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ABSTRACT

Locating and identifying hidden objects can prove critical in applications ranging from military re-

connaissance to emergency rescue. Although non-line-of-sight (NLOS) reconstruction and imag-

ing have received much attention recently, state-of-the-art methods often use coherent sources

(lasers) or require control of the scene. This dissertation focuses on passive NLOS scene recon-

struction using the light reflected off a diffusive wall. No control over the light illuminating the

scene is assumed, and the method is compatible with the partially coherent fields ubiquitous in both

indoor and outdoor environments. In order to counteract the detrimental effects of the wall, rather

than measuring the 2-dimensional intensity of the reflected light, we exploit the full 4-dimensional

spatial coherence function to reconstruct the scene. As a step towards the NLOS problem, we

first consider the line-of-sight (LOS) problem. Numerical simulations using Fresnel propagation

operators show that our forward model has good agreement with experimental results. We show

that numerically back-propagating the measured coherence function enables a visual estimation of

the objects’ sizes and locations. To facilitate efficient, systematic and explicit detection of object

parameters in the inverse problem, we propose a closed-form approximation of the propagated

coherence function. Using this analytic solution we formulate a minimum residue optimization

problem which is solved using a gradient descent algorithm. Then, for the NLOS problem, we

derive an analytic model based on experimentally-verified scattering models. This model is used

to study the information retained in the coherence function after the field interacts with the wall,

and this insight is used to classify and estimate simple objects. Finally, we consider imaging in

more complicated settings with larger objects. We formulate a multi-criteria convex optimization

problem, which fuses the reflected field’s intensity and spatial coherence information at different

scales, along with an algorithm to efficiently solve the proposed problem.
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CHAPTER 1: INTRODUCTION

Identifying an object from indirect light can provide critical information in many practical appli-

cations, e.g., in defense, collision avoidance, or emergency situations. Here we assume partially

coherent sources (e.g., fluorescent or LED light, as well as sunlight), which are outside the control

of the observer. We refer to this problem as Passive NLOS imaging1.

A motivating example for the passive NLOS problem is illustrated in Fig. 1.1: An object is hidden

from view by the obstructing Wall 1, and a complex camera measures light reflected from Wall 2.

There may also be a shadow (i.e., spatial variation in intensity pattern) on the wall, whose edge

resolution decreases with the decrease of the field’s spatial coherence; contrast the highly coherent

case in Fig. 1.1(b) with the lower coherent case in Fig. 1.1(c). In addition, a second source floods

the wall with light; see Fig. 1.1(d). While a lensed camera may still be able to image the shadow,

the image quality will be degraded due to noise and quantization error. Depending on the scene and

wall configuration, the shadow may be all but useless in detecting the hidden object, thus requiring

an alternative modality for scene reconstruction.

1In this chapter, we partially use the material published in the Journal of the Optical Society of America A (JOSA
A), 2017 [9], Optics Express, 2017 [2], Optics Letters, 2017 [1], Frontiers in Optics, 2017 [11], and IEEE Transactions
on Image Processing, 2019 [6].
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Figure 1.1: (a) Scenario considered in this paper. Bottom of figure shows examples of shadows

in scenarios ranging from ideal on left to non-ideal on right. (b) Distinct shadow cast with highly

coherent light. (c) Indistinct shadow due to less coherent light. (d) Faint and noisy shadow due to

Light Source 2 being turned on. This shadow is generated by adding uniform ambient light and

Gaussian noise to (b), and the pixels are then quantized to 16 bits.

Before delving into the specifics of our approach, we review existing NLOS techniques, both active

and passive.

1.1 Non-line-of-sight Reconstruction

Although the study of NLOS problems has seen a large amount of activity recently, many state-of-

the-art methods require active control of the illumination or scene. One common approach entails

the use of controllable coherent sources (lasers). For example, the object may be directly illumi-

nated by a laser [17, 18], or a temporally coherent light source [19, 20]. Other methods allow the

scene to be illuminated remotely by bouncing laser pulses off the wall and then isolating the bal-
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listic photons (direct carriers of information about the object) from the diffusely scattered photons

which have lost the history of their interaction with the object. This is typically accomplished by

capturing time-of-flight of the photons [21–25]. One exception is the laser-based method of [26],

which relies solely on intensity images of the reflected laser light, albeit this method also requires

movement of the object. Still, other methods that do not constrain the light source require that

the scene be modified in some way, for example by requiring that a reference object [27] or point

source [28] be used.

Existing approaches to the passive imaging problem have relied mostly on intensity-only measure-

ments. In the absence of significant shadows, intensity measurements alone are insufficient for

scene reconstruction, and so these methods must place additional constraints on the scene. The

“accidental” pinhole camera [29] allows imaging, but requires that the obstructions take a very

specific form such that a pinhole is present. The “corner” camera [30] exploits the edges of the

obstructions themselves. However, this method only produces 1D (if one edge is present) or 2D

(when two edges are present, e.g., with a doorway) positions of moving objects.

1.2 Spatial Coherence

As described in the previous section, NLOS approaches often constrain the scene or impose priors

on the reconstruction. Alternatively, they expand the measurements to include an extra dimension

(time) by requiring motion of the object. We consider here an alternative for increasing the dimen-

sionality of the measurements: instead of measuring the 2D intensity profile, we use the 4D spatial

coherence function (which subsumes the intensity profile).

The spatial coherence G of a quasi-monochromatic scalar field U at two points r1, r2 is defined as
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an ensemble average over random field realizations

G(r1, r2) = 〈U(r1)U
∗(r2)〉, (1.1)

where ∗ denotes the complex conjugation, and 〈·〉 is an ensemble average over field realizations

(see [31]).

Spatial coherence has been used for the related problem of tomography in scattering media [32,

33]. A similar modality is that of phase-space measurements, which characterize the signal in

both space and frequency domains [34]. These measurements have a close relation to the spatial

coherence measurements used here [35]. These measurements have been used, for example, to

determine the three-dimensional location of point sources embedded in volumetrically scattering

biological samples [36].

The problem of detecting an object using spatial coherence measurements is characterized fun-

damentally by two spatial scales: the transverse extent of the scattered-field intensity distribution

and the width of the spatial coherence function associated with the field. In a lensless configura-

tion, diffractive spreading can render the extent of the former quite large and devoid of distinctive

features. The width of the spatial coherence function, however, may be considerably smaller and

retain sufficient information to identify a scattering object. Furthermore, even though the field is

spread spatially over a large area, we need to sample only a limited spatial extent of the scattered

field – on the order of the transverse coherence length of the field at the detection plane. Surpris-

ingly, the spatial extent of the required measurement in some situations may be smaller than the

physical size of the object itself, which could be located a large distance away from the detection

plane.

Because the spatial extent of the intensity profile is much larger than the typical coherence width,
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it is advantageous to work with “rotated” coordinates. Specifically, we work with the following

coordinates: the midpoint r = (r1 + r2)/2, and displacement ρ = r1 − r2, yielding

G(r,ρ) = 〈U(r + ρ/2)U∗(r− ρ/2)〉. (1.2)

We refer to r and ρ hereon as the intensity and coherence coordinates, respectively. The standard

and transformed coordinates are illustrated in Fig. 1.2.

Figure 1.2: Diagram showing the standard and transformed coordinates used for the spatial co-

herence function.

The 2D intensity of the field I is subsumed by the 4D coherence function along one plane I(r) =

G(r,0). In this sense, the coherence function provides a complete description of a partially coher-

ent field, whereas the intensity alone does not.

In Chapters 2 and 3, we consider 1D scenes in which the electric field depends only on one trans-

verse spatial coordinate, i.e., we transform U(r) → U(x). Therefore, the coherence function

depends only on two transverse spatial coordinates x1, x2. In this case, the function G(r1, r2) in

(1.1) becomes

G(x1, x2) = 〈U(x1)U
∗(x2)〉, (1.3)
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and we denote the rotated coordinates

y1 =
x1 + x2

2
, y2 =

x1 − x2
2

. (1.4)

Then, the rotated coherence function of (1.2) becomes

G(y1, y2) = 〈U(x1 + x2)U
∗(x1 − x2)〉. (1.5)

Note that the scaling of the displacement found in y2 is different from that found in ρ by a factor

of two.

In the experiments, the degree of spatial coherence g(r,ρ) (also known as the spectral degree of

coherence) is often used. The function g(r,ρ) is related to G(r,ρ) through a normalization with

respect to the intensity,

g(r,ρ)=G(r,ρ)/

√
I(r +

ρ

2
)I(r− ρ

2
). (1.6)

For the 1D scene, the degree of spatial coherence associated with the function G(y1, y2) defined in

(1.2) is

g(y1, y2)=G(y1, y2)/
√
I(y1 + y2)I(y1 − y2). (1.7)

1.2.1 Measurements

The spatial coherence function can be obtained by various measurement strategies, e.g., through the

use of double slits [2, 37–40], non-redundant arrays of apertures [41, 42], lateral-shearing Sagnac

and reversed-wavefront Young interferometers [43–45], microlens arrays [46], and phase-space
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methods [47–49].

In this work, we use measurements obtained from two different experimental devices. The first

device is a wavefront shearing interferometer named the Dual-Phase Sagnac Interferometer (DuP-

SaI) [1]. The configuration of this measurement device is shown in Fig. 1.3.

Figure 1.3: Schematic of the DuPSaI for measuring the SCF at the plane of the input AP. The

inset shows the intensity distributions of differently shaped sources recorded in the source plane

(top row) and at 20 cm distance (bottom row). (Figure from [1], p. 4930).

The second device makes use of dynamic double slits produced by a digital micromirror device

(DMD) [2], as shown in Fig. 1.4.
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Figure 1.4: Complex-coherence measurements of incoherent light scattered from an object. (Figure

from [2], p. 13091).

We will refer to this measurement setup as the double-slit DMD device. More details regarding

signal processing in this device are provided in Appendix D.

1.3 Organization of the Dissertation and Summary of Contributions

We break our study into two main parts, both of which are critical to solving the full scene recon-

struction problem. In the first part, we consider the problem of propagation to the wall, i.e., free
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space propagation, and study the LOS inverse problem. Because the spatial coherence function is

unscattered, it provides a complete description of the scene, making our study applicable to compu-

tational imaging problems as well [50]. In the second part, we examine the scattering effects of the

wall on the propagated spatial coherence function, determine what useful information is retained

in the “damaged” coherence function, and formulate an approach to extract this information.

Our approach is physics-driven in the sense that we use established physics-based models from the

theory of light propagation and scattering [1, 2, 51]. Therefore, we further break each part of the

study into two chapters: one chapter addresses the forward problem, including a detailed analysis

of the physical models; the other chapter addresses the inverse problem. The organization of the

chapters is shown in Fig. 1.5.

Figure 1.5: Dissertation organization

The contributions of each chapter are summarized below.

1. In Chapter 2, we first study a model for free space propagation of spatial coherence. Nu-

merical calculations of the propagation operator are shown to match both 1D and 2D exper-

imental measurements. These results show that the spatial coherence function at a distant

detector retains artifacts from interaction with an object, thus suggesting feasibility of the

inverse problem. In order to facilitate solution of the inverse problem, closed-form analytic

solutions are derived for the spatial coherence propagation after interaction with an object.
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2. In Chapter 3, we study the inverse problem for free space propagation. We consider two

techniques for inverting the free space propagation. The first is a “brute-force” approach

for recreating the evolution of the intensity profile using the inverse Fresnel transform. The

second is a more efficient and systematic minimum residue optimization method using the

closed-form approximations derived in Chapter 2.

3. In Chapter 4, we study the forward model for wall scattering using an experiment-based

wall model. We examine what information is preserved after interaction with the wall in the

spatial coherence function.

4. In Chapter 5, we first derive a method for characterizing shapes, and for determining the

distance to a small, simple object. We then consider the problem of imaging larger objects.

We also consider the case where the shadow on the wall does provide useful information,

and provide a multi-modal fusion formulation for solving the inverse problem.

5. In Chapter 6, we consider future directions. This includes a discussion of the Wigner func-

tion and its advantages in computational imaging, and a consideration of deep learning tech-

niques which may be applied to our scene reconstruction problem.

1.4 Notation

Vectors and matrices are denoted using bold-face lower-case and upper-case letters, respectively.

Given a vector a, its `p-norm is denoted by ‖ a ‖p and a(i) is the ith element. The diagonalization

operator Diag(a) returns a matrix with the elements of a along the diagonal. The vectorization of

an M ×N matrix A is denoted vec {A}, with the result taking the form of an MN element vector.

The unit vector with a one in the ith entry is denoted ei. Matrices or vectors containing all ones or

all zeros are denoted 1 and 0, respectively, where the dimensions will be clear from the context.
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The Hadamard product � returns the element-wise product of its arguments. A weighted norm is

defined as ‖a‖2v = a∗(Diag v)a.

The 2D Fourier transform of a function f(x, y) is denoted F {f(x, y)} (ωx, ωy), where ωx and

ωy are angular frequencies. The 2D Discrete Fourier Transform (DFT) of matrix A is expressed

as F1AF2, where F1 and F2 are the 1D DFTs along the columns and rows of A, respectively.

The notation ? is used to indicate both the continuous and discrete forms of the two-dimensional

convolution operator.

Let Re[.] and Im[.] denote the real and imaginary components of their complex argument, respec-

tively.
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CHAPTER 2: FORWARD PROBLEM FOR FREE SPACE

PROPAGATION

2.1 Introduction

When incoherent or partially coherent light scatters off an obstructive object, the shadow formed

in the vicinity of the object gradually blurs at larger distances until the scattered field ultimately

exhibits a smooth distribution with only feeble local intensity variations1. An experimental demon-

stration is shown in Fig. 2.1 from [1].

Figure 2.1: Zoomed inset from figure in [1], p. 735.

However, despite this blurring of the intensity function, the electric field still retains information

about the object. In line-of-sight (LOS) applications, a lens may be used to “extract” this infor-

mation to form an image of the object. However, in anticipation of the full NLOS problem, we

assume here that a lens cannot be used; the wall destroys the information sufficiently that a lens

cannot reconstruct the scene.

1In this chapter, we partially use the material published in the Journal of the Optical Society of America A
(JOSA A), 2017 [9], Optics Express, 2017 [2], Optics Letters, 2017 [1], and Frontiers in Optics, 2017 [11].
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In absence of a lens to form an image, it is difficult to reconstruct the scattering object from a mea-

surement of the far-field intensity alone. Although image processing can help improve the quality

of a recorded image by removing blur resulting from motion or poor focusing [52–54], it remains a

notoriously difficult task to undo the blurring from diffractive spreading after free propagation. Al-

though the transfer function for free propagation of incoherent light does not include zeros (for an

infinitely sized detector), the decay of the transfer function with spatial frequency is nevertheless

extremely sharp [55], which makes the inversion sensitive to noise. In other words, the remnant

spatial variations in the lensless far-field intensity distribution are too small to allow for object re-

construction. Other approaches to reconstruct a scattering object make use of phase retrieval [56]

with the measured intensity distributions in two planes [57], or the amplitude [58] or phase [59,60]

of the Fourier transform of the field – with the phase information typically yielding better recon-

structions [61–63]. These approaches are usually more successful in object reconstruction when

coherent light is used [64–67].

At the same time, it is well known that the spatial coherence function is an excellent encoder of

information (such as location, spatial extent, etc.) about the source [68]: for the simple cases

involving apertures we refer to Section 5.7 of [69], and for the quasi-homogeneous partially co-

herent sources to [70]. Here, we demonstrate that the spatial coherence function retains significant

information regarding the field’s interaction with more complex source configurations as well.

In this chapter, we first present a propagation model to describe the free space evolution of the spa-

tial coherence conference. This model serves as the basis for the remainder of our work. We then

present results using straight-forward numerical evaluation of the forward propagation operator,

showing that the model has close agreement with experimental results for both 1D and 2D scenes.

We next turn to a more systematic study of the propagation operator. One aim for this study is

towards improved computational efficiency. Anywhere but in very special cases, the free evolution
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of coherence functions cannot be obtained analytically in closed form. Even if such a solution is

found, once the field scatters off an object, further field evolution can only be evaluated numeri-

cally. For example, the generic Gauss-Schell model for a partially coherent field approximates the

characteristics of the radiation produced by a wide range of optical sources. Furthermore, such a

model admits a tractable analytical treatment of its free evolution [71, 72], or even for long-range

propagation through turbid media as long as no size restrictions are involved [73, 74]. However,

once the intensity profile is modified by passage through a finite aperture (see Section 5.7 of [69]),

transmittance through a partially transparent medium, or scattering off an object, the subsequent

evolution of the coherence function no longer resembles the initial Gauss-Schell model. Instead,

calculation of the propagated coherence function is accomplished using a double diffraction inte-

gral [68], which incurs a high computational cost. We call the field produced by such a secondary

source, the original coherence function modulated with an arbitrary amplitude profile, a ‘general-

ized source’.

There exist techniques that can help reduce the computational complexity, such as accelerating the

calculation of the Fresnel integrals through the use of the Fast Fourier Transform [75], avoiding

full computation of the Fresnel integrals [76], or exploiting the coherent communication modes

of the propagation kernel itself in which the field is expanded [77]. Another strategy involves

carrying out a singular expansion of the source in terms of coherent modes to take advantage

of the simpler coherent propagation integrals [76, 78], but the calculation of the modes is beam-

specific [72,79–82] and the number of required modes increases with reduced field coherence [82].

An altogether different numerical strategy makes use of ray-tracing [83], which can outperform

Fresnel integration by limiting the number of rays [84].

As an alternative, we obtained a closed-form expression for the spatial coherence function of par-

tially coherent fields propagating from generalized sources in the Fresnel regime, which reduces

the computational complexity and affords a favorable ground for the study of inverse problems.
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We focus on a one-dimensional model in which the field is assumed to vary only along one trans-

verse direction by a piecewise constant transmission function, but the concepts developed herein

are naturally extendable to higher dimensions. Our closed-form solution characterizes the coher-

ence from generalized sources in terms of a conjugated Hilbert transform [85,86], a modified form

of the Hilbert transform in which a function is first modulated by a linear phase, transformed, and

then modulated by a conjugated phase. Some mild restrictions must be satisfied for this approach

to succeed; e.g., the transverse coherence width must be at least one order of magnitude larger than

the wavelength, but narrower than features of the transmission function of the generalized source.

A distinguishing feature of our approach is that the parameters of the source appear explicitly in

the closed-form expression of the generalized source. For this reason, the results presented herein

set the stage for the inverse problem in which reconstruction of a generalized source is intended

from coherence measurements.

2.2 Source Models

2.2.1 General Quasi-homogeneous Sources

For all light source models used in this work, we assume monochromatic radiation emitted by a

Gaussian-correlated light source. Furthermore, we assume the quasi-homogeneous approximation

with the spatial coherence function of the form

Gs (r,ρ) = Iin(r) exp

(
− ρ2x

2σ2

)
exp

(
−
ρ2y

2σ2

)
, (2.1)

where σ is termed the coherence width. In this approximation, the function is separable with

regard to the “intensity” and “coherence” components [32,87]. where the intensity distribution I(r)
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describes the corresponding shape of the mask, and σ is the standard deviation of the Gaussian-

correlated source.

2.2.2 Gauss-Schell Model Sources

Underlying many of the results in Chapters 2 and 3 is a generic partially coherent field described

by a Gauss-Schell model [87]. Our results herein fall in the regime wherein the beam width of

the source is assumed to be much larger than the coherence width, thus warranting the quasi-

homogeneous approximation and yielding a coherence function G(y′1, y
′
2) = I(y′1)g(y′2); where

I and g are separable intensity and coherence functions, respectively [32, 87]. Let Nβ (x) =

exp{−x2/2β2} denote the Gaussian of standard deviation β. Then, the coherence function of

the Gauss-Schell model source (located at z=0) is

G−(y′1, y
′
2) = AoN

wo (y′1)N
σo (y′2), (2.2)

where Ao is an amplitude, wo the width of the intensity profile, and σo the coherence width of this

initial field (all denoted with the subscript ’o’).

2.2.3 Generalized Source Model

We consider a Gauss-Schell beam (2.13) modulated by a piecewise constant complex transmission

function, referred to as a generalized source. The source G− is masked by a piecewise constant

transmission function t(x) ∈ C, |t(x)| ≤ 1. Hence, the coherence function of the generalized

source is

G(y′1, y
′
2) = G−(y′1, y

′
2) t(y

′
1 + y′2) t

∗(y′1 − y′2). (2.3)

16



An example of such a source is shown in Fig. 2.2(b) and (c) in both unrotated and rotated coordi-

nates.

Figure 2.2: (a) Illustration of rotated coordinates. An example of a generalized source is shown in

(b) unrotated coordinates and (c) rotated coordinates. For this example, the Gauss-Schell source

parameters are A= 1, w= 1 mm, σ = 50 µm. The transmission function is such that t(x)=0 for

x∈ [a1, a2), and t(x)=1 otherwise, where a1 =−0.4 mm and a2 =−0.2 mm. Dotted white lines

indicate the regions affected by the transmission function.

2.3 Free Space Fresnel Propagation

We will use the propagation model shown in Fig. 2.3, which is illustrated for the special case where

there is a single object.
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Figure 2.3: A single object scene with x0 =−1.5 mm, l=0.5 mm, d0 =10 cm, and d=100 cm. The

normalized magnitude of the coherence function is shown at the bottom of the diagram in three

planes: in the plane of the Gaussian source, immediately after interacting with the object (i.e. at

the secondary source), and at the measurement plane.

Given a planar source located at z = 0 with coherence function G(x′1, x
′
2), after propagating a

distance d in the Fresnel regime (where the normals to the wave front make small angles with the

direction of propagation), the coherence function becomes

∫∫
G(x′1, x

′
2)h(x1, x

′
1)h

∗(x2, x
′
2) dx

′
1 dx

′
2, (2.4)

where the Fresnel propagator h is given by

h(x1, x
′
1) =

exp(ikd)√
iλd

exp

{
i
k

2d
(x1 − x′1)2

}
; (2.5)

here λ is the wavelength and k is the wavenumber. The integration is over R2, i.e. the infinite plane
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of the source.

Using the rotated coordinates described in (1.4), the Fresnel model of coherence propagation be-

comes

Gd(y1, y2) =
1

2π`2

∫∫
R2

G(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2, (2.6)

with `=
√
d/2k and the kernel is

L(y1, y
′
1, y2, y

′
2) = exp

{
i(y1 − y′1)(y2 − y′2)/`2

}
. (2.7)

For a 2D scene, we have two transverse coordinates along the x, y axes, and the field propagates

along the z axis. Suppose a planar source is located at z=0 with coherence function G(r,ρ). The

spatial coherence function in a plane at z = d is calculated using the Fresnel integrals [88]

Gd (r,ρ) =
1

(λd)2

∫∫ ∫∫
dr′xdrydρ

′
xdρ

′
y

×H (rx, r
′
x, ρx, ρ

′
x; d)H

(
ry, r

′
y, ρy, ρ

′
y; d
)

×G (r′,ρ′) ; (2.8)

where λ is the wavelength, k = 2π
λ

is the wavenumber, andH (x, x′, ρ, ρ′; d) = exp
[
ik
d

(x+ x′) (ρ− ρ′)
]

is the free space Green’s function for the electric field.

While we use a single wavelength for simplicity, the propagation of broadband light can also

be accomplished by propagating at multiple wavelengths and summing the results. This method

would still preserve the linearity of the transforms.
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2.4 Experimental Validation of 1D Model

The light source in the first set of experiments is an extended-area LED whose partial coherence

is represented by a truncated Gauss-Schell model [89]. Whereas measurements of the coherence

function of various unobstructed light sources are well-documented [37, 39, 40, 90], here we focus

on the deviations in the measured coherence with respect to that of the source as introduced by an

object lying in the field’s path. We consider both intercepting (obstructing) objects placed in front

of a light source to block part of the beam, as well as reflecting objects placed such that they reflect

light toward the detector. In all cases, we compare the measurements to theoretical predictions

obtained using Fresnel propagators.

2.4.1 Experimental Setup

The source is a spatially extended LED (Thorlabs, M625L3) with a peak wavelength of ≈633 nm

and a FWHM-bandwidth of ≈ 18 nm that is spectrally filtered by a ≈ 1.3-nm-FWHM band-pass

filter centered at 632.8 nm (Thorlabs, FL632.8-1). Measurements were collected by the double-slit

DMD device [2].

We consider thin planar one-dimensional (1D) objects whether obstructive or reflective – with the

other transverse dimension assumed uniform. Such an object is parameterized by three quantities:

size, transverse position with respect to the optical axis, and longitudinal position with respect to

the detection plane.

When individual pixels of the DMD are activated, they tilt approximately 12.5◦ away from the nor-

mal to the DMD plane, thus attenuating the measured coherence function (see [2] for more details).

To compensate for this artifact of the measurement scheme, a premultiplier was introduced to the

numerically calculated function g(x1−x2). Assuming a Gaussian spectral profile, this premuliplier

20



takes the form of an inverted Gaussian of 627-µm-FWHM. We found that reducing this value by

15% to 533 µm offers an excellent match between the theoretical predictions based on the model

presented in the previous subsection and all the measurements. This discrepancy is attributed to

the deviation of the actual spectral linewidth of the radiation from the presumed Gaussian form.

2.4.2 Numerical Simulations

The object is assumed to be thin and described by a real-valued transmittance function t(x) –

although this model readily accommodates a complex-valued transmittance. Both intercepting

(obstructing) and reflecting objects are modeled – for simplicity – as indicator functions; that is,

light at any point in the object plane either passes unobstructed, or is blocked completely. For

an intercepting object, t(x) = 1−rect
(
x−x0
w

)
, where x0 and w are the object center position with

respect to the optical axis and its width, respectively, and rect(x) = 1 when −0.5≤x≤ 0.5 and is

zero otherwise. The reflective object is assumed to be specular, and so is modeled as an aperture

with transmission function t(x) = rect
(
x−x0
w

)
. Objects with transmittance of values other than

0 or 1 can also be accommodated within this framework. The object is thus identified by three

parameters: its width w; its transverse position x0; and its axial distance from the detection plane

d2 (for fixed total distance from source to detector d).

The field propagating from the source plane to the detection plane (a total distance of d) under-

goes a mapping through a linear system represented by an impulse response function h(x1, x
′),

where x1 is a point in the detection plane and x′ is a point in the source plane. In our experimental

arrangement, this system consists of a succession of three linear sub-systems: (1) free space prop-

agation a distance d1 from the source plane x′ to the object plane x̃; (2) transmission or reflection

from an object located at the plane x̃; and (3) free space propagation a distance d2 from the object

plane x̃ to the detection plane x1. Recall that free propagation a distance d in the Fresnel regime is
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described by the impulse response function

hF(x1, x
′; d) =

exp(ikd)√
iλd

exp

{
i
k

2d
(x1 − x′)2

}
, (2.9)

where k=2π/λ is the wavenumber [91].

The impulse response function h(x1, x
′) of the entire system from the source to detector is therefore

given by

h(x1, x
′) =

∫
dx̃ hF(x1, x̃; d2) t(x̃) hF(x̃, x′; d1). (2.10)

The coherence function at a pair of points x′ and x′′ in the source plane of Gs(x
′, x′′) is mapped to

a pair of points x1 and x2 in the detection plane of G(x1, x2) via the transformation

G(x1, x2) =

∫∫
dx′dx′′h(x1, x

′) h∗(x2, x
′′) Gs(x

′, x′′). (2.11)

Using this forward model, the coherence at the detector plane can be evaluated once the source

is known, which requires a reference measurement. Finally, the calculation results are integrated

over the source spectral bandwidth (1 nm in these experiments) [68].

2.4.3 Source Characterization

We first characterize the light source model – in absence of any object – using an experimental

reference measurement. To capture the characteristics of the partial coherence of the source, we

make use of a Gauss-Schell model [89, 92, 93] in which a jointly Gaussian coherence function

(along the x′+x′′ and x′−x′′ directions) has its intensity profile truncated. The intensity of the source

is taken to be Gaussian but is spatially limited by a width equal to the size of the LED (≈ 2 mm).

The Gauss-Schell model is parameterized by the beam width α, the spatial coherence width σ,
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and aperture width L. The source is quasi-monochromatic modeled with a uniform spectral profile

having a center wavelength λ0 =633 nm and bandwidth ∆λ=1.3 nm. Therefore, the full coherence

function of the source is given by

Gs(x
′, x′′;λ) = exp

(
−(x′ + x′′)2

2α2

)
exp

(
−(x′ − x′′)2

2σ2

)
rect

(
x′

L

)
rect

(
x′′

L

)
rect

(
λ− λ0

∆λ

)
.

(2.12)
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Figure 2.4: (a) The measured magnitude of the degree of spatial coherence |g(x1−x2)| (diamonds)

at the detector plane in absence of an object (uninterrupted propagation from the source to the

detector). The solid line is a theoretical fit. The measured and theoretical phase Arg{g(x1, x2)}

is zero over this range [see Fig. 2.5(b)]. (b) A plot of the spatial coherence function magnitude

of the source Gs(x
′, x′′) based on Eq. 2.12 that makes use of the parameters extracted from the

measurements in (a).

We plot in Fig. 2.4(a) the measured magnitude |g(x1−x2)|. We fit the measurements to theoretical

predictions based on propagating the source Gauss-Schell model in Eq. 2.12 to the detector plane

unimpeded (no obstructing object) via Eq. 2.11 after setting h(x1, x) = hF(x1, x; d) with d =

125 cm. From the fitting procedure, we estimate the remaining parameters α and σ of the source

to be α= 1/
√

2 ln 2 mm and σ = 75/
√

2 ln 2 µm, which yield a FWHM beam width of 1 mm and

a FWHM coherence width of 75 µm. The model for the source coherence function utilizing these
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parameters is given in Fig. 2.4(b). This reference measurement that enabled us to reconstruct the

source coherence function Gs(x
′, x′′) is used subsequently in Eq. 2.11 once an object is placed in

the field’s path.

2.4.4 Coherence Function due to Intercepting Objects

We first consider an intercepting object in the form of a thin metal wire of diameter w= 0.5 mm

or 1 mm placed between the light source and the detector such that it partially blocks light from

reaching the detector. We consider locating the object at different axial distances from the source

(d1 = 0.5, 24, and 72 cm) and at various positions along the transverse plane (x0 = 0, ±50, and

±100 µm with respect to the optical axis). In each experiment two of these parameters were

fixed while varying the third. Because of the small size of the object (≤ 1 mm) placed in an

incoherent field and the large distance to the detection plane (∼ 1 m), the intensity distribution

at the detection plane (DMD) does not display a clear shadow or directly indicate the existence

of an object. Instead, a flat intensity profile is observed over the DMD (∼ 1-mm width under

consideration). It is apparent that measuring the two-point field correlations – encoded in g(x1−x2)

– over this same spatial extent can help identify the object. Note that g(x1−x2) = g∗(x2−x1), so

we plot g(x1−x2) for x1−x2≥0 only.
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Figure 2.5: Impact of the object size w on the degree of spatial coherence g(x1−x2) when the

object location (x0, d1) is held fixed for two source-to-object distances; (a,b) d1 = 0.5 cm and (c,d)

d1 = 24 cm. (a) The measured magnitude of the degree of coherence |g(x1−x2)| in three cases:

unimpeded propagation from the source to the detection plane (no object, w→0), w=0.5 mm, and

w=1 mm. In all cases x0 =0, d1 =0.5 cm, and d=125 cm. The schematic above the panel depicts

the measurement geometry (the gray circle is the object). The data points are plotted as diamonds,

and the solid lines are theoretical predictions based on Eqs. 2.10, 2.11, and 2.12. (b) The measured

phases Arg{g(x1−x2)} corresponding to the three cases plotted in (a). The diamonds are data

points and the solid lines are theoretical predictions. (c,d) Same as (a,b) except that d1 = 24 cm;

that is, the object is placed farther away from the source and closer to the detection plane (the total

distance from source to the DMD is held fixed at d=125 cm).
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2.4.4.1 Impact of the Object Size

We first examine the effect of the object size w – when its location (x0, d1) is fixed – on the

coherence function g(x1−x2) in Fig. 2.5. The presence of the object reduces the width of the

main lobe of |g(x1−x2)| and introduces a significant side lobe, features that did not exist in the

source coherence function measured at the detection plane in absence of an object [Fig. 2.4(a)].

Increasing the object width increases the side-lobe peak amplitude and reduces the width of the

lobes [Fig. 2.5(a)].

This can be understood by realizing that the obstructing object modulates the field intensity at

the object plane x̃, which now represents a secondary source. In the far-field, the van Cittert-

Zernike theorem indicates that the distribution of spatial coherence is related to the Fourier trans-

form of this secondary source intensity distribution when the field is incoherent [91]. The general

trends dictated by the van Cittert-Zernike therorem still apply when the field is partially coher-

ent, as is our case here. The nulls of |g(x1−x2)| remain associated with abrupt jumps in phase

by π [Fig. 2.5(b)]. Similar results are observed when the object approaches the detection plane

[Figs. 2.5(c) and 2.5(d)], with the nulls in |g(x1−x2)| occurring at smaller values of x1−x2.
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Figure 2.6: Change in the degree of spatial coherence as the object is displaced in the transverse

plane with respect to the optical axis, indicated by the coordinate x0. The experiments are repeated

twice, corresponding to the left and right columns. Each experiment has a different source-to-

object distance d1. In the left column (a,b), d1 = 0.5 cm, whereas in the left column (c,d) d1 =

24 cm. In all cases, the object width is w = 0.5 mm and the total distance from source to the

detection plane is d = 125 cm. (a) Measured coherence magnitude |g(x1−x2)| and (b) phase

Arg{g(x1−x2)} are shown for an object while varying x0 from −100 µm to 100 µm. In this

experiment, the object is placed at d1 =0.5 cm. (c,d) Same as (a,b) except that the object is placed

at d1 =24 cm from the source.
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2.4.4.2 Impact of the Object Transverse Location

Figure 2.6 shows the impact of changing the transverse position x0 of an object of fixed size

(w= 0.5 mm) moving in a plane at a fixed distance from the detector. When the object is located

on the optical axis, a zero is observed in the coherence function g(x1−x2) = 0 for some value of

x1−x2 set by the object size [Fig. 2.6(a)]. At this null, the phase Arg{g(x1−x2)} undergoes an

abrupt jump of π. As the object moves away from the optical axis, the coherence function does

not reach zero at the first minimum. Additionally, in lieu of the abrupt π-phase jump, a gradual

transition in phase takes place [Fig. 2.6(b)]. As the object moves further away from the optical

axis, the drop in |g(x1−x2)| at the first minimum is further diminished and the associated phase

change becomes even more gradual.

A measurement of |g(x1−x2)| alone results in an inherent ambiguity with respect to the direction

of displacement of the object with respect to the optical axis. Therefore the measurements and

theoretical predictions for |g(x1−x2)| coincide for displacements of ±x0. This ambiguity is lifted

by observing the phase Arg{g(x1−x2)}. The gradual phase change at the first minimum of |g(x1−

x2)| is in opposite directions for the positive and negative values of x0, thus helping to identify the

object location. Furthermore, both effects that result from a transverse displacement – lifting of

the zeros of g(x1−x2) and gradual change in Arg{g(x1−x2)} – are further enhanced as the object

approaches the detection plane [Figs. 2.6(c) and 2.6(d)].

2.4.4.3 Impact of the Object Longitudinal Location

Finally, we show the effect of moving a w= 0.5-mm-wide object along the longitudinal axis z in

Fig. 2.7. We hold the total distance between the source and detection plane d fixed and increase

d1. As the object approaches the detection plane (descreasing d2) while remaining on the optical
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axis (x0 =0), the nulls in |g(x1−x2)| move to smaller values x1−x2. In other words, the effect of

reducing d2 for fixed w is similar to that of increasing w for fixed d2. Indeed, from the van Cittert-

Zernike theorem, we expect the width of the coherence function to be related to w/d2; that is, the

angle subtended by the object at the detection plane. Once again, although the van Cittert-Zernike

theorem is usually applied to cases where the source is completely incoherent, it is still expected

that the general features will apply to a partially coherent field.
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Figure 2.7: Change in the degree of spatial coherence with source-to-object axial distances d1.

The experiments are repeated twice, corresponding to the left and right columns. Each experiment

has a different transverse displacements x0 of the object. In the left column (a,b) we have x0 = 0,

whereas in the right column (c,d) x0 = 100 µm. The object width is w = 0.5 mm and the total

distance from source to the detection plane is d = 1.25 m. (a) Measured coherence magnitude

|g(x1−x2)| and (b) phase Arg{g(x1−x2)} are shown while varying d1. In this experiment, the

object was placed on the optical axis x0 =0. (c,d) Same as (a,b) except that the object is displaced

from the optical axis to x0 =100 µm.
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2.4.5 Coherence Function due to a Reflecting Object

We now consider reconfiguring the optical arrangement to accommodate the object in reflection

mode. Only light reflecting from the object reaches the detection plane [Fig. 2.8]. We collect light

that is scattered from the object. The reflective objects were rectangular sections of mirrors of

varying widths w. Because light is obliquely incident on the object, the effective size is reduced

by the cosine of the incidence angle (the angle between incident and reflected light is ≈ 16◦).

We expect that if the reflective object size is very large, then light from the source reaches the

detection plane with little modification, so that the measured coherence function approaches that

of the source [Fig. 2.4(a)]. Reducing the reflective object size, on the other hand, is expected

to affect the measured coherence by increasing the width of the coherence function (which is in

inverse proportion to the size of the secondary source).

The measurement results are presented in Fig. 2.8. The coherence function was measured while

varying the width w of the reflective objects from 0.5 mm to 1 mm. The object is placed on the

optical axis of the source and its axial distance from the source and detection plane are held fixed.

The measured coherence function does not display nulls or a significant side lobe in contrast to the

case of intercepting objects. Indeed, the measured |g(x1−x2)| from the secondary source resembles

that of the primary source except from the increased coherence width as the size of the object is

reduced. The phase Arg{g(x1−x2)} is flat throughout. We expect that reducing the size of the

object further will ultimately introduce nulls in the coherence function and π-phase jumps in its

phase distribution.
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Figure 2.8: Comparison of the degree of spatial coherence for reflective objects of varying widths

w. The distance from the source to the object is d1 = 65 cm, and the total distance from source

to DMD is d = 1.45 m. The objects are placed on the optical axis defines by the source x0 = 0.

(a) The coherence magnitude |g(x1−x2)| and (b) phase Arg{g(x1−x2)} are shown while varying

w. Experimental results are plotted with diamonds and theoretical predictions are solid lines. The

infinite width case is equivalent to free space propagation. The phase Arg{g(x1−x2)} is set to zero

when |g(x1−x2)|≤0.05 to avoid errors stemming from the low signal level.
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2.5 Experimental Validation of 2D Model

Now we turn to 2-dimensional scenes with broad-bandwidth radiation emitted from a variety of

shaped, equal-area sources. In this experiment, measurements were collected by the DuPSaI device

[1]. The apertures were illuminated by a high-power LED with a peak wavelength of 525 nm and

a bandwidth of 30 nm (Thorlabs, Solis-525C) and were placed at 1 m distance from the input

aperture of the DuPSaI. For the numerical results, the aperture is treated as the source, and the

extent of spatial coherence is set to `c = 4.1µm in the plane of the source (full width at half-

maximum). We use (2.8) to calculate the spatial coherence function in the detector plane, along

the same shear direction x as in the experiment

We first examine the spatial coherence function of the optical fields radiated from two circular

apertures, 6 and 5.5 mm in diameter, which differ by only 9% in size. The results are summarized

in Fig. 2.9, where we plot the complex degree of coherence g(r,ρ) corresponding to different

sources of radiation. The experimentally measured coherence function G(r, s) function is plotted

using circle markers, and the numerical results are plotted with solid lines. The difference between

the coherence properties of radiation emitted by sources with diameters of 6 and 5.5 mm is clearly

visible, and the agreement between the measurements and these numerical estimations is remark-

able. For instance, for the coherence functions in Fig. 2.9(a), the Pearson correlation coefficient

takes values of 0.97 and 0.96 for the 6 and 5.5 mm circle apertures, respectively.
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Figure 2.9: (a) Measured magnitude of CDC corresponding to different source diameter sizes

(hollow circles), together with corresponding full Fresnel integral calculations (solid lines). (b)

Corresponding CDC phases measured along the optical axis and 200 µm to the left and right of the

optical axis.

In the next results, we illustrate the ability to discriminate between sources that differ only in their

shapes. For this purpose, we constructed three different input apertures having different shapes

(circle, square, and equilateral triangle), but the same area of 2.83 × 10−5m2 to emulate sources

emitting the same amount of power within the same spectral range. As can be seen in Fig. 2.1,

the shape information is already lost in the intensity distribution recorded at 20 cm away from the
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source. However, quite different coherence functions are being detected at 100 cm from the source,

as seen in Fig. 2.10. When compared with the numerical propagation, a good agreement is found

for all shapes.
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Figure 2.10: (a) Measured magnitude of CDC corresponding to different source shapes (marker

lines), together with corresponding calculations using the Fresnel integral (solid lines). The inset

is the experimental 2D coherence function, while the white dotted lines indicate the cross-sectional

part plot in (a). (b) Corresponding CDC phases.

Finally, we will show how spatial coherence measurements can be used to discriminate between
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different orientations of the source. In Fig. 2.11, we present the experimental results corresponding

to the square aperture rotated by 45 deg and the equilateral triangle rotated by 90 deg.

ρ ( m)

|g
(r

,ρ
) |

A
rg

(g
(r

,ρ
))

0

0.5

1

0 50 100 150 200

-1
0
1

0 100 200 0 100 200

0 100 200 0 100 200

-1
0
1

-1
0
1

-1
0
1

ρ ( m)

ρ ( m)

Figure 2.11: (a) Measured magnitude of CDC corresponding to different source shapes, as well as

different orientations of the source, together with corresponding simulations using the full Fresnel

integral. (b) Corresponding CDC phases.

2.6 Analytic Calculations of Propagated Fields

In Section 2.2.3 we formally defined generalized sources. We now consider how these sources can

be used to efficiently calculate the propagation of the spatial coherence function through a scene.
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We provide details on the validity conditions that must be satisfied for our approach to succeed,

and present the main theorem. Examples of generalized sources and numerical results obtained

using the main theorem are illustrated in Section 2.6.3.

Technical details such as the evaluation of the Fourier transform of a truncated Gaussian field and

the proof of the main theorem are presented in Appendix A.We consider 1D scenes here, but the

techniques are readily extendable to 2D scenes.

We first review the well-known propagation properties of Gauss-Schell (GS) model sources.

2.6.1 Free Space Propagation of Gauss-Schell Model Sources

A useful feature of the Gauss-Schell model is that its structure is propagation-invariant except for

an overall phase. Indeed, after propagating a distance do, Eq. 2.2 takes the same form except for a

phase factor,

G−(y′1, y
′
2) = A exp{iy′1y′2/R2}Nw (y′1)N

σ (y′2), (2.13)

where the modified Gauss-Schell parameters A, w, and σ, in addition to the new parameter R (the

radius of curvature of the quadratic phase), are related to the original parameters Ao, wo, and σo

through

A =
Ao√
1 + ξ2o

, (2.14a)

R = `o

√
1 + ξ2o
ξo

, (2.14b)

w = wo

√
1 + ξ2o , (2.14c)

σ = σo
√

1 + ξ2o , (2.14d)
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where `o =
√
do/2k, ξo is a unitless quantity given by ξo = `2o

woσo
= do

zGS
, and zGS = 4π σowo

λ
is an

effective Rayleigh range for the Gauss-Schell model (see [71,72] for an in-depth discussion of the

free space propagation of a Gauss-Schell source).

We take the form in Eq. 2.13 to be the standard GS-model hereon, defined by four parameters

(A,R,w, σ). Any additional propagation of the GS-field does not change its form. Propaga-

tion a distance d produces the same GS-model after transforming the parameters (A,R,w, σ)→

(Ã, R̃, w̃, σ̃), with

Ã =
A

(1 + δ)
√

1 + ξ2
, (2.15a)

R̃ = R

√
(1 + δ)(1 + ξ2)

1 + (1 + 1
δ
)ξ2

, (2.15b)

w̃ = w (1 + δ)
√

1 + ξ2, (2.15c)

σ̃ = σ (1 + δ)
√

1 + ξ2, (2.15d)

where ξ=`2/{wσ(1 + δ)}=d/zGS, zGS =4πσw(1 + δ)/λ is a scaled Rayleigh range, `=
√
d/2k,

and δ= `2/R2 [71, 72]. In other words, after propagation in free space a distance d, the GS-field

coherence becomes

G̃d(y1, y2) =Ã exp
(
iy1y2/R̃

2
)
N w̃ (y1)N

σ̃ (y2). (2.16)

38



2.6.2 Propagation of Fields Produced by a Generalized Source

In this section, we give a closed-form formula for the propagated coherence function of generalized

sources that satisfy the following condition on the intensity and coherence widths

w > 102σ > 103λ. (2.17)

This relation requires that intensity slowly varies with regard to the coherence width, and the

coherence slowly varies with respect to the wavelength. The transmission function t of the gener-

alized source is segmented into piecewise constant intervals, where t(x) = cj for x ∈ [aj, aj+1),

j = 0, ..., N , −∞ = a0 < a1 < · · · < aN < aN+1 = ∞, and N is arbitrarily fixed, where each

cj is a complex-valued constant, j = 0, . . . , N . The theorem we prove below requires that the

breakpoints and intervals satisfy the relations

N∑
j=1

Nw (|aj| − 3σ) < 4, (2.18a)

min
j=2,...,N

(aj − aj−1) > 3σ. (2.18b)

These relations put a limit on the resolution and number of features present in the transmittance

function. The first relation places a limit on the number of sections located close to the center of

the field, while the second relation ensures that none of these sections is too small relative to the

coherence width. While sufficient but not necessary, the constraints in (2.18) allow for a wide range

of partially coherent sources of practical interest, as will be shown in the examples and numerical

results below.

Before we state our main result, recall the definition of the Hilbert Transform of a square integrable
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function f ,

Hf(ω) := p.v.
1

π

∫
f(s)

ω − s
ds, (2.19)

where the standard notation p.v. stands for principal value. For some real parameter u, we also

define a conjugated Hilbert transform as

Huf(ω) := exp(−iωu)H {exp(isu) f(s)} (ω)

= exp(−iωu) p.v.
1

π

∫
exp(isu) f(s)

ω − s
ds. (2.20)

We proceed to our main result given in (2.21), which provides an effective approximation of the

coherence function at a given distance from the generalized source. The formula (2.21) character-

izes the coherence function Gd in terms of the coherence of the GS-field propagated a distance d

in free space and a multiplicative term – expressed in terms of weighted conjugated Hilbert trans-

forms of a Gaussian – capturing the modification due to interaction with the transmission function.

In obtaining our approximate formula, we consider the individual contributions of the different

segments of the transmission function to the total coherence. This in turn yields an approximation

to the coherence function based on Fourier transforms of truncated Gaussians giving rise to the

conjugated Hilbert transform terms – a relationship which has not been previously shown.

The technical bounds on the error of our approximate formula are provided in the proof in Ap-

pendix A.

Theorem. Let λ be the wavelength, w be the width of the beam intensity profile, and σ be the

transverse coherence width. A generalized source as in (2.3) satisfying Eqs. (2.17,2.18) is situated

40



at the plane z=0. At the detection plane z=d, the coherence Gd(y1, y2) is well approximated by

Gd(y1, y2) =G̃d(y1, y2)
i

2Nησ̃ (y2)

×
N∑
j=2

Tj,j
[(
Hbj(y1) −Hbj−1(y1)

)
N σ̃/η

]
(y2) (2.21)

where G̃d(y1, y2) is the coherence of the free propagating GS-field in (2.16), Tj,j = |t(x)|2 for

x ∈ [aj−1, aj), and

η =

√
1 +

σ2σ̃2

`4
, (2.22a)

bj(y1) =
1

η2`2

(
aj −

y1
(1 + δ)(1 + ξ2)

)
. (2.22b)

We note that (2.21) recovers a close approximation to (2.16) for the special case of uniform trans-

mittance. The difference is due to the finite extent of the source. While (2.21) shows that the

contribution of each segment of the transmission function as in (2.17) and (2.18) is essentially in-

dependent, note that we do not assume a priori independence in the contributions of the segments

to the coherence.

As shown, information about the transmission function (the breakpoints aj) is explicit in the pa-

rameters bj of the conjugated Hilbert Transform in (2.22b) and the transmission coefficients Tj,j ,

wherefore the formula in (2.21) is valuable in the inverse problem of recovering the transmission

function from coherence measurements.
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2.6.3 Examples of Generalized Sources

Figure 2.12: One object example with numerical results showing propagated coherence function

in the plane at z= 1 m. (a) Diagram of the scenario. (b) Transmission function. (c) Transmission

function to be applied in coherence space. The striped regions show the support of the inverted

transmission function 1−t(y′1+y′2)t∗(y′1−y′2). (d) Modulus of source coherence function. (e) Mod-

ulus of coherence function obtained using numerical integration of propagation function (2.6). (f)

Modulus of coherence function obtained using approximation (2.21) of the theorem. (g) Magni-

tude of error between complex coherences calculated by (2.6) and (2.21). All plots are normalized

against the maximum value attained in (e) and (f). (g) is plotted on a logarithmic scale to accentu-

ate the small error. It should be noted that the scale of the y′2 axis is much smaller than the scale of

the y′1 axis, and so the “strips” mostly overlap in the plotted region. The parameters for the source

Gaussian are A= 1, w ≈ 1.7 mm (yielding an intensity FWHM of 4 mm), σ ≈ 8.5 µm (yielding

a coherence FWHM of 20 µm), and the source has no phase (i.e. in the limit as R → ∞). The

wavelength is λ = 632 nm. The parameters for the object are x0 =−1.5 mm and l=0.5 mm.

42



For clarity of exposition, we analyze first the case of an object comprising a single segment (N =

2) and then extend this to an example of an arbitrary generalized source. In this scenario, we

assume that a Gauss-Schell model field exists at z = 0. The source is blocked by a single object

centered along the transverse axis at x = x0 with half-width l, and therefore its breakpoints are

a1 =x0−l and a2 =x0+l. The scenario is depicted in Fig. 2.12(a) and the transmission function

is shown in Fig. 2.12(b). For this example, we consider the inversion of the transmission function

in the coherence space 1−t(y′1+y′2)t
∗(y′1−y′2). The inverted transfer function is chosen so that the

coherence functionG is supported only on the union S+∪S− of the “strips” shown in Fig. 2.12(c).

As described in Appendix A, these strips directly admit the closed-form solution presented in

(2.21). The source coherence function G for this example is plotted in 2.12(d). Fig. 2.12(e) shows

the function obtained using numerical integration of (2.6), and Fig. 2.12(f) shows the approximated

results obtained using (2.21). The error in Fig. 2.12(g), which is plotted on a logarithmic scale,

demonstrates good agreement between the exact and approximate equations.
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Figure 2.13: Generalized source example with numerical results showing propagated coherence

function in the plane at z=1 m. (a-g) are the same as in Fig. 2.12. As with the one object example,

the source parameters are A = 1, w ≈ 1.7 mm, σ ≈ 8.5 µm, λ = 632 nm, and no phase. The

breakpoints are at a1 =−2 mm, a2 =−1 mm, a3 =−0.5 mm, and a4 =0.5 mm with transmissions

t ((−∞, a1))=1, t ([a1, a2))=0, t ([a2, a3))=0.5, t ([a3, a4))=0.25, and t([a4,∞))=1.

The next example demonstrates how the one object case naturally extends to more complicated

transmission functions. We will consider a similar scenario as for the previous example, except

the transmission function has two additional sections (see Fig. 2.13(a) and (b)). Each piecewise

constant section j of the transmission function influences two strip regions

S±j = {(y′1, y′2) ∈ R2, aj−1 ≤ y′1 ∓ y′2 ≤ aj}. (2.23)

As can be seen in Fig. 2.13(c), the interaction between these strips gives rise to N2 piecewise
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constant sections in the coherence space transmittance. The theorem asserts that the only sections

needed to form the approximation are those that fall on the y1 axis. Because the transmission

function for this example is inverted, the true propagated output Gd is given by

Gd(y1, y2) = G−d (y1, y2)−Gd(y1, y2) (2.24)

where G−d represents the propagated coherence of the unmasked Gaussian input function and Gd

the propagated coherence function due to the inverted transmission function. We show the numer-

ical results in Fig. 2.13(e-g).
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Figure 2.14: Uniform source example with numerical results showing propagated coherence func-

tion in the plane at z = 2 m. (a-g) are the same as in Fig. 2.12, except that (c) shows strips due

to the non-inverted transmission function t(y′1+y′2)t
∗(y′1−y′2). The source parameters are A = 1,

w = 1 m (thus approximating a uniform source), σ ≈ 8.5 µm, λ = 632 nm, and no phase. The

breakpoints are at a1 =−2 mm, a2 =−0.5 mm, a3 = 2.5 mm, and a4 = 4 mm with transmissions

t ((−∞, a1))= t ([a2, a3))= t ([a4,∞))=0, t ([a1, a2))= t ([a3, a4))=1.

We present a final example demonstrating the approximation of a uniform source by a wide Gaus-

sian (in this case w= 1 m). The source is shown in Fig. 2.14. Unlike the previous two examples,

here in the coherence space we use the transmission function t(y′1+y′2)t
∗(y′1−y′2). The numerical

simulation is shown in Fig. 2.14(e-g). The numerical integration and approximated results are in

very good agreement with a maximum error of ≈ 0.001.
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CHAPTER 3: INVERSE PROBLEM FOR FREE SPACE PROPAGATION

3.1 Introduction

In this chapter, we exploit the techniques developed in Chapter 2 to tackle the inverse problem in

LOS scenarios1. For simplicity, we limit this study to the one-dimensional model containing fields

with one transverse coordinate x (assuming all fields are uniform along the other coordinate).

However, the techniques developed here are extendable to higher dimensions.

Despite an abundance of methods for measuring the coherence function, there are very few works

that use this data to recover the source. For non-radiating sources, unique determination ideas

appeared in [94, 95]. In the Fresnel regime, some Fourier-based inversion methods use the van

Cittert-Zernike theorem to recover the intensity distribution across incoherent sources [91], and

the more complicated case of partially coherent quasi-homogeneous sources [96–98]. Further

algorithms use only the modulus of the Fourier transform [58,99], with various extensions (e.g., the

use of apriori constraints [100] or coherent illumination [101]) which improve the reconstruction.

However, the accuracy of these methods degrades with the increase in the coherence of the source.

Other means of inversion are based on coherent modes [102] or Fresnelets [103].

The complex field amplitude U(r) associated with a coherent monochromatic scalar optical field

provides a complete representation; once the amplitude and phase of U(r) are measured, the field

can be computed in any other plane using the diffraction propagator [91]. Likewise, with spatially

incoherent light, since the spatial coherence function provides a complete representation, deter-

mining the spatial coherence in one plane allows evaluating it at any other plane. Based on this

1In this chapter, we partially use the material published in Optics Letters, 2017 [8] and the Journal of the Optical
Society of America A (JOSA A), 2018 [10].
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insight, we use experimentally-obtained measurements of the coherence function of the optical

field from an LED that is intercepted by a ‘scene’ comprising one or more obstacles, as reported

in [8]. The partially coherent field evolves after the scene until intensity variations representative

of the objects (shadows) are no longer discernible. The coherence function is measured by the

double-slit experiment described in Fig. 1.4. We use the magnitude and phase of G(x1, x2) experi-

mentally obtained at the detection plane, and then back-propagate G(x1, x2) towards the source to

visually discover the scene and locate the scattering objects. As shown in Chapter 2, measuring G

along the x2 =−x1 axis helps identify the transverse location and subtended angle (object width

divided by its distance to the detection plane) of a single scattering object [2]. To identify the width

and axial location separately, along with the transverse location, and – furthermore – to reconstruct

a more complex scene, a measurement of the full coherence function becomes necessary.

While the above-mentioned inversion methods allow for the estimation of arbitrary intensity pro-

files, in practice, they all suffer from large sampling complexity. Specifically, in order to invert a

Fourier or Fresnel transform, a large number of measurements is necessary to attain the required

sampling rate. In the back-propagation approach (which requires the full coherence function), the

source is traced back in an increasing sequence of distances away from the measurement plane;

hence, the reconstruction requires identification of the correct axial distance. This information is

typically unavailable or hard to obtain. Even if the distance is identified, all calculations at the in-

termediate locations would then be discarded, which adds an unnecessary computational expense.

For this reason, we next present an inversion method to reconstruct sources from coherence mea-

surements, while avoiding the aforementioned pitfalls. We exploit the additional dimension in the

coherence data to devise a global inversion method that applies local minimization to a family of

residuals sharing a unique minimum, a task that would be difficult from intensity-only measure-

ments. In Chapter 2, we studied the propagation of the spatial coherence of fields from generalized

sources in the Fresnel regime. Such sources are modulations of the field produced by a Gauss-
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Schell source by a piecewise constant transmission function, thus modeling the field’s interaction

with objects and apertures. We adopt this formulation due to the analytical tractability of its for-

ward model and its applicability to many practical scenarios of interest. Our focus here is on the

inverse problem in which we seek to determine both the transmission function and the distance

to the generalized source from the measurement plane from sampled coherence measurements.

Leveraging the closed-form approximations (which are explicit in the parameters of the transmis-

sion function) along with parametric modeling of the scene, we develop a gradient-descent-based

approach to the inverse problem. The proposed algorithm yields accurate estimates of the parame-

ters of the scene with low sampling complexity, i.e., only few measured samples of the coherence

function suffice for the algorithm to converge to the actual parameters. While we focus on in-

tercepting objects, which obstruct part of the light source, the method applies to more complex

source structures as in (2.3) below. In particular, the complementarity in the Babinet principle for

mutual intensity [104], directly allows the method to apply to secondary sources or apertures. An

added benefit in using coherence data is the overdeterminancy of the problem which we exploit

to develop a robust inversion method. We start with a simple model involving one source. The

goal is to estimate its position, width, and distance from coherence measurements. Inversion using

both numerically simulated, and experimental data are presented to demonstrate the algorithm’s

effectiveness. A second example considers two sources whether located in the same or in different

transverse planes. In each example, it is assumed that the number of breakpoints of the transmis-

sion function is known. To avoid any inverse crime in the numerical experiments, the simulated

data in the forward model is generated via a method (brute force numerical integration) different

from the method used for the inversion (based on an analytic formula).
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3.2 Inversion of the Fresnel Operator

3.2.1 Theory

Figure 3.1: (a) Concept of lensless coherence imaging. The coherence functionG(x1, x2; d) after scattering

from an object is measured at a plane z = d, and then back-propagated computationally to the object. (b)

Schematic of the measurement setup where relay lenses (L1=10 cm and L2=20 cm) are followed by a third

lens in a 2f configuration (L3=20 cm). SF: spatial filter. (c) A ‘scene’ configuration comprising a single

on-axis object with diameter w= 0.5 mm, and d1 = 22 cm. The distance between the source and detector

plane d= d1+d2=144 cm is maintained throughout. In the forward direction, the object casts a shadow that

washes out in the far-field. In the back-propagation direction, the object is replaced by an intensity dip that

is symmetric with respect to the object location. (d) Configuration comprising two identical objects located

in the same axial plane withw=0.25 mm, x0=0.287 mm, and d1=7 cm. (e) Configuration comprising two

identical objects located in two different axial planes separated by a distance ∆d=15 cm, with w=0.5 mm,

x0=0.375 mm, and d1=7 cm. (c)-(e) In all simulations, 0≤z≤144 cm and the x-axis spans 6 mm.
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We first review the forward propagation model, which has already been discussed in Chapter 2.

Starting from a planar source having a coherence function G(x′, x′′; z=0), the coherence function

at points x1 and x2 in a plane at z=d after traversing a linear system having an impulse response

function h(x1, x
′) is

G(x1, x2; d)=

∫∫
dx′dx′′h(x1, x

′)h∗(x2, x
′′)G(x′, x′′; 0). (3.1)

Here, h need not be unitary, so that systems including obstructions can be described in this

way. In our experiments, h comprises free space propagation and interaction with opaque ob-

jects; see Fig. 3.1. Propagation a distance z is represented with a Fresnel integral of kernel

hF(x1, x
′; z) ∝ exp{i k

2z
(x1−x′)2} [91]. In one configuration, h comprises a sequence of free

propagation a distance d1 from the source, a thin opaque object represented by a transmittance

t(x̃), followed by propagation a distance d2 to the detection plane [Fig. 3.1(a,b)]. This cascade is

represented by the impulse response function

h(x1, x
′; d=d1+d2) =

∫
dx̃ hF(x1, x̃; d2) t(x̃) hF(x̃, x′; d1), (3.2)

and the coherence function at the detector is

G(x1, x2; d)=

∫∫
dx̃d˜̃xhF(x1, x̃; d2)h

∗
F(x2, ˜̃x; d2)t(x̃)t∗(˜̃x)G−(x̃, ˜̃x; d1), (3.3)

where G−(x̃, ˜̃x; d1) is the coherence function immediately before the object. We also define a

coherence function immediately after the object G+(x̃, ˜̃x; d1)= t(x̃)t∗(˜̃x)G−(x̃, ˜̃x; d1).

We now discuss the inversion of the previously described forward propagation operators. The

specific form of the unitary operator for the Fresnel kernel hF(x1, x; z) [105] leads to the identity

h∗F(x, x1; z) =hF(x, x1;−z) and a composition rule
∫
dx̃hF(x1, x̃; d2)hF(x̃, x; d1) =hF(x1, x; d1+
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d2). By setting hF(x1, x; 0)=δ(x1−x), h∗F(x, x1; z) becomes the inverse of hF(x1, x; z):

∫
dx̃hF(x1, x̃; z)h∗F(x̃, x1; z)=δ(x1−x). (3.4)

Therefore, starting from the coherence function at the detector plane given in Eq. 3.3, we can back-

propagateG computationally a distance z towards the object by applying the operator h∗F(x, x1; z)=

hF(x, x1;−z). When z=d2, the back-propagated coherence function becomesG+(x̃, ˜̃x; d1) and the

intensity I+(x̃; d1)= |t(x̃)|2I−(x̃; d1), where I−(x̃; d1) is the intensity from the source immediately

preceding the object.

The strategy is thus to use the measured complex coherence function and then carry out the back-

propagation to reconstruct the scene.

3.2.2 Results

In the experiments, the coherence functionGr(y1, y2) is measured using the setup shown in Fig. 1.4.

The experimental light source is as described in Section 2.4.1. The experiment was initially carried

out in absence of objects (unobstructed propagation from the ‘primary’ source to the detector) to

calibrate the measurement system. The distance between the source and detector d = 1.44 m is

held fixed in all our experiments. We substitute the measured Gr(y1, y2; d) in the right-hand side

of Eq. 3.1, replace h(x1, x) by h∗F(x, x1,−z), and set the back-propagation distance to z = d. A

calibration phase is assessed that produces a maximum intensity profile at the source plane of the

back-propagated signal. We can then proceed to reconstructing ‘secondary’ sources – the scattering

objects using the experimentally measured coherence function.

We now describe the back propagation results based on experimental measurements from [8]. For

each of the three scenarios, Fig. 3.1(c)-(e) show the configuration. These panels also show back-
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propagation results using a coherence function which was numerically calculated at the detector

plane using (2.6).

We first consider the case where an object (a metal wire of diameter w = 0.5 mm at d1 = 22 cm

from the source) obstructs the field [Fig. 3.1(c)]. Diffraction after the object smears out the

shadow, as predicted by a forward-model calculation [Fig. 3.1(c)] and confirmed in the mea-

sured |Gr(y1, 0; d)| [Fig. 3.2(a)]. By back-propagating the measured complex coherence func-

tion Gr(y1, y2; d) [Fig. 3.2(a,b)] and increasing the back-propagation distance z, we construct the

coherence function Gr(y1, y2; z) at planes preceding the detection plane axially and gradually ap-

proaching the object, samples of which are shown in Fig. 3.2(d). From Gr(y1, y2; z) we can extract

the evolution of the intensity distribution I(y1; z) along the propagation axis by setting y2 = 0 at

every plane [Fig. 3.2(d)]. Note the different scales along transverse (vertical) direction x (4 mm)

and longitudinal (horizontal) direction z (1.44 m) in Fig. 3.2(c).
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Figure 3.2: Back-propagation of the measured coherence function for the configuration in Fig. 3.1(c)

comprising a single object. (a) Measured amplitude |Gr(y1, y2)| and (b) wrapped phase Arg{Gr(y1, y2)} of

the coherence function in the rotated coordinate system (y1, y2). The phase-wrapping has no effect on the

back-propagation. (c) Back-propagated intensity I(x; z) along z. The estimated object width is 380 µm by

finding the half-way point between the dip minimum and peak magnitude of the intensity in the object plane.

The axial error bar indicates where the magnitude remains within 5% of the minimum. (d) Back-propagated

Gr(y1, y2; z) at selected distances from the source.

The back-propagation yields a localized ‘shadow’ of the object in the intensity profile that provides

an estimate of the size and position (transverse and longitudinal) of the object [Fig. 3.2(c)]. For

simplicity, we consider the ‘focal plane’ to be the plane in which the dip in the intensity profile
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reaches its minimum. The error in estimating the location of the object from the detection plane is

≈ 7.4%. Note that the width of the intensity distribution decreases as we travel backwards and at

the object plane is quite narrow; contrary to the extremely wide field produced from the LED. This

is due to the finite size of the detection area: the source field far from the optical axis at the object

plane does not contribute to the detection plane.

We next consider a scenario where two co-planar objects: two metal wires of equal diameters

w = 0.25 mm separated by 2x0 = 0.575 mm and placed at a distance d1 = 7 cm from the source

[Fig. 3.3(a)]. The shadow cast by the two objects has mostly smeared out at the detector plane; see

|Gr(y1, 0; d)| in Fig. 3.3(a). The measured complex Gr(y1, y2; d) [Fig. 3.3(a,b)] is back-propagated

[Fig. 3.3(d)], and we extract the evolution of the intensity I(y1; z) along the propagation axis as

before [Fig. 3.3(c)]. The back-propagation yields two localized ‘shadows’ of the objects in the

intensity profile from which we estimate the size and position of the two objects [Fig. 3.3(c)]. The

error in estimating the location of the objects from the detection plane is ≈3.6%.
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Figure 3.3: Same as in Fig. 3.2, except that the two-object scene in Fig. 3.1(d) is employed. The two

identical objects have a diameter of 250 µm (smaller than that of the object in Fig. 3.2) and are placed in the

same transverse plane. The object widths are estimated at ≈ 280 µm at d1 = 12 cm located at x0 ≈−284

and ≈253 µm.

Finally, we consider a scenario where two objects (metal wires of diameter w= 0.5 mm each) are

located in different planes along the propagation axis. The first object is at a distance d1 = 7 cm

from the source and is displaced to a position x0 =0.375 mm from the optical axis, and the second

object follows it at a further distance ∆d along z and is displaced to a symmetrically opposite trans-

verse position−x0 [Fig. 3.1(e)]. Whereas the shadow cast by the first object (closest to the source)

has mostly washed out, there is a remnant shadow from the second object (closest to the detection
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plane); see |Gr(y1, 0; d)| in Fig. 3.4(a). The measured complexGr(y1, y2; d) [Fig. 3.4(a,b)] is back-

propagated [Fig. 3.4(d)], and we extract the evolution of the intensity I(y1; z) along the propaga-

tion axis as before [Fig. 3.4(c)]. Over the course of the back-propagation, two localized ‘shadows’

emerge. First, a shadow of the object closest to the detection plane emerges at d1 = 40 cm in the

intensity profile. We do not observe a shadow of the second object at this plane. By continuing the

back-propagation procedure, the first observed shadow starts to smear out while a second shadow

associated with the object closest to the source emerges. From these calculations, we can estimate

the size and locations of the two objects [Fig. 3.4(c)]. The errors in estimating the location of the

objects from the detection plane are ≈14.8% and ≈−3.6%.
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Figure 3.4: Same as in Fig. 3.2, except that the two-object scene in Fig. 3.1(e) is employed. The two

identical objects have a diameter of 500 µm and are placed off the central axis in different axial planes. The

object widths are estimated at≈400 µm, x0≈−321 µm for the object closest to the source and x0≈309 µm

for the object closest to the detector.

We now discuss some of the limitations of this approach. The back-propagation is exact only if

the detector is of infinite size. The finite detector size leads to imperfections in reconstructing

the scene; e.g., a finite resolution for distinguishing objects located at neighboring transverse or

longitudinal positions. The results in Fig. 3.2 identify a limitation of this approach, namely that

the region immediately behind the object (which is occluded from the perspective of the detector)

represents a ‘null space’ for the procedure: a small object placed in the immediate vicinity behind
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the object will be difficult to observe. In general, when an object obstructs the light path, some in-

formation from the preceding planes is lost. For example, if two objects are placed in two different

planes, the object closer to the detector will occlude the farther object. Increasing the size of the

detection plane helps alleviate these limitations. Finally, strictly speaking, the back-propagation

procedure described above does not necessitate knowledge of the source for a successful recon-

struction of the scene. We carried out a reference measurement for calibration only. An accurate

measurement of Gr(y1, y2) suffices for the back-propagation procedure.

3.3 Determining Object Parameters Using Generalized Sources

3.3.1 A Minimum Residual Approach to the Inverse Problem

Using a set of measured coherence samples, we seek to determine the breakpoints a = (a1, · · · , aN)

of a generalized source, as well as the distance d between the source and the measurement plane.

For a Gauss-Schell source, truncation of the transmission function away from the mean (e.g., at

|y′1| = 3w) is insignificant to the approximation, allowing us to set T1,1 = TN+1,N+1 = 0.

For a trial vector a = (a1, · · · , aN) and some d > 0, we consider the residual between the measured

coherence Gd and the approximation Gd calculated using (2.21):

f(y1, y2; a, d) = Gd(y1, y2; a, d)−Gd(y1, y2) (3.5)

for each pair of measurements (y1, y2). More precisely, given the sample points (yk1 , y
k
2), k =

1, . . . ,M , we introduce the objective function

F (a, d) =
1

M

M∑
k=1

|f(yk1 , y
k
2 ; a, d)|2. (3.6)

59



We consider the problem of minimizing F with respect to the parameters a, d, using a gradient-

descent algorithm [106]. The fixed-size steps are described by

a(n+1) = a(n) − µa
∂F

∂a
, (3.7)

d(n+1) = d(n) − µd
∂F

∂d
, (3.8)

where n is the gradient-descent iteration number. The derivation of the analytic gradients used by

the algorithm are detailed in Appendix B. Of novelty here, when a local minimum has been found,

i.e., when the partial derivatives ∂F
∂a
, ∂F
∂d

both fall below prescribed thresholds τa, τd, the algorithm

performs an additional check for a global minimum. This is accomplished by verifying that the

residual is insignificant at each sample point, specifically

|f(yk1 , y
k
2)| < ε, 1 ≤ k ≤M. (3.9)

As will be seen in Fig. 3.6(b) of the first example, a characteristic of the global minimizer is that the

actual and estimated coherence functions closely match at all sample points, and thus the residual

is small at each point. If condition (3.9) is not met, then the algorithm is randomly re-initialized

with a starting point in the admissible domain.

The partial derivatives of F with respect to the breakpoints admit an analytic closed form as follows

∂F

∂aj
=

√
2

π

Ãσ̃

η3`2M
(Tj,j − Tj+1,j+1)

×
M∑
k=1

{
Re
[
f(yk1 , y

k
2)
]
Re
[
Ψj(y

k
1 , y

k
2)
]

−Im
[
f(yk1 , y

k
2)
]
Im
[
Ψj(y

k
1 , y

k
2)
]}
, (3.10)
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where

Ψj(y1, y2) = Zj(y1, y2) exp
{
iy2bj(y1)− iy1y2/R̃2

}
, (3.11a)

Zj(y1, y2) = N w̃ (y1)N
`2η
σ (y2)N

η/σ̃ (bj(y1)); (3.11b)

see Appendix B.

The derivative can also be calculated for measurements of the degree of spatial coherence gd(y1, y2) =

Gd(y1, y2)/
√
I1I2, where I1 = Gd(y1 + y2, 0) and I2 = Gd(y1 − y2, 0) are the intensities at the

first and second correlation points. The approximated degree of coherence is likewise defined as

gd(y1, y2) = Gd(y1, y2)/
√
I1I2, where I1, I2 are the corresponding approximated intensities cal-

culated using (2.21). We will denote the complex conjugate of gd by g∗d. In this case, (3.10) still

holds with transformations f→ f̃ and Ψj→Ψ̃j where

f̃(y1, y2; a, d) =gd(y1, y2; a, d)− gd(y1, y2), (3.12a)

Ψ̃j(y1, y2) =
1√
I1I2

{Ψj(y1, y2)− g∗d(y1, y2)

×
[
I1Zj(y1 − y2, 0) + I2Zj(y1 + y2, 0)

]}
. (3.12b)

The derivative with respect to the distance is calculated by a finite difference.

3.3.2 Applications with Simulated Data

3.3.2.1 Single Object at Known Distance

Consider a Gauss-Schell source at z = 0 propagating a distance d0 in free space, where it is blocked

by a single object of width 2l centered along the transverse axis at the offset point x=x0 as shown
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in Fig. 3.5. The detector is located at a distance d from the object plane. In this first example we

seek to estimate the parameters x0 and l, assuming that the distances d0 and d are known.

The parameters for the original Gaussian source (at z = 0) are amplitude A=1, width w≈1.7 mm

(yielding an intensity full width at half-maximum (FWHM) of 4 mm), and variance σ ≈ 8.5 µm

(yielding a coherence FWHM of 20 µm). Also we assume the source has no phase (i.e., in the limit

as R→∞). The wavelength is λ=633 nm.

In the forward model, the parameters Ã, R̃, w̃, and σ̃ in the plane of the object are calculated using

the transformations in (2.15). The object is modeled using (2.3) with N = 2, and the breakpoints

a1 = x0 − l, and a2 = x0 + l, and the coherence is propagated from the object plane to the detec-

tor plane using (2.6) to obtain the coherence measurements. In solving the inverse problem, the

estimated coherence is calculated by (2.21).

The initial offset location parameter x0 is set to uniformly span an admissible domain, whose

bounds (±7.1mm) are dependent on the width of the source Gaussian. The initial length l is

assigned between 0 and 2 mm at random. The other parameters are fixed, µa = 10−4, τa = 10−2,

and ε=2× 10−3.
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Figure 3.5: A single object scene with x0 =−1.5 mm, l=0.5 mm, d0 =10 cm, and d=100 cm. The

normalized magnitude of the coherence function is shown at the bottom of the diagram in three

planes: in the plane of the Gaussian source, immediately after interacting with the object (i.e. at

the secondary source), and at the measurement plane.

The results of one execution of the gradient-descent algorithm are shown in Fig. 3.6. The actual

parameter values are x0 =−1.5 mm, l = 500 µm, and d= 1 m. The modulus of the actual sim-

ulated coherence function is shown in Fig. 3.6(a), with the sample points marked. The measured

coherence function at the 10 sample points is shown in Fig. 3.6(b) along with the final estimate

[calculated using (2.21)]. The dynamics (with iterations) are displayed in Fig. 3.6(c). The param-

eter estimates are shown in the top two plots, with the actual value indicated by horizontal dashed

lines. The maximum residue, defined as max{f} := maxy2 f(0, y2) is shown in the bottom plot

with the threshold ε indicated by a horizontal dashed line. Vertical dotted lines indicate where a

new initialization point is chosen and the algorithm restarted. This restart can be triggered when

the partial derivatives fall below the threshold τa while max{f} > ε, indicating that the local min-

imum is not a global minimum. The restart may also be triggered when the parameters leave the

admissible domains. In the final iterations, it can be seen that the parameter estimates converge to

the correct values and max{f} falls below the threshold. The small residue is evidenced by the
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excellent agreement between the measured and estimated coherence functions in Fig. 3.6(b). The

estimates are x0 =−1.504 mm and l = 497.2 µm, which have an error of less than 1% (an error

which could be made arbitrarily small by reducing the value of τa).

Figure 3.6: Reconstruction results for one object at known distance. (a) Normalized modulus

of coherence function in the measurement plane with sample points marked. (b) Modulus and

phase of coherence function at measurement plane. Both measured samples and final estimate are

shown. (c) Path of the gradient descent algorithm. The top two plots show the estimates of the two

parameters, with horizontal dashed lines indicating the actual value of the parameters. The bottom

plot shows the maximum residual value among all sample points with the threshold ε indicated by

a dashed line. A vertical dotted line indicates a restart of the algorithm with a new initialization.
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3.3.2.2 Single Object at Unknown Distance

We now expand on the previous example by estimating a third parameter, the distance d between

the object and measurement plane. The partial derivative of the residual F with respect to distance

is calculated by a finite difference, with τd = 10−3. When a new initialization point is generated,

the distance d is randomly assigned from an admissible domain between 0.5 m and 1.5 m. The

results of the algorithm using simulated measurements are shown in Fig. 3.7.

Figure 3.7: Gradient descent algorithm estimating three object parameters: x0, l, and d. The

configuration and sample points are the same as in Fig. 3.6. The plot labels are the same as those

defined in Fig. 3.6(c), with an additional plot included for parameter d.

The actual parameters are the same as in the previous section, and the estimated values are x0 =

−1.521 mm, l= 496.0 µm, and d= 1.013 m. As with the two-parameter example, the estimate is

close with a maximum parameter error of less than 1.5% (and could be reduced by using smaller

gradient thresholds).
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3.3.2.3 Two Intercepting Objects

We now demonstrate the ability of the algorithm to handle more complicated scenes with more

parameters. Fig. 3.8 shows the results for a five-parameter estimation problem in which two ob-

jects are located in the same plane. The parameters are the center xA0 and half-width lA of the first

object defined by breakpoints a1 and a2, the center and half-width parameters for the second object

(xB0 and lB) defined by breakpoints a3 and a4, and the distance d between the object and measure-

ment planes. The algorithm parameters µa, τa, ε, and τd are the same as in Sections 3.3.2.1 and

3.3.2.2, and we use the same approach as with the one object example, only with two additional

breakpoints. The coherence function and sample points are shown in Fig. 3.8(b). The iterations

are shown in Fig. 3.8(c).

The maximum error in parameter estimates is less than 1.2%; very small considering that only 10

sample points were used along the coherence axis.
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Figure 3.8: Example showing estimation of positions of two objects in the same axial plane. (a)

Diagram of scenario. (b) Normalized modulus of coherence function in the measurement plane

with sample points marked. (c) Path of the gradient descent algorithm. The top three plots show

the estimates of the five parameters (blue lines correspond to Object A and orange lines to Object

B), with dashed lines indicating the actual value of the parameters. The bottom plot shows the

maximum residual value among all sample points with the threshold ε indicated by a dashed line.

The Gaussian source parameters are the same as in the one object example. The object parameters

are xA0 = −2.5 mm, lA = 500 µm for Object A, xB0 = 1.5 mm and lB = 750 µm for Object B.

The two objects are located in the same plane, and the actual distances are d0 = 0.1 m, d= 1 m.

The final estimates are xA0 = −2.483 mm, lA = 495.6 µm, xB0 = 1.492 mm, lB = 741.3 µm, and

d=0.944 m.

While in the previous examples we have assumed the number of objects is known, it is also pos-

sible to use the algorithm when all we have is a crude upper bound on the number of objects.

Additional breakpoints can be included in the transmission function, and the “missing” objects

will be estimated as having zero width. To illustrate this point, we repeat the previous example of

Fig. 3.8, but with Object B removed. The results are shown in Fig. 3.9. The parameters of Object
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A are correctly estimated, whereas because the second assumed object is not actually present, the

estimated width of Object B rapidly approaches zero.

Figure 3.9: Example showing estimation of positions assuming two objects in the same axial

plane when only one object is actually present. Panels (a)-(c), as well as the source parameters, are

the same as in Fig. 3.8. The parameters for Object A are xA0 =−2.5 mm, lA=500 µm, and Object

B is absent from the scene. The actual distances are d0 = 0.1 m, d= 1 m. The final estimates are

xA0 =−2.494 mm, lA = 495.5 µm, xB0 = 1.198 mm, lB = 0.45 µm, and d= 0.998 m. Note that the

estimate of lB ≈ 0, indicating no Object B is present (thus rendering the estimate of xB0 irrelevant).

Fig. 3.10 shows the results diagram for a similar problem in which there are two objects, but this

time located in two planes at different axial positions with respect to the source. Thus, the number

of estimated parameters increases to six, with the distances to object A and B being designated dA

and dB, respectively. While the scenarios may be similar, the implementation of multiple object

planes is more complicated than that of a single plane, requiring multiple generalized sources

located in different planes. In this case, the objects are sufficiently separated transversely that

we can treat the resulting coherence function as the superposition of the individual coherence
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functions [104], each source having the same form as in the one-object example. Specifically, the

resulting coherence function Ğd is calculated as

Ğd(y1, y2) = G−(y1, y2)−G
A

d (y1, y2)−G
B

d (y1, y2), (3.13)

where G− is calculated from (2.2) with distance d = d0 + dA, and G
A

d and G
B

d are “inverted”

coherences due to objects A and B, respectively. The inverted coherences are calculated using

transmission function 1−Tj,j in place of Tj,j in (2.21). Due to the independence of the two gener-

alized sources located at A and B, (3.10) can be applied to each without modification. As shown

in Fig. 3.10(b), the number of sample points has been increased to include off-axis measurements,

i.e. including points with y1 6= 0, to aid in estimation of the two distances.

Figure 3.10: Example showing estimation of positions of two objects in different axial planes.

Panels (a)-(c) are the same as in Fig. 3.8. The Gaussian source and object parameters are also the

same as used in Fig. 3.8. The distances are d0 = 0.1 m, dA = 1.2 m, and dB = 1 m. The final

estimates are xA0 =−2.516 mm, lA=501.1 µm, xB0 =1.508 mm, lB =755.7 µm, dA=1.20 m, and

dB =0.998 m.
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As with the five-parameter example, the maximum parameter estimate error is less than 1.2%.

3.3.3 Object Recovery from Experimental Data

In this section, we present results obtained by applying the algorithm to actual experimental mea-

surements from [2]. The setup is diagrammed in Fig. 3.11(a). The source in the experimental

setup is a Thorlabs M625L3 LED (with a peak wavelength of ≈ 633 nm and FWHM-bandwidth

of ≈ 18 nm), with a band-pass filter centered at 632.8 nm and having a bandwidth of ≈ 1.3-nm

FWHM. The object is a 500 µm wire placed at various transverse positions. The coherence is

measured via double slit interferometry by a Digital Micromirror Device (TI DLP6500), a CCD

camera (The ImagingSource, DFK 31BU03), and a set of three lenses (for magnification and to

obtain a Fourier transform).
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Figure 3.11: Results of gradient descent algorithm using experimental data. (a) Diagram of setup.

(b) Modulus and phase of coherence function at measurement plane. Both measured samples and

final estimate are shown. (c) Path of the gradient descent algorithm. The top two plots show the

estimates of the two parameters, with dashed lines indicating the actual value of the parameters.

The bottom plot shows the cardinality of the “vote” set |κ| at each iteration, with the threshold p

indicated by a dashed line.

The parameters used for the analytic model are as follows. The source parameters are A = 1,

intensity FWHM of 1 mm, coherence FWHM of 75 µm, and no phase, and the wavelength λ =

633 nm. The actual object half-width is l = 0.25 mm, with varying center x0, and the actual

distances are d0 =5 mm, d=1.245 m.

In order to accommodate noise and mismatches in the model, we relax the stopping condition to

use a voting mechanism based on the set

κ =
{
k
∣∣ |f(yk1 , y

k
2)| < ε, 1 ≤ k ≤M

}
. (3.14)

Specifically, rather than requiring that the residual be small for all samples, here the residual only
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needs to be small for a subset of the samples. Additionally, to ensure that individual errors are not

excessively large, an additional threshold is placed on F . Accordingly, we replace the condition in

(3.9) with condition

|κ| ≥ p and F < γ (3.15)

where set cardinality is denoted by | ·|. In this example, the algorithm parameters are set to µa =

5× 10−7, τa =1, ε=0.15, p=55, and γ=1.

The resulting estimates of the algorithm generated for several experimental setups are shown in

Table 3.1. The final initialization value is also listed to demonstrate that the algorithm converges

given diverse initialization conditions. To show the low sampling requirements of the proposed

algorithm, only 13 of the measured data points are used for estimation. The detailed gradient

descent results for x0 =100 µm are shown in Fig. 3.11. The measured and estimated coherences are

shown in Fig. 3.11(a). The errors are due to noise in the measurements and inaccurate assumptions

in modeling the source as a Gauss-Schell source. The gradient descent dynamics are shown in

Fig. 3.11(b). Rather than showing all initializations, as was done in Section 3.3.2.1, only the final

initialization is shown (i.e., the successful initialization which converges to the global minimum).

As seen in the bottom plot of Fig. 3.11(b), only when the parameters approach the actual values

does the residue become small, and we have |κ| ≥ p.
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Table 3.1: Experimental results. For each parameter, the actual value, initial starting point, and

final estimate are shown.

Center x0 (µm) Width 2l (µm)

Actual Initial Est. Actual Initial Est.

-100 -409.2 -114.7 500 137.6 479.7

-50 -409.2 -36.1 500 137.6 555.9

0 409.2 5.6 500 299.7 610.3

50 -306.9 57.3 500 58.4 583.7

100 613.9 84.5 500 75.0 540.7

Note that while the hypotheses in (2.18) are satisfied in Section 3.3.2, these conditions are merely

sufficient for (2.21) to hold. This is demonstrated here, in Section 3.3.3, where the experimental

parameters violate the first inequality of (2.17), yet the approximation is still dependable and allows

for successful inversion.

3.3.4 Ill-posedness of Inversion When Using Intensity Measurements Only

With the tools developed in this chapter, we can now return to a comparison of intensity measure-

ments versus coherence measuerments in lensless LOS situations. The coherence measurements

bring in an additional dimension to the data, which allows for devising a global inversion method.

More precisely, the local method of steepest descent is applied to a family of residuals, all of

which have a common unique minimizer. This idea is stressed in the example in Fig. 3.12, where

the residuals are calculated for a family of functions (parameterized along the vertical axes), by us-

ing the sample points along the horizontal axis. The global minimum is the unique point at which
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all these functions are zero.

Figure 3.12: Comparison of intensity and coherence measurements. The modulus of the simulated

coherence function is shown in (a) and (d) with intensity sample points indicated by black “x”

marks and coherence sample points indicated indicated by white “x” marks. The corresponding

residual maps F (x0, l) for the two scenarios are shown in (b) and (e). For comparison purposes, the

functions are normalized against 1
M

∑M
k=1 |Gd(y

k
1 , y

k
2)|2, and plotted on the same scale. As can be

seen in this example, the residual map for intensity measurements exhibits a larger area of minima

than that of the coherence measurements. This may lead to more ambiguity in the reconstruction,

although results will vary depending on physical factors such as the signal-to-noise ratio of the

measurements. (c) and (e) show the residual f plot as a function of the sample point (along the

horizontal) and parameter (vertical). Each plot shows variation with regard to one parameter while

the other is fixed at the correct value, and all plots use the same scale. The actual parameter values

are indicated in red. The parameters are the same as used in Fig. 3.6.
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CHAPTER 4: FORWARD PROBLEM FOR THE SCATTERING

SURFACE

4.1 Introduction

In this chapter1, we consider the forward model of the scattering wall. Our model is based on

recent studies, which differentiate two fundamental types of scattering: volume scattering and

surface scattering [3, 51].

Some inversion techniques counteract volume scattering by using wavefront shaping coupled with

knowledge of the transfer matrix of the scatterer [107]. For example, light can be focused through

the scatterer to form a point [108] or an image [109, 110].

The problem of concern here assumes surface scattering is stronger than volumetric scattering.

This setting occurs with a wall at large angles of incidence. In this case, the coherence function

tends to be transmitted with less disruption along the axis perpendicular to the scattering plane [51].

In ideal cases, this may allow images to be formed from the reflection with a normal lensed camera

(recent work even suggests this phenomenon accounts for mirages previously attributed to air

temperature differentials [111]). Here, we consider the less ideal case, where a useful image cannot

be formed using a regular camera, but information is still retained in the spatial coherence of the

reflected light. To best capture the surface-scattered light, it is assumed that the angle between the

source and wall is equal to the angle between the imaging device and the wall.

1In this chapter, we partially use the material published in Imaging and Applied Optics, 2018 [14], and IEEE
Transactions on Image Processing, 2019 [6].
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4.2 Forward Propagation to the Wall

In this section, we review the physical model for forward propagation described in Chapter 2.

Additional details regarding the models, including experimental verification, can be found in [51].

Suppose that we have a quasi-homogeneous source as described in Section 2.2, with

G(r,ρ) = I(r) exp

(
−‖ρ ‖

2
2

2σ2

)
, (4.1)

where I(r) is the 2D intensity in the source plane, and σ is the coherence width.

Recall that under the Fresnel approximation, since the impulse response function for the electric

field in free space is

h(r) = i
exp(−ikd)

λd
exp

[
−ik‖ r ‖22

2d

]
, (4.2)

then, the propagation is given by

Gd(r1, r2) =
1

(λd)2

∫∫
R2×R2

d2r′1 d
2r′2G(r′1, r

′
2)

× h(r′1 − r1)h
∗(r′2 − r2)

=
1

(λd)2

∫∫
R2×R2

d2r′1 d
2r′2G(r′1, r

′
2)

× exp

[
ik

d

(
‖ r1 − r′1 ‖

2
2 − ‖ r2 − r′2 ‖

2
2

)]
. (4.3)

Applying the “rotation” described in Section 1.2, the coherence of the light after propagating dis-

tance d is

Gd(r,ρ) =
1

(λd)2

∫∫
R2×R2

d2r′ d2ρ′G(r′,ρ′) exp

[
ik

d
(r− r′) · (ρ− ρ′)

]
. (4.4)
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After substituting (4.1) into (4.4), and rearranging the integrals, we have

Gd(r,ρ) =
exp

(
ik
d
r · ρ

)
(λd)2

∫
R2

d2r′ exp

(
−ik
d
ρ · r′

)
I(r′)

×
∫
R2

d2ρ′ exp

(
−ik
d

(r− r′) · ρ′
)

exp

(
−‖ρ

′ ‖22
2σ2

)
. (4.5)

Evaluating the inner integral yields the linear transformation

Gd(r,ρ) = C(r,ρ)F {H(r− r′)I(r′)}(kρ/d) (4.6)

where

C(r,ρ) =
2πσ2

λ2d2
exp

(
ik

d
r · ρ

)
, (4.7)

H(r) = exp

(
−σ

2k2‖ r ‖22
2d2

)
, (4.8)

λ is the wavelength, k = 2π/λ is the wave number, and the Fourier transform is 2D with regard to

the x and y components of r′. The variable r′ indicates spatial position in the object plane, whereas

r indicates spatial position along the wall.

4.3 Wall Model

4.3.1 Specific Intensity

Because the wall scattering process will be described using a ray-based model, we need a link be-

tween coherence and the angular spread of the light (in this context referred to as specific intensity).
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This link is provided by the relation [3, 112]

Îd(r,u⊥) =

(
k

2π

)2

|uz|
∫
R2

d2ρGd(r,u) exp(−ikρu⊥). (4.9)

where uz is the z component of unit length vector u = (u⊥, uz).

4.3.2 Understanding the Wall Model by Invoking Monte Carlo Simulations

In order to better understand the wall model, we perform numerical simulations using free space

propagation to the wall, and then invoke the Monte Carlo simulator developed in [3]. A diagram

of the end-to-end simulation is shown in Fig. 4.1.

Figure 4.1: Full NLOS model including wall scattering.

A more detailed description of this process follows.

After the initial free space propagation, at the wall interface, we transform the coherence func-

tion to specific intensity and then perform a rotation (by angle θ) into the wall plane using the
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transformation 
ûy

ûz

ûx

 =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ



uy

uz

ux

 . (4.10)

This rotation is illustrated in Fig. 4.2(a).

Figure 4.2: Rotations in the forward model at the wall interface.
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For the purposes of studying the wall model, we only consider the coherence function at a single

fixed center point r. We note that we could equivalently convert the spatial coherence function

to specific intensity at the source, and then perform the propagation to point r using phase-space

methods [34]. See the Supplementary material of [51] for an example.

The specific intensity results after the rotation are fed into the Monte Carlo simulator to obtain the

specific intensity reflected from the wall due to surface scattering. The resultant specific intensity

is rotated into the output plane using the relation


ˆ̂uy

ˆ̂uz

ˆ̂ux

 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ



ûy

ûz

ûx

 (4.11)

and converted back into a spatial coherence function using the inverse of (4.9). The rotation to the

output plane is illustrated in Fig. 4.2(b).

We make two assumptions regarding measurement of the scattered field. First, we assume that the

spatial coherence function is imaged at the wall through a suitable measurement device. Second,

we assume that the surface scattering can be isolated from the volume scattering during measure-

ment by suitably restricting the field of view, as described in [51].

The results of the complete procedure are shown in Fig. 4.3 for θ = 80°, and for square and

circle mask shapes. These mask shapes are the same as those found in Section 2.5, and represent

reflective objects. Results for other angles are shown in Fig. 4.4.

80



Figure 4.3: Results of forward scattering procedure using Monte Carlo simulations.
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Figure 4.4: Examples of reflection at different angles θ in (4.10) and (4.11). The output of the wall

is calculated using the Monte Carlo software described in [3].

While the Monte Carlo simulations help to understand surface scattering at the wall, we wish

to have an analytic model for efficient solution of the inverse problem. The wall model can be

simplified as shown in Fig. 4.5. Our original model is shown in Fig. 4.5(a). By “unfolding” the

scene, we arrive at Fig. 4.5(b). The supplementary material of [51] explains that the model can

be simplified as shown in Fig. 4.5(c), where the wall is represented by a Gaussian “apodizing”

term. This term comes from the assumption that the surface scattering reflects any incoming ray
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according to a Gaussian probability distribution [51].

4.4 Model
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Figure 4.5: Unfolded scene
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4.4.1 Analytic Model

We represent the transfer function of the wall as a Bidirectional Reflectance Distribution Function

(BRDF) [113]

h(r,θ − θ′) = exp

(
−(θx − θ′x)2

2w2
x

−
(θy − θ′y)2

2w2
y

)
. (4.12)

Here, θ = (θx, θy) is the angle between the surface normal and the incident vector along the x and

y axes, while θ′ is the reflected angle defined in a similar way.

For the interaction with the wall, the angular spread of photons can be assumed to be governed by

a Gaussian function [3, 36]. The standard deviation of the angular spread along the x and y axes

is w = (wx, wy). The geometry of the scene is such that the angles of incidence and reflection

are fairly close, which results in a specular reflection due to surface scattering. Due to the paraxial

nature of the incident waves, coupled with the narrow spread of the specular reflection [114], we

can use the approximation

GS(r,ρ) ≈ S(ρ)Gd(r,ρ) (4.13)

where

S(ρ) = w2
xw

2
y exp

(
−w

2
xρ

2
x

2
−
w2
yρ

2
y

2

)
, (4.14)

and the intensity of the scattered field

IS(r) =
2πσ2

λ2d2
H(r) ? I(r), (4.15)

where ? is the 2D convolution operator.
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Given that θ − θ′ is small due to the paraxial approximation and narrow spread of the specular

reflection [114], then u⊥ − u′⊥ ≈ θ − θ′ and we can can calculate the scattered specific intensity

using the convolution

ÎS(r,u⊥) ≈
∫
R2

d2u′⊥Îd(r,u
′
⊥)ĥ(r,u⊥ − u′⊥) (4.16)

Calculating the scattered coherence from (4.16) using the inverse of (4.9) yields (4.13). Substitut-

ing ρ = 0 in (4.13) gives

Id(r) =
2πσ2

λ2d2

∫
R2

d2r′ I(r′) exp

(
−σ

2k2‖ r− r′ ‖22
2d2

)
, (4.17)

and hence (4.15).

By using the Monte Carlo results, we fit the parameters of the analytic Gaussian apodizing factor

for the 80 degree incident angle. Results are shown in Fig. 4.6.

Figure 4.6: Monte Carlo simulation versus wall analytic model

We performed this same procedure for both a circle and a square shape of varying widths. As
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shown in Fig. 4.7, both the coherence width and the zero crossings at the output vary as the shapes

change size, suggesting that the inverse problem is well-posed. Experimental examples showing

the retention of information in the spatial coherence function after scattering can be found in [51].

Figure 4.7: What information is retained in the scattered coherence function
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CHAPTER 5: INVERSE PROBLEM FOR THE SCATTERING SURFACE

5.1 Introduction

In this chapter1, we study two problems: the characterization of a small, simple object obscured

by the wall, and the imaging of a larger object.

The shape classification and characterization problem exploits variations in the coherence width

and zero crossings of the reflected spatial coherence function, as described in Chapter 4. Using the

analytic wall model, we develop an optimization problem which explicitly characterizes the width

of the object. We provide a means for classifying these simple shapes, and show that distance can

also be incorporated into the optimization problem.

The imaging method demonstrates the ability to reconstruct discernible 2D projections of large

obscured objects in NLOS settings. The approach works with targets in which the projection on

the z-axis is much smaller compared to the (optical) distance d to the detector (a requirement

which is met in many practical situations), thus reducing the problem to that of reconstructing

a 2D image; see the illustration in Fig. 5.4(a). The proposed imaging method is based on a

multi-modal data fusion. We formulate and study a convex optimization problem, and propose an

algorithm for solving it based on the Alternating Direction Method of Multipliers (ADMM) [115].

The optimization problem incorporates regularization for sparsity, and reconstructs the image in a

suitable transformed basis in which the source image is assumed to have a sparse representation.

In contrast with some existing fusion approaches, which merge multiple images in a spatial or

wavelet domain [116–118], our method reconstructs a single image by fusing multiple measure-

1In this chapter, we partially use the material published in Imaging and Applied Optics, 2018 [14], and IEEE
Transactions on Image Processing, 2019 [6].
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ment types at different spatial scales while exploiting their respective propagation models. In spirit,

our approach to fusion relates to that of [119], where a convex optimization problem is devised to

pansharpen medical images.

We provide a means of assessing the null space of the model, and a weighting scheme and decision

framework by which individual samples of a measurement may be excluded.

The simulated results demonstrate the concept of NLOS imaging using spatial coherence. We

further give examples of fusion, and show how the null space of the measurement transformations

can be analyzed.

5.2 Shape Classification

We consider a 50.3 mm square shape. The measured coherence function at the output of the wall

is calculated using the forward model with the Monte Carlo simulator of [3] (we use this simulator

in the forward model to avoid an inverse crime). By using the analytic wall model, we calculate

the measured coherence function for “candidate” squares and circles. The two candidate circles

are shown in Fig. 5.1(b). One has a similar coherence function (in terms of residual) but has a

very different zero crossing, as shown in Fig. 5.1(a). The other circle candidate has a close match

in the zero crossing, but a large residual (not shown). For these reasons, we can disqualify both

candidates. On the other hand, the square has a close match in terms of both residual and zero

crossing, suggesting (correctly) that this is the actual source shape.
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Figure 5.1: An approach for classifying a shape as as circle or a square and determining the shape

width.

5.2.1 Optimization Problem

The first problem seeks to estimate the size of a source given its shape. The example here considers

a square-shaped source, of which we seek to estimate the width. Simulated measurements were

obtained by means of forward propagation followed by scattering using Monte Carlo simulations;

both operations have been previously found to match experimental results [1, 3].

Given the measured coherence function G, the inversion is accomplished by minimizing the resid-

ual
∥∥G(p)−G

∥∥2
2

with respect to the object parameter vector p, where G(p) is the theoretical

reflected coherence for the given source parameters. A Levenberg-Marquardt least squares fitting

algorithm is used to perform the minimization. Measurements of coherence along one direction

suffices. As described earlier, upon reflection at grazing angles, the coherence is better preserved

in the off-plane direction (y-axis) than in the in-plane direction (x-axis) [120]. This motivates our

choice of using coherence data only along the y-axis.

An example optimization is shown for a square shape in Fig. 5.2 (a). In this case, we have a
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single width parameter w, i.e., we have p = w. The estimation of the width was successful with

convergence after six iterations.

Figure 5.2: (a) Estimation of square width w. (b) Estimation of circle diameter w using same

measurements as in (a). (c) Comparison of zero crossings of square and circle coherence functions.

Beyond estimating the object parameters, we are also able to solve the shape classification problem

by using the first zero crossing. The same measurements G are used as in the previous example,

but the new goal is to also classify the shape as either a square or a circle. To this end, we run the

minimization problem for a circular object. The results indicates that a circle of width 56.9 mm

minimizes the residual. The correct shape is discriminated by using the zero crossing along one

axis, as shown in Fig. 5.2(c). This allows the shape to be successfully classified.

The physical scattering model indicates that the phase of the coherence function is maintained after

scattering. This allows distance to be determined as well. An example is shown in Fig. 5.3, where

in addition to the width, we also include distance in the parameter vector.
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Figure 5.3: Extended estimation problem including distance.

The scenario is the same as that in Fig. 5.2. The square is placed at a distance of 1 m. For both

the square and the circle candidates, the estimates of the width are the same as in Fig. 5.2, and the

distance estimate is very close to the correct value. As before, we can decide which is the correct

shape by comparing the zero crossings.

5.3 Non-line-of-sight Image Reconstruction

In this section, we turn to the problem of reconstructing the opacity profile of a large object.

This 2D profile is represented in discretized form by matrix G, which has vectorized form g =

vec {G}. Matrix G is formed by sampling the opacity profile on a uniform grid over the finite

support of the profile. First, we consider reconstruction using intensity-only measurements in the

presence of ambient light from secondary sources. Then, leveraging the physical model for spatial

coherence introduced in Section 4.2, we develop the reconstruction framework using coherence

measurements. Finally, we define the complete problem in which we fuse information from both

modalities and exploit the natural sparsity of the object’s profile.
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5.3.1 Intensity Measurements

The intensity pattern on the wall may be measured using a variety of readily available devices. For

example, if intensity variations are strong enough, a simple Charge-Coupled Device (CCD) camera

with a suitable lens may be used. At the other extreme, a device such as an Electron Multiplying

CCD (EMCCD) can distinguish minute intensity variations, due to the camera’s high single photon

sensitivity.

We define the intensity measurement matrix ΦI , which samples the scattered intensity function

IS(r) in (4.15) at the wall. Hence, in discretized form

ΦIg =
2πσ2

λ2d2
vec {H ? (1−G)} (5.1)

where H is the discretized Gaussian kernelH(r′) defined in (4.8). Because G is an opacity profile,

the intensity in the object plane takes the form 1−G, where the 1 term represents the light incident

on the object immediately prior to obstruction.

In the experiments, we implement (5.1) using a linear convolution, i.e., elements outside the bound-

aries of the domain of r′ are set to zero. This operation is performed through the use of convolution

matrices such that the grids of r and r′ may be different. If the grids are the same, we could also

use the Fast Fourier Transform (FFT) to perform a fast circular convolution.

Therefore, to recover an estimation of the object profile g from intensity measurements (see Sec-

tion 5.3.5 for a discussion of the null space), we formulate the convex program

min
g,α

∥∥ΦIg + αa− yI
∥∥2
2
, (5.2)

where yI is the measurement vector. This formulation includes a free coefficient α along with an
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associated vector a modeling the ambient light. Specifically, vector a captures the spatial intensity

distribution of the ambient light on the wall and the coefficient α represents its magnitude. Here,

we set a = 1, i.e., the ambient light blankets the wall with constant intensity.

While this problem may be successful if a clear shadow is discernible, two major factors limit its

effectiveness. First, the shadow will be faint if there is significant ambient light present. Although

the shadow can be measured with sensitive cameras, the Signal-to-Noise Ratio (SNR) falls as the

amount of ambient light increases. Second, if the coherence of the light sources is low, the edges

of the shadow will be indistinct due to diffraction, making the reconstruction ill-posed; this effect

can be seen as a manifestation of the convolution in (4.15).

5.3.2 Coherence Measurements

To address the aforementioned limitations of the intensity-based approach, we develop a frame-

work for reconstruction from coherence measurements next.

As described in the introduction, an increasing number of techniques have been developed for cap-

turing coherence information. An example of practical measurements matching the requirements

of our approach can be found in [51], which makes use of a Dual Phase Sagnac Interferometer

(DuPSaI).

Because ρ appears in the argument to the Fourier transform of (4.6), a natural way to measure the

coherence function Gd(r,ρ) is along the ρx and ρy axes with r fixed, i.e. measure a 2D slice of

the 4D coherence function. We will refer to a set of measurements along this slice as a coherence

sample. An example plot of such a coherence sample is shown in Fig. 5.4(b), with a detail zoom

shown in (c). Here, r = (−0.4 m,−0.4 m) is fixed, and the plot is over ρ. The simulation

parameters are λ = 525 µm and σ = 2.5 µm. Fig. 5.4(d) shows the results of wall scattering with
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parameters w = (1 µm, 6 µm).

Figure 5.4: Details of spatial coherence model. All coherence plots show the magnitude of the

coherence function. (a) Diagram of coherence model, including plots of the intensities in the object

plane and wall plane. (b) Coherence of incident light in wall plane with (c) detail zoom. Plots are

for spatial point r = (−0.4 m,−0.4 m). (d) Coherence scattered from wall. (e) Set of incident

coherences plotted on a 7× 7 grid. Each plot is centered at the corresponding spatial point r. The

radius of each plot is 5.5 µm. The coherence measurements are shown in the style of light field

plots as found for example in [4] and [5]. (f) Scattered coherences as in (d).
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To achieve spatial diversity, a full reconstruction will typically require a collection of 2D coherence

samples, each centered at a different r. An example collection of 49 samples is given in Fig. 5.4(e)

showing the coherence incident to the wall, with the r falling onto a 7× 7 grid. The corresponding

scattered coherence functions are shown in Fig. 5.4(f).

We remark that while the 2D intensity function constitutes a slice of the 4D coherence function,

cameras used to measure intensity differ from devices used to measure coherence, therefore they

are commonly considered as different modalities.

We define the coherence measurement matrix ΦC
r , which samples the scattered coherence function

along the ρx and ρy axes at a fixed r. Obtaining a discretized form of the function in (4.13), we can

write

ΦC
r g = vec {S�Cr � (F1 [Hr � (1−G)] F2)} . (5.3)

Matrix S is the discretized form of the function S(ρ) defined in (4.14), which represents the scat-

tering effects of the wall. Matrix Cr is the discretized form of the function C(r,ρ) defined in

(4.7), which is one component of the free space propagation operator. Both S and Cr are dis-

cretized along the ρx and ρy axes using the same set of points as ΦC
r , with Cr using the same fixed

r position as ΦC
r . The other component of the free space propagation operator is matrix Hr, which

discretizes the function H defined in (4.8). Specifically, this matrix contains samples of H(r− r′),

with r fixed, and r′ falling on the same discrete grid as G.

Calculation using the measurement matrix (5.3) admits a tractable form, requiring only element-

wise products and Fourier transforms, which may be implemented using the FFT.

The measurement vector corresponding to the coherence sample at ΦC
r is labeled yCr . We define

the setR containing the values of r at which the full collection of coherence samples are made. To
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perform the reconstruction using coherence measurements, we consider the least squares formula-

tion,

min
g

∑
r∈R

∥∥ΦC
r g − yCr

∥∥2
2
. (5.4)

A major factor influencing the quality of the coherence measurements are the geometry and char-

acteristics of the wall which determine the amount of scattering. Because these factors may vary

depending on spatial position along the wall, the different sets of measurements yCr within the

collection may vary in their quality, or some may be unusable. We will explore such a scenario in

Section 5.4.2.

Given the geometry of the scene, the ambient light that reaches the detector will necessarily re-

sult from diffuse scattering (i.e., specularly reflected ambient light from secondary sources will

not reach the detector due to unequal angles of incidence and reflection). Because there is a

Fourier transform relationship between scattered photon angle and coherence (see Section 4.3.1

for more details), the large angle diffuse spread in the ambient light introduces a narrow peak in

the coherence function at ρ = 0 [3, 121]. Recalling the relationship between intensity and coher-

ence I(r) = G(r,0), we can see that the peak exactly coincides with the intensity measurements.

Therefore, the ambient light tends to dominate the intensity measurements and obscure the shadow.

On the other hand, this diffusely scattered ambient light has little effect on the coherence function

away from ρ = 0, where the specular component of reflection (containing information about the

object) dominates. For this reason, spatial coherence coordinates for which ‖ρ ‖2 < p are ex-

cluded. We remark that unlike (5.2), this exclusion obviates the need for an ambient term for the

coherence measurements in the formulation of (5.4).
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5.3.3 Fusion Framework

As mentioned in the previous sections, it is possible that one or another modality may be of a lower

quality, and therefore it is advantageous to use both intensity and coherence modalities in the same

reconstruction.

Additionally, the profile g is likely to admit a sparse representation x in a particular basis Ψ. Here,

we use the two-dimensional Discrete Cosine Transform (DCT) as the sparsifying basis Ψ (in which

it is well established that natural images possess a sparse representation [122]), however, another

basis such as a wavelet basis could also be used. As such, the object profile can be expressed as

g = Ψx. We then include ‖x ‖1 as a regularization term to promote sparsity in the reconstruction,

where the `1-norm is a convex relaxation of the `0-norm [123].

To fuse information from both modalities and exploit the sparsity of the opacity profile in Ψ, we

can readily formulate the convex program

min
x,α

κ‖x ‖1 +
∥∥ΦIΨx + αa− yI

∥∥2
2

+ µ
∑
r∈R

∥∥ΦC
r Ψx− yCr

∥∥2
2
, (5.5)

where κ and µ are used to balance the objectives.

5.3.4 Algorithm

To solve (5.5), we propose an iterative algorithm based on the ADMM approach first introduced

in [115]. This algorithm performs a dual ascent using the Augmented Lagrangian [124], which can
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be written as

Lβ(x, α, z,y) = κ‖ z ‖1 +
∥∥ΦIΨx + αa− yI

∥∥2
2

+ µ
∑
r∈R

∥∥ΦC
r Ψx− yCr

∥∥2
2

+ Re[y∗(x− z)] +
β

2
‖x− z ‖22

where y is the Lagrange multiplier. We solve the minimization using the following updates at each

step k:

xk+1, αk+1 = arg min
x,α

Lβ
(
x, α, zk,yk

)
, (5.6)

zk+1 = arg min
z

Lβ
(
xk+1, αk+1, z,yk

)
, (5.7)

yk+1 = yk − β(z− x), (5.8)

where the initial values x0, α0, z0,y0 are zero. The stopping criteria consist of thresholds placed on

the residuals [115]. Specifically, the algorithm stops if the norm of the primal residual
∥∥xk − zk

∥∥
2
<

εpri and the norm of the dual residual
∥∥ β(xk+1 − xk)

∥∥
2
< εdual. Here, εpri = 0.5 and εdual = 10−6.

Details regarding the calculation of the x and z update steps are given in Appendix C.

5.3.5 Mapping of Null Space

Due to various factors in the propagation and scattering process, the measurement matrices ΦI

and ΦC
r will typically possess a null space. We use the general notation Φi to refer to the ith

measurement matrix, which may take the form of ΦI or ΦC
r , depending on the enumeration order

of the matrices.

We can characterize the null space associated with measurement i as follows. The degree of co-
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herence between the j th element of the object profile gj and the measurement can be quantified by

τi(j) = ‖Φiej ‖2. If τi(j) is close to zero, i.e. the SNR is very small, the element is considered to

be in the null space of the measurement.

Similarly, we can look at the degree of coherence in the sparse domain using a similar operator

τ̂i(j) = ‖ΦiΨej ‖2. The null space map may be especially useful when an explicit model is not

known, for example in data-driven approaches.

5.3.6 Sample Weighting

It may improve the results if we can exclude certain measurements from the reconstruction rather

than give equal weight to all measurements in the samples. To this end, we can substitute a

weighted norm ‖ · ‖v in place of any of the Euclidean norms ‖ · ‖2 in (5.5).

If the noise is known, the sample weight vector for the ith measurement can be constructed using

the decision metric

vi(j) =

 1

ni

1

≷
0

η

N − 1

N∑
k=1
k 6=i

‖ΦkΦ
∗
i ej ‖2

nk

 , (5.9)

where j is the sample number, ni is the noise level present in measurement i, and η is a calibration

constant. This is a metric similar to the Transform Point Spread Function found in [125]. For

a given measurement sample, this metric finds other samples which are coherent with the same

image pixels. A given sample will be included in the optimization if it has a higher SNR than the

other measurements.
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5.3.7 Extensions

Here, we comment on possible extensions to the framework.

We are not constrained to problems in which the object is blocking light, but can also work in

reflective scenarios. This can be accomplished by redefining G as the reflectivity rather than

opacity of the object, and making the simple substitution 1−G→ G in (5.1) and (5.3).

The problem (5.5) includes a single weight µ associated with the measurements. We may instead

associate a weight coefficient with each measurement matrix in (5.5). These could be adjusted

along a continuum to control the impact of particular samples. If the magnitudes of measurements

are significantly different, these weights can maintain balance, e.g., by setting µi = 1/‖yi ‖22. If

there is Gaussian noise in the measurements with known magnitude, the Bayesian Compressive

Sensing methodology can be used [126].

Another possible extension to the optimization problem is to incorporate an auto-scaling coeffi-

cient, e.g., to handle cases when the magnitude of measurements from different modalities are

not calibrated to the same scale. To this end, we can add a scaling coefficient B to some of the

measurements by making the substitution yi → Byi, and updating B in step (5.6). With this

modification, the problem (5.5) remains convex.

5.4 Numerical Results

We now present examples demonstrating the proposed method laid out in Section 5.3 and making

use of optimization problem (5.5). In all examples, the opacity profile of the actual object is as

shown in Fig. 5.5(a) with corresponding DCT in (b).
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Figure 5.5: (a) Actual opacity used at object plane in forward model for all results. (b) Corre-

sponding DCT. The color range for the DCT plot is restricted to [0, 10] to highlight components

with smaller magnitudes.

For simulated measurements, the source intensity function I(r) used in the forward model is as

shown in the diagram of Fig. 5.4(a) (left side), with the function extended by ones to x, y ∈ (±6 m),

thus representing an opaque star object surrounded by a plane of light. The extension of the

function is required to properly model the significant spreading of the light after being emitted

from the physical light sources and before being obstructed by the object.

Additive-white-Gaussian-noise (AWGN) with standard deviation (SD) nI is added to the intensity

samples, and complex AWGN with SD nC is added to the coherence samples.

The following parameters are used in all results: λ = 525 µm, d = 6 m, p = 1µm, β = 5× 10−3,

and µ = 1. The intensity image of the wall has resolution 101 × 101 pixels with domain rx, ry ∈

[±2 m]. Unless otherwise specified, the coherence measurements have resolution 51 × 51 pixels

(with the domain of ρ varying depending on the example). A constant value of 100 is added to all

intensity measurements to model ambient light; this offset will be absorbed by the coefficient α in

(5.5).
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5.4.1 Non-line-of-sight Imaging

We first demonstrate the potential of spatial coherence measurements to enable passive NLOS

imaging when no shadow information is available. Two reconstructions are included, each with

wall scattering parameters set at opposite extremes.

In this example, coherence measurements are made on the same spatial grid as shown in Fig. 5.4(f).

The simulation parameters are σ = 5 µm, nC = 10−3, κ = 0, and the coherence measurements are

over domain ρx, ρy ∈ [±15 µm].

Fig. 5.6(a) and (b) shows the reconstructed image and DCT for a wall with relatively little scatter-

ing, where the scattering parameters are set to w = (3 µm, 18 µm).
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Figure 5.6: Results of NLOS object reconstruction using coherence only. The top half shows

the reconstructed (a) image and (b) DCT for a wall that has relatively little scattering with w =

(3 µm, 18 µm). (c) and (d) show the corresponding plots for a wall with more scattering where

w = (0.25 µm, 1.5 µm). Pixels in the reconstructed images with value > 1 are set to one and

values < 0 are set to zero

For comparison purposes, pixels in the reconstructed images with value > 1 are set to one and

values < 0 are set to zero, a practice which will be used for the remainder of this section.

Fig. 5.6(c) and (d) show the results for a wall that introduces more scattering with parameters

w = (0.25 µm, 1.5 µm). The DCTs clearly show that the scattering of the wall acts as a low-pass

filter, with increased scattering leading to more filtering.
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5.4.2 Fusion of Intensity and Coherence Measurements

As demonstrated in the next example, by fusing intensity and coherence measurements, a better

reconstruction can be made as compared to using either modality alone.

The simulation parameters used in this example are σ = 2.5 µm, nI = 5 × 10−2, nC = 10−2,

w = (2 µm, 6 µm), κ = 10−3, and ρx, ρy ∈ [±10 µm].

First, Fig. 5.7(a) shows an intensity sample. Note that the color range of the intensity plot has been

constrained to a narrow range to clearly show the shadow. The light is not coherent enough to

reveal the edges of the star. Fig. 5.7(b) shows the reconstructions results when only this sample is

used.

Figure 5.7: Fusion results. (a) Shows an intensity sample, and (b) shows the reconstruction using

this sample alone. (c) Shows an additional measurement of scattered coherence, each sample hav-

ing plot radius 5.2 µm. The measurements only cover part of the wall. (d) Shows the reconstruction

when both the intensity and coherence measurements are used.
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Next, the coherence samples shown in Fig. 5.7(c) are also included in the reconstruction to augment

the intensity measurements. Fig. 5.7(d) shows the improved results. In the top half of the recon-

struction, the coherence measurements contain more information about the high frequency com-

ponents of the object profile and therefore dominate the reconstruction providing sharper edges.

However, because these coherence measurements only cover the top half of the wall, the intensity

contains more information about the bottom half of the object, albeit only at lower frequencies thus

resulting in less definition.

We will now provide some insight into the improvements which have been made based on Sec-

tion 5.3.5.

First, the spatial limitation inherent in coherence measurements is demonstrated. This limitation

comes from the multiplication by the Gaussian term H(r) in (4.6). In the following discussion,

we denote the index of the intensity sample as I, and the index set of coherence samples as C. In

Fig. 5.8(a), we show τi for a single coherence sample located at r = (0, 0.8 m).
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Figure 5.8: Null spaces for measurements (small values indicate an element is in the null space).

Null spaces in image basis of (a) single coherence sample, (b) all coherence samples, and (c)

intensity sample. Null space in DCT basis of (d) all coherence samples and (e) intensity sample.

All color scales are normalized to their respective maximum values.

Fig. 5.8(b) shows maxi∈C τi, which returns a vector containing the most coherent coherence mea-

surements with each pixel. This is the combined effect of all coherence samples, clearly demon-

strating that more samples allow more spatial coverage. In contrast, Fig. 5.8(c) shows maxi∈(I∪C) τi,

demonstrating that when all coherence measurements are used together with intensity measure-

ments, virtually the entire object profile is covered.

We can perform a similar analysis in the sparse DCT domain. Fig. 5.8(d) shows maxi∈C τ̂i, which

is the combined effect of the coherence samples in the sparse basis, and Fig. 5.8(e) shows τ̂I , which

is the effect of the intensity measurements in the sparse basis. It can be seen that the coherence

measurements have a stronger correlation with the high frequency components, explaining why

the top half of Fig. 5.7(b) has improved edges over the bottom half. The low pass filtering in
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the intensity measurements comes from the convolution in (4.15) due to diffraction, whereas the

filtering in the coherence measurements comes from wall scattering.

5.4.3 Improved Fusion Using Sample Weighting

In some cases, simply adding new measurements is insufficient. Because of noise levels, while

certain parts of the reconstruction will improve, other parts will degrade. In these cases being able

to exclude individual measurements as described in Section 5.3.6 may resolve the issue. We now

provide such an example.

The simulation parameters used in this example are σ = 5 µm, nI = 0.25, nC = 10−4, w =

(1 µm, 6 µm), ρx,ρy ∈ [±15 µm], and η = 0.25. For Fig. 5.9(b), κ = 0 and for Fig. 5.9(d) and

(f), κ = 1.5× 10−2.

Coherence measurements and the associated reconstruction are shown in Fig. 5.9(a) and (b) re-

spectively. In these panels we do not use regularization, since the measurements lack noise.
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Figure 5.9: Example of sample weighting. (a) shows a set of coherence samples, each with

plot radius 5.4 µm, and (b) the corresponding reconstruction. As in the example of Fig. 5.7,

the coherence measurements only provide a reconstruction of the top half of the image. (c) An

intensity sample, which is fused with the coherence samples to create reconstruction (d). Due to

noise in the intensity measurements, the quality of the reconstruction is poorer. (e) The sample

weights for the intensity measurement as calculated using (5.9). White regions indicate intensity

samples which are included in the reconstruction, i.e. measurements j for which vI(j) = 1, and

black regions indicate exclusions, i.e. for which vI(j) = 0. (f) Reconstruction from the same

intensity and coherence samples, but using the weights shown in (e).
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If the intensity sample shown in Fig. 5.9(c) is also used in addition to the coherence measurements,

the results in Fig. 5.9(d) are obtained. Here, sparsity regularization is used due to noise in the

intensity measurements. Although the bottom half of the object is now visible in the reconstruction,

the top half has degraded due to the intensity noise.

To resolve this problem, we calculate sample weights for the intensity measurement using (5.9).

The results are shown in Fig. 5.9(e) with black representing zeros (excluded intensity samples) and

white representing ones (included samples).

The result of the reconstruction using these weights is shown in Fig. 5.9(f), where the top half can

be seen to improve. Note that because we are regularizing in the frequency domain, noise which

is spatially isolated to a particular section of the image will be coupled to other noise-free regions,

and thus the top half is not ideal as possible. Using a wavelet basis may eliminate this issue.

5.4.4 Sparsity

Fig. 5.5(b) confirms that the DCT of this object profile is approximately sparse (disregarding the

small high frequency components). At the same time, noise in the measurements tends to introduce

relatively large high frequency components into the reconstruction. Therefore, one use for the

sparsity regularizer in (5.5) is to serve as a de-noising tool.

In Fig. 5.10(a) we show the result of a reconstruction using noisy coherence measurements where

no regularization is used, i.e. κ = 0. As shown in Fig. 5.10(b), the noise appears mostly in the

high frequency components of the DCT.
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Figure 5.10: Demonstration of `1 norm regularization for noise reduction. In this example, only

coherence measurements are used. (a) and (c) shows the reconstructed object profiles. (b) and (d)

shows the corresponding DCTs.

Fig. 5.10(c) and (d) show the improved results when sparsity is enforced using κ = 5× 10−4.

The coherence measurements are at the same spatial locations as shown in Fig. 5.4(f). The simu-

lation parameters are σ = 5 µm, nC = 10−2, w = (1 µm, 6 µm) and ρx, ρy ∈ [±15 µm] with a

resolution of 25× 25.

In Table 5.1, we repeat this experiment using the same parameters, except varying the noise levels

and κ values. Ten trials are performed at each setting, and the average and SD of the resulting

Mean Square Error (MSE) are shown.

Likewise, Table 5.2 shows the results using only intensity measurements (and no coherence mea-

surements). Here, the coherence level used for the forward model is σ = 2.5 µm (to reduce the
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distinctness of the shadow).

For each noise level (column), the minimum error is bolded. We can see in both tables that a larger

noise level requires a larger value of κ to achieve minimal MSE. The errors in the bottom row are

roughly equal for all noise levels: beyond a certain threshold of κ, the estimates only contain low

frequency components and are nearly identical.

Table 5.1: MSE of coherence-only measurements (average and standard deviation)

κ
Noise (nC)

0 0.01 0.05 0.1

0 0.008 5.334± 1.111 126± 19 621± 76

0.0005 0.014 0.015± 0.001 0.59± 0.08 9.35± 2.23

0.005 0.020 0.020± 0.000 0.03± 0.00 0.12± 0.02

0.05 0.041 0.041± 0.000 0.04± 0.00 0.04± 0.00

0.5 0.140 0.140± 0.000 0.14± 0.00 0.14± 0.00
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Table 5.2: MSE of intensity-only measurements (average and standard deviation)

κ
Noise (nI)

0 0.1 0.5 1

0 0.04 0.09± 0.02 0.742± 0.223 3.019± 1.817

0.05 0.06 0.07± 0.00 0.138± 0.032 1.146± 0.532

0.10 0.08 0.08± 0.00 0.089± 0.014 0.402± 0.227

0.50 0.09 0.09± 0.00 0.088± 0.003 0.097± 0.009

1.00 0.09 0.09± 0.00 0.091± 0.003 0.096± 0.006

5.00 0.12 0.12± 0.00 0.115± 0.002 0.123± 0.009

5.5 Possible Extensions to the Imaging Approach

In our work, we assume the optical distance to be known. In [51], a technique is provided for

determining the optical distance using the phase of the measurements at different spatial positions

along the wall, information which is readily available in the measurements we use here. This esti-

mation could be performed as a preprocessing step, prior to running our algorithm. The estimation

of depth in the presence of scatterers has also been studied previously [36, 127], and those results

may help here as well.

In our problem, we reconstruct a planar object profile. An extension of this work would be to

consider three-dimensional objects, for example as was done in [128] and [129].
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CHAPTER 6: FUTURE DIRECTIONS

6.1 Phase-Space Optics: The Wigner Function

In this dissertation, we have primarily represented the optical field via its spatial coherence func-

tion. As an alternative, we could represent the field by a phase-space function, which simultane-

ously describes both the space and angular spectrum of the light [34, 36]. One popular choice of

phase-space function found in computational imaging is the light-field function, which is defined

over a vector field of light rays. However, this function is restricted to the domain of geometric

optics.

For wave fields, the analogous phase-space function is the Wigner distribution function W (r,ν),

where r are the spatial coordinates and ν are frequencies (indicating direction). The Wigner func-

tion relates to the spatial coherence function through the transformation

W (r,ν) =

∫∫
G(r,ρ) exp(−i2πρν)dρ. (6.1)

We can think of the Wigner function as a generalization of the light-field which incorporates

diffraction and other wave optics effects [36]. For more details on the relation between the Wigner

function and the light-field, including assumptions under which they can be considered equivalent,

see [130]. We also note that the Wigner function is closely related to the specific intensity defined

in Section 4.3.1 – in the paraxial regime we work in here, we will treat them as identical.

The Wigner function and specific intensity were originally introduced in optics as a way of relating

partial coherence to radiative transfer [112, 131, 132]. It is for this reason that specific intensity is

used in [3, 51] to bridge the gap between the wave model used in free space propagation and the
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photon-based scattering model used inside the wall.

Here, we are interested in the Wigner function for a different reason: the simple effect that free

space propagation has on the function. Given a Wigner function Ws(r
′,ν ′) in the source plane, the

Wigner function Wd(r,ν) of the field after propagation by distance d is

Wd(r,ν) = W (r− λdν,ν). (6.2)

Thus the propagation simply introduces a horizontal shear. From here-on we will look at a 1D

scalar field, which renders the Wigner function a 2D function W (x, ν).

We proceed to illustrate why this propagation characteristic of the Wigner function is useful. In

Fig. 6.1(a), we show the spatial coherence function, Wigner function, and intensity profile in the

plane of a small object (immediately after interaction with the object).
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Figure 6.1: (a) Spatial coherence function, Wigner function, and intensity profile of optical wave

field immediately after interaction with the object. (b) Corresponding functions/profile after prop-

agation by a distance of 5 cm past the object.

The object forms a distinct vertical “shadow” in both the spatial coherence function and Wigner

function (the exact effect of a transmission mask on the Wigner function takes the form of a con-

volution and is described in [130, Section 3.2]). Fig.6.1(b) shows the effect of propagation by a

distance of 5 cm. The intensity profile has blurred and the spatial coherence function does not
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provide a clear visual indication of the object. However, a shadow is still clearly visible in the

Wigner function, only sheared by the propagation. We could establish the size and distance of the

object by applying simple geometric techniques. In [36], it is shown that just such an approach can

be used to identify points sources in different planes, since the points sources take the form of a

thin line in the Wigner function.

However, in NLOS situations, the scattering of the wall obscures the shadow in the Wigner func-

tion. We illustrate this with an example. In Fig.6.2 we show the same setup as in Fig. 6.1, except

here we imagine that a wall has been placed 20 cm from the object. At this distance, the intensity

profile is almost uniform. We use the wall model described in Section 4.4.1 with a standard devia-

tion of wx = 6 µm (because we are using a 1D model, we only have scattering along the x-axis).

Fig.6.2(a) shows the Wigner function before scattering. The shadow is still clearly visible. How-

ever, in Fig.6.2(b), which shows the results after scattering, we can no longer identify the object’s

shadow.
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Figure 6.2: (a) Spatial coherence function, Wigner function, and intensity profile of optical wave

field after propagation 20 cm past object. (b) Corresponding functions/profile at same distance as

in (a), but after being scattered, i.e., by placing a wall 20 cm away from the object.

A future line of work could be to study the Wigner function and other phase-space representations.

The question remains: could an approach be formulated to extract information about the object in

phase-space, even after scattering?
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6.2 Deep Learning

Deep learning has seen a surge in popularity in recent years. Due to increasing computational

horsepower, improved techniques, and increasing volumes of available training data, Deep Neural

Networks (DNN) have achieved unprecedented levels of success. A natural next step in the pas-

sive NLOS problem would be the incorporation of deep learning techniques into our framework.

In this section, we first provide recent examples where deep learning has been applied to optics

imaging/scene reconstruction problems. We then provide a list of techniques that are often used

when applying deep learning to physics problems – these techniques could serve as a toolset for

future work in NLOS imaging.

An example of deep learning applied to line-of-sight (LOS) problems can be found in [133]. In

this work, a phase object is recovered using intensity measurements obtained after free space prop-

agation. The inversion is accomplished by using a DNN to model the inverse operator. Thus the

inverse operator is captured solely through a training process rather than an explicit derivation.

The learned model may be able to incorporate prior information if a certain class of images is used

(in [133], face images were used).

An example of deep learning in the non-line-of-sight (NLOS) setting can be found in [134]. This

active approach uses laser illumination to recover the albedo of a hidden object. It incorporates a

Convolutional Neural Network (CNN) to perform the phase retrieval step in NLOS correlography.

The authors claim that traditional phase recovery algorithms perform far worse than the CNN in

this noisy low-light setting. To generate sufficient training data, the authors synthesize training

data using a derived noise model. As with [133], the training image dataset can be chosen to guide

the priors the CNN learns.

We now provide a summary of physics-based deep learning techniques which could be applied in
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future NLOS works.

• Learning the inverse operator A typical approach is to train the DNN to directly model

the inverse operator. As described earlier, the DNN of [133] takes intensity measurements

as input, and outputs a reconstruction of the source image. Similar approaches can be found

for MRI images [135, 136].

• Unrolled optimization Rather than using the typical neural network components, we can use

application-specific components to build the DNN. The parameters for these components are

trained using the standard deep network techniques [137, 138]. This approach is often used

to model optimization problems, for example ADMM, by unrolling the individual iterations.

In this case, each layer of the DNN consists of an operation (for example a data consistency

step or a regularization step) in a single iteration.

• Regularization The work [139] solves a regularized least-squares problem to form MRI im-

ages. A similar approach can be found in [140]. In both of these works, the optimization

problem is solved using an unrolled gradient descent algorithm with the proximal regulariza-

tion step performed by a DNN. The data consistency step is solved using traditional methods,

invoking a known linear operator for the measurement matrix (forward model).

• Solving Partial Differential Equations (PDEs) If the problem is formulated as a PDE, then

Physics-Informed Neural Networks (PINNs) can be used, for example by using a meshless

approach [141, 142].

While not directly physics-related, we comment here on image processing techniques which may

be used to post-process the reconstructed image in LOS and NLOS imaging.

• Superresolution CNNs can be used to estimate high resolution images based on low reso-

lution inputs [143].
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• Edge detection See [144].

• Denoising DNNs can be used for the purpose of denoising an image, e.g., in place of a

classic Gaussian denoiser [144].

To conclude this section, we comment on some drawbacks of deep learning approaches. One issue

is the typical requirement for large amounts of training data, which may be difficult to collect.

Even with a large amount of training, novel situations may still be missed, leading to poor results.

A related issue is that of overfitting. Specifically, if the complexity of the network is too low, or

the datasets are too limited, the network may not function correctly in critical situations. Another

longstanding issue with deep learning (in general) is a lack of interpretability of results, even

when the deep learning approach is functioning properly. This highlights a benefit to the methods

developed in this dissertation: the results output by our techniques are easily interpretable since

they are based on well-understood physical models and optimization problems.
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CHAPTER 7: CONCLUSION

In this dissertation, we considered the problem of passive NLOS scene reconstruction. We first

studied the LOS scene reconstruction problem, and then proposed a solution to the complete prob-

lem with wall scattering. The key contributions are summarized below.

1. Free space propagation forward model We developed simulation software based on phys-

ical models and showed that numerical calculations of the propagation operator match both

1D and 2D experimental measurements. Furthermore, we showed that the spatial coherence

function at a distant detector retains artifacts from interaction with an object, thus enabling

the inverse problem to be solved. To further facilitate solution of the inverse problem, we

derived closed-form analytic approximations for spatial coherence propagation after interac-

tion with an object.

2. Free space propagation inverse problem We considered two techniques for solving the

inverse problem in free space propagation. The first is a “brute-force” approach for recreating

the evolution of the intensity profile using the inverse Fresnel transform. The second is an

efficient and systematic optimization method using the closed-form analytic approximations.

3. Scattering forward model We developed an experiment-based forward model for wall scat-

tering. We examined what information is preserved after interaction with the wall in the

spatial coherence function.

4. Scattering inverse problem We derived a method for characterizing shapes, and for deter-

mining the distance to a small, simple object. We then considered a comprehensive imaging

problem concerning large hidden objects. We considered how shadow information could be

used, and formulated a multi-modal fusion algorithm for solving the inverse problem.
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APPENDIX A: PROOF FOR THEOREM FOUND IN CHAPTER 2
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The proof of the theorem requires calculation of the Fourier transform of a truncated Gaussian. In

this section we derive the required results1.

For σ > 0 define the Gaussian function as Nσ (x) = exp{−x2/2σ2}. For some σ > 0 and ω ∈ R

let us consider the Fourier transform of a truncated Gaussian

Φσ(ω, u) =

∫ u

−∞
exp(−iωx)Nσ (x) dx (A.1)

and the cumulative distribution function

Φσ
0 (u) := Φσ(0, u) =

∫ u

−∞
Nσ (x) dx. (A.2)

We first provide an exact formula for calculating (A.1). Recall the Hilbert transform defined in

(2.19) and the conjugated Hilbert transform defined in (2.20). The following result gives an exact

formula for Φ in terms of the conjugated Hilbert transform.

Lemma 1. We have the following formula

Φσ(ω, u) =

√
π

2
σ
[
(I + iHu)N1/σ

]
(ω), (A.3)

where I stands for the identity operator and Hu for the conjugated Hilbert transform in (2.20).

More explicitly,

Φσ(ω, u) =

√
π

2
σ
(
N1/σ (ω)

+ i exp(−iωu)
1

π
p.v.

∫
exp(isu)N1/σ (s)

ω − s
ds

)
. (A.4)

1In this appendix, we partially use the material published in the Journal of the Optical Society of America A
(JOSA A), 2017 [9]
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Proof. In the following, f̂ denotes the Fourier transform of f .

Φσ(ω, u)

=

∫
exp(−iωx)1(−∞,u)(x)Nσ (x)dx

= 1̂(−∞,u) ? N̂
σ(ω)

= π [δ + i exp(−i(·)u)H] ?
√

2πσN1/σ (ω)

=

√
π

2
σ
(
N1/σ (ω)

+ i exp(−iωu)
1

π
p.v.

∫
exp(isu)N1/σ (s)

ω − s
ds

)
, (A.5)

where

1(−∞,u)(x) =

 1, x < u,

0 x > u.
(A.6)

In the third equality the Fourier transform is understood in the sense of (temperate) distribution.

We remark that from the properties of the Hilbert transform, it can be seen that the conjugated

Hilbert transform obeys the inversion law −(Hu)2f(x) = f(x).

Apart from the exact formula (A.3), we are interested in an approximation with a form easier to

handle analytically. We now give an approximation formula together with the estimate in the error.

Lemma 2.

Φσ(ω, u)

= N1/σ (ω)Φσ
0 (u)

[
1 + (iσ2ω) exp(−iuω)

Nσ (u)

Φσ
0 (u)

R(ω, u, σ)

]
, (A.7)
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where

R(ω, u, σ) =

∫ 1

0

exp(−iuωx) exp

(
σ2ω2

2
x2
)
dx (A.8)

In particular, we have

Φσ(ω, u) ≈ N1/σ (ω)Φσ
0 (u) (A.9)

provided

∣∣∣∣σ2ω
Nσ (u)

Φσ
0 (u)

∣∣∣∣� 1. (A.10)

Proof. We will show that ω 7→ Φσ(ω, u) satisfies the linear differential equation

dΦσ(ω, u)

dω
+ σ2ωΦσ(ω, u) = iσ2 exp(−iuω)Nσ (u). (A.11)

Indeed, by differentiation,

dΦσ

dω
= iσ2

∫ u

−∞
exp(−ixω)

d

dx

[
exp

(
− x2

2σ2

)]
dx

= iσ2 exp(−ixω) exp

(
− x2

2σ2

) ∣∣∣∣x=u
x→−∞

− iσ2(−iω)

∫ u

−∞
exp(−ixω) exp

(
− x2

2σ2

)
dx

= iσ2 exp(−iuω)Nσ (u)− σ2ωΦσ(ω, u)dx. (A.12)

Using the integrating factor exp(σ2ω2/2), an integration from 0 to σ, and a scaling by a factor of
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σ in the ensuing integral, the formula (A.7) is obtained. We estimate R as follows

|R(ω, σ, u)| ≤
∫ 1

0

exp

(
σ2ω2

2
x2
)

dx

≤
∫ 1

0

exp

(
σ2ω2

2
x

)
dx

=
2

σ2ω2

[
exp

(
σ2ω2

2

)
− 1

]
, (A.13)

from which the estimate (A.9) and condition (A.10) follow.

Figure A.1: Regions of approximation for Lemma 3. (a) shows the coefficients associated with

each piecewise constant section. The region of approximation R1 is shaded dark red, while the

region R2 is shaded light red. (b) provides a detailed view of one of the triangle regions making up

region R1.

Next, we provide a proof for the theorem stated in Section 2.6.2. The transmission function in the

coherence space is

t(x′1)t
∗(x′2) =

N∑
j,k=1

Tj,k 1Bj,k(x
′
1, x
′
2) (A.14)
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where 1 denotes the indicator function and Tj,k denotes the transmissivity coefficient within region

Bj,k = [aj−1, aj)× [ak−1, ak), 1 ≤ j, k ≤ N + 1. (A.15)

The coefficients are shown in Fig. A.1. As with the examples in Section 2.6.3, without loss of

generality we may also use the transmission function 1−t(x′1)t∗(x′2). In terms of the unmasked

Gaussian beam G−(y′1, y
′
2) = A exp{iy′1y′2/R2}Nw (y′1)N

σ (y′2), the propagated coherence func-

tion is

Gd(y1, y2)

=
1

2π`2

N+1∑
j,k=1

Tj,k

∫∫
Bj,k

G−(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2. (A.16)

We first apply Lemma 3, which allows the source coherence to be approximated by a series of

infinite strips.

Lemma 3. Assume the hypotheses in the theorem. The propagated coherence function (A.16) can

be approximated by

Gd(y1, y2)

≈ 1

4π`2

N∑
j=2

Tj,j

(∫∫
S+
j

G−(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2

+

∫∫
S−j

G−(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2

)
(A.17)

where we use the two strip regions S+
j =
⋃N+1
k=1 Bj,k and S−j =

⋃N+1
k=1 Bk,j . Moreover, the magnitude

of the pointwise error in this approximation is bounded from above by
[
40σ+4

√
2πwΦ1

0(−3)
]
Aσ.

Proof. We will assume for our source function G, that T1,1 =T1,N+1 =TN+1,1 =TN+1,N+1 =0. Since
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the source is Gaussian, an appropriate truncation (at |y′1| = 3w for example) will result in only a

small error.

We start by approximating the source coherence by

G′(y′1, y
′
2) =

N∑
j,k=2

Tj,j + Tk,k
2

1Bj,k(y
′
1 + y′2, y

′
1 − y′2)G−(y′1, y

′
2) (A.18)

Then we have

G(y′1, y
′
2) = G′(y′1, y

′
2) +R(y′1, y

′
2) (A.19)

where

R(y′1, y
′
2) =

N∑
j,k=2
j 6=k

(
Tj,k + Tk,j

2
− Tj,j

)
G−(y′1, y

′
2)

= R1(y
′
1, y
′
2) +R2(y

′
1, y
′
2). (A.20)

Error terms R1 and R2 arise from different regions of the source as illustrated in Fig. A.1.

The term R1 comes from integration over the region
⋃N
j,k=2 (Bj,k

⋂
{|y′2| ≤ 3σ}) of small triangles

as in Fig. A.1(b). The coherence function at z=d due to this term can be bounded by

|R1,d(y1, y2)| =
∣∣∣∣∫∫ R1(y

′
1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2

∣∣∣∣
≤
∫∫
|R1(y

′
1, y
′
2)| dy′1 dy′2

≤ A

N∑
j=1

|Tj,j+1 + Tj+1,j − Tj,j − Tj+1,j+1|

×
11∑
k=0

∫ k+1
4
σ

k
4
σ

∫ aj+
(k+1)

4
σ

aj− k+1
4
σ

Nw (y′1)N
σ (y′2) dy

′
1 dy

′
2
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≤ 5

2
Aσ2

N∑
j=1

|Tj,j+1+Tj+1,j−Tj,j−Tj+1,j+1|

×Nw (|aj|−3σ)

≤ 40Aσ2, (A.21)

where the last inequality uses the hypothesis (2.18a).

The term R2 comes from the region
⋃N
j,k=2 [(Bj,k ∪Bk,j)

⋂
{|y′2| > 3σ}]. Making use of the in-

equality
∣∣∣Tj,k+Tk,j2

− Tj,j
∣∣∣ ≤ 2 for any j, k, we have

|R2,d(y1, y2)| =
∣∣∣∣∫∫ R2(y

′
1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2

∣∣∣∣
≤
∫∫
|R2(y

′
1, y
′
2)| dy′1 dy′2

≤ 4A

∫ ∞
3σ

∫ ∞
−∞

Nw (y′1)N
σ (y′2) dy

′
1 dy

′
2

= 4
√

2πAw

∫ ∞
3σ

Nσ (y′2) dy
′
2

= 4
√

2πAwσΦ1
0(−3) (A.22)

If w is large and the transmission function t is zero outside the interval [a1, aN), then we may

instead bound the error R2 by

|R2,d(y1, y2)| ≤ 4A(aN − a1)
∫ ∞
3σ

Nσ (y′2) dy
′
2

= 4
√

2πA(aN − a1)σΦ1
0(−3). (A.23)

Finally, the following lemma can be applied to reduce the propagation integrals over the strips to
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a closed-form. Since the Fresnel approximation is assumed, in the following proof we use the fact

that y1, y2�d, and that the source must be concentrated about the origin in the y′1, y
′
2-plane.

Lemma 4. The contribution to the detected coherence due to the j-th strips can be approximated

as

G±d,j(y1, y2) =
1

2π`2

∫∫
S±j

G−(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy

′
1 dy

′
2

≈ G̃d(y1, y2)
i

2Nησ̃ (y2)

×
[
±
(
H±bj(y1) −H±bj−1(y1)

)
N σ̃/η

]
(y2), (A.24)

where G̃d is defined in (2.16), and the variables σ̃, η, and bj are as defined in Eqs. (2.15,2.22).

Proof. We perform the integration over the strip

S+
j = {(y′1, y′2) ∈ R2, aj−1 ≤ y′1 − y′2 < aj}. (A.25)

The calculation over the strip

S−j = {(y′1, y′2) ∈ R2, aj−1 ≤ y′1 + y′2 < aj} (A.26)

follows similarly and is not detailed.

G+
d,j(y1, y2)

=
1

2π`2

∫∫
S+
j

G−(y′1, y
′
2)L(y1, y

′
1, y2, y

′
2) dy′1 dy′2

=
1

2π`2
A exp(iy1y2/`

2)

∫
exp(−iy′1y2/`

2)Nw (y′1)
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×
∫ y′1−aj−1

y′1−aj
exp
(
−iy′2 [y1−(1 + δ)y′1] /`

2
)
Nσ (y′2) dy′2 dy′1

=
1

2π`2
A exp(iy1y2/`

2)

∫
exp(−iy′1y2/`

2)Nw (y′1)

×
[
Φσ

(
y1 − (1 + δ) y′1

`2
, y′1 − aj−1

)
−Φσ

(
y1 − (1 + δ) y′1

`2
, y′1 − aj

)]
dy′1

≈ 1

2π`2
A exp(iy1y2/`

2)

∫
exp(−iy′1y2/`

2)

×Nw (y′1)N
`2/σ(1+δ)

(
y′1 −

y1
1 + δ

)
× [Φσ

0 (y′1 − aj−1)− Φσ
0 (y′1 − aj)] dy′1

=
1

2π`2
A exp(iy1y2/`

2)N w̃ (y1)

×
∫

exp(−iy′1y2/`
2)N `2/σ̃ (y′1 − c1)

× [Φσ
0 (y′1 − aj−1)− Φσ

0 (y′1 − aj)] dy′1, (A.27)

where

c1 =
y1

(1 + δ)(1 + ξ2)
. (A.28a)

Due to the nature of the inner integral of the second equality, the outer integral is effectively

truncated such that −3σ < y′1 − aj−1 < y′1 − aj < 3σ. Therefore, with the hypotheses (2.17) and

Eqs. (2.18), the approximation formula (A.9) applies since

σ2

`2
[y1 − (1 + δ)y′1]

Nσ (y′1 − ak)
φσ0 (y′1 − ak)

� 1 (A.29)
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for k=j−1, j. Substituting y′1 = y′′1 + c1, we continue

G+
d,j(y1, y2) ≈

1

2π`2
A exp(iy1y2/`

2)N w̃ (y1)

×
∫

exp
(
−iy2(y

′′
1 + c1)/`

2
)
N `2/σ̃ (y′′1)

× [Φσ
0 (y′′1 + (c1 − aj−1))

−Φσ
0 (y′′1 + (c1 − aj))] dy′′1

= G̃d(y1, y2)
σ̃√

2πη Nησ̃ (y2)

×
[
Φη/σ̃

(
y2,

aj − c1
η2`2

)
− Φη/σ̃

(
y2,

aj−1 − c1
η2`2

)]
= G̃d(y1, y2)

i

2Nησ̃ (y2)

×
[(
Hbj(y1) −Hbj−1(y1)

)
N σ̃/η

]
(y2). (A.30)
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APPENDIX B: DERIVATION OF GRADIENTS FOUND IN CHAPTER 3
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In this chapter, we derive the gradients used in Chapter 31. From (2.20) and (2.21), assuming

T1,1 = TN+1,N+1 = 0,

Gd(y1, y2) = G̃d(y1, y2)
i

2Nησ̃ (y2)

N∑
j=1

(Tj,j − Tj+1,j+1)

× exp {−iy2bj(y1)}

× p.v. 1
π

∫
exp {isbj(y1)}N σ̃/η (s)

y2 − s
ds. (B.1)

Then,

Gd(y1, y2) =
iη3`2√

2πσ̃
C(y1, y2)

N∑
j=1

(Tj,j − Tj+1,j+1)

× exp {−iy2bj(y1)}

× p.v. 1
π

∫
exp {isbj(y1)}N σ̃/η (s)

y2 − s
ds

=
iη3`2√

2πσ̃
C(y1, y2)

N∑
j=1

(Tj,j − Tj+1,j+1)

× p.v.
∫ exp

{
i(s− y2)bj(y1)+iy1y2/R̃

2
}
N σ̃/η (s)

y2 − s
ds, (B.2)

where

C(y1, y2) =
Ãσ̃√

2πη3`2
N w̃ (y1)N

`2η/σ (y2). (B.3)

The partial derivative of the real component of Gd with respect to breakpoint aj is

∂Re
[
Gd

]
∂aj

=(Tj,j − Tj+1,j+1)
1√
2πσ̃

C(y1, y2)

1In this appendix, we partially use the material published in the Journal of the Optical Society of America A (JOSA
A), 2018 [10].
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× cos
(
y2bj(y1)− y1y2/R̃2

)
×
∫

cos (sbj(y1))N
σ̃/η (s)ds. (B.4)

Using the definition

D(y1, y2) =(Tj,j − Tj+1,j+1)C(y1, y2)

× exp
(
iy2bj(y1)− iy1y2/R̃2

)
Nη/σ̃ (bj(y1)) , (B.5)

we can express (B.4) as

∂Re
[
Gd

]
∂aj

=(Tj,j − Tj+1,j+1)C(y1, y2)

× cos
(
y2bj(y1)− y1y2/R̃2

)
Nη/σ̃ (bj(y1))

=Re[D(y1, y2)] (B.6)

Similarly, for the imaginary part,

∂Im
[
Gd

]
∂aj

= −Im[D(y1, y2)] (B.7)

We now introduce an arbitrary normalization function P (y1, y2), and consider the residual function

f(y1, y2; a, d) =
Gd(y1, y2; a, d)

P (y1, y2)
− Gd(y1, y2)

P (y1, y2)
(B.8)

For the remainder of this section, to facilitate readability, the function parameters (y1, y2) will be

omitted. The partial derivative of the squared modulus of f is

∂

∂aj
|f |2 =2Re[f ]

∂Re[f ]

∂aj
+ 2Im[f ]

∂Im[f ]

∂aj
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=2Re[f ]

∂Re[Gd]
∂aj

P − ∂P
∂aj

Re
[
Gd

]
P

2

+ 2Im[f ]

∂Im[Gd]
∂aj

P − ∂P
∂aj

Im
[
Gd

]
P

2

=
2

P

{
Re[f ]

(
Re[D]− ∂P

∂aj
Re

[
Gd

P

])
− Im[f ]

(
Im[D]− ∂P

∂aj
Im

[
G
∗
d

P

])}
. (B.9)

For unnormalized coherence, substituting P = 1 yields

∂

∂aj
|f |2 =2 {Re[f ]Re[D]− Im[f ]Im[D]}

=

√
2

π

Ãσ̃

η3`2
(Tj,j − Tj+1,j+1)

× {Re[f ]Re[Ψj]− Im[f ] Im[Ψj]} (B.10)

with Ψj as defined in (3.11a). The summation (3.10) follows immediately.

For the degree of coherence, substituting the normalization P =
√
I1I2 gives the residual f̃ de-

fined in (3.12a). Note that the normalized coherence is defined to be zero if either of the intensities

is zero. The partial derivative of the normalization term is

∂
√
I1I2
∂aj

=
1

2

(
I1I2

)−1/2 [
I1
∂Gd(y1 − y2, 0)

∂aj
+ I2

∂Gd(y1 + y2, 0)

∂aj

]
=
Tj,j − Tj+1,j+1

2
√
I1I2

{
I1C(y1 − y2, 0)Nη/σ̃ (bj(y1 − y2))

+I2C(y1 + y2, 0)Nη/σ̃ (bj(y1 + y2))
}

(B.11)
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Substituting (B.11) into (B.9) and continuing,

∂

∂aj
|f̃ |2 =

2√
I1I2

{
Re
[
f̃
](

Re[D]− ∂
√
I1I2
∂aj

Re[gd]

)

−Im
[
f̃
](

Im[D]− ∂
√
I1I2
∂aj

Im[g∗d]

)}

=

√
2

π

Ãσ̃

η3`2
(Tj,j − Tj+1,j+1)

×
{
Re
[
f̃
]
Re
[
Ψ̃j

]
− Im

[
f̃
]
Im
[
Ψ̃j

]}
(B.12)

with Ψ̃j as defined in (3.12b).
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APPENDIX C: OPTIMIZATION ALGORITHM DETAILS FOR IMAGE

RECONSTRUCTION DESCRIBED IN SECTION 5.3
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We define Ui := ΦiΨ, and let Vi = diag vi be the weight matrix associated with the weighted

norms (if sample weighting is not used, then Vi should be an identity matrix)1.

The minimization step (5.7) takes the analytic form [115]

zk+1 = Sκ/β
(
zk + yk/β

)
, (C.1)

where the component-wise shrinkage operator is

Sa(xi) = max {1− a/|xi |, 0}xi. (C.2)

For simplicity, in the following equations we use a single summation over all samples, rather than

separating the intensity sample from the coherence samples as was done in (5.5). Additionally, the

weight coefficient has been indexed and moved inside the summation. For coherence samples, i.e.

where i ∈ C, the ambient vector is set to ai = 0.

We solve step (5.6) using a gradient descent algorithm. The gradients are

∇xLβ = 2
∑

i∈(I∪C)

µiRe[U∗iViUix−U∗iVi(yi − αai)]

+ βRe[x− (z− y/β)],

∇αLβ = 2
∑

i∈(I∪C)

µiRe[αa∗iViai − a∗iVi(yi −Uix)].

The initial conditions for the gradient descent at step k+1 are the values calculated at the previous

step, i.e., xk and αk. The j th step of the gradient descent inner loop is chosen to minimize the

quadratic interpolation at points xj − q (∇xLβ) and αj − q (∇αLβ), where q ∈ {0.1, 0.5, 1}. Let

1In this appendix, we partially use the material published in the IEEE Transactions on Image Processing, 2019 [6].
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f j = Lβ(xj, αj, zk,yk). The descent algorithm stops when ‖ f j+1 − f j ‖/f j < εgrad.

For the x-update, we use the early termination technique described in [115, §4.3.2]. This is accom-

plished by splitting the ADMM algorithm into two parts: first the algorithm is run with εpri = 1,

εdual = 10−4, εgrad = 10−3. Then, the thresholds are set to the final values of εpri = 0.5, εdual = 10−6,

εgrad = 10−8.

While we used gradient descent for its simplicity and robustness, a possible enhancement would

be to use an optimization algorithm with faster convergence.
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APPENDIX D: SIGNAL PROCESSING IN DOUBLE-SLIT DMD

EXPERIMENTAL SETUP
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We now describe the method for extracting the coherence function magnitude and phase for the

double-slit DMD device [2, 8] (see Fig. 1.4). The interference patterns recorded by the CCD take

the form

I(x) ∝ sinc2
(

kx`

2πMf

){
I1 + I2 + 2|G(x1−x2)| cos

(
kx

Mf
(x1 − x2)− ϕ

)}
, (D.1)

where ϕ = Arg{G(x1−x2)}, ` ≈ 22.7 µm is the slit width, and I1 and I2 are the peak values

of the diffraction patterns from each slit, which can be obtained by activating one slit at a time,

sinc(x) = sin (πx)
πx

, and M = 2 is the magnification of the optical relay preceding the 2f Fourier

transform system comprising a lens of focal length f = 20 cm1. We obtain |g(x1−x2)| from

the visibility V of the recorded interferograms [Fig. 1.4(d)] along with intensity measurements

from individual slits, whereas the phase Arg{g(x1−x2)} is obtained from the displacement of the

interference pattern with respect to a reference [Fig. 1.4(e)].

The visibility V =(Imax−Imin)/(Imax +Imin) is obtained from the measured interferogram, where

Imax and Imin are the maximum and minimum values of I(x), respectively, from which we obtain

|g(x1−x2)|= I1+I2
2
√
I1I2

V [Figs. 1.4(b)–1.4(d)]. To extract the phase Arg{g(x1−x2)}, we estimate

the displacement of the interference patterns at different separations x1−x2 with respect to a fixed

fringe location.

1In this appendix, we partially use the material published in Optics Express, 2017 [2].
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Reprint permission emails are shown in Fig. E.1 and Fig. E.2.

Figure E.1: IEEE reprint permission letter for [6, 7].
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Figure E.2: OSA reprint permission letter for [1, 2, 8–16].
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