitude. We use the Equation 9 and Equation 10 

given by Krumbein and Monk (1943) to calculate regolith permeability.  

𝑘 = 760𝑑𝑔
2𝑒−1.31𝜎𝐷 ( 9 ) 

𝜎𝐷 = − log2 𝑑 ( 10 ) 

 In this equation, 𝑑𝑔 is the mean particle diameter in millimeters, and d is the standard 

deviation of the particle grains. The variable k is the soil permeability in darcys, a conventional 

unit of permeability with dimensions of length squared. For particle cohesion, we consult the 

values given by a survey of simulant materials which includes glass beads close in size to those 

used in some of our reference experiments (Klinkmüller et al., 2016). 

Flow Behaviors and Instability Estimate 

As exhaust gasses diffuse through regolith, they create a pore pressure difference 

between the regolith and the surface. This pressure difference may destabilize and loft regolith. 

We assume the regolith remains static and use the pressure difference to estimate the 

destabilization area. This approximation is more accurate for short-duration jetting. As we will 

see in comparison to experiment, however, the flow patterns provide insight even for longer-

duration PSI events. Flow patterns are displayed by calculating pressure gradients within the 
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simulation area. These may be displayed alongside or separately from contour plots of the 

subsurface pressure itself. 

We consider two primary methods of calculating soil instability. Our goal is to determine 

whether or not the material in a given grid cell may be lofted during PSI. Our earlier work uses a 

method similar to that described by Scott and Ko (1968). The forces on a grid square are those 

due to the cell’s own weight, the weight of cells above it, the differential pressure, and the 

cohesive forces binding it to surrounding material. This method simplifies the situation by 

considering the differential pressure across the cell in the vertical direction, the weight of the 

column above the grid square, and the cohesive force between the grid cell and its lower 

neighbor. This neglects frictional and cohesive forces along the sides of the grid cell. This 

method was applied to ARM where gravitational forces were nearly negligible, and so the weight 

of the column above had a relatively minor effect on results. 

The second method considers the overall pressure differential between a grid square and 

the ambient pressure. If this difference exceeds the weight of the grid cell plus a cohesive 

strength calculated for the bottom surface of the cell, the grid cell is considered unstable. This is 

the method suggested by Mehta (2011) and employed in our treatment of the Land and Scholl 

(1969) experiment described below. In either case, these unstable grid cells are interpreted as 

ejected material and used to calculated ejecta radius and volume. This region is roughly crater 

shaped, and the widest point is taken to the radius. This point typically occurs at or just below the 

surface. Ejecta volume is calculated by integrating the ejecta profile around the central axis.  
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Python Method Description 

The algorithm described above is implemented in Python, relying on the Numpy module 

to facilitate and speed array calculations. This program, the Python Regolith Instability 

Calculator (PyRIC) reads in a configuration file set up for the current simulation case. This 

configuration file may specify one or more runs varying parameters of interest. After setting the 

current parameter set, it checks to see whether or not this combination of parameters has been 

calculated already. If not, it begins a fresh calculation. If so, and the run is incomplete, it picks 

up where the incomplete calculation left off. If complete, the run is skipped. 

For a new calculation set, PyRIC initializes the simulation grid and sets the upper 

boundary condition as a calculated or interpolated surface pressure distribution according to the 

method described above. This is illustrated in Figure 4 below. PyRIC implements the FDM 

described in Equations 2 through 6 by array addition. Rather than looping through each 

individual array, a significant reduction in computational time is achieved by copying and 

shifting arrays rather than looping through them. This method takes advantage of Numpy’s 

optimized array operations rather than relatively slow Python loops.  
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Figure 4: This cartoon illustrates the concept behind our model. An engine pointed 

downward produces exhaust gasses which impinge on a surface. The pressure distribution 

is axisymmetric. We solve an axisymmetric version of Darcy’s Law on a square grid using 

this pressure distribution as the upper boundary condition. 

After each timestep, the pressure grid is binned. Full bins are saved out to a compressed 

data file. The program then loops to the next time step and the algorithm repeats until the 

simulation time is complete. This first Python routine generates the flow profile for a given set of 

regolith properties, engine parameters, and ascent/descent profile. Once the flow has been solved 

for, a second routine takes this data as an input and applies one of the instability methods 

described above. This routine also generates the graphs and visualizations used below.  
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Model Verification 

As a sanity check to this Python routine, we choose a standard model run with engine 

chamber pressure at 1000 𝑘𝑃𝑎, soil density at 1500
𝑘𝑔

𝑚3, permeability at 1 × 10−10 𝑚2, nozzle 

height at 1 𝑚, and impingement duration at 1 𝑠. These are chosen to be round numbers in the 

neighborhood of our actual experimental parameters. We vary these model parameters to observe 

how instability behavior changes with each variable. This verification series uses Mehta’s (2011) 

ambient pressure difference method to calculate soil instability area. This method was found to 

be more accurate when compared to the experimental data in Land and Scholl (1969). 

Figure 5 and Figure 6 below show results for microgravity (here set to 10−4𝑔; the term 

“microgravity” is used broadly for very low gravity environments) and Earth gravity. Many of 

the trends are intuitive. Instability, interpreted as regolith ejecta, decreases with increased soil 

density (and therefore weight) or cohesion. It increases with gas impingement duration and 

engine chamber pressure.  

The nature of these trends, however, may not be as intuitive in microgravity. While ejecta 

does decrease with density in microgravity, the magnitude of the effect is much less pronounced. 

This is because gravity is no longer the dominant force. The stair-step behavior we see is likely 

due to grid layers and may not be physical. Ejecta volume grows rapidly with impingement time 

in microgravity. It also increases in 1 g, but the increase tapers toward a maximum, due to the 

pressure gradient reaching a steady state. Small irregularities are again likely an artifact of grid 

size; the point worth noting is gravity’s effect in both reducing ejecta magnitude and in 

governing the effect of impingement duration. 
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Figure 5: Ejecta verification trends for model runs at 1g. Note the presence of both 

logarithmic and linear axes, chosen to highlight each trend. Ejecta volume decreases with 

increasing regolith density, nozzle height, and soil cohesion. Just above two meters nozzle 

height, regolith ejected drops to zero. Ejecta volume increases with engine chamber 

pressure (a proxy for surface pressure), impingement duration, and permeability. The 

increase with permeability approaches an asymptotic maximum, beyond which the region 

of instability no longer increases. 
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Figure 6: Ejecta verification trends for model runs in microgravity. Note the presence of 

both logarithmic and linear axes, chosen to highlight each trend. Trends with chamber 

pressure, permeability, and cohesion are similar to the 1g trial. Density does not affect the 

instability area significantly. Behavior of the impingement duration curve differs from the 

1g trial. Most notably, ejecta due to gas diffusion might decrease below a certain height due 

to narrowing of the exhaust plume. 
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Most unintuitive may be the effect of nozzle height on ejecta volume in microgravity. 

Since a smaller pressure differential will loft regolith, the shape of the surface pressure 

distribution has an interesting effect. The narrower distribution caused by a nozzle close to the 

surface causes a smaller region of instability which broadens as the nozzle is tested further away. 

Our model predicts ejecta volume will increase first as the nozzle moves away, then decrease as 

the magnitude of the pressure distribution falls. 

 

Figure 7: Crater depth as a function of impingement duration. At longer jetting durations, 

our model does not follow the log-linear trend observed by Donahue et al. (2005). 

We may also compare our simulation results to the work of Donahue et al. (2005), which 

suggested depth increases with the logarithm of time. As seen in Figure 7, our model suggests 

this relationship holds for the beginning stages of crater growth when we consider PSI in 1g, 

then proceeds more slowly. The behavior seen in microgravity also deviates from this log-time 

relation. 
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Case Studies 

Modeling the Asteroid Redirect Mission 

The now-canceled Asteroid Redirect Mission (ARM) motivated the development of 

PyRIC and our work here represents the earliest efforts at PSI modeling. ARM had planned to 

visit, survey, and collect a boulder from a NEA (Mazanek et al., 2014). ARM’s planned final 

approach to sample collection would have forgone use of nadir thrusters, coasting the final 

portion of its decent assisted only by gravity (Reeves et al., 2014). Due to uncertainty in our 

knowledge of asteroid properties, however, it was conceivable that thruster assisted ascent might 

become necessary. In this case, exhaust effects would be of primary importance.  

We modeled PSI to understand the nature of exhaust-regolith interactions at a small body 

and quantify risk to the ARM spacecraft. In accordance with that goal, we chose values as 

conservatively as possible. Where parameters are well known but given as a range, the value 

most likely to cause an effect has been chosen. Where values were uncertain, parameters have 

been varied significantly in an attempt to capture the range of possible outcomes. 

Surface pressure generated by the ARM spacecraft’s engines was calculated using 

Equations 7 and 8 described above for an engine in the class of thrusters planned for use on the 

ARM spacecraft (Shen et al., 2014). In keeping with our goal of a conservative analysis, values 

for the engine parameters were independently chosen within the engine’s operating range to 

maximize surface pressure, whether or not such a combination is physically possible. 

The target asteroid properties at the time we conducted this study were poorly known. 

We chose parameters for Darcy’s Law in accordance with best estimates for the target. Porosity 

is a numeric fraction and allowed to vary between 20-80%. Permeability depends on the regolith 

size distribution, which may vary over many orders of magnitude. Scott and Ko (1968) give 
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values corresponding to a grain size of up to 1 mm; we extend this estimate to include values up 

to cm size particles by using the equation in Krumbein and Monk (1943). Finally, gas viscosity 

must be estimated for vacuum conditions and operating temperatures (Lemmon et al., n.d.). 

These choices are summarized in Table 1 and are used to vary the time constant given by 

Equation 5 over a range of possible values. 

Table 1: ARM Simulation Parameter Ranges 

Parameter Minimum Maximum Units 

Regolith Porosity 0.2 0.8 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

Gas Viscosity 1.00 × 10−6 4.50 × 10−5 𝑃𝑎 ∙ 𝑠 

Regolith Permeability 1.00 × 10−14 1.00 × 10−7 𝑚2 

 

We should note that Darcy’s Law assumes a non-zero initial pressure within the porous 

medium. As an approximation, the initial inter-particulate pressure is set at 10−6𝑃𝑎, well below 

the surface pressure values, and functionally zero for this simulation. The grid size is derived 

from examination of the surface pressure distribution, and the boundary terminated where it has 

tapered to a negligible amount; the depth of the grid is equal to half its width. 

Regolith instability occurs when gas pressure gradients overcome weight and cohesive 

forces. These interactions are complex, and we make a few simplifying assumptions. First, we 

consider only the vertical component of the pressure gradient, assuming the horizontal 

component is comparatively small. Second, cohesion has been conservatively simplified by 

neglecting the effects of horizontally adjacent grid squares. An individual grid square is 

considered unstable if the block’s weight and that above of the soil above it, together with the 

cohesive force directly beneath it, are unable to compensate for an upward gradient.  
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Σ𝐹 = 𝐹𝑔𝑎𝑠 − 𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 − 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ( 11 ) 

 

This relationship is described by Equation 11, which is the sum of forces we consider. 

The gravitational contribution is small, but not entirely negligible, especially below the surface.  

At each grid square, the value we seek is the minimum cohesion necessary to hold the regolith 

together. We term this value the critical cohesion.  

So far, we have turned a mission-oriented question into a physics question: Is the actual 

regolith cohesion on a near-earth asteroid larger than the critical cohesion? The answer depends 

on a few factors. Regolith properties, which wrap into the aforementioned time constant, have 

been discussed. The engine starting height determines peak pressure at the surface. The most 

recent configuration discussed in the literature places the spacecraft’s engines seven meters 

above the ground (Belbin & Merrill, 2014; Shen et al., 2014). In the interest of examining where 

a problem might arise, we take this as our maximum height and step down at two meter intervals. 

Finally, the mass of the spacecraft determines the rate of ascent, and therefore the rate at which 

engine height increases over time. Our simulation is run for two cases: the spacecraft ascending 

with a boulder captured, and an ascent without payload. We assume these masses to be 78000 kg 

and 8000 kg, respectively. Runs are completed at an engine height of 50 meters. 

Our program outputs a data visualization, which gives qualitative insight into the physical 

mechanisms leading to regolith instability. Figure 8 and Figure 9 show sample frames for runs 

with relatively high and relatively low time constants, respectively. Each run is classified by 

engine starting height, mass of the spacecraft, and time constant. The origin is in the upper left 

corner of each panel, with axes as indicated. The left panel of each frame shows relative pressure 



56 

 

difference, where brighter regions correspond to higher values. The right panel indicates regions 

of potential instability; in this case, the lighter area. A grid square is potentially unstable where a 

non-zero, positive value of cohesion is required to keep the soil intact.  

Recall that the time constant is primarily determined by regolith permeability, which in 

turn depends on grain size. A high time constant corresponds to fine regolith with low 

permeability. In this case, gas is unable to flow far into the soil, and remains near the radial 

centerline. As the spacecraft recedes, surface pressure decreases, and gas begins to reverse its 

flow. This creates an upward pressure gradient.  Fine regolith tends to produce on-center 

instability due to this trapped “bubble” of gas just beneath the surface. 

 

 

Figure 8: On the left, a visualization of the pressure gradient for a 5 m, 8000 kg, 10 s 

characteristic time model run. This demonstrates relatively impermeable regolith, as gas 

remains near the surface over the course of this simulation. At just over 43 seconds of 

simulated time, the engine has moved away, reducing the surface pressure and allowing 

trapped gas to diffuse upward. This creates an on-center region of instability, shown as the 

light region on the right half of this figure. 
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Figure 9: On the left, a visualization of the pressure gradient for a 5 m, 8000 kg, 1 ms 

characteristic time model run. At only 2 seconds of simulated time, gas has already diffused 

through the medium. Flow circulates outward and upward, creating an off-center region of 

instability shown on the right. As the engine ascends, gasses on-center diffuse upward and 

the unstable region shifts toward the center. 

On the other hand, relatively permeable soil like that shown in Figure 9 first develops 

instability off center. Gas diffuses freely through the medium and, finding a much lower surface 

pressure off of centerline, circulates back up. As the engine ascends, and on-axis pressure 

decreases, instability develops on-center as well.  

At each time step, critical cohesion values are generated for every grid square. 

Ultimately, however, we are only interested in the maximum value of critical cohesion for each 

entire run; that is, what must actual regolith cohesion be to prevent instability during the entire 

spacecraft ascent? These values are shown in Figure 10 for an 8000 kg spacecraft; the curves for 

a 78,000 kg spacecraft with captured boulder are qualitatively similar, though behaviors differ 

when the spacecraft ascends more slowly. A slower ascent increases jetting time near the surface, 

but peak pressure decreases over a longer period of time. As the time constant decreases, 

completing a run becomes much more computationally expensive. Because of this, the 1 and 3 m 

runs were not completed for all time constants. The general behavior of the 1 m curve, however 

has been captured. 
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Curiously, soil ejection is more likely for fine, relatively impermeable regolith. We 

reason this is due to the steeper pressure gradient resulting from the gas bubble trapped just 

under the surface. This only holds to a point, however, before the soil becomes fine enough (and 

the time constant high enough) to cut off gas diffusion. Though not displayed on the graph, the 3, 

5, and 7 meter curves all drop off to zero as one moves toward the highest time constant. For 

very permeable regolith (relatively low time constant), critical cohesion moves back up. This 

appears to be due to gas diffusing rapidly through the medium. In between, we see intermediate 

behavior, where the regolith is prevents rapid diffusion, but is also permeable enough to prevent 

large pressure buildups. This corresponds to the lowest computed values of critical cohesion. 

 

Figure 10: A log-log plot of critical cohesion vs. time constant, or characteristic time. A 

larger time constant corresponds to lower permeability regolith. The critical cohesion is the 

value of regolith cohesion needed to prevent ejecta during the simulation run. This value 

decreases as engine height increases. 
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Our program outputs visualization of both pressure magnitude and critical cohesion for 

time steps throughout the run. It appears that two distinct flow profiles are responsible for 

instability. For high permeability cases, gas can circulate quickly out and away from the engine 

centerline to regions of lower surface pressure. At this point gas migrates back to the surface, 

creating a negative pressure gradient. When permeability is low, gas penetration remains 

shallow, but subsiding surface pressure allows this bubble to escape back to the surface. 

Critical cohesion values are condensed for each engine height in Table 2. This includes 

both the results plotted in Figure 10 and those computed for a 78 metric ton spacecraft. Though 

we believe rougher, more permeable soil to be likely on a target asteroid, we err on the side of 

caution by choosing the maximum value for each run. 

Table 2: Maximum critical cohesion for all model runs as a function of engine height. 

Initial height Critical cohesion 

1 m 19.46 Pa 

3 m 2.16 Pa 

5 m 0.76 Pa  

7 m 0.40 Pa 

 

We have developed a program to simulate potential instability in asteroid regolith caused 

by the exhaust plume of a thruster-assisted ascent of ARM’s spacecraft. This program produces a 

series of visualizations which aid in understanding the nature of regolith ejection beneath a 

rocket motor, as well as a quantitative analysis of required cohesion values. Due to uncertainty in 

asteroid properties, our goal has been to set as wide a buffer possible around actual mission 

parameters, hemming in the range of possible outcomes. 
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At present, the best estimate for actual regolith cohesion places a lower bound at 25 Pa 

(Small Bodies Assessment Group, 2014). For a nominal engine starting height of 7 m, over all 

time constants considered, actual regolith cohesion must be greater than 0.4 Pa to prevent soil 

ejection. Given this margin, and the conservative approach with which this analysis was 

conducted, we judge hazardous plume effects to be unlikely. 

Even so, our qualitative results shed light on how soil ejection can occur. Gas trapped 

beneath the surface causes a pressure gradient, and in our case the spacecraft was allowed to 

recede gently under constant thrust. A sudden cutoff, however, would likely exacerbate the 

problem: a large drop in surface pressure would cause a steep gradient, increasing the chances of 

hazardous debris. Any mission planning to thrust near the surface of a small body must take 

effects such as these into consideration. Lowering the engine starting height to an impossible 

configuration of 1 meter, critical cohesion never exceeds 20 Pascals. Results at this height, 

however, should be considered inconclusive due to physical approximations.  

Comparison to Land and Scholl Experiment 

Introduction to Land/Scholl 1969 

Leading up to the Apollo lunar landings, a research campaign into PSI was conducted by 

NASA scientists to assess mission hazards. One of these studies involved a series of experiments 

at Langley Research Center which took place in their large 50-foot vacuum chambers (Land & 

Scholl, 1969). They conducted 32 tests with a helium cold gas thruster rigged to translate 

vertically above a cylindrical tray of simulant. An experiment run consisted of the thruster being 

turned on and then lowered toward a simulant bed. Jetting typically continued after the nozzle 



61 

 

reached its terminal height above the bed. The terminal nozzle height, particle size, descent rate, 

and other parameters were varied to study their effects on PSI. The parameters for these 

experiments are summarized in Table 3 below. We retrieve additional parameters for this set of 

experiments from a companion study by Hutton (1968).  

The goal of this report was to aid Apollo engineers and mission planners; in the original 

report these quantities are given scaled up by constant factors to estimate actual erosion during a 

lunar landing. We convert the quantities from this paper before they are placed in Table 3. The 

goal of this report was to aid Apollo engineers and mission planners; our goal is to simulate the 

original experiments. 

Table 3: Experiment parameters for each of the experiments conducted by Land and 

Scholl (1969). The original parameter table given in Land and Scholl’s report is scaled up 

to represent values for an actual lunar landing. We recover the actual experiment values by 

dividing out these scaling factors. 

Test Thrust (N) Descent 
Velocity (m/s) 

Nozzle Terminal 
Height (cm) 

Particle 
Diameter (mm) 

1 24.5 2.36 4.2 0.21 
2 27.1 2.22 9.0 0.21 
6 9.4 0.31 4.0 0.58 
7 6.5 0.24 3.6 0.32 
5 8.7 0.34 4.0 1.3 
9 8.7 0.22 3.4 4.8 

10 8.8 0.34 3.6 7.91 
4 9.4 1.05 3.4 1.3 
3 23.6 1.88 7.3 1 

24 56.0 0.73 2.3 0.49 
25 81.0 0.73 1.9 0.49 
26 30.1 0.82 2.2 0.49 
35 22.0 0.59 3.7 0.49 
37 21.9 0.68 4.8 0.49 
38 22.3 0.73 6.8 0.49 
39 21.7 0.64 9.5 0.49 
28 33.3 0.67 2.5 0.49 
29 21.3 1.28 3.1 0.49 
31 21.3 2.28 1.2 0.49 
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Test Thrust (N) Descent 
Velocity (m/s) 

Nozzle Terminal 
Height (cm) 

Particle 
Diameter (mm) 

32 24.1 0.61 1.1 0.49 
8 9.4 0.24 3.9 0.11 

15 30.0 0.81 1.4 0.07 
16 23.1 0.72 2.2 0.07 
19 24.5 1.19 1.5 9.54 
46 36.3 0.79 1.9 0.49 
47 17.1 0.77 1.9 0.49 
48 11.1 0.75 1.9 0.49 
49 72.2 0.76 2.0 0.49 
51 25.4 0.71 1.7 1.3 
52 47.7 0.73 1.7 1.3 
54 24.5 0.77 1.4 1.3 
55 68.1 0.77 1.5 1.3 

 

For each experiment, Land and Scholl (1969) reported a time series of cratering cross-

sections, derived by analyzing X-ray images taken during each experiment. We use these cross-

sections to derive an ejected volume and use an estimate for simulant density to calculate ejected 

mass. Unfortunately, there are limitations to the data reported. For either commercial or security 

reasons, the X-ray method is only outlined briefly. No description of its method or accuracy are 

given. The data for each experiment are also often sparse. No upper boundary layer is clearly 

delineated, and the crater shapes retrieved often appear slanted or otherwise affected by systemic 

error.  

It is also worth noting that the parameter space explored does not seem to conform to any 

pattern or method. Thrust, nozzle height and descent speed, and regolith particle size all seem 

chosen at random. Nonetheless, in spite of its shortcomings, this study contains one of the most 

comprehensively described and measured PSI experiment sets to date. It takes place in a vacuum, 

albeit at 1g, and these crater profiles allow us to validate our model against experimental data. 

Figure 11 and Figure 12 below show experimental and simulated crater profiles, 

respectively, where each box in the figure above corresponds to a figure below. The former are 
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taken from the Land and Scholl report, and show a time evolution of crater depth and diameter. 

Our simulated crater profiles are determined by a region of instability underneath the surface, 

using the absolute pressure method; that is, we determine where the subsurface pressure exceeds 

the cohesion of the soil and gravitational forces. The simulated crater profiles show moderate 

agreement with experiment profiles but tend to be narrower and deeper than the experiment 

profiles. For clarity, axes have been omitted from Figure 12 below; each chart may be seen in 

detail in Appendix C. 
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Figure 11: Transient crater profiles plotted for the 32 experiments conducted by Land and 

Scholl (1969). The data are often sparse, making rigorous comparison difficult. Original, 

high resolution figures may be found in the source report. Times are reported multiplied 

by a scaling factor which must be divided out to retrieve the experiment time elapsed. 

Images compiled from technical report by Land and Scholl (1969). 
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Figure 12: Regions of instability generated for each of 32 simulations. Each simulation was 

run to the experiment’s thruster cutoff time so there may be fewer simulated profiles than 

measured by experiment. In comparison to the measured crater profiles shown in Figure 2, 

these regions of instability are often steeper. 
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Table 4: Experimental and simulated radii for each experiment, given for the last transient 

crater in each experiment before jetting cutoff. The simulated radius is calculated for a 

range of possible cohesion values. Both the values and ratio of simulated radius to 

experimental radius are given. Ratios are shaded red when the simulation radius is larger 

than experiment and blue when smaller. Test numbers and ordering corresponds to that 

given in Land and Scholl (1969). 

  Simulation Radius (meters) Simulation Radius (ratio) 

Test 
Measured 
Radius (m) 

c = 0 5 10 25 50 100 250 500 c = 0 5 10 25 50 100 250 500 

1 0.19 0.18 0.18 0.18 0.17 0.16 0.15 0.13 0.10 0.96 0.95 0.94 0.91 0.86 0.80 0.67 0.55 

2 0.13 0.13 0.12 0.12 0.11 0.11 0.10 0.09 0.07 0.95 0.91 0.89 0.85 0.80 0.75 0.65 0.55 

6 0.12 0.16 0.15 0.15 0.13 0.11 0.09 0.07 0.05 1.32 1.26 1.20 1.06 0.91 0.76 0.57 0.44 

7 0.13 0.09 0.09 0.09 0.08 0.07 0.07 0.05 0.04 0.69 0.67 0.65 0.60 0.56 0.50 0.41 0.33 

5 0.15 0.22 0.19 0.17 0.14 0.12 0.09 0.07 0.05 1.40 1.26 1.13 0.92 0.75 0.60 0.44 0.34 

9 0.15 0.12 0.12 0.11 0.10 0.09 0.08 0.06 0.05 0.78 0.75 0.72 0.66 0.60 0.52 0.41 0.32 

10 0.14 0.21 0.19 0.17 0.14 0.11 0.09 0.07 0.05 1.58 1.40 1.25 1.01 0.83 0.66 0.49 0.38 

4 0.19 0.23 0.20 0.18 0.15 0.12 0.10 0.07 0.05 1.21 1.07 0.97 0.79 0.64 0.51 0.38 0.29 

3 0.21 0.35 0.35 0.30 0.25 0.21 0.18 0.13 0.10 1.67 1.67 1.44 1.20 1.03 0.86 0.64 0.49 

24 0.16 0.29 0.28 0.28 0.27 0.26 0.24 0.21 0.18 1.75 1.73 1.71 1.65 1.59 1.49 1.30 1.11 

25 0.19 0.31 0.31 0.30 0.30 0.29 0.28 0.25 0.22 1.65 1.63 1.62 1.58 1.53 1.46 1.31 1.16 

26 0.12 0.24 0.24 0.23 0.22 0.21 0.19 0.15 0.12 1.94 1.90 1.86 1.77 1.66 1.50 1.22 0.98 

35 0.12 0.13 0.12 0.12 0.11 0.11 0.10 0.09 0.08 1.13 1.03 0.98 0.93 0.89 0.85 0.77 0.68 

37 0.09 0.15 0.13 0.12 0.11 0.10 0.09 0.08 0.08 1.62 1.45 1.33 1.16 1.08 1.01 0.92 0.83 

38 0.11 0.15 0.13 0.12 0.11 0.11 0.10 0.09 0.08 1.28 1.15 1.06 0.98 0.93 0.89 0.81 0.72 

39 0.11 0.14 0.13 0.12 0.11 0.11 0.10 0.08 0.07 1.33 1.21 1.16 1.08 1.00 0.92 0.79 0.67 

28 0.15 0.17 0.15 0.14 0.12 0.11 0.10 0.09 0.08 1.11 0.99 0.91 0.79 0.71 0.65 0.59 0.54 

29 0.15 0.16 0.14 0.13 0.11 0.10 0.08 0.07 0.06 1.05 0.93 0.85 0.72 0.62 0.54 0.45 0.41 

31 0.15 0.17 0.17 0.17 0.16 0.15 0.14 0.12 0.09 1.13 1.11 1.10 1.05 0.99 0.91 0.76 0.62 

32 0.12 0.13 0.13 0.13 0.12 0.12 0.11 0.10 0.08 1.10 1.06 1.04 1.00 0.96 0.91 0.80 0.70 

8 0.11 0.08 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.79 0.68 0.62 0.59 0.57 0.54 0.49 0.44 

15 0.11 0.14 0.12 0.10 0.08 0.07 0.07 0.07 0.06 1.27 1.06 0.91 0.69 0.65 0.63 0.60 0.57 

16 0.12 0.14 0.11 0.10 0.07 0.06 0.06 0.06 0.06 1.10 0.92 0.80 0.60 0.51 0.49 0.47 0.45 

19 0.13 0.23 0.21 0.20 0.17 0.15 0.13 0.10 0.07 1.76 1.60 1.50 1.33 1.19 1.03 0.78 0.57 

46 0.14 0.15 0.14 0.14 0.13 0.13 0.12 0.11 0.10 1.09 1.02 0.99 0.95 0.92 0.89 0.81 0.73 

47 0.10 0.13 0.12 0.12 0.12 0.11 0.10 0.09 0.07 1.22 1.19 1.17 1.12 1.06 0.98 0.84 0.69 

48 0.10 0.11 0.11 0.10 0.10 0.09 0.08 0.07 0.06 1.08 1.05 1.02 0.97 0.91 0.83 0.69 0.57 

49 0.20 0.21 0.19 0.17 0.16 0.16 0.15 0.15 0.14 1.07 0.96 0.89 0.83 0.81 0.79 0.75 0.70 

51 0.11 0.20 0.20 0.19 0.18 0.17 0.16 0.13 0.10 1.83 1.79 1.75 1.67 1.57 1.43 1.18 0.95 

52 0.15 0.25 0.24 0.24 0.23 0.22 0.21 0.19 0.16 1.61 1.59 1.57 1.53 1.47 1.38 1.22 1.04 

54 0.12 0.19 0.19 0.18 0.17 0.16 0.15 0.13 0.10 1.63 1.60 1.57 1.50 1.42 1.30 1.09 0.88 

55 0.17 0.30 0.30 0.30 0.29 0.28 0.26 0.23 0.20 1.78 1.76 1.74 1.70 1.64 1.54 1.36 1.18 
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Table 5: Experimental and simulated volumes for each experiment, given for the last 

transient crater in each experiment before jetting cutoff. The simulated volume is 

calculated for a range of possible cohesion values. Both the values and ratio of simulated 

volume to experimental radius are given. Ratios are shaded red when the simulation radius 

is larger than experiment and blue when smaller. Test numbers and ordering corresponds 

to that given in Land and Scholl (1969). 

    Simulation Volume (cm^3) Simulation Volume (ratio) 

Test 
Measured 

Volume 
(cm^3) 

c = 0 5 10 25 50 100 250 500 c = 0 5 10 25 50 100 250 500 

1 8450 5720 5670 5610 5450 5190 4710 3580 2370 0.68 0.67 0.66 0.64 0.61 0.56 0.42 0.28 

2 4830 1700 1680 1660 1600 1520 1370 1050 697 0.35 0.35 0.34 0.33 0.31 0.28 0.22 0.14 

6 2630 1750 1680 1630 1470 1270 1000 593 314 0.67 0.64 0.62 0.56 0.48 0.38 0.23 0.12 

7 1630 605 591 577 540 488 408 261 145 0.37 0.36 0.35 0.33 0.3 0.25 0.16 0.09 

5 2900 2010 1860 1750 1510 1250 952 543 282 0.69 0.64 0.6 0.52 0.43 0.33 0.19 0.1 

9 2970 1060 1030 1010 933 837 691 439 246 0.36 0.35 0.34 0.31 0.28 0.23 0.15 0.08 

10 2790 1810 1670 1570 1360 1130 865 501 266 0.65 0.6 0.56 0.49 0.41 0.31 0.18 0.1 

4 5570 2230 2080 1950 1690 1410 1070 613 320 0.4 0.37 0.35 0.3 0.25 0.19 0.11 0.06 

3 8980 9010 8630 8270 7580 6780 5690 3820 2290 1 0.96 0.92 0.84 0.76 0.63 0.42 0.26 

24 5680 16300 16200 16100 15800 15200 14200 11700 8830 2.88 2.86 2.84 2.78 2.68 2.51 2.07 1.56 

25 7140 21500 21400 21300 20900 20400 19300 16600 13200 3.01 2.99 2.98 2.93 2.85 2.71 2.33 1.85 

26 3150 9060 8960 8850 8550 8060 7230 5400 3590 2.87 2.84 2.81 2.71 2.56 2.29 1.71 1.14 

35 2550 2000 1970 1950 1900 1820 1700 1400 1040 0.79 0.77 0.77 0.74 0.72 0.67 0.55 0.41 

37 1690 1660 1610 1570 1510 1440 1340 1140 892 0.98 0.95 0.93 0.89 0.85 0.8 0.67 0.53 

38 1810 2100 2050 2020 1970 1890 1770 1500 1160 1.16 1.13 1.12 1.08 1.04 0.98 0.83 0.64 

39 2450 1660 1620 1590 1530 1430 1280 964 639 0.68 0.66 0.65 0.62 0.59 0.52 0.39 0.26 

28 5090 2060 1990 1940 1850 1750 1630 1400 1150 0.41 0.39 0.38 0.36 0.34 0.32 0.28 0.23 

29 931 1080 1020 972 884 797 698 565 456 1.16 1.09 1.04 0.95 0.86 0.75 0.61 0.49 

31 4840 4760 4710 4660 4500 4260 3830 2830 1790 0.98 0.97 0.96 0.93 0.88 0.79 0.59 0.37 

32 2570 2680 2650 2620 2560 2450 2260 1800 1280 1.04 1.03 1.02 0.99 0.95 0.88 0.7 0.5 

8 404 362 349 342 331 315 290 232 165 0.89 0.86 0.85 0.82 0.78 0.72 0.57 0.41 

15 2090 820 772 742 703 688 667 615 541 0.39 0.37 0.36 0.34 0.33 0.32 0.29 0.26 

16 2520 543 498 471 432 413 398 363 315 0.22 0.2 0.19 0.17 0.16 0.16 0.14 0.12 

19 2150 1980 1880 1810 1630 1420 1120 612 229 0.92 0.88 0.84 0.76 0.66 0.52 0.28 0.11 

46 3860 3890 3860 3830 3760 3660 3480 3020 2410 1.01 1 0.99 0.98 0.95 0.9 0.78 0.63 

47 1820 2070 2050 2020 1950 1840 1650 1220 796 1.14 1.13 1.11 1.07 1.01 0.91 0.67 0.44 

48 1180 1190 1170 1150 1100 1020 889 620 377 1.01 0.99 0.97 0.93 0.86 0.75 0.52 0.32 

49 8410 7170 7090 7040 6950 6840 6640 6150 5450 0.85 0.84 0.84 0.83 0.81 0.79 0.73 0.65 

51 1900 6210 6140 6070 5860 5530 4960 3680 2380 3.27 3.23 3.19 3.08 2.91 2.61 1.94 1.25 

52 4550 12400 12300 12200 11900 11500 10800 8940 6720 2.72 2.7 2.68 2.63 2.54 2.37 1.97 1.48 

54 2080 5760 5700 5640 5450 5170 4670 3510 2300 2.77 2.74 2.7 2.62 2.48 2.24 1.69 1.1 

55 6050 19200 19100 19000 18600 18100 17000 14300 11100 3.18 3.16 3.14 3.08 2.99 2.81 2.36 1.83 
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We ran our model for each of the 32 experiments conducted by Land and Scholl (1969) 

and compared ejecta predictions to their measured values. Once a flow field is calculated, the 

analysis may be varied over a range of soil cohesion values. Table 4 and Table 5 above show 

results for our analysis across a range of possible soil cohesion values. We find that our model 

fits best in a range of cohesion values between 50 Pa and 100 Pa.  

 

Figure 13: Simulated and experimental ejecta crater radii and volumes compared when 

regolith cohesion equals 50 Pa. Each dot represents one experiment, and the diagonal line 

lies along a 1-to-1 ratio. Values are color coded according to the regolith permeability value 

for that experiment. Yellow dots are relatively permeable, violet relatively impermeable.  

Our model predicts the impingement crater radius to within a factor of two. While ejecta 

volume is predicted to within a factor of five for 80% of our simulations, a few outliers sit near a 

factor of ten error in predicted ejecta volume. Results for a regolith cohesion of 50 Pa are shown 

in Figure 13. Higher cohesion values reduce error and spread in our model results, but 

considerably greater than the near-zero cohesion values measured for glass beads (Klinkmüller et 

al., 2016). This indicates a limitation in our model; it does not capture the full range of PSI 

behaviors. 
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Summary 

We have developed a physics-based model to rapidly calculate the ejecta caused by PSI. 

Gas flow into regolith is calculated using Darcy’s Law. The resulting pressure gradients from gas 

diffusion cause regions of instability, which may be used to predict ejecta behavior and volumes. 

An assessment of the Asteroid Redirect Mission determined regolith ejecta to be unlikely. 

Comparison to an experiment set conducted in 1g shows our model can predict crater radius to 

within a factor of two, and ejecta volume to within an order of magnitude. Our model fits the 

experimental data best with a value of cohesion higher than expected for glass bead simulant. We 

also note the limitations of our model, as we assume a flow independent of particle motion. This 

indicates our model should be more accurate at shorter jetting durations. 
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EXPERIMENTS AND OBSERVATIONS 

We present the first systematic investigation into the physics of PSI in vacuum 

microgravity. Tests at 1g were also conducted for comparison. Our work was initially motivated 

by ARM, but our goals broadened to study PSI systematically by conducting experiments with 

several simulants, in 1g and microgravity, and by varying nozzle distance and jetting duration. 

To achieve these goals, we needed to develop an experiment that could test PSI in conditions as 

close as possible to the surface of an asteroid. Asteroids lack an atmosphere, lack significant 

gravity, and are covered by rocky, unconsolidated material. We designed an experiment to 

simulate these conditions at the University of Central Florida’s Center for Microgravity Research 

(CMR).  

Research and drop tower experiments at CMR have historically focused on low-velocity 

collisions and other evolutionary mechanisms in the Solar System. To this end, the center houses 

a drop tower for small vacuum chamber experiments. This expertise enabled the step to small 

scale, cold gas PSI research in vacuum microgravity. To solve the second challenge of 

replicating an asteroid’s surface, UCF’s Exolith Lab provided high fidelity regolith simulant for 

use in this research. The result of this effort was the Gas Regolith Interaction Testbed, or GRIT, 

a vacuum chamber experiment which may be dropped to briefly simulate microgravity. We have 

conducted over 150 successful drop tower experiments with the GRIT chamber. We describe the 

experiment setup, testing, and phenomenological observations in this chapter, and attempt to 

quantify the observed behavior and compare to numerical simulations in the next chapter. 
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Preliminary Experiments 

Along the way to developing GRIT, we conducted early experiments at 1g and ambient 

pressure as a proof of concept for small scale PSI experimentation. We recorded PSI behaviors 

and also tested a method for taking low intensity pressure measurements. This work informed 

our GRIT design and demonstrated the feasibility of a more sophisticated experiment. 

 

Figure 14: The preliminary, ambient pressure jetting experiment. On the left, an air line 

was attached to a solenoid valve which opened to pass air through a 3D printed nozzle. A 

force sensor was placed beneath a circular plate to measure impingement pressure. These 

measurements were recorded by an Arduino. On the right, a jetting experiment where a 

cup of steel beads has been placed beneath the nozzle. Video was taken by a camera angled 

at 45 degrees to the surface to observe PSI phenomena. 
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Figure 15: A cantilever force sensor mounted beneath the circular plate, which could be 

moved radially to take measurements along a cross section of the impinging flow. The 

probe screwed in through the top of the plate, and into the sensor, its surface sitting just 

above the plate. 

Our initial setup, shown in Figure 14, consisted of a circular plate mounted below a 3D 

printed rocket nozzle. This plate could be raised and lowered, and the nozzle could also be 

moved up or down along an aluminum rail. This nozzle was connected to the laboratory’s 

compressed air supply with a solenoid valve in-line to switch flow on and off. This solenoid 

valve was controlled manually via a switch. As shown in Figure 15, the circular plate was drilled 

with holes at even intervals from the center outward along a radial line, under which we placed a 

sensor to measure impinging flow. A ¼” diameter circular disk placed just above one of these 

holes was attached to the top of 4-40 screw, which could be mounted into the cantilever force 
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sensor, so that we could measure the flow at specific radial locations. Data from the pressure 

sensor was recorded with an Arduino to a text file. 

We also conducted a few trial PSI experiments parallel to these pressure measurements. 

We placed a tray of steel beads below the nozzle and recorded high speed video from a camera 

mounted above the experiment and angled downward at approximately 45 degrees. Experiments 

were conducted to observe the reaction of steel beads to a gas jet at a scale similar to that 

planned for our drop tower experiment. These demonstrated our concept was feasible but did not 

produce results suitable for significant analysis.  

Results 

Ambient Prototype Pressure Measurements 

We calibrated our force sensor before each jetting test by placing known weights on the 

sensor and recording its readout. Frequent calibration was needed due to baseline drift. For each 

pressure measurement, compressed air was pulsed several times for approximately three seconds, 

separated by a three second gap. We took measurements between 5 cm and 14 cm nozzle height, 

and from 0 cm to 4 cm radially out from the nozzle centerline. A sample of pulse data recorded is 

shown in Figure 16 below. Jetting data were noisy, possibly due to the cantilever force probe, but 

also because jetting flow was turbulent. The geometry of the setup and slight protrusion of the 

force probe may also have contributed. 
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Figure 16: Sample uncalibrated pressure measurement shown with arbitrary units. The left 

and right boundaries of each pulse are marked with an X and the pulse average is marked 

with a diamond. X values are plotted at the height of the data point which marks the 

beginning and end of each pulse. 

Results from these experiments are shown in Figure 17, where we plot the pressure 

measured radially away from the center of the plate, directly below the nozzle, each line 

representing a different nozzle height. These surface pressure measurements show some 

qualitative similarity to other surface pressure measurements (Romine et al., 1973). Because the 

flow of gas was narrow and columnated, there may be systematic error in the maximum value we 

measured if the probe was not placed directly within the stagnation region. These measurements 

are also consistent with flow spreading as nozzle height increases. 
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Figure 17: Pressure measurements as a function of radius and nozzle distance plotted from 

the benchtop jetting experiment. We are uncertain whether the off-center maximum is 

physical, due to plume structure, or a result of slight nozzle misalignment.  
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Figure 18: On-center pressure plotted as a function of distance from the nozzle. Pressure 

drops off proportionally to the inverse of the nozzle height, as shown by the fitted curve.  

Robert’s (1964) equation predicts that maximum surface pressure will fall off with the 

radius squared. This equation is valid for plume impingement in ambient vacuum and places the 

maximum on-center. We test this relation for our dataset taken at ambient pressure by fitting a 

curve to the maximum pressure at each nozzle distance and find instead that the pressure 

maximum falls on inversely with radius, as shown in Figure 18. Our admittedly limited dataset is 

consistent with this relationship, as given by Equation 12. 

𝑷𝒎𝒂𝒙𝒊𝒎𝒖𝒎(𝒉) ∝
𝟏

𝒉
 ( 12 ) 
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Ambient Prototype PSI Observations 

Prototype experiments to test jetting into a regolith bed were conducted with stainless 

steel beads in ambient atmosphere. 2-mm beads were placed in a metal measuring cup, and in a 

shallow glass tray. PSI behaviors were relatively consistent throughout the set. As gas impinged, 

beads are disturbed at the surface and begin to travel radially outward away from the flow. For 

longer pulses or lower nozzle heights, small craters were formed as shown in Figure 19. 

 

Figure 19: Frames from two preliminary experiments taken at 167 ms intervals. Steel 

beads are visible ejecting from the surface, forming a small crater by this interaction. 
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Lessons learned from our preliminary experiments were applied to the main experiment. 

We were able to determine that PSI could occur at a scale comparable to other CMR drop tower 

experiments. While we had hoped to take pressure measurements inside our vacuum chamber 

experiment, the force sensor required calibration regularly due to baseline drift. Because of this, 

we did not make pressure measurements for the primary drop tower experiment. 

Primary Experiment 

Setup and Procedure 

The Gas Regolith Interaction Testbed, or GRIT, is an experimental apparatus capable of 

simulating PSI in vacuum microgravity. The GRIT apparatus consists of a cylindrical vacuum 

chamber constructed from a polycarbonate tube and aluminum end caps. Aluminum rings 

compress a viton O-ring onto the outer surface of the polycarbonate tube to create a vacuum seal. 

The interior space is roughly 30 cm high, measured from endcap to endcap, and 12.4 cm in 

radius. Usable space is slightly reduced by cameras mounted to the interior of the top cap. A full 

list of apparatus specifications appears in Table 6, and chamber features are illustrated in Figure 

20. Two interior heights are listed due to replacement of the tube early on in our experiment 

campaign. 
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Figure 20: GRIT vacuum chamber. Top left: vacuum feedthrough lines are visible for 

pump-down and jetting. Top right: Superstructure has been added to house batteries, 

electronics, and allow mounting to the drop tower. Bottom left: Underside of the lid; 

electrical and vacuum feed through holes are visible, as well as the action camera mounts. 

Bottom right: Light bucket in place, which houses LED strips to backlight experiment. 
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Table 6: GRIT Apparatus Specifications 

Measurement Value 

Interior radius 12.4 cm 

Interior height (tube 1, tube 2) 29.9 cm, 29.4 cm 

Interior base area 483 cm2 

Interior volume (tube 1, tube 2) 14,400 cm3, 14,200 cm3 

Initial pressure (min, max, avg) 235 mTorr, 1.34 Torr, 514 mTorr 

Orifice diameter 4.25 mm 

Drop time 0.65 s 

 

The GRIT vacuum chamber typically reaches pressure levels well under 1 Torr (133 Pa). 

For comparison, Earth atmospheric pressure is 760 Torr, while the Martian atmosphere measured 

by the InSight lander varies between about 5 and 6 Torr (Banfield et al., 2020). The average 

starting, closed-valve pressure for the GRIT experiment was 514 mTorr, but experiments were 

conducted with an initial pressure of 235 mTorr to 1.3 Torr. This varied based on simulant used, 

available pump down time, and quality of the vacuum seal. It took about a week for our vacuum 

to reach pressures around 600 mTorr with CI Orgueil simulant due to water diffusing out of the 

material, so a few of these experiments were conducted above 1 Torr. 

To produce a gas plume, air is vented back into the chamber through a hole centered in 

the top cap. A Swagelok vacuum feedthrough with a 4.25 mm interior diameter is fitted to the 

hole. A vacuum rated solenoid valve is fitted to the exterior of the feedthrough and is controlled 

by an Arduino microprocessor. When the experiment is dropped, two electrical contacts 

disconnect from the drop tower harness, opening a circuit connected to the Arduino. The 

Arduino detects this change, delays 75 ms, then uses a relay to open the solenoid valve for a 



81 

 

programmed duration. Figure 21 below illustrates an example pulse. Peaks appear when the 

solenoid opens and closes. The muffled sound of impact appears 0.65 s after the first peak.  

 

Figure 21: The audio waveform recorded by an internally mounted GoPro during an 

experiment drop. The pulse beginning and end are indicated by sharp peaks which are 

caused by flow starting and stopping. The effect of impact is muffled, its amplitude 

relatively low. 

Three action cameras are used to record GRIT experiment runs; cameras used are listed in Table 

7, and the camera mounting locations are shown in Figure 20. Two are mounted on the interior to 

give a top down view of the impingement behavior. One is mounted on the exterior to provide a 

side view of the experiment. The interior cameras are controlled remotely via WiFi connection 

and placed into standby mode when not in use. Power is supplied to the cameras via an electrical 
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vacuum feedthrough. The cameras must be turned on manually, meaning loss of power requires 

the chamber be opened to switch them back on. We use an on-board battery when conducting an 

experiment, and a benchtop power supply when the experiment is on the bench between 

experiments. Diodes placed in-line with the battery and power supply connections allow power 

to be switched between the two sources without interruption. This solution improved upon a 

manual switch which could interrupt power when flipping between sources. 

Table 7: Action Camera Specifications 

Brand/Model GoPro HERO3 EKEN 

Video Resolution 1280 pixels x 720 pixels 1280 pixels x 720 pixels 

Video Frame Rate 119.88 frames per second 120.00 frames per second 

Audio Sampling Rate 48.000 kHz 44.100 kHz 

 

The CMR tower is approximately 3.4 m high which allows experiments up to 

approximately .75 s of freefall. Due to the size of the GRIT experiment, triggering delay after 

experiment release, and cushioning height, we achieved drop durations of .65 s. The audio data 

shown in Figure 21 are recorded at a high sampling rate (48 kHz) which allows us to verify pulse 

duration. 

Experiment Procedure 

To ready GRIT for an experiment run, we place regolith simulant in the base of the 

vacuum chamber. The base may be elevated by an acrylic platform to reduce nozzle the distance 

between the top of the simulant and the venting hole, which we refer to as the nozzle “height”. 
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We turn on the internal cameras, place them into sleep mode with Wi-Fi activated, and finish 

assembling the chamber. It is then hooked up to a vacuum line to pump down. 

Initial pump down times vary with simulant type, the presence of other objects in the 

chamber like a platform, and the time the chamber has spent at ambient pressure. Introducing 

new objects into the chamber increases initial pump-down time while the object dries out. Dry, 

impermeable simulants like glass or steel beads pump more quickly compared to asteroid 

regolith simulant, particularly if the asteroid simulant is freshly made. It takes a week or two for 

the asteroid simulant to dry out and achieve a minimum vacuum pressure. We measured higher 

minimum pressures for asteroid simulant compared to glass bead, sand, and steel bead simulants. 

For repeat runs with the same simulant and platform height, we only need pump down the 

chamber back to its minimum pressure level after an experiment run. This typically takes an hour 

or two depending on the jetting duration, as longer pulse times let more air into the chamber. 

Because of this quick turnaround time, we were able to complete as many as 5 or 6 experiment 

runs in a day.  

Experiment Run 

Once the experiment chamber reaches its minimum pressure, we program the Arduino 

with the next jetting pulse duration. The chamber pressure (Pressure 1) is measured from a gauge 

in line with the experiment while the chamber is actively pumping down. Then the valve 

between the gauge and the vacuum chamber is closed and a second pressure reading is taken 

(Pressure 2). The valve onboard the GRIT chamber is closed, the vacuum line disconnected, and 

a cap screwed on to protect the valve threads.  
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Batteries to the Arduino and solenoid valve are connected, then internal camera power is 

switched from the auxiliary power supply to an onboard battery. The chamber is then placed into 

the drop tower harness, attached by an electromagnet on the harness to a steel plate on the top of 

the GRIT chamber. Two contacts on the GRIT experiment are aligned to a short-circuit on the 

harness; this circuit will break when the experiment falls, which triggers the jetting pulse. 

Exterior backlighting is attached to the chamber and connected to a dedicated battery. After a 

contact check, the experiment is hoisted to drop height. The Arduino is powered on, armed, and 

the exterior camera turned on and set to record. The interior cameras, controlled by mobile phone 

or a computer application via Wi-Fi, are set to record. All lights in the laboratory room are shut 

off to prevent tube reflections appearing in experiment videos, then the experiment is ready to 

drop.  

After a brief count, the switch to the electromagnet is shut off, and the experiment falls 

for approximately 0.725 s. The solenoid fires for the specified pulse duration after a 75 ms delay, 

meaning the experiment duration is 0.65 s. After impact the electronics are shut off, the 

experiment returned to the bench, and internal cameras returned to auxiliary power. The vacuum 

line is reattached, pumped down to vacuum, then the valve to the pump is closed off. The 

experiment valve is opened to the line, and the post-drop chamber pressure (Pressure 3) is 

measured. If the next experiment run uses the same simulant and platform height, the experiment 

need only be shaken to reset the material and pumped down before a new drop. 

Experiment Setup and Variables 

For this experiment set, we varied jetting duration, nozzle height, and material type. A list 

of material and experiment parameters is shown below in Table 8 and Table 9. While not 
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representative of a planetary surface, initial experiments were performed with steel beads due to 

the simulant being readily available in our laboratory. Since we were initially unsure how 

simulant would respond to jetting in microgravity, steel beads were an appropriate choice to test 

first because of their higher density. 

Experiments were conducted with sand, glass beads, and CI Orgueil simulants, whose 

bulk properties are described in Table 8. Our CI Orgueil simulant, provided by Exolith Lab, is a 

high-fidelity replication of asteroid regolith based on the mineralogical properties of a CI1 

chondritic meteorite (Britt et al., 2019). We received the simulant as a powder, then mixed with 

water and let the mixture dry in cakes to create our asteroid simulant. These cakes were broken 

up and sieved such that our particle sizes were between 0.475 cm and 3 cm.  

We performed these experiments with a standard simulant depth of 5 cm and at two 

nozzle heights; of these, experiments with sand were not performed at a reduced nozzle height. 

Changing the nozzle height required putting a platform in the GRIT experiment, and a thin gap 

in the platform would have allowed sand to spill through to the bottom layer. No fix robust 

enough for the repeated stress of a drop tower experiment was readily available. Three drops and 

one bench run were nominally performed for each simulant/pulse/height combination. A 

summary of experiments conducted is given toward the conclusion of this chapter in Table 10. 

  



86 

 

Table 8: Simulant Properties 

Type Size Distribution Depth (cm) Mass (kg) 

Steel 2 mm (uniform) 1.27  2.85 kg 

Glass 600 µm – 850 µm 5  3.8 kg 

Sand 150 µm – 200 µm 5  3.8 kg 

CI Orgueil .475 cm – 3 cm 5  1.8 kg - 2.1 kg 

 

Table 9: Other GRIT Parameters 

Platform height 0 cm, 10 cm 

Pulse duration 0 ms (control), 10 ms, 25 ms, 50 ms, 100 ms, 250 ms 

Gravity 1g (bench), ~0g (drop tower) 

 

Off-nominal Chamber Events 

While the majority of experiment runs were nominal, a few problems were encountered 

with the GRIT chamber. Chamber backlighting occasionally failed. Power cables for the interior 

cameras detached from the top lid and show up in several experiment videos. The solenoid valve 

occasionally pulsed twice during a drop. For a of couple drops, user error meant the experiment 

did not fire or a video was not recorded. 

Once the second internal camera was installed, running two cameras for a drop was 

preferred, but occasional connectivity problems prevented duplicate video in all cases. A drop 

was still considered nominal if only one interior video was obtained. 
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Off-nominal runs were marked and repeated. While some chamber problems resulted in 

an unusable run, double pulses and no-pulse runs provide unique and control results, 

respectively. The phenomenology of a double pulse impingement experiment is included in the 

descriptions below. 

Images and Processing 

Each nominal experiment run is recorded with at least two cameras: one side view and 

one top view, and some experiments are recorded with two top-view “stereo” cameras. The side 

view camera was exterior to the experiment tube and placed with a view slightly above the 

surface of the regolith. This means the viewing angle is slightly above edge-on. This allows us to 

view surface phenomena that would be impossible to see clearing with the camera lens centered 

on the regolith. As seen in Figure 22, video from the side is distorted because the polycarbonate 

tube was extruded, and the striations perturb the particle locations horizontally. Our top-down 

cameras are mounted inside the lid of the experiment chamber, equidistant from the centerline.  
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Figure 22: Optical distortion caused by the extruded polycarbonate tube. Graph paper is shown without (top) and with 

(bottom) the tube in place. 
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We record using wide-angle action cameras. To correct for the distortion caused by these 

lenses, we use a de-warping package called Argus (Jackson et al., 2016). By recording a known 

dot-grid pattern with each camera type used, Argus can determine a de-warping profile. This 

profile is then applied to the experiment videos before analysis. Running this de-warping 

algorithm on the calibration video allowed us to visually inspect that the program worked 

properly to correct optical distortion. 

These de-warped frames are processed to make PSI phenomena easier to observe. We 

process frames using two methods. Difference frames are constructed by subtracting consecutive 

video frames. Background-subtracted frames are constructed by subtracting the average pre-

experiment frame (with a buffer) from the current frame. This is summarized by Equations 13 

and 14, where the variable f is an array containing image data.  

𝒇𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 = 𝒇𝒕 − 𝒇𝒕−𝟏 ( 13 ) 

𝒇𝒃𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅 𝒔𝒖𝒃𝒕𝒓𝒂𝒄𝒕𝒆𝒅 = 𝒇𝒕 − 𝒇𝒕<𝟎,𝒂𝒗𝒆𝒓𝒂𝒈𝒆 ( 14 ) 

Difference frames show what changed between subsequent frames, and so give a sense of 

motion. If a particle moves, its new location will show as a light dot, and its previous location as 

a dark dot. If these locations overlap, the new area occupied will show as a lighter region, and 

the old area occupied as a darker. The overlapping region will take an intermediate value similar 

to the background. Background subtracted frames show what has changed since the experiment 

began. This type of image is better at highlighting the difference in structure between initial and 

current images. Each type, shown in Figure 23 and Figure 24 for both side and top-down views, 

has its advantages and limitations, so we use each as is effective to highlight the described 

phenomena.  
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Figure 23: An example side-view frame showing the initial image (top), and the two 

processing methods, background subtraction (middle) and frame differencing (bottom). 
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Figure 24: An example top-down view frame showing the initial image (top), and the two 

processing methods, background subtraction (middle) and frame differencing (bottom). 
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The first active frame (Frame 1) of each experiment was determined by visual inspection, 

based on when a disturbance first appears. One frame before this is then labeled as the initial 

frame, Frame 0, such that all frame indices begin at 0. 

Plume Surface Interaction Phenomenology 

Many features of PSI in vacuum microgravity resemble solid impactor experiments—

minus the visible impactor—including both low and hypervelocity impact experiments. We often 

see what looks like an ejecta splash, where the particulate medium seems almost fluid-like in its 

reaction. In some cases, finer particles exhibit the streaming behavior typical of fluids. But there 

are also behaviors unique to particle-fluid interactions that appear in the GRIT experiment 

The microgravity regime can be unintuitive. Most PSI experiments, even those conducted 

in a vacuum chamber, have been performed in an environment where gravity is a significant 

force. In microgravity, distinct behaviors appear. These “masked phenomena” can become 

important when gravitational force is absent. By observing experiments in microgravity we can 

begin to develop an intuition for what kind of forces are important in this regime. 

As noted in the introduction, PSI has been categorized into four main categories (Mehta 

et al., 2011): bearing capacity failure (BCF), viscous shear erosion (VSE), diffusion driven flow 

(DDF), and diffuse gas eruption (DGE). The fifth observed category, diffuse gas explosive 

eruption (DGEE), may be considered an expansion on DGE or its own phenomenon. We will 

return to consider this taxonomy in later discussion. 
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Plume Behavior 

There are several stages to plume flow in the GRIT experiment. Gas flows through an 

orifice in the center of the experiment chamber. Gas travels from the experiment lid’s orifice to 

the regolith. Then it impinges on the regolith and interacts. Here we consider each of these stages 

from the standpoint of gas behavior before moving on to describe its effects on the granular 

medium. 

The gas jet in the GRIT chamber comes from allowing ambient air in through a solenoid 

valve. The pressure differential between the ambient atmosphere and inside of the chamber is 

high enough that the flow will always be choked. Flow chokes at the narrowest point within the 

solenoid, at the speed of sound. Flow from the orifice moves downward and spreads radially 

outward before hitting the surface. In a perfect vacuum, flow would spread outward in all 

directions and the surface pressure distribution would take a shape resembling a Gaussian curve 

with the peak pressure directly under the nozzle. In the presence of an atmosphere or background 

pressure as in our experiment, flow tends to collimate, such that there is a narrower radial 

distribution of flow.  

Next, the flow impinges on the granular surface. The flow may then (1) be redirected by 

the surface, but also (2) push material aside and (3) flow into, radially along, and then outward 

from the media. This behavior was seen in flow simulations and may be observed indirectly by 

several phenomena in our experiments, such as the dust-entrained flow and off-center lofting, 

which we will describe below.  

Plume flow is the driver behind particle motion, and therefore the driver behind PSI. 

Particles are moved or ejected as the gas hits, flows through, and exits the medium. Theory and 

modeling suggest this flow is governed by soil permeability, and observations support this. 
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Developing a model for plume flow can be aided by considering limiting cases: That of a solid, 

impermeable barrier, and the case where there is no barrier at all. Imagine water from a garden 

hose directed straight down onto a concrete sidewalk. The water flow will splay outward, 

redirected by the hard surface. But before the water hits, its flow is practically unimpeded by air. 

The PSI cases we are interest in lie between these two bounds; between no impedance and total 

impedance to flow. Fine grained, tightly compacted granular media have low permeability, as 

their close-packing leaves little pore space, so we expect the behavior of these materials to be 

closer to that of a hard surface. Gas flow impinging on these surfaces deflects more than it 

penetrates. Media comprised of larger grains, however, tend to be less closely packed and thus 

allow the impinging gas to flow more freely. As we will see, and as suggested by our model, the 

range of PSI behaviors we observe are significantly influenced by these differences in soil 

permeability. 

Surface Interactions 

The two limiting cases of PSI behavior are impingement on a solid surface and 

uninhibited flow. Fluid impacting a solid surface is deflected but pushes against the surface, 

which suggests an impact-like regime to PSI. On the other end, if we imagine a porous medium 

which does not inhibit flow, PSI behavior will be entirely flow-driven. We expect most 

experiments to demonstrate a range of phenomena between these limiting cases . After outlining 

some general PSI behaviors, we will examine the range of PSI interactions exhibited by four 

different media which display these impact-like and flow-driven behaviors. We also catalog the 

behaviors that do not fit neatly into these categories. 
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General Behaviors 

Because our experiment apparatus was intentionally constructed to be axially symmetric, 

we observe motion primarily in the radial and vertical directions. In the first few ms of PSI, fine 

particles are accelerated, if present, and serve as a tracer to plume flow. This is observed as flow-

driven behavior in the CI simulant, where the breakup of larger particles due to previous 

experiments produced fine dust that is present throughout the simulant bed.  

Impact-like behavior occurs next, with a time scale dependent on the simulant involved. 

Less massive particles are typically accelerated more quickly. Denser particles are slower and 

take more time to accelerate. A disturbance first appears as a small circular region centered on 

the surface of the granular bed. Material is displaced and lofted upward and outward from the 

center in a splash of ejecta. Fluid-like behavior in this splash may be observed as radial “fingers” 

emanating from the center; that is, small angular regions of higher-density ejecta. 

This initial behavior takes on different characteristics at different pulse durations. 

Generally speaking, short-duration pulses are characterized by sparse ejecta directly around the 

pulse centerline. This ejecta is difficult to define clearly in terms of an ejection angle or shape, 

though the shortest pulses seem to loft ejecta at a higher angle—an exception to the relatively 

constant ejecta angle otherwise observed with moderate pulse durations. A general increase in 

angle is seen as pulse duration increases and gas bores deeper into the material. 

In some cases, with lighter media, the initial gas “impacts” bears resemblance to 

hypervelocity impact experiments conducted by other researchers (Hermalyn & Schultz, 2010) in 

which an initial, high velocity component of ejecta precedes bulk ejecta. In our experiment, 

which consists of a gas wave front hitting granular media, we also observe—to a lesser extent—
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this kind of “spurting” behavior immediately following gas “impact”. This produces the fastest 

particles, and like the hypervelocity impact experiments, we have difficulty characterizing these 

particles. Our overall time and velocity scales, however, are much smaller, with the fastest ejecta 

we observe is traveling on the order of tens of m/s. 

Flow-driven behavior appears in two forms. First, in longer pulses, flow appears to drive 

the ejecta splash in a manner distinct from simple impacts. After impact-like behavior is 

observed, we see flow-driven crater boring and widening. This is especially apparent in more 

permeable media like glass beads and CI Orgueil at long pulse durations. It is not observed in 

impermeable media like sand. This crater widening also depends on whether or not gas bores to 

the base of the experiment chamber. When the pulse duration is sufficient, gas hitting a hard 

surface may spread outward and “bubble,” pushing up the entire mass of simulant with it.  

Flow-driven behavior is also apparent off-center in more permeable media, where it 

manifests as a disturbance outside the impact-like splash. These disturbances may be 

perturbations or ejecta. This ejecta moves much more slowly than that originating from within 

the main splash area, though as pulses become longer in the CI Orgueil simulant, a clear 

definition between “main ejecta” and “off-center ejecta” breaks down. 

Steel, 28.7 cm Nozzle Height 

We began the GRIT experiments with 2mm diameter steel beads for a couple of reasons; 

1) they were readily available when the GRIT apparatus was constructed, and 2) due to their 

higher density, we knew that the beads would accelerate more slowly than a simulant with more 

realistic density. However, because this was the first set of experiments, and because there was a 

limited amount of the steel beads available, we did not conduct these experiments with the same 
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simulant depth as those which follow. This limits our ability to make one-to-one comparisons of 

the phenomena here relative to other materials, but these represent the first tests of PSI in 

vacuum microgravity and informed our approach moving forward. This first set was conducted 

with a 1.3 cm layer of steel beads in the base of the experiment chamber, meaning the effective 

height of our “nozzle” to the material surface was about 28.7 cm. For the first set with a 29 cm 

nozzle height, tests at Earth gravity (1g) only conducted for 10 ms, 100 ms, and 250 ms pulse 

times.  

10 ms Pulse Behavior 

A brief, 10 ms pulse to steel beads in microgravity results in one of the gentlest 

perturbations we observe in this experiment campaign. This is exciting because it tells us we are 

near the limits of PSI causing a measurable effect. As seen in Figure 25, a small splash of beads 

is created by the plume and, aside from a few stray particles outside this center region, most of 

the effect is confined to an area roughly 8 cm wide. Some particles are disturbed but remain in 

place. Others travel upward slowly, but a slight gravitational bias can be seen in their trajectories 

toward the end of the experiment. 
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Figure 25: A background-subtracted frame, 375 ms into a 10 ms pulse experiment in steel 

beads in µg. Lofting is visible on-center, with some perturbed particles in the surrounding 

regions. 

Off-center perturbation of particles appears to have a radial dependence with time. Beads 

toward the edge of the experiment are perturbed as late as ~160 ms into the experiment—a full 

150 ms after the experiment pulse stops. This suggests the perturbation is due to gas moving 

more slowly within the material rather than gas motion across the surface. Experiments 

conducted at 1g with this pulse duration show no effect on the surface. Comparison to our Drop 

Tower control experiments—drops with no pulse at all—show that these effects are not due to a 

jolt or bump to the experiment as it is released. Though there are slight drop induced effects for 

lighter simulants, steel beads remain motionless during control drops.  

We see these off-center circulatory effects of gas flow moving forward through the 

experiment set. Already this experiment highlights the ways in which PSI interactions are unlike 

impact experiments, with distinct phenomena clearly present. 
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25 ms Pulse Behavior 

Ejecta are still sparse for a 25 ms experiment, shown in Figure 26, but a much larger 

region on the surface is affected by the impinging plume. We see a few individual beads 

disturbed toward the edge of the experiment area. Though sparse, we begin to see something like 

a discernable, shallow ejecta angle caused by the main splash. Some beads are driven directly 

outward, rolling across the surface.  

 

Figure 26: A background-subtracted frame, 375 ms into a 25 ms pulse experiment in steel 

beads in µg. The surface perturbation extends well beyond the area modified by the 10 ms 

pulse. 

50 ms Pulse Behavior 

At this pulse duration the ejecta begin to take a more well-defined shape but are still 

relatively sparse. Some beads are lofted at a very low angle, and as before some beads outside 

the ejecta area are driven outward, rolling across the surface. At this point the shallow ejecta 
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angle is visible, seen in Figure 27, though the spready is not tightly defined. Notably, we do not 

see beads traveling at a steep angle.  

 

Figure 27: Still frame from 208 ms into a 50 ms pulse experiment in µg. Outside the splash 

area, particles on the surface are perturbed, some rolling outward across the surface. 

100 ms Pulse Behavior 

The ejecta spray from a 100 ms pulse is more pronounced, and at this pulse duration the 

crater bottoms out, revealing the baseplate underneath, though a few individual particles remain 

in the center. The crater expands to over half the diameter of the tube by the end of the 

experiment. Experiments conducted at 1g show a slight perturbation of the surface. A few 

particles roll across the surface out from the impingement centerline, but none are lofted. 

One of our experiments in this set, No. 55, is curious for its anomalous asymmetric 

behavior illustrated in Figure 28, Figure 29, and Figure 30. The experiment chamber was reset 

after each experiment by shaking to produce a roughly uniform simulant surface. Occasionally, 
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however, the surface during the experiment would have a small slope or other remaining 

features. For experiment 55, rather than surface irregularity, the center region of the surface 

beads in a regular, close-packed arrangement prior to plume impingement. This is atypical for 

our experiment set, and we do not know what conditions produced this particle arrangement. 

Nevertheless, the effect on the experiment outcome was pronounced. 

 

Figure 28: Surface prior to plume impingement. Left, experiment 56, shows a typical initial 

surface condition. On the right, experiment 55, with a regular packing arrangement visible 

in the center region. 

In this experiment, the gas jet interacts with the surface to produce asymmetric ejecta, 

which appear as two thin sheets in the initial spray—sheets, it appears, that have been peeled off 

and lofted by the gas jet, as seen in Figure 29. A more typical ejecta spray follows. We see 

surface features affecting ejecta outcomes in other experiments, but this serves as a particularly 

illustrative example. Topography matters significantly for PSI outcomes, as surface features 

determine gas flow and may effect irregular ejecta patterns. Reference the differences shown in 
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Figure 29 and Figure 30, which can also be compared with the surfaces shown above in Figure 

28. 

 

Figure 29: Top-down views from Experiments 56 (left) and 55 (right), 92 ms after 

experiment start (near the end of the 100 ms duration pulse). On the left, symmetric ejecta 

produced by the irregular surface. On the right, asymmetric features are indicated by 

arrows. 
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Figure 30: Side view from Experiment 55, 92 ms after experiment start, with sheet-like 

ejecta features indicated. 

250 ms Pulse Behavior 

The 100 ms pulse cleared a small region on-center but ceased shortly after. The 250 ms 

pulse drives this expansion significantly further and a region over half the diameter of the 

experiment baseplate is cleared of beads completely. From the side view we observe that the 

ejecta front is driven outward, and the surface appears to upwell, almost as it peeled back from 

underneath. Though off-center lofting has been present in shorter pulse durations, there was 

typically a sharper distinction between the surface and the ejecta spray. Here at a 250 ms pulse 

duration, off-center lofting, crater expansion, and this peeling effect combine to curve the 

surface—there is a smooth transition from surface to the PSI region. This leads to an overall 

observation that shorter pulses produce more “impact-like” behavior, while longer pulses 

produce “flow-driven” behavior.  
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Figure 31: Side view, 292 ms into a 250 ms pulse experiment in µg. At this nozzle height we 

see a shallow ejecta angle, possibly exacerbated by the shallow simulant depth. 

Steel, 18.7 cm Nozzle Height 

10 ms Pulse Behavior 

These experiments appear similar to those just discussed, which were conducted at a 

greater nozzle height. As seen in Figure 32, there is a small, centered disturbance caused by 

plume impingement, resulting in gentle particle lofting. The area of effect is similar to that of the 

29 cm height experiment. No particle motion occurs when this experiment is conducted at 1g. 



105 

 

 

Figure 32: Top-down, background-subtracted view of the 10 ms pulse experiment in µg 

with steel bead simulant, showing the PSI area of effect. 

25 ms and 50 ms Pulse Behavior 

The effects of the 25 ms and 50 ms pulses are relatively similar to each other. The higher 

surface pressure in these experiments produce smoother, well defined craters like that in Figure 

33 with higher velocity ejecta, as seen by the smearing of beads in the frame for a 50 ms pulse. 

Discrete features in the pre-PSI which were preserved by the gentler pulses are erased in these 

experiments. The 50 ms pulse jet bottoms out, clearing a small region of the baseplate. This was 

not seen until the 100 ms experiment at a 29 cm nozzle height. Off-center particle lofting is also 

visible in these experiments, produced by gas flowing through the material and resurfacing 

outside the main crater region. 
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Figure 33: Top-down view, 200 ms into a 50 ms pulse steel bead experiment in µg. The 

pulse produces a well-defined crater and has just begun to clear to the baseplate on-center. 

100 ms and 250 ms Pulse Behavior 

These experiments bottom out quickly as the gas jet ejects beads and pushes them aside, 

up, and out. This crater grows outward quickly, as seen in Figure 34, reaching about half the 

width of the chamber in the 100 ms pulse case. There is a smooth, curved transition from the 

surface to the ejecta front. In the 250 ms pulse case, the camera is nearly obscured by the end of 

the experiment as most of the material in the chamber is peeled upward and outward by the gas 

flow. 
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Figure 34: Side view, 200 ms into a 100 ms pulse experiment into steel beads in µg. The 

ejecta splash smoothly transitions into the undisturbed surface.  

The 100 ms pulse experiment conducted at 1g produces a small crater. A few beads are 

lofted on short, low trajectories but quickly fall back to the surface. This effect is more 

pronounced for the 250 ms experiment. Beads are scattered over most of the surface, and a small 

crater is formed on center.  

Summary 

While the steel bead experiments are not representative of a planetary surface, they give 

us a first look at the microgravity PSI phenomena. Differences between bench testing at 1g and 

drop testing in microgravity are twofold: Gravity damps behavior generally, reducing PSI 

significantly. But it also masks distinct phenomena. Much of the behavior we observe is unique 

to the microgravity environment.  
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On-center ejecta varies from small perturbations at short pulse durations to cratering and 

clearing the baseplate surface at longer pulse durations. Shorter pulses produce “impact-like 

behavior”. Longer pulses more closely tie the particle motion to the flow, driving material 

upward and outward, peeling back the entire surface layer, and showcase the difference between 

impactor experiments and PSI.  

Off-center ejecta are visible even with shorter pulse durations. Gas injected into the 

surface of a permeable material flows outward and resurfaces off center, disturbing and possibly 

ejecting grains. This effect is much less pronounced than the on-center effect. At longer pulses, 

however, it becomes more difficult to distinguish between these two effects, as flow begins to 

drive bulk motion.  

Sand 

10 ms Pulse Behavior 

In the first few ms of PSI, we observe an axisymmetric disturbance of the granular 

surface. In the first two frames, sand grains are visible near and then adhering to the side of the 

chamber tube. Given the limitations of our camera’s framerate, we may only approximate the 

velocities of these fastest particles. A particle originating at the plume centerline and reaching 

the edge one frame (8 ms) later would have a velocity of approximately 14 m/s; particles 

originating half a radius out from center and taking two frames would have a velocity of 

approximately 3.6 m/s. This is the upper bound we can estimate, although it is possible grains 

may be traveling faster. There are a small non-negligible number of grains accelerated quickly—
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a crudely estimated 100 grains stick to the tube’s surface—traveling in this, fastest, velocity 

range. 

This symmetric disturbance appears in background subtracted images as an annular 

region from the top-down camera view seen in Figure 35. It is blurred in the center, surrounded 

by the texture of moving grains. Each frame is 8 ms apart, so the pulse is completed after the first 

or second frame in which we see motion, but it takes about 58 to 67 ms (7 or 8 frames) for the 

surface disturbance to reach its radial maximum. From the side view we observe a wide 

distribution of velocities such that the mass fraction decreases with increasing velocity—that is, 

there are fewer particles at higher velocities. 
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Figure 35: Top down view, background subtracted frame from a 10 ms pulse experiment 

into quartz sand in µg. The disturbed annular region forms almost immediately, here seen 

25 ms after jetting starts. 

Sand grains begin to move upward and outward the annular region which appears in the 

first few frames. At 117 ms into the experiment, pockets or gaps become visible in the top-down 

imagery, as shown in Figure 36 below. These gaps either fill in or are obscured as the experiment 

progresses, but they seem to be pockets of gas re-surfacing after injection into the sand. On-

center, a larger, crack-like behavior persists. This can be observed with varying structure in each 

of the 10 ms experiments, and it persists through the end of the experiment (650 ms). Prior work 

with PSI in sand, at 1g and on larger scales, noted the appearance of a “small cavity or pocket on 

the surface” of their experiments, which “lifted into a bubble, or cake-like structure” (Alexander 
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et al., 1966). These phenomena occurred between 50 and 300 ms; similar to the range we 

observe, though the behavior they describe is more dramatic. As we will note below, this type of 

behavior disappears at longer pulse durations. It appears that short pulses may inject gas into 

sand in a way that causes disruption but finds “cracks”, regions of lower strength, but maintains 

pre-existing structure.  

 

Figure 36: Top-down view, background subtracted, 36 ms into two separate 10 ms pulse 

experiments into sand in µg. Irregular on-center pockets or gaps are visible, caused by gas 

injection and emergence from beneath the surface. 

While individual grains move at higher velocities than the bulk ejecta through the 

experiment, the region of highest density moves slowly upward and outward at an angle roughly 

45 above the surface, and it becomes sparser over the course of the drop. 

On the bench, at 1g, the pulse causes only a slight annular disturbance, though it should 

be noted that the experiment was not properly smoothed and a small crater was present at the 

beginning of these experiments. A few grains appear to stick to the wall 25 ms into the 
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experiment, possibly due to a ramping effect by the crater slope. By 41.5 ms, surface motion has 

largely stopped. A few grains continue to rain down from the lid after this point, but it is 

unknown whether these were freshly lofted by this experiment run or grains which were stuck at 

the top and dislodged by the airflow. 

25 ms Pulse Behavior 

A noticeably louder thumping noise is present in the internal camera audio from the gas 

plume. An annular disturbance is present in Frame 1 which, to visual inspection, appears nearly 

identical to Frame 2 of the gentler 10 ms pulse experiment. In principle, the first portion of a 

given experiment should appear identical to the driven portion of a previous experiment, 

assuming similar flow. That is, the first 10 ms of this experiment ought to look like the first 10 

ms of the previous experiment. Given the difficulty in determining a precise starting frame, and 

the fact that we have only 8 ms time resolution, it seems plausible that this is in fact the case for 

these two experiments.  

After Frame 1 (8 ms), this experiment exhibits more violent behavior than the 10 ms 

pulse experiments. The plume is still actively driving PSI. Brightening of the entire simulant area 

occurs in Frames 2 and 3. The side view camera does not show this as a disturbance, so it may be 

due to lofted dust. The gas plume stops after Frame 3. The surface disturbance reaches its 

maximum radial extent between Frames 6 and 7. Gas pockets begin to appear in Frame 6. These 

appear to connect and evolve to form an open, irregularly shaped region. This region evolves as 

the experiment progresses. These pockets lose their distinct shape around Frame 45 and begin to 

be obscured or obliterated. This is a more complex version of the phenomenon described in the 

10 ms experiment. In one experiment, No. 151, the region appears to be larger: a dark region in 
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the background subtracted image indicates a couple-centimeter wide pocket formed by gas 

injection. 

The side-view camera shows sand grains, likely reflected off the tube walls, beginning to 

deposit around the crater in Frame 7. This saturates the viewing area by Frame 13. Curiously, the 

ejecta angle for this pulse duration appears to be shallower than that of the 10 ms experiment. 

We hypothesize this is due to a kind of gas-suppression effect. A shorter pulse “punches” the 

sand, and the material rebounds. With a slightly longer pulse, sand is driven outward at a 

shallower angle as seen in Figure 37. From a side view, the ejecta flow reaches an apparent 

steady-state at Frame 16, remaining so until tapering begins around Frame 36. From a top down 

view this transition is not as apparent; it appears that ejecta’s radial motion slows and becomes 

sparser from around Frame 36 until the end of the experiment at Frame 79. 

 

Figure 37: Side view, background subtracted, 83 ms into a 25 ms pulse duration 

experiment in µg using quartz sand. The curved outline of the surface is visible, and lighter 

regions indicate texture in the surface disturbance. The ejecta spray is sparse and relatively 

shallow. 
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At 1g, the apparent motion is subtler. The experiment was not fully reset so a small crater 

remains. Surface scouring is present to about one-half the interior tube radius. This disturbance 

appears to develop all at once in this annular region. Material is blasted outwards at a low angle. 

In Frame 4, a thin stream of material can be seen flowing out from the center. It migrates axially 

counterclockwise as it widens and dissipates over about six frames. Bulk motion ceases quickly 

by about Frame 14, and there is no noticeable change to the surface. 

50 ms Pulse Behavior 

In Frame 1, a blur of material begins to project outward. From a side view, this increases 

in Frame 2. Slower individual grains are visible ejecting at a similar low angle in Frame 4. The 

top camera indicates surface disturbance to about one half the testbed radius in Frame 1 with 

fines are visible at the edge. This indicates fine particles traveling at least 14 m/s.  

 

Figure 38: Top down, standard frame, 141 ms into a 50 ms pulse experiment into quartz 

sand in µg. Radial, streamer-like features are visible in the ejecta. 
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An annular region of ejecta spray with thin streamer-like features is prominent for the 

first half of Experiment No. 154, shown in Figure 38, spreading and losing its distinct features 

after the pulse ceases and the ejecta moves outward. In a circular region on the centerline of the 

pulse, the distinct pocket-like behavior has disappeared in all but one experiment. Sand on the 

centerline appears to be loosened and less dense from gas injection but the structure seen before 

is largely gone. There is also less apparent motion on the plume centerline. 

At 1g, we observe similar behavior as the previous 25 ms test. The experiment was not 

reset, so a small crater was present before the jetting experiment began. This appears to direct 

some of the ejecta flow to a higher angle. The flow also dissipates quickly after the pulse ceases. 

The PSI area seems to be slightly narrow in experiment 144 vs. experiment 141, the 25 ms case. 

This may be due to the higher starting pressure, or it may be an artifact of the initial crater. 

100 ms and 250 ms Pulse Behavior 

At 100 ms and 250 ms pulse durations, there are no distinctly new features apparent. The 

disturbance area is wider, and from a side view ejecta quickly covers the viewing area. The 

longer pulse duration accelerates more material, and the central stagnation region is slightly 

larger. The ejecta angle is similar to the 50 ms pulse experiment. Any cratering produce by these 

experiments is shallow and indistinct. Some of these experiments show very clear streaming 

behavior, as in Figure 38. The center region in these experiments does not display the significant 

uplift and pocket-like behavior of previous experiments. Simulations indicant this behavior is 

due to gas which diffuses into the regolith and then diffuses back out after a pulse stops. Long 

duration pulses may instead accelerate this loosened material outward, lessening the effect. The 
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experiments conducted at 1g do not show any distinct phenomena besides increased intensity due 

to pulse duration. 

Double Pulse Behavior 

Two of the 50 ms experiments conducted at 1g experienced an off-nominal double pulse. 

The beginning of each pulse was separated by about 250 ms. While this was not done 

intentionally, it allows an anecdotal comparison to the work of Manish Mehta, who conducted 

intentionally pulsed experiments and observed the PSI mechanism he terms Diffuse Gas 

Explosive Erosion (Mehta et al., 2011). 

Given the delay between pulses, in our two experiments it does not appear that erosion 

during the second pulse was significantly more pronounced than during the first pulse. We do not 

observe DGEE in these two experiments. 

Summary 

Sand is a relatively impermeable medium, so its PSI behavior is primarily characterized 

by shallow surface erosion. Nevertheless we see diffusive behavior on-center which penetrates 

the medium and loosens material. This reveals underlying bulk structure after short pulses cease, 

and loosens material which may then be driven away by a longer pulse. This also gives us insight 

into the mechanism of DGEE. Short, repeated pulses injecting gas on-center and loosening 

material would cause a spray unlike the surface scouring behavior we observe for long duration 

pulses. 
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Glass Beads, 25 cm Nozzle Height 

In moving from beach sand to a glass bead simulant, we keep the same grain density but 

increase permeability. The beads are round and lack and residual fines present in the sand. These 

size and morphology differences mean the beads are less cohesive. Recalling that permeability 

varies with the square of the grain diameter, we estimate our glass bead simulant is 

approximately one order of magnitude more permeable than the beach sand. Each of these will 

contribute to differences in material behavior. Experiments with glass beads were conducted at 

two nozzle heights. Phenomena are noted for both.  

10 ms Pulse Behavior 

Each 10 ms pulse produces a small crater. Compared to the sand experiments the ejecta is 

gentler, with lower particle velocities, but angled higher. Its crater is noticeably deeper. The 

familiar off-center disturbance is visible in these experiments, and beads outside the main ejecta 

spray are gently lofted upward as seen in Figure 39. This could be due to gas motion across the 

surface, but we will see from CI Orgueil experiments described below how off-center flow is 

traced in more permeable media, which means resurfacing gas is a likely contributor.  
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Figure 39: Side view of a 10 ms pulse into glass beads in µg, 208 ms into the experiment. 

Sparse ejecta are gently lofted, while off-center uplift is also visible. 

Another clue to gas motion comes from two of the three 10 ms pulse drops. Additional 

narrower splashes appear superposed over the larger craters, seen in Figure 40. These become 

visible around Frame 3 in one experiment, and Frames 5 to 6 in another. They appear to be 

significantly deeper than the primary crater, and their shapes are slightly irregular.  

There are a few possible explanations for this effect, which is noticeably absent from one 

of the three experiments. First, the gas flow could be contaminated with a small impactor—either 

solid or liquid. The former seems unlikely as there are multiple small craters in one experiment 

and we had not yet tested sand in the apparatus; the latter should be noticeable through a pressure 

anomaly. The difference in pressure was the same for all three experiments. Second, we observe 

an abundance of small impacts when the apparatus hits the ground from beads that were 

previously lofted. It is conceivable that, in the initial blast, a particle was lofted upward and then 
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ricocheted back to the surface. Rebounding from the lid would require a particle velocity at least 

20 m/s. Given our other observations, we judge this possible but less likely. Finally, it may be 

that injected gas finds a subsurface irregularity in the bead packing structure, creating a bubble 

which erupts into a small crater. Given the apparent depth of these small craters, we judge this 

plausible. 

 

Figure 40: A top down view of a 10 ms pulse experiment into glass beads in µg. The 

primary crater is overlaid by two off-center craters. The origin of this effect is not 

completely clear. 

One of these auxiliary craters appears well outside the main crater in Frame 60 of its 

experiment. It is smaller but appears to have the same morphology of the larger crater. It is more 

plausible that this is due to a bead ricochet since it appears late in the experiment drop. 

A countable, small number of particles are disturbed and move in the test conducted at 

1g. While only one bench test was performed, no anomalous cratering was observed.  
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25 ms Pulse Behavior 

We observe a main crater produced by the gas jet as well as a more significant off-center 

disturbance of the simulant. This ejecta spray appears to be angled slightly lower relative to the 

surface than the 10 ms pulse. While there is large scale symmetry to the bead motion, we see 

small scale features within and outside the forming crater. Whatever asymmetric structure exists 

in the undisturbed simulant gives rise to smaller-scale features within the ejecta spray. While the 

pulse ends by Frame 4, the main crater radius does not appear to stabilize until around Frame 30. 

Outside the crater, beads at the surface are disrupted, loosened, and gently lofted. 

 

Figure 41: Top down, background subtracted frame, 83 ms into a 25 ms pulse experiment 

using glass beads in µg. Small-scale texture is visible within the forming crater; off-center 

PSI is also visible. 

The experiment at 1g produces a small crater. Background subtracted images from the 

top-down camera such as Figure 41 show a slight off-center disturbance as well, but no off-

center lofting is visible from the side. 
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50 ms to 250 ms Pulse Behavior 

These experiment sets show largely similar behavior qualitatively, while the final crater 

size increases significantly with pulse duration. Gas injection causes a ejecta, lofting material in 

an impact-like splash but also lofting material outside the primary crater. The angle appears to 

increase slightly with pulse duration. 

As pulse duration increases, this shallow ejection limits our ability to observe distinct 

features in the spray. Beads flying directly toward the camera quickly obscure the frame, seen in 

Figure 42, forming a thick band of particles impacting the interior of the tube. This obscuration is 

also visible from the top down cameras. As ejecta rebounds toward the center it obscures the 

expanding crater. 

 

Figure 42: A side view frame of a 50 ms pulse into glass beads in µg, seen here at 83 ms into 

the experiment. Shallow ejecta splays outward and obscures much of the view. 
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Behavior in 1g is noticeably subdued. In the 50 ms case, and unlike behavior in 

microgravity, crater growth ceases rapidly after the pulse finishes. The same is observed for the 

250 ms pulse, though it appears crater growth has largely stopped before the pulse finishes. We 

note these differences as further examples of gravitationally masked behavior. 

Glass Beads, 15 cm Nozzle Height 

10 ms Pulse Behavior  

Compared to the 25 cm height test, ejecta behavior is largely similar. We observe the 

same splash-like behavior, and similar off-center disturbance of the glass beads. The ejecta angle 

is similar. The crater and ejecta spray caused by this experiment appear to be slightly more 

defined than its 25 cm height counterpart. 

No test at 1g was conducted for this parameter set. 

25 ms Pulse Behavior  

If the differences between the 10 ms pulse tests were subtle, they become obvious at this 

pulse duration. From the side view, we observe clearly defined ejecta that looks similar to hard 

impactor tests. Outside this main splash, off-center ejecta is also visible as before, moving at a 

gentler velocity compared to the primary ejecta. The top-down camera shows a smooth surface 

on the interior of the crater. We no longer see the smaller scale features and irregularities present 

at first in the 25 cm test, but this smooth surface becomes textures toward the end of the 

experiment. Curiously, the crater width for this lower-height test does not appear to be 

significantly wider, though the increase in ejecta indicates it is deeper. 
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The experiment was not properly reset for the test at 1g; however images show a brief 

ejecta spray that ceases after the pulse stops. It does not significantly enlarge the crater present at 

the beginning of the test. 

50 ms Pulse Behavior 

The pulse for this experiment last six frames. In the first couple frames, we see a 

significant number of particles shot out away from the center. They cannot be seen distinctly but 

show up as long streaks in the video frames. The ejecta crater rapidly expands, its interior 

smooth, as beads continue to streak from its outer edge throughout the jetting pulse. From a side 

view, surface of the simulant seems to swell outward as the crater expands. There is bulk 

swelling and uplift of material around the neck of the ejecta spray—that is, the narrowest point 

where it connects to the surface, as shown in Figure 43. 
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Figure 43: Well-defined ejecta from a 50 ms pulse into glass beads from 15 cm, here at 125 

ms into the experiment in µg. Off-center lofting is also visible outside the primary ejecta 

wall. 

Crater expansion continues well past cessation of the pulse but seems to stabilize by 

Frame 30. Small, bubble like features within the crater appear around Frame 25, giving texture to 

the smooth inside surface. The ejecta spray exhibits discontinuities as well. 

The experiment at 1g is a subdued version of the microgravity experiment, exhibiting the 

off-center uplift so far only observed in microgravity. Uplift and ejecta production quickly cease 

when the pulse ends at Frame 6, followed by interior slope collapse in the crater as the beads 

seek their angle of repose. 

100 ms Pulse Behavior 

For the 100 ms pulse we see two stages to the ejecta motion. First, we note behavior 

similar to the 25 ms and 50 ms pulse cases. A well-defined ejecta spray occurs surrounded by 
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gently lofted particles out to a terminal radius. The neck of the ejecta wall, however, soon 

upwells and widens as we began to observe in the 50 ms pulse. The behavior is much more 

pronounced, and the ejecta angle steep. This behavior is driven by the pulse until it ends at 

Frame 12, after which the material again continues expanding in a familiar ejecta spray. The 

upwelling near the surface remains, however, creating a smooth, curved transition from the 

material surface outside the PSI region to the ejecta wall itself.  

Top-down video shows the gas flow driving this effect. It bores down into the simulant 

during the pulse, producing a steep ejecta angle, as shown in Figure 44. Crater expansion 

continues past the end of the pulse at Frame 12, and the platform beneath the regolith becomes 

visible at Frame 21 some 90 ms after the pulse ends. Though the crater is somewhat obscured by 

ejecta, it appears to stabilize in size around Frame 40.   
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Figure 44: Top down (top) and side (bottom) views of a 100 ms pulse into glass beads, 100 

ms into the µg experiment (at pulse cutoff). Gas bores down into the material, lofting it at a 

steep angle. Beads traveling at relatively high velocities streak in-frame. 

At 1g, we see ejecta followed by what appears to be a damped version of this same 

bulging, uplifting phenomenon seen in the microgravity case. In this experiment, however, 
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gravity reduces the height of this phenomenon and redirects it radially outward. Particles take 

pseudo-ballistic trajectories before the pulse ceases, and the ejecta is spread over a wider angular 

range. The ejecta spray collapses quickly after the pulse ceases at Frame 12. On the interior of 

the crater, this is followed by axisymmetric wall collapse which begins at the rim of the crater 

and moves inward. 

250 ms Pulse Behavior 

The first few frames of this experiment run look familiar. Beads are ejected in the initial 

spray, and beads outside this are gently lofted. By Frame 12, where the 100 ms pulse cuts off, we 

observe the same widening and upwelling of the simulant as gas pushes material upward and 

outward. This widening continues as a deep crater is formed. The top down camera shows crater 

expansion downward and outward, with the acrylic baseplate clearly visible by Frame 18 in a 

small central area. This area rapidly widens as the camera begins to be obscured by ejecta by the 

pulse end at Frame 30. From the side view, the ejecta plume continues to upwell into an almost 

hourglass shape. Though the top down view is obscured, it appears that gas may “blow out” 

material from the baseplate, creating a large hollow region underneath the simulant. Note that 

much of this expansion as seen from inside and outside the ejecta spray occurs after the pulse 

stops. No test at 1g was conducted for this parameter set. 

Summary 

Our experiment series with glass beads demonstrate a fascinating range of behaviors 

masked by 1g. These interactions may be characterized by an initial spray of material caused by 

the shock of gas first impacting the surface, followed by gas causing ejecta inside and outside the 
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ejecta crater. After this, if the pulse duration is long enough, we see mass upwelling and 

expansion due to gas injection. Ejecta outside the main crater, which we term off-center lofting, 

is seen even in gentle PSI behaviors but only appears in 1g tests for long pulse durations.  

As expected, moving the jet nozzle closer to the surface significantly enhances the 

amount of material disturbed and the cratering depth. It results in a higher ejecta angle and more 

well-defined ejecta cone. At longer pulse times, the closer nozzle injects gas which rapidly bores 

out material and causes mass upwelling.  

CI Orgueil, 25 cm Nozzle Height 

No experiments at 1g were conducted for this height. 

10 ms Pulse Behavior 

CI Orgueil simulant is highly permeable, and fine dust serves as a tracer to show gas 

flow. Off-center flow is visible in the Frame 1 as a stream of fine dust is carried out of the 

regolith. This flow out of the regolith remains visible for about seven frames. In two of the 

experiments, conducted earlier in the campaign, a small countable number of blocks are gently 

moved or perturbed by the jet but hardly lofted; some come to rest before the experiment period 

ends. The outlines of these particles can be seen in Figure 45. In a later experiment, a larger 

number of blocks are lofted with very small velocities, but near the end of the experiment these 

drift slowly back toward the surface. This is likely due to drag giving a slight effective gravity. 
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Figure 45: Background subtracted frame about halfway through a 10 ms pulse µg 

experiment into CI Orgueil simulant. The perturbed region is visible on center; most 

particle motion has ceased. 

25 ms Pulse Behavior 

The experiments with CI Orgueil are notable for their variety at these lower pulse 

durations. Gas injected is visible streaming up out of the regolith off-center, and this lofts 

particles with it in a much sparser version of the ejecta behavior seen in glass beads. Most are 

lofted gently, but there are a couple exceptions—in one experiment, a small block speeds away 

from the rest quickly. Most lofted blocks appear to come from this annular region about the 

centerline, though regolith on-center is also disturbed. This variability, seen in Figure 46, no 

doubt stems from small, local variations in gas flow caused by local variations in regolith block 

size and shape.  
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Figure 46: CI Orgueil particle lofting, here seen in a side camera view, 375 ms into a 25 ms 

pulse µg experiment. The results are irregular and asymmetric. 

50 ms Pulse Behavior 

With larger particles there is no well-defined, fluid-like ejecta splash similar to the glass 

bead experiments. Instead regolith blocks are lofted on a similar trajectory, but the visual effect 

is sparse (see Figure 47). Each experiment conducted here is once again unique; resetting the 

experiment mixes up the distribution of particles lending itself to significant variation relative to 

the glass bead experiments. While there is more variation in particle velocities experiment to 

experiment, the overall phenomena appears similar across the range of pulse durations.  

In this case, injected gas again streams out lofting particles upward and outward—even 

particles on the centerline are pushed to the side. The fastest particles again appear to come from 

an annular region around the centerline. Particles on-center are perturbed, but do not make up the 
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faster-moving ejecta. This interaction produces a crater, though its boundaries are much more 

difficult to define because of the large particle size and spacing in between blocks. 

 

Figure 47: A side view of CI Orgueil simulant lofted in a 50 ms pulse µg experiment, seen 

here 375 ms after jetting was triggered. Compare the significant increase in ejecta to lower 

jetting durations. 

100 ms Pulse Behavior 

The behaviors previously described are enhanced in these experiment runs, and this lends 

more clarity to the mechanism of regolith displacement. As off-center blocks are lofted, particles 

closer to the center are displaced downward until the pulse ends. The gas flow destabilizes an 

entire center region; in this experiment, the baseplate becomes clearly visible by Frame 30 as 

blocks move up, out, and away from the center and a crater slowly clears. From the side, we see 

many of these particles are lofted at a steep upward angle, higher than the glass beads, and 

following the flow-line indicated by the dust tracers (shown in Figure 48) in the first few frames. 
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Figure 48: A top-down, frame-difference image taken 42 ms into a 100 ms pulse µg 

experiment into CI Orgueil simulant. Particle motion has just begun on-center, while 

streams of dust-entrained gas are visible moving outward. 

250 ms Pulse Behavior 

These experiments lose their distinct character. The gas jet bores a hole down through the 

regolith to the baseplate by Frame 20, then expands this cylindrical region as regolith is lofted 

steeply and vertically toward the top-view cameras. From the side, little detail is visible as the 

entire frame quickly fills with material traveling almost straight up. Note that this occurs for 

experiments conducted with regolith at the base of the apparatus, where nozzle distance is at its 

maximum. 
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CI Orgueil, 15 cm Nozzle Height 

Experiments at 1g were conducted for each of the following; their results may be easily 

summarized. Though gas flow is clearly visible in each experiment due to dust, no particle 

motion occurred for a 10 ms pulse. At 25 ms and 50 ms pulses, a few particles were perturbed 

and rocked but did not move from their places. At 100 ms, a few particles are moved outward by 

the jet, and at 250 ms there is more significant albeit small radial motion. This last experiment 

also lofts a few of the smallest particles, but there is no significant lofting of any of the bulk 

regolith. 

10 ms Pulse Behavior 

These are similar to the experiments at a 25 cm nozzle distance. A small center region of 

particles are disturbed. One experiment appears more active than the rest; particles are gently 

lofted and a small crater region appears. For the other two, lofting does not occur. Particles are 

disturbed, and some settle back to the surface over the course of the experiment drop.  

25 ms and 50 ms Pulse Behavior 

These experiments are quantitatively similar. Gas injection produces more well-defined 

ejecta than when the nozzle is further away. Material is lofted at a roughly 45 degree angle from 

the surface. The differences between this and experiments at a 25 cm nozzle distance are likely 

due to increased surface pressure and a narrowed pressure distribution. The effects at this nozzle 

height appear similar but with a wider region of disturbance. Quantities lofted, however, appear 

roughly similar, as seen in Figure 49 and Figure 50. 



134 

 

 

Figure 49: Side view of a 25 ms pulse CI Orgueil µg experiment, seem 375 ms after jetting 

start. Compare this to Figure 46, which shows the same experiment at 25 cm nozzle height. 

 

Figure 50: Side view of a 50 ms pulse CI Orgueil µg experiment, seem 375 ms after jetting 

start. Compare this to Figure 47, which shows the same experiment at 25 cm nozzle height. 
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100 ms and 250 ms Pulse Behavior 

Each of these experiments is similar to the 250 ms experiment at a 25 cm nozzle height. 

The gas jet clears a cylindrical region into the regolith as it lofts material nearly vertically toward 

the top-view camera. In the 250 ms case, shown in Figure 51, this pulse appears to clear out the 

entire baseplate, lofting the entire mass of regolith simulant. 

 

Figure 51: The side view camera frame is almost completely obscured during this 250 ms 

pulse duration µg experiment into CI Orgueil simulant, seen here 375 ms after pulse start. 

Summary 

Our CI Orgueil is a highly permeable simulant that, aside from the shortest pulse 

durations, is easily perturbed and lofted. Due to each particle’s mass, regolith blocks are lofted at 

lower velocities than seen in equivalent experiments conducted with sand or glass beads. This 

lofting is driven by the gas which injects into and immediately erupts out of the regolith in an 
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annular region around the jet centerline. At longer pulse durations, most, if not all, of the regolith 

in the apparatus may be lofted by PSI. 

Trends 

We conducted experiments with four different media at two heights and five nominal 

pulse durations. Of these, the experiments conducted with quartz sand, glass beads, and CI 

regolith simulant were conducted with the same simulant depth. This allows a direct comparison 

of each simulant’s behavior. Since grain density for each of these is similar, we may also draw 

conclusions about the effect of grain size on material behavior. 

To be sure observed effects were due to the gas plume, control drops were performed 

with each simulant with no jetting. In each of these cases, no significant motion of the bulk 

simulant was observed. Individual particles, particularly at the edges, might be disturbed during 

experiment release, and continue slight motion through the drop.  

It is intuitive to assume PSI behavior in 1g would differ from behavior in microgravity. 

We performed bench runs, however, to observe the magnitude of this difference. The difference 

is significant. For certain cases, there is a threshold pulse duration for observable PSI in 1g. 

Below this threshold, little or no particle motion was observed. Comparing each experiment drop 

to its benchtop counterpart, we observe that 1g serves to hinder or reduce PSI effects. Particle 

trajectories are shallower, tend to arc, and less material is ejected. This is particularly true of the 

steel simulant (highest particle density) but also apparent in lower density material like the glass 

beads. 

Experiments were performed at two effective nozzle heights by placing a platform in the 

vacuum chamber. In a perfect vacuum, Robert’s (1964) equation for surface pressure predicts a 
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narrower pressure distribution with a higher peak pressure. Peak pressure decreases with the 

distance squared. By increasing the platform height 10 cm, from a 25 cm nozzle height to 15 cm, 

we expect peak surface pressure to increase approximately by a factor of 3. Controlling for other 

variables, reduced nozzle height significantly increases PSI effects.  Ejecta volume, particle 

velocities, and crater depth all typically increase when the nozzle is closer to the surface. Ejecta 

are lofted at a higher angle relative to the surface, likely due to narrowing of the pressure 

distribution.  

Comparing between quartz sand, glass bead, and CI simulants, ejecta angle, crater depth, 

and crater volume increase with particle size. The difference between quartz sand and the other 

simulants is quite pronounced, particularly at a larger nozzle height. Cratering in this fine-

grained simulant tends to be shallow, and ejecta is directed outward and a low angle.  

Regolith permeability increases with increasing particle size. Our quartz sand and glass 

bead simulants have similar grain densities, and the CI simulant density is within about a factor 

of two. While permeability models differ, most are proportional to the square of the particle 

radius. By crude estimate, our glass bead simulant is roughly 30 times more permeable than 

quartz sand, and the CI simulant 10,000 times more permeable than sand and 300 times more 

permeable than glass beads. Given the significance of this difference, it is reasonable to compare 

simulants whose grain densities vary by a factor of two.  

Another intuitive result comes from variation in pulse duration. PSI effects tend to 

increase when pulse duration in increased: crater depth, ejecta volume, and particle velocity. 

Notably, however, ejecta angle is not significantly affected by pulse duration. 
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PSI Behavior Scale 

We have described our experiment set in terms of its behavior and phenomena. These 

behaviors typically follow a progression, moving from disturbance, to lofting, to cratering, to 

bottoming out of the experiment, though this depends on the presence of gravity. These 

behaviors are determined by observing both the raw and background-subtracted frame sets since 

some behaviors are subtle.  

Particle disturbance is defined to be motion or perturbation of the bulk simulant such that 

particles shift or move from their original location. This shift may not be substantial and includes 

particles whose relative arrangement does not change. Lofting is the liberation of particles from 

the base simulant layer such that they take an independent trajectory, as opposed to being simply 

perturbed or rolling across the surface. Cratering is here defined as a visible, well-defined 

impression or concave region caused by lofted simulant. In some experiments, too few particles 

are moved to result in a crater. In others, particularly the quartz sand experiments, a relatively 

significant amount of material moves but does not leave a visible crater. Bottoming of the 

experiment occurs when the platform underneath the simulant becomes visible due to cratering. 

Fracturing is only observed in the quartz sand experiments, and occurs when underlying structure 

is maintained as looser material ejects.  

This progression of PSI behavior is constructed from a qualitative assessment of the data 

in a way that each step typically necessitates the step before it. Lofting is an enhancement to 

perturbation; cratering cannot occur without particle motion; bottoming cannot occur without 

cratering. These behaviors are summarized in Table 10 below where “Y” indicates the behavior 

is present in each experiment, “S” means the behavior is sometimes present, “N” indicates the 

behavior was not observed, and a dash indicates no observation. 



139 

 

We generally see more pronounced behavior with pulse duration, but a few deviations are 

noteworthy. First, we observe a fracturing behavior in quartz sand at low pulse durations that 

disappears as pulse duration increases. This was described above and is here captured under the 

“cratering” descriptor. Longer pulses produce smooth, even scouring that does not leave a well-

defined crater. And in exception to the normal progression described above, we observe cratering 

without lofting in steel bead experiments at 1g due to the particles’ weight.  
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Table 10: A summary of experiment behaviors for our experiment set, listed by material 

type, nozzle height, pulse duration, and gravity level. Behaviors which are observed in all 

cases are labeled “Y”, in only some cases labeled “S”, and if not observed labeled “N”. A 

dash indicates no observation was made. 

   Disturbed Lofting Cratering Bottomed 

  Pulse (ms) 0 g 1 g 0 g 1 g 0 g 1 g 0 g 1 g 

Q
u

ar
tz

 S
an

d
 

2
5

 c
m

 

10 Y N Y N S N N N 

25 Y Y Y Y S - N N 

50 Y Y Y Y N Y N N 

100 Y Y Y Y S Y N N 

250 Y Y Y Y Y Y N N 

G
la

ss
 B

e
ad

s 2
5

 c
m

 

10 Y - Y - Y - N - 

25 Y Y Y Y Y Y N N 

50 Y Y Y Y Y Y N N 

100 Y Y Y Y Y Y N N 

250 Y - Y - Y - N N 

1
5

 c
m

 

10 Y - Y - Y - N N 

25 Y Y Y Y Y - N N 

50 Y Y Y Y Y Y N N 

100 Y - Y - Y Y S - 

250 Y Y Y Y Y Y Y N 

C
I O

rg
u

ei
l 2

5
 c

m
 

10 Y - - - N - N - 

25 Y - Y - Y - N - 

50 Y - Y - Y - N - 

100 Y - Y - Y - Y - 

250 Y - Y - Y - Y - 

1
5

 c
m

 

10 Y N S N N N N N 

25 Y N Y N Y N N N 

50 Y Y Y N Y N N N 

100 Y Y Y N Y N Y N 

250 Y Y Y N Y N Y N 

St
ee

l B
ea

d
s 2
8

.7
 c

m
 

10 Y N Y N N N N N 

25 Y Y Y N Y Y N N 

50 Y Y Y N Y Y N N 

100 Y Y Y N Y Y Y N 

250 Y Y Y N Y N Y N 

1
8

.7
 c

m
 

10 Y N Y N N N N N 

25 Y Y Y N Y N N N 

50 Y Y Y N Y N Y N 

100 Y Y Y N Y N Y N 

250 Y Y Y N Y N Y N 
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It is important to note that while the table categorizes behaviors, it does not indicate the 

behavior’s severity. Surface scouring may produce particles with high velocity while other PSI 

may produce a crater by more gently lofting particles. Behavioral or phenomenological analysis 

tells us the range of states we might expect from a given PSI interaction; additional analysis is 

needed to tell us something about characteristic ejecta velocities and masses.  

Summary 

Qualitative analysis of experimental data reveals new behaviors and insight into PSI. We 

may also identify a few broad trends which will be further substantiated with quantitative 

analysis. A couple of these are trivial: Ejecta volume is correlated to pulse time. Ejecta volume 

increases significantly in microgravity. But these simple conclusions belie how remarkably 

different PSI in microgravity. A wide range of phenomena are masked by gravity. Gas jets which 

would have little or no effect on the bench produce striking results and significant PSI in 

microgravity.  

PSI varies significantly based on the properties of the granular material with which it 

interactions. Grain size, shape, mass, and arrangement all affect experiment outcomes insofar as 

they direct flow. Angled surfaces or topography may guide surface flow. Larger particles or a 

regular packing arrangement of smaller particles may generate asymmetric ejecta spray. 

Burst duration has a significant effect on PSI outcome. Short bursts tend to generate 

sparse ejecta, small perturbations, and leave underlying features in the surface intact. These may 

be termed more “impact-like” interactions. Intermediate pulse durations produce impact-like 

features with some visible off-center, flow-driven behavior depending on simulant permeability 
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and properties. Longer bursts tend to erase and alter surface features, drive flow-like behavior, 

and produce significant mass ejecta.  

Even brief PSI encounters with the surface of a small body may eject fine dust and small 

particles toward the interacting spacecraft. Prolonged jetting at the surface of a small body will 

produce significant mass ejecta. Spacecraft conducting surface operations must take this into 

account. 
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QUANTITATIVE ANALYSIS AND MODEL COMPARISON 

Quantitative Analysis 

The data we retrieve from the GRIT experiment show a range of fascinating and novel 

phenomena. As we have discussed, there are two motivating factors to PSI research. From a 

physics perspective, we would like to better understand gas-granular mechanics. From a 

practical, mission-oriented perspective, our understanding of these underlying physics allows us 

to assess hazards to space missions with near-surface operations. In this vein, we characterize 

ejecta where possible by velocity and ejecta angle. We also estimate experiment crater size and 

ejecta mass. We then discuss what trends and behaviors may be surmised from this data. 

Our data are more easily described than quantified due to the limitations of our apparatus 

and the variability in video quality. Our drop tower experiments include a wide range of particle 

sizes and behaviors. Variation in color, opacity, and behavior presented challenges to quantify 

behavior with a single method. Glass beads are harder to distinguish than steel. The relatively 

high velocities of sand grains mean individual particles often blur. Nevertheless, we may 

characterize and bound simulant behaviors with a combination of analysis methods. These 

methods include pre-existing automated particle tracking code, manual particle tracking and 

crater size measurements, and custom methods developed for this experiment set. We will 

describe each of these in turn and present their results. 

Assumptions, Error, and Calibration 

Our side-view and top-down cameras are record two-dimensional projections of three-

dimensional PSI behavior, the images must be corrected to account for lens distortions, and then 
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converted from pixels to physical units. There are also several sources of error which are difficult 

to fully quantify, but we shall discuss them here as they apply to all methods described below.  

In the measurements which follow, we assume that our side-view camera lens is 

orthogonal to and centered on the regolith surface; that is, the bottom half of the frame would be 

regolith and the top half vacuum above it. In reality, the lens centerline is above the simulant 

surface for most runs. This is necessary for a few reasons. First, an edge-on viewing angle did 

not allow us to observe surface phenomena clearly, particularly when the simulant surface is not 

smooth and level. From a top down camera view, it can be difficult to determine whether 

phenomena occur on or above the surface. Second, placing the camera lens level to the regolith 

surface means half the already tight viewing frame is left unused. For these reasons, though it 

introduces a perspective distortion, we found it the best compromise to place our camera lens 

slightly above the level of the simulant surface. Our calculations also assume that our top-down 

cameras are placed on the jetting centerline. For obvious reasons, this is impossible. Our cameras 

are positioned symmetrically about the center axis but offset as described above in the apparatus 

section. We note again that the use of wide-angle action cameras introduces a distortion error 

which is corrected for using a de-warping subroutine provided as part of the Argus package 

(Jackson et al., 2016). 

The polycarbonate material used to form the cylinder wall of our vacuum chamber was 

extruded and has less than ideal optical clarity. Extrusion produces striations in the cylinder 

which introduces a primarily horizontal distortion of interior particle position; this distortion was 

noted in the previous chapter in Figure 22.  

As mentioned above, our cameras record two-dimensional projections of three-

dimensional behavior. To calibrate our images, we by placing a reference grid with a pattern of 1 
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cm squares in frame to retrieve a pixel-to-cm ratio. For the top down view, we took images with 

this grid placed at heights of 0, 5, 7.5, 10, and 15 cm above the baseplate. For a given 

experiment, we use a pixel-to-cm ratio which corresponds to the initial surface of the simulant. A 

pixel-to-cm ratio for the steel bead surface was retrieved from a quadratic fit to the other 

measurements. For the side view camera, we placed the reference grid in the center of the 

experiment, orthogonal to the camera lens centerline.  

We assume, then, that particles move in the plane of the initial simulant surface (top-

down), or on a plane which contains the jetting centerline (side-view). This effectively means we 

will underestimate particle velocities unless their motion is within those planes, which is typical 

only for the side-view camera. Particles forming the right and left edges, from the perspective of 

the side-view camera, will have the least error in their velocity measurements. From the top-

down perspective, we retrieve the radial component of velocity and neglect the vertical 

component. 

Ejecta Velocities 

This section describes several methods used to characterize simulant ejecta velocities 

resulting from GRIT PSI. Due to varying video quality, particle size and speed, apparatus 

limitations, and lighting conditions, we were not able to apply a “one size fits all” method to the 

data analysis. Rather, a suite of methods was needed to allow us to variously characterize or 

bound ejecta behavior. This experience also gives us insight in to improved methods that may be 

used in future work to better characterize PSI in both laboratory and in situ cases. 
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Methods 

Automated Particle Tracking 

An extant particle tracking program written in Python is used to recover GRIT ejecta 

particle velocities and angles. This project, called Trackpy, consists of several steps to identify 

particles as features within images, refine their locations, then link together possible particle 

trajectories. This method requires some user tweaking and input based on particle size and 

characteristics. It is also most efficient and applicable when particles contrast well against the 

background, do not overlap, and have relatively small displacements frame-to-frame. These 

criteria apply to automated tracking in general, and not just the methods used by Trackpy. Due to 

a relatively low frame rate and variability in image quality, our data is not well optimized for 

automated tracking. Nevertheless, with image processing, tailoring of Trackpy’s user settings, 

and a custom filtering algorithm developed for this data set, we retrieve results for the steel bead, 

glass bead, and CI Orgueil simulants.  

We use the Trackpy Python module to locate particles and link their trajectories using 

methods originally developed for biological purposes but generally applicable to arbitrary 

particle motion (Allan et al., 2019; Crocker & Grier, 1996). Trackpy must be adjusted for each 

data set in order to achieve optimal results. A custom wrapper and data post-processor were 

written to filter spurious trajectories. 

Trackpy allows the user to adjust the sensitivity and size of particle recognition. Each 

simulant type we used in GRIT has unique optical qualities, characteristics, and particle sizes. 

First, we check sample frames for the simulant type being tracked. We chose to use background 

subtracted or sequential difference images, depending on which yielded the clearest features for 
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each simulant type. Trackpy looks for bright particle features, and then allows the user to 

preview its feature recognition results on sample frames. We used this to adjust and optimize its 

results to select unique features in each experiment type. 

Once particle feature recognition has been configured, Trackpy may be run in its entirety 

for a simulant data set. Trackpy locates features in each experiment frame, then runs a program 

to link these features into particle trajectories. It will keep particles in memory and attempt to 

locate them in three subsequent frames should they be temporarily obscured or missing from a 

frame. Data output from Trackpy is a set of unique particles with their x-y coordinates over time.  

Because Trackpy was developed for arbitrary particle velocities, it is not idealized for the linear 

trajectories we expect our particles to take and generates a significant number of spurious 

trajectories. These are first filtered by track length; tracks less than 5 frames long are removed. 

Because our particles have relatively high density and high velocities, this still leaves a large 

number of invalid trajectories. 

We next use linearity as a proxy for trajectory validity. First, each candidate particle 

trajectory is tested by fitting a line with the least squares regression method. If the resulting R2 

value from this linear fit is less than 0.9, the trajectory is rejected. But this does not guarantee the 

validity of a track. Particles may lie along a line, but this is no guarantee that they are a forward 

marching sequence. Therefore, we next take each remaining trajectory and step through the 

coordinates sequentially. If the angle between any pair of subsequent coordinates differs from the 

linear fit line by more than 30 degrees, the trajectory is rejected. These steps guarantee a 

forward-marching, near-linear trajectory. 

It was observed during this procedure that some particle trajectories seem to err in only 

one data point, particularly at the beginning or end of a trajectory. To remedy this, if the particle 
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trajectory passes the second, angle-fit test except for the first or last coordinate in the sequence, 

this coordinate pair is deleted rather than rejecting the entire trajectory. This allows us to recover 

valid trajectories that would otherwise have been rejected. 

Recovered trajectories consist of particle coordinates given for each frame the particle 

was tracked. With coordinates, a pixel-to-cm conversion ratio, and a known per-frame time 

difference, we may calculate particle velocities between each frame. Ideally this velocity remains 

constant over the entire track, but due to the sources of error and distortion mentioned above, this 

is not always the case. The average velocity for each particle is calculated, and its maximum and 

minimum measured velocities are plotted as upper and lower bounds to each measurement. 

Manual Particle Tracking 

For the large, cm-scale particles of CI Orgueil it is feasible and effective to track 

individual particles (in some cases all lofted particles), especially for low pulse durations.  For 

longer pulse durations with bulk lofting, we still recover what ought to be a representative 

sample of particle velocities.  Manual tracking works best in this case because these particles are 

significantly larger than the automated tracking method described below was written to handle, 

and these results serve as a check to the automated tracking and set our expectation for normative 

results.  

Undergraduate student assistants conducted manual particle tracking by visual inspection 

using the software package ImageJ. The software allows the user to step through frames and 

identify various features of interest. For this work, after identifying a particle, they clicked the 

particle’s geometric center as determined by visual estimate. The center was chosen rather than 

edge features because many particles rotate after ejection. Output from this method is a set of 
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uncalibrated coordinates which was calibrated and processed in the same manner as the 

automated tracking results described below, except that trajectories were not filtered before 

plotting. 

 

Projected Start Time 

In the graphs below, for both automatic and manual particle tracking, we calculate a 

particle “start time” from when it would have crossed the experiment surface line. We fit the 

particle trajectories with a least squares linear regression, calculate where this line would 

intersect the unperturbed material surface, and use the average particle velocity to calculate 

travel time from this baseline. Since particles are often hard to distinguish until they reach a 

sufficient height above the simulant surface, this corrects to an approximate particle lofting time. 

Frame-Averaged Experiment Profiles 

Particle tracking presents us with difficulties due to variability in particle sizes and 

properties. Quartz sand in particular presents us with a challenge. We employ a potentially novel 

method to visualize and quantify particle motion as seen from our side-view cameras. It retrieves 

the vertical and horizontal velocity trends for each experiment, albeit as bulk features rather than 

individual components. 

For this analysis, we consider a PSI experiment and imagine particle ejecta viewed from 

the side. In general, the density of this spray will decrease with height. There will also be 

irregularities, features visible within the spray – clumps or gaps in the ejecta, for example. These 
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features—whatever their precise size or nature—will migrate with the spray as it evolves upward 

with a velocity approximate to that of the particles which cause it. 

 

Figure 52: Illustration of our frame-average profile method. Each frame is row-averaged 

into a single column in the resulting image, giving us a profile of vertical velocity with time. 

For each frame of this experiment, we may take a row-wise average, such that each row 

in the frame is condensed to one value in a single column. This process is illustrated in Figure 
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52. Doing this for each frame of the experiment produces a two-dimensional image where height 

lies along the vertical axis, and the frame count along the horizontal axis. The features we 

discussed earlier can be preserved in this average. Deviations from asymmetry show up and 

move vertically—or, now that we have placed these frame-averages alongside each other, move 

upward in position and right-ward in time. Because a line on a position vs. time graph is a 

velocity, we thus recover the vertical component of velocity for the boundaries and features we 

observe in this frame-averaged experiment profile. 

Results and Analysis 

Manual Particle Tracking 

A student assistant tracked all distinct particles through each CI Orgueil experiment. This 

is possible because there are far fewer particles ejected per experiment than with finer-grained 

media. For these experiments, then, we have a complete or at least representative sample of 

particle behavior—the latter when the entire mass is ejected and tracking every particle may not 

be feasible. We see that average particle velocity is indeed dependent on pulse duration—a fact 

that will become much clearer in our velocity profiles below. This experiment set also allows us 

to suggest a relationship between pulse time and average particle velocity. Each tracked particle 

is represented by a dot in Figure 53 below, which plots the average measured velocity. The error 

bars represent upper and lower bounds to velocities calculated at each step.  

For both experiment sets we see similar lower bounds on the pulse duration. Gentle 

perturbations produce particle velocities around 10 cm/s. Spread increases with pulse duration. 

Particles ejected from a 50 ms pulse range from 20 cm/s up to around 90 cm/s for the 15 cm 
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nozzle height. This range is similar for the 25 cm nozzle height, except for the lower bound 

dropping slightly. The distribution, however, is markedly different. These more pronounced 

differences show in the mid-range of pulse durations. Lower end and higher end behaviors are 

subtly different. This makes sense, since we see lofting of the entire regolith mass at high pulse 

durations. If we compare number of tracked particles per experiment between nozzle heights, the 

numbers are roughly equivalent. The 250 ms pulse seems to be an outlier. Fewer particles are 

tracked at the 15 cm nozzle height for that experiment time. These numbers are shown in Table 

11 below. 

Table 11: Manual Tracking Statistics, CI Orgueil Only 

 15 cm Nozzle Height 25 cm Nozzle Height 

Pulse 

Number 

Exp. Total Particles Tracked/Exp 

Number 

Exp. Total Particles Tracked/Exp 

10 4 9 2.3 3 6 2.0 

25 4 56 14.0 3 29 9.7 

50 3 46 15.3 5 66 13.2 

100 3 36 12.0 3 37 12.3 

250 3 11 3.7 3 36 12.0 
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Figure 53: Manual tracking results for CI Orgueil experiments. (Left) Initial particle 

velocities, from when tracking begins. Each particle is plotted as a single dot. (Right) 

Corresponding average velocities per pulse time. 

If we assume the distributions are representative, on a linear plot we see average particle 

velocities approaching some maximum. This trend was also visible in at least some of the 
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automated tracking conducted earlier, though obscured in some sets by algorithmic bias. What 

are we to make of the trend? The relationship becomes clearer when we plot pulse duration on a 

log scale, as seen in Figure 54. At this scale it appears that there are two asymptotes towards 

maximum and minimum pulse durations. This gives us a clue to the physical phenomena behind 

the event and a suggestion as to how we might model it. What is happening in the experiment? 

Gas flows through regolith and lofts it. More simply, gas flows around a particle and imparts a 

drag force, accelerating the particle with the flow. 

 

Figure 54: Average particle velocities, determined with manual tracking, for the CI Orgueil 

experiments in microgravity. Nozzle distance is indicated by the legend. The data displayed 

here are the averages shown in Figure 53 above. 
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Let us reduce the problem to a single particle in a uniform, steady flow with some initial 

velocity 𝑢0 which lasts for some duration 𝑡𝑝. The drag force on the particle is given by Equation 

15 and, neglecting gravity, this is the only force on the particle. It will accelerate relative to a 

stationary observer but its velocity relative to the stream will approach zero as it is caught in the 

flow, so that the particle’s velocity 𝑢 relative to the stream is given by Equation 16.  

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑢2𝐶𝑑𝐴  ( 15 ) 

𝑢 = 𝑢0 − 𝑣  ( 16 ) 

Applying Newton’s Second Law we arrive at a differential equation in the form of 

Equation 17, whose solution is given by Equation 18. In this last iteration the physical constants 

are all stated explicitly, a cubic particle is assumed since our regolith blocks are irregularly 

shaped, and the particle area and mass are expressed as functions of particle density and side 

length a. 

𝑘𝑢2 = −
𝑑𝑢

𝑑𝑡
  ( 17 ) 

𝑣(𝑡) = 𝑢0 (1 −
1

1+
1

2

𝜌𝑔𝑎𝑠𝐶𝑑
𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑎

𝑢0𝑡
)  ( 18 ) 

Does this result match our intuition? It does, as it indicates that at the start of the 

experiment, the particle velocity will equal zero and as time tends to infinity, the particle velocity 

will approach 𝑢0. More importantly, how does this function compare to our observed data? 

Rounding our simulant particle density to 1
𝑔

𝑐𝑚3, assuming a particle side of 1 cm (in the middle 

of our simulant’s size range), and drag coefficient of 1.15 (that of a square cross-section), we fit 

this equation to our data varying flow velocity and gas density, as shown in Figure 55. 
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Figure 55: Average particle velocities, determined with manual tracking, for the CI Orgueil 

experiments in microgravity fitted with the drag force equation (Equation 18) and assumed 

particle parameters. 

We see a remarkable consistency between our model conjecture and the experimental 

data. We fit Equation 18 to our data leaving flow velocity (maximum particle velocity) and gas 

density as free parameters. Fitting these parameters for the 15 cm and 25 cm nozzle distance 

gives us a 98.7
𝑚

𝑠
 and 106

𝑚

𝑠
 maximum particle velocity, and 2.5

𝑘𝑔

𝑚3 and 1.4
𝑘𝑔

𝑚3 gas density, 

respectively. We know that the flow in the experiment chamber’s feedthrough chokes at the 

speed of sound for the gas, which is 340
𝑚

𝑠
. This sets a logical upper bound since, as the gas 
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diffuses through the medium, it can be expected to slow, so our value seems reasonable. As the 

density of air is 1.2
𝑘𝑔

𝑚3, this indicates local gas density may exceed ambient density. 

More plausibly, the coefficient of drag is not well represented as a constant. Gas flowing 

through a converging-diverging nozzle goes supersonic past the choke point; that is, when the 

nozzle diverges. While we do not have a proper nozzle attached to the interior of our experiment, 

the flow chokes and then expands into the chamber, and it seems plausible that the flow becomes 

a supersonic front which impinges on the regolith. Whether or not this is the case, the drag 

coefficient is a function of flow velocity, increasing as that velocity approaches Mach 1. This 

may account for what seems to be a high gas density in our model fit. And this equation, as a 

simplification, certainly only approximates the real experiment. It shows, however, that at some 

level a treatment of basic gas-drag mechanics are applicable to PSI, and can serve as a check to 

simulation work.  

Automated Particle Tracking 

We derive velocities from steel bead, glass bead, and CI Orgueil simulant experiment 

runs using the automated tracking algorithms described above. The size and velocities of 

particles in the quartz sand experiments, however, did not lend themselves to discrete particle 

tracking. It is important to note that, while we plot every tracked particle, this is not a 

representative sample of particle motion. Tracked particles are those which were easier to see, 

more well defined, and typically with lower velocities than the maximum, though exceptions 

exist. Sometimes particles reflected off the experiment chamber wall are tracked. In plotting 

particles from our top-down cameras in which two videos were taken, we do not attempt to 

identify or remove duplicate measurements. Due to the pseudo-random nature with which 
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particles are tracked, and the relatively small number of tracks measured compared to the 

number of particles, this overlap ought to be small for most experiments. Finally, a number of 

runs were discarded if the resulting tracks were erroneous. With these limitations in mind, these 

particle tracks give us insight into the bulk behavior for each experiment type. The results are 

shown in Figure 56 through Figure 61. 
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Figure 56: Automatic tracking results with CI Orgueil simulant, 15 cm nozzle height. The 

top and middle plots show individual particles. The bottom plots show average velocities, 

with minimum and maximum velocities bracketed.  
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Figure 57: Automatic tracking results with CI Orgueil simulant, 25 cm nozzle height. The 

top and middle plots show individual particles. The bottom plots show average velocities, 

with minimum and maximum velocities bracketed. 
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We examine the results of CI Orgueil particles first since we can make a direct 

comparison to manually tracked particles. The average velocity tracked by TrackPy is lower than 

that found by manual tracking due to selection bias. An examination of the tracked particles 

shows tracking obscured by lofted fines. It also shows us a number of particle fragments 

significantly smaller than the grains sieved for this set of experiment runs were tracked for some 

experiments.  

As we attempt to back-project to a particle launch time, many particles end up with a 

negative launch time and are assigned a launch time of 𝑡 = 0. This projection back to a negative 

time may occur if the tracked particle ricocheted, or it may represent that the particle started 

below the initial surface.  

The glass bead experiments were the most difficult to track—excluding the quartz sand 

simulant, which was not tracked at all. This can be seen by the lack of data for several parameter 

combinations. As pulse times increase, ejecta moves much more quickly, looking less like 

individual particles and more like an entire mass, rendering the algorithm unsuited for this use. 

Our lowest pulse experiments, however, produce excellent results and we achieve something like 

a representative sample in the output. The particle velocities we measure in the 10 ms pulse 

experiments likely represent an actual lower bound on velocity across all experiments of that 

type. 
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Figure 58: Automatic tracking results with glass bead simulant, 15 cm nozzle height. 

Individual tracked particle velocities and angles are plotted for (top) side and (middle) top-

down views. The bottom plots show average velocities, with error bars set by minimum and 

maximum velocities. 
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Figure 59: Automatic tracking results with glass bead simulant, 25 cm nozzle height. 

Individual tracked particle velocities and angles are plotted for (top) side and (middle) top-

down views. The bottom plots show average velocities, with error bars set by minimum and 

maximum velocities. 
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Figure 60: Automatic tracking results with steel bead simulant, 15 cm nozzle height. 

Individual tracked particle velocities and angles are plotted for (top) side and (middle) top-

down views. The bottom plots show average velocities, with error bars set by minimum and 

maximum velocities. 
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Figure 61: Automatic tracking results with steel bead simulant, 25 cm nozzle height. 

Individual tracked particle velocities and angles are plotted for (top) side and (middle) top-

down views. The bottom plots show average velocities, with error bars set by minimum and 

maximum velocities. 
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Selection bias again affect the steel bead experiments. In general, since particle velocities 

tend to increase with pulse duration, a lower pulse distribution should serve as a bound for the 

actual distribution of a longer pulse; that is, the actual 250 ms pulse velocity maximum is not 

significantly lower than the 100 ms pulse experiment, though this is what we track and plot in 

Figure 61.  

These graphs indicate a weak dependence of launch angle on pulse duration. We have 

already observed, however, that the ejecta angle may vary with both pulse duration, height, and 

simulant. It seems likely, then, that our automated tracking results here reflect an algorithmic 

bias. This could be caused by lighting conditions with the experiment, or it may be due to it 

being easier to track particles ejected around 45 degrees. At this angle particles are less likely to 

overlap than when launched closer to the surface and are likely to move slower in frame than 

particles shooting straight up. 

Frame-Averaged Velocity Profiles  

Taking frame-averaged velocity profiles allows us to characterize bulk velocity behavior 

and, for some material, individual outliers. Individual particle tracks and local density maxima in 

the ejecta can be seen as striations in these profiles. This allows us to visually distinguish bulk 

behavior and individual sparse behavior. The boundary between sparse ejecta and bulk behavior 

is sometimes gradual, which mirrors our difficulty in clearly defining ejecta boundaries for 

certain runs. Bulk behavior is, however, characterized by relatively uniform opacity and a lack of 

gaps in between particle tracks. Velocity lines are overlaid on these graphs to easily read off 

characteristic velocities. Example graphs for each simulant type are shown below in Figure 62 

through Figure 65; a graph for each experiment type is located in Appendix D.  
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Once again, in these figures dark blue represents a region obstructed by ejecta, while 

yellow indicates the background. Ideally, for a perfect background subtraction, we would see this 

region solid yellow and featureless. Due to imperfections in the video quality and lighting, 

however, the background sometimes appears with a green tinge—this can be thought of as a 

raised background level, which makes ejecta features slightly harder to distinguish by 

comparison. 

Steel beads, as with other tracking methods, perform well in this assessment as shown in 

Figure 62. They are opaque and contrast well. Individual particles and features are visible as 

striations in the figure. An example of this type of behavior can be seen in Figure 62 below. The 

ejecta spray is well defined but remains moderately sparse through most of the experiment. The 

bottom part of the ejecta wall, however, is opaque and can be seen in the deep blue region. We 

retrieve velocities by comparing striations angles in the figure to plotted velocity lines. In this 

figure, sparse velocities are bounded at roughly 60 cm/s, while bulk velocity is roughly 30 m/s 

based on this graph and its counterparts.  
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Figure 62: A frame averaged profile for steel bead simulant. Bulk ejecta is represented in 

the lower part of the image as solid blue. Discrete features are visible as stripes which 

migrate in time. 

Velocity data are difficult to recover for the quartz sand experiments. Given the time it 

takes for a grain to strike the side, we can calculate an upper particle velocity bound in the low 

tens of m/s. Our profile graphs corroborate that number. They also show that while bulk flow 

increases with particle time, light grains accelerate rapidly with all but the gentlest pulse. 

Comparing the angle of the shaded region in these experiments to the reference lines as in Figure 

63 indicates velocities over 180 cm/s are seen every experiment run, but sparser particles moving 

more quickly do not leave tracks in these relatively low-spatial-resolution frames. The profiles 
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give us insight into how ejecta mass increases and show that the bulk of the simulant is lofted 

around a meter per second in velocity for longer pulse times. 

 

Figure 63: Profile for a quartz sand experiment with a 100 ms jetting duration. The flow is 

nearly vertical. Our categorization of bulk velocity at 180 cm/s is a rough upper bound; 

some particles likely travel up to an order of magnitude faster. 

An example profile for glass beads is shown below in Figure 64. The glass beads we used 

were transparent and did not contrast well against the background, making particle tracking 

difficult. Due to their higher speeds, the fastest particles do not appear clearly in consecutive 

frames, and often appear smeared. Our frame profile is therefore a useful tool for recovering bulk 

behavior, though the fastest particles are once again lost to the background in this method. 
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Figure 64: Profile for a glass bead experiment, which are typically lower-contrast due to 

the beads’ translucency. Faint striations are visible parallel to the 180 cm/s line. The ejecta 

plume is opaque to approximately 3 cm height, with ejecta becoming sparser with height. 

Charts for CI Orgueil simulant are perhaps the most curious. Large, individual particles 

are often visible painting a stripe across the figure, as below in Figure 65. The fine dust we 

previously observed—entrained by the gas flow instantly during PSI—shows up as a vertical line 

on the left side of each graph. As its slope is nearly vertical, we can only say its velocity well 

exceeds the 180 cm/s line plotted on each chart. CI Orgueil PSI shows the most variation in 

particle velocities, ranging up to 60 cm/s in the example profiles, while bulk motion is under 10 

cm/s.  
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Figure 65: Example profile from a CI Orgueil experiment. On the left, a thin streak shows 

dust entrained flow quickly rising with the gas jet. Particles are slower to follow, painting 

broad bands across the frame. We see slight bulk uplift rising slowing, at velocities under 

10 cm/s. 

Compiled Velocity Profiles 

Each of these methods described previously give us a window into PSI ejecta velocity 

behavior, and by combining results we can examine velocity trends . We summarize these results 

in Figure 66 and Figure 67. It is important to distinguish between both types and levels of 

confidence in these measurements. Manual particle tracking is the most reliable and 

representative method. Automated tracking is accurate but narrow, exhibiting a noticeable 

selection bias toward particles the algorithm is suited to find. Our frame-averaged experiment 
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profiles allow us to quantify, however imprecisely, velocity behavior that would otherwise be 

difficult to assess, particularly with quartz sand experiments. This last measurement type should 

be considered more like an experiment categorization, setting bounds to bulk and sparse 

behavior.  

 

Figure 66: Compiled particle velocities as determined by all velocity analysis techniques for 

experiments conducted on a 10 cm diameter platform (lower nozzle height) for steel, glass, 

and CI Orgueil experiments. Error bars indicate the minimum and maximum velocities 

seen for that experiment type.  
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Figure 67: Compiled particle velocities as determined by all velocity analysis techniques for 

experiments conducted on the apparatus baseplate (higher nozzle height) for steel, sand, 

glass, and CI Orgueil experiments. Error bars indicate the minimum and maximum 

velocities seen for that experiment type.  



174 

 

This aggregate data still paints an incomplete picture based on our phenomenological 

study. The highest velocity particles are missing, due to our camera’s limited frame rate, which 

means lower-pulse-time experiments are more thoroughly characterized. The data should also be 

interpreted in light of the fact that bulk ejecta increases with pulse duration. There is validity 

however, to the observation that the bulk velocity maximum does not necessarily change 

significantly with pulse duration, and this fits with the model developed earlier. Longer pulses 

will loft more material, but that material is accelerated toward a maximum entrained velocity. 

What of the material we characterized best, the CI Orgueil simulant? Average particle 

velocities increase when the nozzle is lowered; recall that this increases the magnitude of surface 

pressure. Curiously, some peak velocities are higher for the more distant nozzle. This can be 

attributed to a few particles ejected at randomly higher velocities that were able to be tracked. CI 

Orgueil simulant has irregular particle sizes, shapes, and packing arrangements. We see off-

center flow directed through narrow channels up and out of the bulk regolith. This may entrain 

some particles with higher than expected velocities based on particle averages. This behavior is 

distinct, however, from the initial burst seen during most experiments with finer grained 

particles. Those particles are accelerated quickly as the shock front of the plume hits the surface. 

Data from the summary plot shown above (Figure 66 and Figure 67) in graphical form is also 

recorded in Table 12 below and categorized by measurement type. 
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Table 12: Velocity measurements based on each method described: Automated tracking 

(AT), manual tracking (MT), and frame-averaged profiles (FA). Where possible, we 

distinguish between sparse (background partially obscured) and bulk (background 

completely obscure) profiles in our FA analysis.  

Material 

Nozzle 

Height 

(cm) 

Pulse 

Time 

(ms) 

AT Side 

(cm/s) 

MT Side 

(cm/s) 

AT Top 

(cm/s) 

FA Side, Sparse  

(cm/s) 

FA Side, Bulk  

(cm/s) 

S
te

el
 B

ea
d

s 

19 

10 - - 9.0 - 7.5 

25 18.0 - 17.9 30 11.25 

50 30.1 - 28.8 60 30 

100 24.0 - 23.7 180 60 

250 27.7 - 28.3 180 60 

29 

10 157.0 - 73.8 - - 

25 43.8 - 36.8 30 11.25 

50 67.6 - 57.0 - 45 

100 42.3 - 43.7 - 60 

250 49.6 - 59.4 - 120 

B
ea

ch
 S

an
d
 

25 

10 - - - 15 7.5 

25 - - - 120 30 

50 - - - 180 60 

100 - - - 180 180 

250 - - - 180 180 

G
la

ss
 B

ea
d

s 

15 

10 17.5 - 17.5 - 30 

25 21.3 - 21.0 - 60 

50 20.7 - 20.7 - 60 

100 18.3 - 18.3 - 60 

250 24.0 - 24.0 - 60 

25 

10 26.7 - 26.7 30 15 

25 20.6 - 27.3 - 45 

50 16.6 - 16.6 - 180 

100 14.3 - 14.3 - 180 

250 19.2 - 19.2 - 180 

C
I 

O
rg

u
ei

l 

15 

10 - 10.7 11.3 7.5 3.8 

25 13.3 19.1 18.1 45 15.0 

50 35.3 44.0 28.8 60 30.0 

100 50.2 44.9 51.3 90 45.0 

250 55.6 64.3 71.7 - 60.0 

25 

10 1.9 9.6 10.7 - 3.8 

25 11.7 18.1 21.0 60 11.3 

50 26.3 27.5 41.2 60 15.0 

100 41.2 42.6 63.0 90 45.0 

250 51.6 59.2 74.0 90 45.0 
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Crater Measurements 

Methods 

As with the velocity determination, each of these four regolith simulant types produces 

challenges that necessitate different methodologies to estimate the crater size, depth, and mass. 

PSI interaction with CI Orgueil simulant lofts fine dust in the first few ms of each experiment, 

which is challenging to our analysis methods. Frame differencing and thresholding methods no 

longer reveal just particle motion but show the swirl of dust-entrained gas, obscuring features of 

interest. Then too, the large particle sizes of CI Orgueil simulant relative to the crater size 

hamper our ability to neatly define crater boundaries compared to simulants with smaller particle 

size like the glass beads. Nevertheless for each of these experiment sets we have attempted to 

measure or estimate features of interest: namely the crater volume and mass resulting from PSI. 

For some experiments where measurements are more easily determined, we also examine the 

time dependence of crater growth. 

We have no direct method for measuring crater mass. Instead it must be estimated from 

other parameters. Two methods include measuring the transient crater diameter, which is not 

always clearly defined for some materials, and taking side and top-down measurements to 

determine crater diameter. Both measurements are taken in ImageJ and calibrated using the 

methods described in the image analysis above. From the side view, when an ejecta splash is 

clearly defined, we may measure the narrowest point in the splash as an estimate of crater 

diameter. In the top down view, crater shading is used to measure the diameter of the splash level 

with the original surface. This gives us an effective inner and outer crater diameter that can be 



177 

 

used as an accuracy check to our measurements and calibration, since the inner diameter will 

necessarily be smaller than the outer. 

 

Figure 68: Example crater splash with the crater neck indicated. This narrowest point is 

measured as a proxy for crater diameter. 

While we took stereo images for some experiments, lack of consistency and accurate 

calibration precludes us from using these images to determine crater depth. Instead we 

determined the depth-to-diameter ratio for each simulant type. Since the PSI effects bottom out 

for each simulant type except the quartz sand and the initial material depth is known, we may 

calculate a depth-to-diameter ratio at the instant before material clears away from the bottom 

surface. This ratio is then applied to the other experiments of that type to estimate depth based on 

measured crater diameter. 

Estimated depth for some of the CI Orgueil experiments is determined by observing how 

many layers of particles are blown away in the PSI process, or by directly measuring particle 
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dimensions and approximating with the volume of an ellipsoid for each particle. In some cases, 

ejecta is produced in a monolayer. In others, intermediate depths can be calculated by observing 

particle ejection and counting the number of particles stacked. In either case, a sample of 

measured particle diameters is used to approximate material depth. When the experiment 

bottoms out, we have a definite lower bound to the crater. 

Crater mass may also be estimated by considering the cross-sectional area of particles as 

seen from the side camera view. This is subject to several limitations and approximations. The 

first is line of sight. In one limit, particles are sparsely ejected, such that every particle ejected is 

visible to the camera. In another limit, particles are densely ejected to form a cone-like structure. 

In the first limit, the observed particle cross section would be the true cross section, accounting 

for particle distance. In the second limit, the observed cross section tells us nothing about interior 

structure and most particles will be partially or completely obscured. Applying this method 

naively will tend to under-count particles ejected. This is mainly applied to the quartz sand 

simulant. 

The other problem we face results from perspective. Particles nearer the camera appear 

larger, particles farther away smaller, and this apparent cross section decreases with the square of 

the distance from the camera. Assuming an ideal setup, the pixel to centimeter ratio determined 

by camera calibration is strictly valid only in the plane which bisects the experiment tube 

vertically and lies orthogonal to the camera lens’s centerline. In the latter case mentioned above, 

this is not so much of a problem, as we can calculate the surface area of a cone when viewing a 

two-dimensional projection with axisymmetry. In the sparse case, if we assume an axisymmetric 

ejecta spray, there will be as many particles behind the plane as in front. Total area, however, 

will be slightly overestimated. Our experiments span this entire range from sparse to opaque.  
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Because the cross-sectional area of ejected particles will be, in general, underestimated, 

any computation from this metric serves as a lower bound to ejected mass. Taking the observed 

area obscured by ejecta and dividing by an assumed average particle cross section, we estimate 

the number of particles visible to the camera, then multiple by particle mass to estimate total 

ejecta mass.  

To measure crater expansion with time, we take measurements for the two experiment 

sets with the most well-defined PSI ejecta. Both steel beads and glass beads at low nozzle height 

produce ejecta with easily discernable boundaries. The ejection angle is high enough that a 

“neck” is formed near the surface of the material. This neck—the narrowest point in the ejecta 

spray—is measured over the course of the experiment as it corresponds to internal crater 

diameter. While it is a slight overestimate of crater diameter itself, it shows the same growth 

trend. 

Results 

We measured the neck width for thirteen glass bead and twelve steel bead experiments 

and plot the dependence of transient crater diameter with time in Figure 69. As in work by 

Donahue et al. (2005) and Metzger et al. (2009), we plot these with the logarithm of time and 

find that these PSI interactions appear to increase linearly with the logarithm of time. This seems 

to hold well for certain glass bead experiments, but a couple diverge from this trend. The 100 ms 

and 250 ms pulse durations do not remain linear with time, but these experiments quickly bottom 

out to the shallow baseplate. The 50 ms and 25 ms pulse steel bead experiments, as well as the 

glass bead experiments, follow the log-linear trend. What is curious here is that both sets of 

experiments that seems to trend with the pulse duration, with the shorter pulses following a 
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similar growth rate, as do the three longer duration pulses. We are using the neck of the ejecta 

crater as a proxy for crater growth, and these longer duration experiments see a more significant 

upwelling. Because the gas is redirected from the baseplate outward toward the interior crater 

wall, we suggest this accelerates crater expansion such that it does not follow a standard increase 

with the logarithm of time.  

 

Figure 69: Neck width (as a proxy for transient crater diameter) versus elapsed experiment 

time for steel and glass bead experiments, plotted with the logarithm of time. Individual 

experiment measurements are shown as crosses; dots represent an overall average at that 

time for experiments with identical parameters. 

We therefore partially confirm the result of Metzger et al. (2009) which noted crater 

expansion—both radius and depth—to increase linearly with the logarithm of elapsed 

experiment time. Their behavior can therefore be described by a power law. Rajaratnam and 

Beltaos (1977) saw this behavior up to a characteristic depth after which the expansion was 

nonlinear to a maximum. We do not see this behavior in our experiments; rather the steel bead 

experiments seem to show something closer to a linear relationship once the experiment bottoms 
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out. Our crater volume and mass estimates are summarized in Table 13 below. These 

measurements are listed by experiment parameter set and the measurement method is noted. 

Volume results are also presented in Figure 70; graphs for mass estimates would differ only by a 

constant factor.  

Table 13: Maximum average ejected mass and volume by experiment parameters. 

Material 
Nozzle 
Height 

Pulse Duration 
Volume Ejected 

(cm^3) 
Mass Ejected 

(g) 
Method 

Glass 15 10 80.3 127.1 Crater/Cylinder 

Beads 15 25 164.9 261.2 Crater/Cylinder 

 15 50 523.1 828.5 Crater/Cylinder 

 15 100 770.0 1219.4 Crater/Cylinder 

 15 250    
 25 10 43.8 69.3 Crater/Cylinder 

 25 25 124.5 197.2 Crater/Cylinder 

 25 50 160.0 253.4 Crater/Cylinder 

 25 100 595.5 943.2 Crater/Cylinder 

 25 250    
Quartz 25 10 0.9 1.3 Cross-Section 

Sand 25 25 2.5 3.9 Cross-Section 

 25 50 4.1 6.4 Cross-Section 

 25 100 4.7 7.4 Cross-Section 

 25 250 7.2 11.3 Cross-Section 

CI 15 10 19.9 16.4 Particle/Cylinder 

Orgueil 15 25 129.3 107.1 Cylinder 

 15 50 268.8 222.6 Paraboloid 

 15 100 680.6 563.6 Paraboloid/Cylinder 

 15 250 1932.4 1600.0 Estimate 

 25 10 20.1 16.7 Particle/Cylinder 

 25 25 99.9 82.7 Paraboloid 

 25 50 161.5 133.7 Paraboloid 

 25 100 305.8 253.2 Paraboloid 

 25 250 995.9 824.6 Cylinder 

Steel 18.7 10  0.0 Crater/Cylinder 

Beads 18.7 25 70.4 328.1 Crater/Cylinder 

 18.7 50 134.2 625.0 Crater/Cylinder 

 18.7 100 155.9 726.1 Crater/Cylinder 
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Material 
Nozzle 
Height 

Pulse Duration 
Volume Ejected 

(cm^3) 
Mass Ejected 

(g) 
Method 

 18.7 250 270.2 1258.8 Crater/Cylinder 

 28.7 10 0.0 0.0 Crater/Cylinder 

 28.7 25 0.0 0.0 Crater/Cylinder 

 28.7 50 67.6 314.9 Crater/Cylinder 

 28.7 100 155.5 724.5 Crater/Cylinder 

 28.7 250 252.5 1176.6 Crater/Cylinder 

 

 

 

Figure 70: Averaged ejecta volume measurements for each experiment type conducted. 

Volume for the steel bead and quartz sand experiments appears to increase with the 

logarithm of jetting duration Volume for the glass bead and CI Orgueil experiments 

increases linearly with jetting duration. Ejecta was too sparse to measure for the 10 ms 

steel bead experiments; glass beads obscured the lens for the 250 ms pulse.  
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Since ejecta mass and volume differ only by a constant factor we may discuss their 

behavioral trends together. Note that these given times are different than in the time-growth 

measurements above.  Both glass beads and CI Orgueil simulant ejecta appear to increase 

linearly with time. The quartz sand and steel beads increase logarithmically with time. Given the 

uncertainty in these measurements and the relatively small number of data points, we do not feel 

confident in confirming the power law derived by Metzger et al. (2009).  

PyRIC Model Comparison 

We apply our PyRIC model to each set of experiment parameters and examine predicted 

ejecta mass. Robert’s (1964) equation is used to determine a surface pressure distribution; 

ambient pressure is treated as the “chamber pressure” and the flow is assumed to choke at the 

speed of sound. Ambient pressure increases linearly over the course of the experiment based on 

the change in pressure seen in our experimental apparatus for each parameter set. Model runs are 

terminated at the end of each pulse and regolith instability calculated by grid-cell pressure offset 

from ambient. Most of the results for these model runs do not compare well, in particular for the 

steel bead and glass bead experiments, as their behavior is not primarily explained by diffusion 

driven flow. We will neglect these cases for the moment, examine the CI Orgueil and quartz sand 

flow and volume estimates, then return to discuss the others. 

Flow Comparison 

Two examples will be illustrative of the end cases where our model shows promise. 

Figure 71 and Figure 72 below show model runs for CI Orgueil and quartz sand simulants, 

respectively. CI Orgueil is significantly more permeable than quartz sand. That permeability 
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difference is about three orders of magnitude. Air flows freely, relatively speaking, through CI 

Orgueil but does not permeate the sand significantly. This is indicated by our model; note in 

Figure 71 how the gas has permeated the entire space within the first one-thousandth of a second. 

But the end of the sand run, it is apparent from Figure 72 that gas has not intruded very far into 

the sand. And our model predicts no ejecta in the latter case; in the former, the white line 

designates the region of instability.  

 

Figure 71: Flow visualizations at jetting cutoff for a 50 ms CI Orgueil experiment run. Top 

left: The surface pressure distribution used as a boundary condition. Top right: Pore 

pressure within the simulated region (in Pa). Bottom right: Pore pressure shown as a 

contour plot with predicted region of instability overlaid in white. Bottom left: Streamlines 

show the direction of gas flow and are shaded according to the intensity of the pressure 

gradient. 
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Figure 72: Flow visualizations at the end of a 50 ms quartz sand experiment run. Top left: 

The surface pressure distribution used as a boundary condition. Top right: Pore pressure 

within the simulated region (in Pa). Bottom right: Pore pressure shown as a contour plot 

with predicted region of instability overlaid in white. Bottom left: Streamlines show the 

direction of gas flow and are shaded according to the intensity of the pressure gradient. 

From our experiments we saw that viscous shear erosion (VSE) is the primary PSI 

mechanism for quartz sand. However, because our model is based on gas diffusion it is not 

intended to predict VSE. But it does correctly indicate that no diffusion driven flow will occur 

here. Likewise, for CI Orgueil, the gas permeates quickly to destabilize the regolith. We see 

matching behavior in the end-member cases. In-between, however, glass and steel beads are 

complex mixture of phenomena that is not well-captured in the model. 
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Mass Comparison 

Most of our quantitative predictions from this model neither accurately represent the 

measured ejecta nor do they show the proper trend, except again in the end member cases. The 

result for sand is trivial but relevant: no instability predicted. The best result we obtain comes 

from the CI Orgueil series at 25 cm nozzle height, an instance of which is shown above. Results 

from the 15 cm nozzle height are shown as an example of poor model performance. Varying 

cohesion as a parameter, model calculated ejecta volume is plotted in Figure 73 and Figure 74 

below along with our experimental result for each pulse duration. 
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Figure 73: Modeled ejecta volume for the 15 cm nozzle distance CI Orgueil experiment set 

as a function of regolith cohesion, with points plotted for each experiment pulse duration. 

Experiment data is also plotted for comparison. 
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Figure 74: Modeled ejecta volume for the 25 cm nozzle distance CI Orgueil experiment set 

as a function of regolith cohesion, with points plotted for each experiment pulse duration. 

Experiment data is also plotted for comparison. 

The set of CI Orgueil runs with a 25 cm nozzle height captures both an estimate for 

volume ejected and also the trend shown by experiment data. This is not the case for the lower 

nozzle height, which prediction is roughly flat over the set. Because the forces in question here 

are relatively low, modeling ejecta is a delicate balance between surface pressure distribution, 

regolith permeability, and cohesion. Misunderstanding one of these results could lead to a faulty 

outcome. We see, however, that the correct trend can be predicted by the model for high-

permeability regolith.  
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Summary 

This chapter presents measurements of PSI ejecta velocities and masses for our 

experiment set. We find peak velocities for particles to be as high as tens of m/s, while a typical 

bulk range is from cm/s to hundreds of cm/s. Ejecta volumes range from a handful of individual 

particles up to lofting most of the simulant mass. Regolith permeability enhances this effect; 

erosion for quartz sand does not end up at significant depth in our experiments. We measure the 

expansion rate of PSI cratering in microgravity to take a power law form, expanding with the 

logarithm of time.  

We run our model for these experiment cases and find that it is best suited for high 

permeability cases, when the quasi-static assumption of the model is most applicable. Our model 

can predict volume trends, but additional work is needed to expand its capability into other 

regimes.  
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CONCLUSIONS AND FUTURE WORK 

This dissertation has detailed a course of computational and experimental work which 

seeks to understand the phenomena of plume surface interactions in vacuum microgravity. A 

summary of our results and recommendations for future work follows. As a summary of the 

experiment comparison from Chapter 5 flows naturally out of discussing Chapter 2, we arrange 

those conclusions in the section below. 

Modeling Plume Surface Interactions and Experiment Comparison 

We developed a physics-based flow solver which can be used to estimate regolith ejecta 

from plume-surface interactions. A custom solver written in Python expands the PSI model of 

Scott and Ko (1969) to handle arbitrary environmental parameters. The program produces a 

surface pressure distribution using Robert’s (1964) equation based off of engine parameters or 

takes an arbitrary boundary condition specified by the user. This boundary condition, which may 

be time dependent, is then used to solve Darcy’s Law. We implement features like automatic 

timestep adjustment to optimize run time and prevent algorithmic instability.  

With the flow profile solved, we may calculate regions of instability in the regolith to 

estimate ejecta mass and volume. Our model gives valuable qualitative insight into the flow 

patterns which produce PSI and are confirmed by our experiment campaign. These insights 

include (1) off-center lofting, predicted by our model for permeable regolith and seen with all 

simulants except the very impermeable quartz sand. This occurs when gas injected on-center 

diffuses out and up through regolith off-center in an annulus, carrying material away from the 

surface. (2) Ejecta caused by on-center re-eruption. Our model predicted on-center lofting could 

occur in relatively impermeable regolith if gas was injected on-center and the engine cutoff. This 
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could be considered a single-pulse case of DGEE. We see gas pockets form in quartz sand at 

short pulse times and see high angle lofting from glass beads at the shortest pulse time. This 

phenomenon disappears at longer pulse times as other modes of erosion dominate. Since our 

model considers regolith to be static, it makes sense that this effect only appears for short pulse 

times. 

Our model sees moderate success at quantitative predictions of regolith ejecta in our 

comparison to the experiment campaign conducted by Land and Scholl (1969). In the best fit to 

experiment, our model predicts most crater volumes to within a factor of five. This experiment 

set does not give us much insight into why the model might be more or less applicable. 

Comparison to the GRIT experiment sheds additional light on the process, but our model has 

limited success replicating the results of the GRIT experiment because of the range of PSI 

regimes.  

We see from experiment that VSE is the primary mechanism for PSI in quartz sand. Our 

model predicts the effect of diffusion drive flow on quartz sand and finds no ejecta—which 

matches the experiments! By contrast, CI Orgueil gives us conditions closest to our model: 

namely, highly permeable regolith that is quasi-static during short pulses. While it would take 

further optimization to predict ejecta volume, our model does indicate the dominance of 

diffusion driven flow for highly permeable regolith. 

What of the in-between cases? While DDF plays a role, both steel and glass beads are too 

permeable for VSE to dominate and too impermeable for gas to flow unimpeded. More complex 

modeling is needed to predict these effects. This gives us some confidence in the results of our 

ARM study, though it is primarily applicable to bulk material. Lofting fines and gentle surface 

perturbations are likely to be factors even when mitigating steps are taken. 
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PyRIC is a useful tool for understanding gas flow through regolith. Improving its fidelity 

and reliability means reducing the number of assumptions at play. It could be improved by (1) a 

better tool to calculate surface pressure distribution, as Robert’s (1964) equation applies to hard 

vacuum; (2) a more robust treatment of permeability that includes changes with gas density; (3) 

determining the effects of changing temperature and pressure on gas viscosity; (4) modeling 

regolith motion during a model run. This last step is likely to be hardest, but our experimental 

work gives insight into a basis for calculating regolith velocities with flow properties.  

Experiments and Observations 

We have conducted a series of over 200 bench and drop tower experiments with various regolith 

simulants to understand plume surface interactions in vacuum microgravity. This is the first 

treatment of the phenomena in systemic fashion, and the video data collected show us novel 

behaviors within gas-granular systems. We can summarize our qualitative findings in terms of 

phenomena and trends, some of which are directly related. Observing PSI in vacuum 

microgravity reveals new phenomena that would be otherwise masked by gravity.  

We observe trends that might be expected: PSI behaviors are significantly more 

pronounced at reduced gravity. PSI behaviors are more intense with increased jetting time; it 

increases ejecta volume—both crater depth and crater width—though the size appears to 

approach a maximum under these experiment conditions. Reducing the nozzle height increases 

ejecta mass and increases ejecta angle. The latter effect appears to be the case due to a narrower 

pressure distribution.  

Ideally, we could compare quartz sand, glass bead, and CI Orgueil simulants to each 

other directly to draw conclusions about the effect of particle size—and therefore permeability—
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on PSI. But their other properties are somewhat different. We have a distribution of particle sizes 

in the CI Orgueil simulant, and its density is half that of the glass and sand. That said, a few 

conclusions are warranted, as reduced gravity makes density somewhat less important, and the 

difference in particle sizes between simulants is significant. We see roughly equivalent volumes 

ejected comparing glass beads to CI Orgueil, meaning the mass ejected in the former case is 

significantly higher. Compare this to quartz sand, where relatively little mass is ejected. In the 

latter case, this may also be due to particle morphology. We would expect to see more 

pronounced PSI from glass beads of equivalent diameter. 

Aside from these trends we observe a number of interesting, novel behaviors that show 

up prominently in microgravity but are masked in 1g. Once again, off-center lofting occurs when 

injected gas circulates outward and upward, back through the surface in an annulus outside the 

centerline, and raises material up with it. This can occur concurrently with a main ejecta crater 

and may be close enough to blend into that ejecta spray. 

Gentle pulses into quartz sand create a gas pocket on center that maintains some of the 

underlying structure present in the material. This behavior disappears at moderate jetting times. 

When particle sizes are larger or more massive, underlying structure can shape the ejecta spray 

and redirect gas flow. We see the former in one experiment with steel beads, and the later 

numerous times in CI Orgueil. 

Viscous shear erosion appears to be the driving mechanism for PSI in fine grained, low 

permeability materials, while diffusion driven flow dominates our larger grained, high 

permeability experiments. Intermediate to these, bearing capacity failure can be seen in 

intermediately size particles, with the presence of minor diffusion driven flow. 
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Our experiment campaign could be improved upon in future work. This set of 

experiments has given us insight into the use of lighting, material contrast, and camera 

specifications when conducting PSI experiments. Ensuring proper contrast of the simulant with a 

backdrop is critical for later analysis. Uniform lighting is also of benefit, and framerates higher 

than a consumer action camera can provide would aid in particle tracking. 

But to continue understanding PSI, expanding on the parameter space in a systematic 

fashion will be crucial. Building up a set of experiments at various nozzle heights, jetting 

durations, and material properties will allow us to characterize the full range of phenomena 

which may occur. And rather than using unlike simulants, controlling for particle size could be a 

valuable next step in a new campaign; that is, conducting experiments with glass beads, for 

example, and only changing particle size. 

Quantitative Analysis 

We analyze video of the GRIT experiment campaign to characterize bulk behaviors of 

regolith during PSI. Because behavior and material properties vary significantly between 

simulants, we used several methods to measure ejecta properties. For velocity measurements, 

this includes manual particle tracking, automatic particle tracking, frame averaged profiles, and 

visual inspection. Interior and exterior crater diameter measurements are taken manually and 

compared with depth/diameter ratios and simulant density to determine mass ejected. 

Aggregating our velocity measurements gives us a picture of bulk regolith behavior. 

Particle velocities have an upper bound in the meters to tens of m/s range, depending on particle 

type. These fastest particles are the most difficult to characterize and bear superficial similarity 

to the descriptions of “spurts” from hypersonic impact experiments, albeit at a significantly 
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slower scale. Even the shortest duration pulses can produce “fast” particles traveling up to about 

1 m/s.  

If initial particles are accelerated with a “kick”, the bulk flow comes from a mechanism 

related to the bulk properties of the material. Bulk velocities increase with pulse time and 

approach the flow velocity asymptoticly. These velocities range, on average, from cm/s to tens of 

cm/s. This behavior is consistent with equations of motion derived from a consideration of 

particle drag in a steady flow. While the phenomena are more complex overall, this insight may 

assist further computational efforts to model the effects of PSI. 

Crater diameters are measured manually from top-down and side view cameras, allowing 

us to recover ejecta volume and mass estimates. While we cannot confirm the trend noted by 

Donahue et al. (2005) that shows crater depth grows with the logarithm of time, we observe 

diameter growth also follows this trend, excepting when the experiment bottoms out. Donahue et 

al. (2005) notes this was seen in the case of hydraulic jets by Rajaratnam and Beltos (1977), and 

the result was also shown in 1g experiments by Metzger et al. (2009). This result of radial 

growth as a power law appears independent of gravity level. 

Our experience analyzing this data suggests improvements to the GRIT setup that would 

enable improved methods and more rapid analysis. More extensive use of automated particle 

tracking would significantly speed velocity measurements. Automated methods benefit from 

uniform background lighting, opaque simulants, and a higher framerate than our action cameras 

were able to record. A camera capable of ~1000 fps would likely yield inter-frame displacements 

small enough to track the fastest particles, though this should be tested and tailored for individual 

experiments. Strobe lighting could also compensate to effectively freeze-frame high-velocity 

particles, but it would not solve the displacement issue between frames. 



196 

 

As our experiments are axisymmetric, using a sheet laser to illuminate a plane orthogonal 

to the camera could also be useful. This has been applied with success to prior low velocity 

impact experiments conducted at the Center for Microgravity Research. Dusty simulants were a 

challenge for our setup; illuminating a plane might aid in resolving particles. 

Our dual camera setup was useful for redundancy in case of problems with a unit inside 

the vacuum chamber, but our initial plan to perform stereo image analysis was not realized. 

Optical distortion and inconsistency in camera placement proved a challenge, one that further 

analysis may solve. The camera setup may be improved, however, if stereo imaging is desired to 

analyze crater topography.  

Multiple image analysis techniques were attempted over the course of our analysis, not 

all of which yielded acceptable results. Improvements would be useful to the rapid analysis of 

future datasets. As an example, the particle tracking algorithm we used was written for particles 

undergoing random motion. Because we expect linear trajectories from our experiments, 

modifications to this module’s track linking capability could likely improve speed, prevent the 

introduction of spurious trajectories which must be filtered, and recover particle trajectories that 

were missed by the stock software. 
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APPENDIX A: GRIT ARDUINO CODE 
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The following code controls GRIT’s onboard Arduino. It detects when the experiment 

breaks free of the drop tower harness, then triggers an air pulse. This code was modified and 

adapted from a prior CMR experiment. The “pulse_time” variable may be changed for each 

experiment run. 

//GRIT code 

//Wesley Chambers 

//20 July 2018 

 

//Pin assignments 

 

int pulse_time = 250;    // This controls air pulse time (in 

milliseconds). 

 

int relay_pin_out = 7; 

 

int armed_pin_sig = 2; 

 

int contact_pin_vlt = 11; 

int contact_pin_sig = 10; 

int contact_pin_gnd = 9; 

 

int armed_pin_LED = 4; 

int contact_pin_LED = 3; 

 

bool COUNT = 0; 

bool ARMED_LOGIC   = 0; 

bool CONTACT_LOGIC = 0; 

 

void setup() { 

  // put your setup code here, to run once: 

   

  pinMode(armed_pin_sig, INPUT); 

 

  pinMode(relay_pin_out, OUTPUT); 

 

  pinMode(contact_pin_sig, INPUT); 

  pinMode(contact_pin_vlt, OUTPUT); 

  pinMode(contact_pin_gnd, OUTPUT);  

   

  pinMode(armed_pin_LED, OUTPUT); 

  pinMode(contact_pin_LED, OUTPUT); 
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  //Initialize pin states   

   

  digitalWrite(relay_pin_out, LOW); 

   

  digitalWrite(contact_pin_vlt, HIGH); 

  digitalWrite(contact_pin_gnd, LOW); 

 

  digitalWrite(armed_pin_LED, LOW); 

  digitalWrite(contact_pin_LED, HIGH); 

 

  Serial.begin(9600); 

} 

 

void loop() { 

   

  Serial.print("Start loop.\n"); 

   

 

    // Read armed and contact logic 

  ARMED_LOGIC   = digitalRead(armed_pin_sig); 

  CONTACT_LOGIC = digitalRead(contact_pin_sig); 

 

    // Show Logic by print and LED 

  Serial.print("Armed Logic:"); 

  Serial.print(ARMED_LOGIC); 

  Serial.print("\t Contact Logic:"); 

  Serial.println(CONTACT_LOGIC); 

 

    //Contact Light indication 

  if(CONTACT_LOGIC==true){ 

       digitalWrite(contact_pin_LED, HIGH);    } 

  if(CONTACT_LOGIC==false){ 

       digitalWrite(contact_pin_LED,  LOW);     

       delay(25); 

       digitalWrite(contact_pin_LED,  HIGH); 

       delay(25);} 

  if(ARMED_LOGIC==false){ 

       digitalWrite(armed_pin_LED,  LOW);    } 

 

  while(ARMED_LOGIC==true){ 

     

      // Read armed and contact logic 

       ARMED_LOGIC   = digitalRead(armed_pin_sig); 

       CONTACT_LOGIC = digitalRead(contact_pin_sig);   
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       digitalWrite(armed_pin_LED,  HIGH); 

     

         // Falling event (false means its not in contact) 

       if(CONTACT_LOGIC==false and COUNT==false){ 

              //Activating Launcher 

            delay(75); 

             

            Serial.print("### Firing Solenoid ### \n"); 

            digitalWrite(relay_pin_out,   HIGH);  

            delay(pulse_time);  

            digitalWrite(relay_pin_out, LOW); 

            Serial.print("### Long Delay ### \n"); 

 

            COUNT = 1; 

             

            delay(3000);   // 1 min cooldown (enough time to 

turn off the arm or power switch) 

             

       ARMED_LOGIC   = digitalRead(armed_pin_sig); 

       CONTACT_LOGIC = digitalRead(contact_pin_sig);  

    } 

 

     

  }  

  Serial.print("End loop.\n"); 

} 
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APPENDIX B: GRIT ELECTRICAL SCHEMATICS 
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Figure 75: GRIT electrical schematic. The switch between main and auxiliary power sources was later replaced by in-line 

diodes. 
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APPENDIX C: MODEL CRATER PROFILES 
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Figure 76: Instability profiles generated by our model for comparison to Land and Scholl 

(1969) experiments 1 through 8. Each line plots the instability region for an elapsed time (s) 

given in the legend assuming a cohesion value of 100 Pa. 
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Figure 77: Instability profiles generated by our model for comparison to Land and Scholl 

(1969) experiments 9 through 16. Each line plots the instability region for an elapsed time 

(s) given in the legend assuming a cohesion value of 100 Pa. 
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Figure 78: Instability profiles generated by our model for comparison to Land and Scholl 

(1969) experiments 17 through 24. Each line plots the instability region for an elapsed time 

(s) given in the legend assuming a cohesion value of 100 Pa. 
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Figure 79: Instability profiles generated by our model for comparison to Land and Scholl 

(1969) experiments 25 through 32. Each line plots the instability region for an elapsed time (s) 

given in the legend assuming a cohesion value of 100 Pa. 
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APPENDIX D: FRAME-AVERAGED VELOCITY PROFILES 
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Figure 80: Frame averaged velocity profiles for steel bead simulant experiments conducted 

at a 19 cm nozzle height, generated as described in Chapter 4. Profiles are shown for 

example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading indicates the 

presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks backlight). 

Velocities are indicated by the labelled white lines. Striation angles may be compared with 

these lines to determine particle velocity trends. 
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Figure 81: Frame averaged velocity profiles for steel bead simulant experiments conducted 

at a 29 cm nozzle height, generated as described in Chapter 4. Profiles are shown for 

example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading indicates the 

presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks backlight). 

Velocities are indicated by the labelled white lines. Striation angles may be compared with 

these lines to determine particle velocity trends. 
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Figure 82: Frame averaged velocity profiles for glass bead simulant experiments conducted 

at a 15 cm nozzle height, generated as described in Chapter 4. Profiles are shown for 

example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading indicates the 

presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks backlight). 

Velocities are indicated by the labelled white lines. Striation angles may be compared with 

these lines to determine particle velocity trends. 
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Figure 83: Frame averaged velocity profiles for glass bead simulant experiments conducted 

at a 25 cm nozzle height, generated as described in Chapter 4. Profiles are shown for 

example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading indicates the 

presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks backlight). 

Velocities are indicated by the labelled white lines. Striation angles may be compared with 

these lines to determine particle velocity trends. 
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Figure 84: Frame averaged velocity profiles for quartz sand simulant experiments 

conducted at a 25 cm nozzle height, generated as described in Chapter 4. Profiles are 

shown for example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading 

indicates the presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks 

backlight). Velocities are indicated by the labelled white lines. Striation angles may be 

compared with these lines to determine particle velocity trends. 
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Figure 85: Frame averaged velocity profiles for CI Orgueil simulant experiments 

conducted at a 15 cm nozzle height, generated as described in Chapter 4. Profiles are 

shown for example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading 

indicates the presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks 

backlight). Velocities are indicated by the labelled white lines. Striation angles may be 

compared with these lines to determine particle velocity trend 
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Figure 86: Frame averaged velocity profiles for CI Orgueil simulant experiments 

conducted at a 25 cm nozzle height, generated as described in Chapter 4. Profiles are 

shown for example experiments at 10, 25, 50, 100, and 250 ms pulse durations. Shading 

indicates the presence of ejecta on a scale from yellow (no ejecta) to blue (ejecta blocks 

backlight). Velocities are indicated by the labelled white lines. Striation angles may be 

compared with these lines to determine particle velocity trends.  
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APPENDIX E: COPYRIGHT PERMISSION LETTER 
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Dear Wesley, 

Thank you for your inquiry.  As an original author of an ASCE journal article or 

proceedings paper, you are permitted to reuse your own content (including figures and tables) for 

another ASCE or non-ASCE publication (including thesis), provided it does not account for 

more than 25% of the new work.   

A full credit line must be added to the material being reprinted. For reuse in non-ASCE 

publications, add the words “With permission from ASCE” to your source citation.  For Intranet 

posting, add the following additional notice: “This material may be downloaded for personal use 

only. Any other use requires prior permission of the American Society of Civil Engineers. This 

material may be found at [URL/link of abstract in the ASCE Library or Civil Engineering 

Database].”  

Each license is unique, covering only the terms and conditions specified in it. Even if you 

have obtained a license for certain ASCE copyrighted content, you will need to obtain another 

license if you plan to reuse that content outside the terms of the existing license. For example: If 

you already have a license to reuse a figure in a journal, you still need a new license to use the 

same figure in a magazine. You need a separate license for each edition. 

For more information on how an author may reuse their own material, please view: 

http://ascelibrary.org/page/informationforasceauthorsreusingyourownmaterial 

 

Sincerely, 

 

Leslie Connelly 

Manager, Publications Marketing 

https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fascelibrary.org%2Fpage%2Finformationforasceauthorsreusingyourownmaterial&data=02%7C01%7Cchambers%40knights.ucf.edu%7C08634d1825184ed45cdf08d7c6ae357e%7C5b16e18278b3412c919668342689eeb7%7C0%7C0%7C637196323835200706&sdata=d235VmrvkDFnhnYV%2Fs404waRMNqA7u0Vfeo4Z6M%2BFhQ%3D&reserved=0
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American Society of Civil Engineers 

1801 Alexander Bell Drive 

Reston, VA  20191  
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