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ABSTRACT 
 

This thesis presents an automated traffic safety diagnostics solution using deep learning 

techniques to process traffic videos by Unmanned Aerial Vehicle (UAV). Mask R-CNN is 

employed to better detect vehicles in UAV videos after video stabilization. The vehicle trajectories 

are generated when tracking the detected vehicle by Channel and Spatial Reliability Tracking 

(CSRT) algorithm. During the detection process, missing vehicles could be tracked by the process 

of identifying stopped vehicles and comparing Intersect of Union (IOU) between the tracking 

results and the detection results. In addition, rotated bounding rectangles based on the pixel-to-

pixel manner masks that are generated by Mask R-CNN detection, which are also introduced to 

obtain precise vehicle size and location data. Moreover, surrogate safety measures (i.e. post-

encroachment time (PET)) are calculated for each conflict event at the pixel level. Therefore, 

conflicts could be identified through the process of comparing the PET values and the threshold. 

To be more specific, conflict types that include rear-end, head-on, sideswipe, and angle could be 

determined. A case study is presented at a typical signalized intersection, the results indicate that 

the proposed framework could notably improve the accuracy of the output data. Furthermore, by 

calculating the PET values for each conflict event, an automated traffic safety diagnostic for the 

studied intersection could be conducted. According to the research, rear-end conflicts are the most 

prevalent conflict type at the studied location, while one angle collision conflict is identified at the 

study duration. It is expected that the proposed method could help diagnose the safety problems 

efficiently with UAVs and appropriate countermeasures could be proposed after then.    
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CHAPTER 1: INTRODUCTION  
 
 

1.1 Background 
 
 

It is vitally important to collect traffic data before doing traffic safety analysis. When 

analyzing the traffic conditions for specific areas or road segments, thousands of detectors such as 

loop detectors or radar sensors located at fixed locations helps the traffic data collections. In 

addition, the detectors could not monitor most of the detailed driver behaviors, such as lane 

changing, merging, and interaction between road users in the past years. In 2018, Wu et al. 

analyzed rear-end crash risk for individual vehicles through a radar sensor on a freeway location 

(1). However, such analysis is still limited to certain locations that have installed detectors. 

Meanwhile, the detectors could not monitor many detailed driver behaviors, such as lane changing, 

merging, interaction between road users, etc. Trajectory data could be collected and utilized in 

traffic safety analysis due to the development of various technologies such as in-vehicle GPS, 

surveillance cameras, and Unmanned Aerial Vehicle (UAV) in recent years (2-4).  

In order to determine the relationship between crash risk and driver behavior, some studies 

utilize in-vehicle devices to collect data and some studies extracted road users’ trajectories by 

surveillance cameras.  By reviewing the data from surveillance cameras, the safety conditions for 

the selected areas can be calculate through surrogate safety measures, such as time-to-collis ion 

(TTC), post-encroachment time (PET)) (5-7).  
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1.2 Motivations and Objectives 
 

Nevertheless, since the data collection could be conducted for certain road users with the 

in-vehicle devices or certain locations that have installed certain infrastructure sensors such as 

radars and cameras. In recent years, the technologies of UAV have been developed, which can 

attract much attention when collecting the traffic data. Hence, UAVs are now advocated as an 

alternative data collection method to analyze road users’ trajectories and extract traffic flow 

parameters since researchers could select the locations and views for video recording (8).   

An automated framework for safety diagnosis utilized Mask R-CNN detection algorithm 

and Channel and Spatial Reliability Tracking (CSRT) multi-object tracking algorithm for UAV 

videos is proposed. Accurate trajectory data and vehicle information could be extracted from UAV 

videos based on the pixel-to-pixel manner predicted masks, which are generated by Mask R-CNN 

and object tracking process. So that, safety diagnostics based on PET values could be conducted 

for each pixel in the UAV images. 

 
 
 

1.3 Study Methodology 
 

 
The thesis includes three studies: proposed automatic detection and tracking system, 

system evaluation, and automatic traffic safety diagnostics system. 

Proposed automatic detection and tracking system could improve the precise of the output 

data. Moreover, the output of the framework are trajectories of the vehicles in the UAV video, and 

the vehicle size data from detection are also archived as one of the outputs. 
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For system evaluation, the trajectories extracted from the automatic detection and tracking 

processes are utilized as the input to automatically capture conflicts with the corresponding conflict 

types between road users.  

 An automatic traffic safety diagnostics system could extract trajectories and identify 

conflicts with the corresponding conflict types from UAV videos. PET is employed to identify 

potential conflicts due to its higher flexibility, which can better detect conflicts during turning 

movement. 

1.4 Thesis Structure  
 
 

The rest of the thesis is organized as follow: Chapter 2 provides a brief review of early 

studies; Chapter 3 elaborates the methodology; Chapter 4 reports methodology, and the results of 

the data collection and findings from the results; Finally, a summary is presented in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Unmanned Aerial Vehicle (UAV) 
 

 Several studies have been conducted UAVs, in order to obtain traffic parameters through 

detecting and tracking road users’ positions and movements from UAV videos. Since UAVs flying 

above the roadways, so that they usually collect the top views of vehicles. So that, vehicle locations 

could be directly obtained and plotted on a 2D map based on detection and tracking results without 

considering the impact of depth of field like in-vehicle or conventional surveillance cameras. Most 

of the previous studies focused on obtaining traffic flow data. In details, the data includes speed, 

volume, and density from UAV videos. For example, Ke et al. proposed a framework for traffic 

flow parameters estimation based on UAV videos through ensemble classifier (Haar cascade + 

convolutional neural network) and optical flow, and UAV videos from a freeway segment was 

utilized to test the system performance (8). Zhao et al. collected speed, density, and volume data 

for uninterrupted flow corridors based on an aerial camera array mounted on an airplane (9). 

Yamazki et al. extracted vehicle speeds based on detecting vehicles from two consecutive digita l 

aerial images (10). Meanwhile, some studies utilized UAV videos to investigated traffic safety 

related issues, such as incident detection. In 2014, Liu et al. used UAV to detect traffic incidents 

for low-volume roads (11). In 2015, Lee et al. proved the applicability of using UAV to conduct 

real-time incident monitoring through pilot tests (12). Even though some studies have been 

conducted to evaluate traffic safety situations using UAV (2,3), to the authors’ best knowledge, 

few studies have been conducted to propose methods to specifically diagnose traffic safety 

conditions based on UAV videos other than incident detection. Although UAV videos with high 

resolution and frame frequency could capture adequate ground details and vehicles’ movements, 
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most of the current studies focus on calculating the traffic flow characteristic and aggregating the 

data into certain time intervals.   

2.2 Surrogate Safety 
 

Surrogate safety measures are widely employed for safety diagnostics using trajectory data 

to describe the safety situations for a certain time and spatial range. Among the previous studies, 

TTC and PET are two of the most prevalent measures to evaluate road safety conditions. In 2018, 

Essa et al. employed TTC as the rear-end conflict indicator and developed conflict-based safety 

performance functions (SPFs) for signalized intersections based on surveillance cameras at 6 

signalized intersections (13). Guo et al. evaluated the effects of right-turn treatments effect on 

right-turn-on-red conflicts using TTC (14). Meanwhile, PET is preferred when turning or crossing 

movements are included. Fu et al. investigated pedestrian safety at unsignalized crossing by 

calculating surrogate safety measures including PET from videos (7). Moreover, TTC requires 

continuous calculation for each conflict event, which would return a set of values for each conflict. 

However, only one PET value is calculated and returned for each conflict event. Thus, PET is 

much simpler and faster to compute, which would be beneficial when evaluating safety situations 

between multiple road users within an area.  
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2.3 Detection and Tracking 
 

Detection and tracking of road users are one of the central applications in computer vision 

studies (15). Thus, in recent years, it has attracted more attention to solve video-based detection 

and tracking issues for both automated driving applications and road monitoring applications.  

Some car manufactures integrate cameras with Lidars in automated vehicles to obtain depth 

information and determine the boundaries of surrounding vehicles using sensor fusion technology. 

The improvement of vehicle boundary detection would be beneficial for real-time safety 

estimation including calculating TTC between the automated vehicles and their surrounding road 

users to avoid potential collisions. As for vision-based detection, the conventional vehicle 

detection methods (e.g. background subtraction, optical flow) tend to only work under simple 

traffic scenes such as uninterrupted traffic flow and have limitations to detect the precise locations 

of vehicles from UAV images. Meanwhile, the results could be sensitive to the environment like 

vehicle color, vehicle orientation, shadows, background motion, intricate ground conditions (16; 

17). Moreover, these methods may have difficulties to detect and track slow-moving or stopped 

vehicles. Thus, these methods could not be employed to analyze congested area or intersections. 

In recent years, multiple Regional-CNN (R-CNN) detection methods have been proposed based 

on deep learning approaches, which include R-CNN, fast R-CNN, and faster R-CNN. These 

methods have been applied for vehicle detection and have shown better performance than 

conventional approaches (16; 18; 19).  
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2.4 Summary 
 

In summary, to the authors’ best knowledge, no existing automated detection and tracking 

system has been proposed for pixel-to-pixel manner safety diagnostics based on UAV videos. 

Meanwhile, vehicles’ turning movements have not been considered for vehicle detection and 

tracking with computer vision technologies. In this study, the authors propose a framework for 

extracting vehicles’ trajectories and conducting safety diagnostics automatically. Then, a case 

study was conducted at a typical signalized intersection. 
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CHAPTER 3: METHODOLOGY 
 

3.1  Mask R-CNN Object Detection 
 

Mask R-CNN is used for vehicle detection in this research, which predicts segmentat ion 

mask in a pixel-to-pixel manner (20). The pixel-to-pixel manner mask would be beneficial to 

obtain precise location of vehicles in UAV images. Mask R-CNN algorithm could provide both 

classification and masks as output. Meanwhile, since Mask R-CNN could generate precise masks 

for detected objects, rotated bounding rectangles can be obtained from the masks, which provide 

an alternative method to obtain vehicle sizes and more precise locations. The rotated bounding 

rectangles for the detected objects can be generated based on the mask as the smallest rectangle 

that could cover the predicted mask (21). Since the straight bounding rectangles of the vehicles 

from detection would not be rotated to align with the vehicles moving direction. Thus, the results 

of vehicle sizes tend to be larger when vehicles are on a curve or turn at an intersection. Figure 1 

illustrates an example of the differences between the detected object’s mask, straight bounding 

rectangle, and rotated bounding rectangle. The area within the green line is the masked area of the 

detected object. The red rectangle is the rotated bounding rectangle of the predicted mask, while 

the yellow area is the straight bounding rectangle. As shown in the figure below, the area covered 

by the straight bounding rectangle tends to be larger when the vehicle is conducting turning 

movement.  
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Figure 1. Differences between mask, straight bounding box, and rotated bounding box 
 
 

The first step of detection is to collect sample library for vehicle images from UAV videos.  

In this study, over 10,000 vehicle samples were manually collected from multiple UAV videos (1 

image per 10 seconds) from different locations. Thus, each sample includes one vehicles without 

duplicated samples (17). Three indicators are chosen to evaluate the detection accuracy, which 

include correctness, completeness, and quality.  

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+ FP
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+ FN
 

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+ 𝐹𝐹𝐹𝐹+ FN
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where, True Positive (TP) means the number of vehicles that detected correctly; False 

Positive (FP) means the number wrongly detected vehicles; False Negative (FN) means the number 

of missing vehicles. Over 2,000 samples with different vehicle images were utilized to test the 

performance of training results. The performance of the detection algorithm is as follows: The 

correctness of the sample is 98%; The completeness is 77%; The quality of the samples is 76%. It 

is worth noting that since detection will run multiple times during the detection & tracking process 

to find the untracked vehicles, the performance is expected to be better when processing 

continuous video images.  Moreover, in order to illustrate the differences between rotated 

bounding rectangles and straight bounding rectangles. Intersection of Union (𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔 ) are calculated 

based on the following equation: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∩ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟ℎ

 

 

For all the detected vehicles, the average IOU for rotated bounding rectangle area is 0.81, 

while the average IOU for straight bounding rectangle area is 0.62. Meanwhile, based on the results 

of paired t-test, there is a significant difference in IOU values between the rotated and straight 

bounding rectangle area (p-value<0.01). The results indicate that the rotated bounding rectangle 

could provide more precise data for the locations of the detected objects.   

 

3.2  Vehicle Tracking Method 
 

Chanel and Spatial Reliability Tracking (CSRT) is used for tracking the object that are 

detected based on Mask R-CNN algorithm (22), which provides high accuracy but lower speed 

based on two standard features (i.e.  HoGs, Colornames) (23, 24). One of the challenges for vehicle 
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tracking is that vehicles may lose tracking due to the influence of shadows, light conditions, etc. 

Since the accuracy of the vehicle trajectories has a significant impact when calculating surrogate 

safety measures and plays an importation role in safety analysis, this study proposes the following 

step to detect lost vehicles while tracking: 

Step 0: Identify vehicle speed=0 at frame j; 

Step 1: Conduct detection for frame j; 

Step 2: Calculate the intersection-over-union for tracking and detection areas based on the 

following equation. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∩ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∪ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

 Step 3: if 𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷<threshold, find a lost vehicle and start tracking for the lost vehicle. The 

threshold that we employed in this study is 0.5. 

Meanwhile, vehicles’ moving directions can be extracted based on the difference in 

locations from two consecutive frames. Thus, vehicles’ bounding rectangles are rotated according 

to the moving direction to obtain more precise information of vehicles’ occupied locations. Figure 

2 (a) shows an example of a vehicle (#609) lost tracking when approaching a tree shadow area. 

The speed of the vehicle would be 0 after lost tracking. Thus, detection was conducted at that 

frame in order to find and continue tracking the lost vehicle. As it is shown in Figure 2(b), the lost 

vehicle is detected and tracked again as vehicle #634. Then, by comparing the lost time and 

location of vehicle #609 and the detected time and location of vehicle #634, vehicle #609 and 

vehicle #634 could be identified as the same vehicle.   
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(a) Lost tracking 

 
(b) Track the lost vehicle 

Figure 2. An example of find lost vehicle during tracking 
 

3.3 Conflict Identification 
 

Figure 4 shows the flowchart of conflict and conflict type identification.  In order to 

calculate PET values, a vehicle occupancy table needs to be generated, which include the 

timestamps that each part of each vehicle (front, middle, rear) that arrive and leave each pixel that 

the vehicle has occupied in the video. Then, PET values could be calculated by comparing the 

timestamps for two consecutive vehicles at each pixel. The PET is calculated as time difference 

between the first vehicle leaving the pixel and the time that the second vehicle arrives at the pixel. 

Conflicts could be identified by filtering out the events that have PET less than the threshold. In 

this study, a sensitivity analysis was conducted for different thresholds. In order to find the precise 

locations and time of the identified conflicts, the earliest arrival time and pixel of the second 

vehicle are utilized as the corresponding conflict point and conflict time.  
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Then, moving direction of the vehicles, Intersect of Pixels (IOP), and vehicle occupancy 

table are utilized to identify conflict types (i.e., head on, angle, rear-end, sideswipe). IOP is defined 

as the percentage of the pixels that have been occupied by both vehicles before the conflict event 

happens over the pixels that have been occupied by either vehicle. The value is employed to 

identify if the second vehicle is following the first vehicle, which could be used to determine if the 

conflict is rear-end collision conflict or not. If the angle between the two vehicles’ moving 

direction is between 0 degree and 45 degree or between 315 degree and 360 degree, and the IOP 

is less than or equals to the threshold, the conflict is identified as a rear-end conflict; If the angle 

is between 0 degree and 45 degree or between 315 degree and 360 degree, and the IOP is greater 

than the threshold, the conflict would be sideswipe conflict; Meanwhile, if the angle is between 

135 degree and 225 degree and the conflict parts are not the front parts of the vehicles, the conflict 

would also be identified as sideswipe conflict; If the angle is between 135 degree and 225 degree 

and the conflict parts are the front parts of the vehicles, the conflict would be a head-on conflic t; 

Otherwise, the conflict would be identified as an angle conflict. 
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Figure 3. Conflict identification 
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CHAPTER 4: FIELD SURVEY 
 

4.1 UAV Data 
 

To validate the proposed conflict diagnose framework, data collection was conducted on 

October 8th, 2018 from 8:30 AM to 8:50 AM at a typical 4-leg intersection at the University of 

Central Florida (UCF). A DJI Phantom 4 UAV was utilized to collect the data, and the video 

was captured by an optical camera with 1920 ×1080 resolution.  

4.2 Running Environment 
 

Mask R-CNN detection was conducted at intervals of 0.5 seconds by Keras (28). 

Meanwhile, the position of the vehicles was tracked at intervals of every 1
15

 second (15 frames 

per second mode) by OpenCV. All experiments are conducted using Python implementat ion 

on a desktop computer with Intel i9-7980XE (18 cores and 36 threads) @ 4.2Hz, 64 GB DDr4 

(3200MHz) memory and two Nvidia 2080ti GPUs.  

 

4.3 Detection and Tracking Performance 
 

In total, 1,588 vehicles were detected and tracked based on the UAV video. The accuracy of 

the proposed algorithm was evaluated based on IOU values. For each type of movement (i.e. 

left turn, right turn, straight), 20 vehicles were randomly selected from the UAV video. IOU 

values were calculated at the movement duration for each vehicle based on the outputs and the 

ground truths that were collected manually. Totally 3,541 video images were collected to 

calculate the IOU for the selected vehicles. Higher IOU values indicate higher accuracy of the 

detection and tracking results. Moreover, simple Mask R-CNN detection with CSRT tracker 

was conducted in order to compare with the performance of the proposed algorithm. As shown 

in Table 1, the proposed algorithm could significantly improve the performance for all type of 
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movements, especially for turning movements (i.e. left turn, right turn). Also, the straight 

movements have the best performance for both methods.  

Table 1. Comparison of Average IOUs 
 

Simple Mask R-CNN detection and CSRT tracker Proposed Algorithm 

Left Turn 0.42 0.78 

Right Turn 0.38 0.70 

Straight 0.80 0.85 

Average 0.53 0.76 

 
 

4.4 PET Diagnostics 
 

In order to calculate the PET values for each pixel data, vehicles’ occupancy table for 

each pixel was generated based on the vehicles’ trajectories. A table with 68,211,472 

observations were generated, which includes arrival and leave timestamps for every pixel of 

each part of the vehicles, and PET values were calculated based on the table. The PET values 

were calculated between two consecutive vehicles that have occupied the same pixels in the 

video, and one value is returned for each conflict with the corresponding conflict location at 

the pixel level. The conflict events with the corresponding locations of the identified potential 

conflicts were obtained based on the PET values. Moreover, heatmap could be generated 

based on the locations of the conflict events to investigate the spatial distribution of the 

conflicts.  

Figure 4(a) shows the conflict heatmap that were identified based on vehicles’ 

trajectories where PET values are less than 1.5 s. As it is shown in the figure, the right-

turning lane of the northbound has the highest risk. The results are expected as the right-

turning vehicles have more frequently stop-and-go behavior in order to yield to vehicles from 

the other directions and lead to higher rear-end collision risk. Since the data collection was 
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conduct at a typical morning peak duration, many vehicles turn right at the northbound to 

enter the UCF campus area. 

Figure 4 (b) displays the number of conflicts based on different PET thresholds. 

Different PET values could be employed to determine conflict risk levels, while smaller PET 

values indicate higher risk (29; 30). Significant difference could be observed for the number 

of conflicts with the increase of PET thresholds. If the PET threshold is 1 s, only 2 conflicts 

were identified as high-risk conflicts. When the threshold increases to 1.5 s, the conflict count 

increased to 22. Moreover, the number of conflicts increases to 90 when the PET threshold 

increases to 2 s.  

From the UAV video, most of the identified conflicts are rear-end collision conflicts, 

only 1 angle collision conflict was identified with PET value equal to 1.7 s.  

Figure 4 (c) shows an example of angle collision conflict, where a left-turning vehicle 

(vehicle #948) has a potential conflict with the straight moving vehicle (vehicle #955).  

Figure 4 (d) provides an example of rear-end collision conflict between vehicles #285 

and #287 which is due to relatively small headway.  

Based on the diagnosis results, countermeasures such as adding a dynamic message 

sign or beacon could be implemented at the upstream of the northbound approach to reduce the 

right-turn conflicts. 
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(a) Conflict heatmap (b) Conflict counts at different PET thresholds 

 

 

(c) An example of angle collision conflict (d) An example of rear-end collision conflict 

 

Figure 4. Safety diagnostics 
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CHAPTER 5: CONCLUSION 
 

This research proposes an automated framework for safety diagnosis utilizing Mask R-

CNN detection algorithm and Channel and Spatial Reliability Tracking (CSRT) multi-objec t 

tracking algorithm for UAV videos. A case study was conducted at a typical signalized 

intersection at UCF. The case study has validated the feasibility of investigating safety situat ion 

from UAV videos based on surrogate safety measures (i.e. PET). It also demonstrated that the 

proposed methods of using computer vision techniques to automatically extract vehicles ’ 

trajectories and identify conflicts from UAV videos have better performance in terms of data 

accuracy, especially for turning vehicles (i.e., right turning, left turning). To the best of the 

authors’ knowledge, this is the first study that proposes a framework to automatically identify 

conflict types from video-based trajectory data without using other types of data (e.g., road 

geometry, lane configuration).  Sensitivity analysis for PET threshold was conduct in the study. 

The results of the identified conflicts indicate that rear-end conflicts is the most prevalent type 

of conflicts for the studied intersection, while only one angle collision conflict was identified 

between a left-turning vehicle and a through vehicle. Moreover, the right-turning lane at the 

northbound was found to have the highest risk where many vehicles turn right to enter the UCF 

campus and frequently stop-and-go behavior were present in order to yield to the vehicles from 

other directions.  

In the future, different type of objects (e.g. truck, bus) could be detected with enriched 

UAV datasets for detection. Also, other surrogate safety measures (e.g. TTC) could be utilized 

to further explore the safety conditions of the study area. In addition, the data obtained from 

the UAV datasets can be served as a good validation dataset for the safety risk-related analysis, 

as an alternative augmentation to traditional data source such as Bluetooth and crash data (25, 

26, 27, 28, 29; 30); as well as a good dataset for CAV applications and prototype (31, 32,33, 

34; 35; 36).   



 20 

REFERENCES 
 

1. Wu, Y., M. Abdel-Aty, Q. Cai, J. Lee, and J. Park. Developing an algorithm to assess the rear-

end collision risk under fog conditions using real-time data. Transportation Research Part C: 

Emerging Technologies, Vol. 87, 2018, pp. 11-25. 

2. Gu, X., M. Abdel-Aty, Q. Xiang, Q. Cai, J. J. Yuan, and Prevention. Utilizing UAV video data 

for in-depth analysis of drivers’ crash risk at interchange merging areas. Accident Analysis & 

Prevention, Vol. 123, 2019, pp. 159-169. 

3. Xing, L., J. He, M. Abdel-Aty, Q. Cai, Y. Li, O.  Zheng. Examining traffic conflicts of up 

stream toll plaza area using vehicles’ trajectory data. Accident Analysis & Prevention, Vol. 

125, 2019, pp. 174-187. 

4. Ahmed, M. M., and A. Ghasemzadeh. The impacts of heavy rain on speed and headway 

behaviors: an investigation using the SHRP2 naturalistic driving study data. Transportation 

research part C: emerging technologies, Vol. 91, 2018, pp. 371-384. 

5. Sayed, T., K. Ismail, M. H. Zaki, and J. Autey. Feasibility of computer vision-based safety 

evaluations: Case study of a signalized right-turn safety treatment. Transportation Research 

Record: Journal of the Transportation Research Board, Vol. 2280, No. 1, 2012, pp. 18-27. 

6. Zaki, M. H., T. Sayed, A. Tageldin, and M. Hussein. Application of computer vision to 

diagnosis of pedestrian safety issues. Transportation Research Record: Journal of the 

Transportation Research Board, Vol. 2393, No. 1, 2013, pp. 7 

7. Fu, T., L. Miranda-Moreno, and N. Saunier. Pedestrian crosswalk safety at nonsignalized 

crossings during nighttime: use of thermal video data and surrogate safety measures. 

Transportation Research Record: Journal of the Transportation Research Board, Vol. 2586, 

No. 1, 2016, pp. 90-99. 

 



 21 

8. Ke, R., Z. Li, J. Tang, Z. Pan, and Y. Wang. Real-time traffic flow parameter estimation from 

UAV video based on ensemble classifier and optical flow. IEEE Transactions on Intelligent 

Transportation Systems, No. 99, 2018, pp. 1-11. 

9. Zhao, X., D. Dawson, W. A. Sarasua, and S. Birchfield. Automated traffic surveillance system 

with aerial camera arrays imagery: Macroscopic data collection with vehicle tracking. Journal 

of Computing in Civil Engineering, Vol. 31, No. 3, 2016, p. 04016072. 

10. Yamazaki, F., W. Liu, and T. Vu. Vehicle extraction and speed detection from digital aerial 

images.In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing 

Symposium, No. 3, IEEE, 2008. pp. III-1334-III-1337. 

11. Liu, X., Z. Peng, H. Hou, and L. Wang. Simulation and evaluation of using unmanned aerial 

vehicle to detect low-volume road traffic incident. Presented at Transportation Research Board 

94th Annual Meeting, 2015. 

12. Lee, J., Z. Zhong, K. Kim, B. Dimitrijevic, B. Du, and S. Gutesa. Examining the Applicabil ity 

of Small Quadcopter Drone for Traffic Surveillance and Roadway Incident Monitoring. Marine 

Transportation. Presented at 94rd Annual Meeting of the Transportation Research Board, 

Washington, D.C., 2015 

13. Essa, M., and T. Sayed. Traffic conflict models to evaluate the safety of signalized intersections 

at the cycle level. Transportation research part C: emerging technologies, Vol. 89, 2018, pp. 

289-302. 

14. Guo, Y., P. Liu, Y. Wu, J. Chen, and Security. Evaluating how right-turn treatments affect 

right-turn-on-red conflicts at signalized intersections. Journal of Transportation Safety & 

Security, 2018, pp. 1-22. 

15. Sayed, T., M. H. Zaki, and J. Autey. Automated safety diagnosis of vehicle–bicyc le 

interactions using computer vision analysis. Safety science, Vol. 59, 2013, pp. 163-172. 



 22 

16. Kim, E., H. Park, S.-W. Ham, S. Kho, and D.-K. Kim. Extracting Vehicle Trajectories Using 

Unmanned Aerial Vehicles in Congested Traffic Conditions. Journal of Advanced 

Transportation, Vol. 2019, 2019. 

17. Xu, Y., G. Yu, X. Wu, Y. Wang, and Y. Ma. An enhanced viola-jones vehicle detection method 

from unmanned aerial vehicles imagery. IEEE Transactions on Intelligent Transportation 

Systems, Vol. 18, No. 7, 2016, pp. 1845-1856. 

18. Tang, T., S. Zhou, Z. Deng, H. Zou, and L. Lei. Vehicle detection in aerial images based on 

region convolutional neural networks and hard negative example mining. Sensors, Vol. 17, No. 

2, 2017, p. 336. 

19. Xu, Y., G. Yu, Y. Wang, X. Wu, and Y. Ma. Car detection from low-altitude UAV imagery 

with the faster R-CNN. Journal of Advanced Transportation, Vol. 2017, 2017. 

20. He, K., G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.In Proceedings of the IEEE 

international conference on computer vision, 2017. pp. 2961-2969. 

21. OpenCV. Contour Features.  

https://docs.opencv.org/3.4.2/dd/d49/tutorial_py_contour_features.html. Accessed July 29, 

2019. 

22. Lukezic, A., T. Vojir, L. ˇCehovin Zajc, J. Matas, and M. Kristan. Discriminative correlation 

filter with channel and spatial reliability. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2017. pp. 6309-6318. 

23. Mallick, S. Object Tracking using OpenCV (C++/Python). 

https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/2019, Accessed July 

20, 2019. 

24. Yuan, J. and Abdel-Aty, M., 2018. Approach-level real-time crash risk analysis for signalized 

intersections. Accident Analysis & Prevention, 119, pp.274-289. 

https://docs.opencv.org/3.4.2/dd/d49/tutorial_py_contour_features.html
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/2019


 23 

25. Wu, Y., Abdel-Aty, M., Ding, Y., Jia, B., Shi, Q. and Yan, X., 2018. Comparison of proposed 

countermeasures for dilemma zone at signalized intersections based on cellular automata 

simulations. Accident Analysis & Prevention, 116, pp.69-78. 

26. Cai, Q., Abdel-Aty, M., Sun, Y., Lee, J. and Yuan, J., 2019. Applying a deep learning approach 

for transportation safety planning by using high-resolution transportation and land use 

data. Transportation Research Part A: Policy and Practice, 127, pp.71-85. 

27. Yuan, J., Abdel-Aty, M., Wang, L., Lee, J., Yu, R. and Wang, X., 2018. Utilizing bluetooth 

and adaptive signal control data for real-time safety analysis on urban arterials. Transportat ion 

research part C: emerging technologies, 97, pp.114-127. 

28. Zhang, J., Yan, X., An, M. and Sun, L., 2017. The impact of beijing subway’s new fare policy 

on riders’ attitude, travel pattern and demand. Sustainability, 9(5), p.689. 

29. Yue, L., Abdel-Aty, M., Lee, J. and Farid, A., 2019. Effects of signalization at rural 

intersections considering the elderly driving population. Transportation research 

record, 2673(2), pp.743-757. 

30. Wang, X., Yuan, J., Schultz, G.G. and Fang, S., 2018. Investigating the safety impact of 

roadway network features of suburban arterials in Shanghai. Accident Analysis & Prevention, 

113, pp.137-148. 

31. Chen, D., Yan, X., Liu, F., Liu, X., Wang, L. and Zhang, J., 2019. Evaluating and diagnos ing 

road intersection operation performance using floating car data. Sensors, 19(10), p.2256. 

32. Yue, L., Abdel-Aty, M., Wu, Y. and Wang, L., 2018. Assessment of the safety benefits of 

vehicles’ advanced driver assistance, connectivity and low level automation systems. Accident 

Analysis & Prevention, 117, pp.55-64. 

33. Yue, L., Abdel-Aty, M.A., Wu, Y. and Farid, A., 2019. The Practical Effectiveness of 

Advanced Driver Assistance Systems at Different Roadway Facilities: System Limitation, 

Adoption, and Usage. IEEE Transactions on Intelligent Transportation Systems. 



 24 

34. Zheng, O. and ElAarag, H., 2018, April. Simultaneous locallzation and mapping using UAVs 

equipped with inexpensive sensors. In Proceedings of the Communications and Networking 

Symposium (p. 1). Society for Computer Simulation International. 

35. Cai, Q., Abdel-Aty, M. and Lee, J., 2017. Macro-level vulnerable road users crash analysis: a 

Bayesian joint modeling approach of frequency and proportion. Accident Analysis & 

Prevention, 107, pp.11-19. 

36. Wu, Y., Abdel-Aty, M., Zheng, O., Cai, Q. and Yue, L., 2019. Developing a Crash Warning 

System for the Bike Lane Area at Intersections with Connected Vehicle 

Technology. Transportation Research Record, 2673(4), pp. 47-58. 

 

 

 


	Developing a Traffic Safety Diagnostics System for Unmanned Aerial Vehicles UsingDeep Learning Algorithms
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Motivations and Objectives
	1.3 Study Methodology
	1.4 Thesis Structure

	CHAPTER 2: LITERATURE REVIEW
	2.1 Unmanned Aerial Vehicle (UAV)
	2.2 Surrogate Safety
	2.3 Detection and Tracking
	2.4 Summary

	CHAPTER 3: METHODOLOGY
	3.1  Mask R-CNN Object Detection
	3.2  Vehicle Tracking Method
	3.3 Conflict Identification

	CHAPTER 4: FIELD SURVEY
	4.1 UAV Data
	4.2 Running Environment
	4.3 Detection and Tracking Performance
	4.4 PET Diagnostics

	CHAPTER 5: CONCLUSION
	REFERENCES

