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ABSTRACT 

Quantifying the structural dynamics of complex media is challenging because of the multiple 

temporal and spatial scales involved. Thanks to the ability to retrieve collective dynamics 

noninvasively, light scattering-based approaches are often the methods of choice. This dissertation 

discusses specific features of dynamic light scattering that utilizes spatio-temporal coherence 

gating. It is demonstrated that this optical fiber-based approach can operate over a large range of 

optical regimes and it has a number of unique capabilities such as an effective isolation of single 

scattering, a large sensitivity, and a high collection efficiency. Moreover, the approach also 

provides means for proper ensemble averaging, which is necessary when characterizing multi-

scale dynamics. A number of applications are reviewed in which these specific characteristics 

permit recovering dynamic information of complex fluids beyond the capabilities of traditional 

light scattering-based techniques. 
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CHAPTER I: INFORMATION ENCODED IN TEMPORAL FLUCTUATIONS 

OF LIGHT 

Optical techniques are often the methods of choice for monitoring the structural dynamics of 

complex media such as colloidal suspensions, polymer solutions, and biological fluids. In 

particular, their experimental flexibility and potential noninvasiveness are critical for the passive 

assessment of dynamic processes which is relevant in a number of fields including colloidal 

physics and surface chemistry, materials science and manufacturing, and biomedical applications. 

More specifically, light scattering-based approaches have proved robust thanks to their capability 

to retrieve collective dynamic information through the intensity fluctuations of the light scattered. 

In particular, there are two main techniques namely Dynamic Light Scattering (DLS) [1], also 

known as Photon Correlation Spectroscopy (PCS) or Quasi-elastic Light Scattering (QELS) [2], 

and the so-called Diffusing Wave Spectroscopy (DWS) [3]. These two techniques – DLS and DWS 

– are complementary in the sense that they operate in opposite optical regimes. 

Briefly, DLS is geometry-independent, it is restricted to singly-scattered light, and the 

characteristic correlation time of the light intensity fluctuations is associated to displacements of 

the scattering centers over one wavelength. Conversely, DWS is suitable for situations of strong 

multiple scattered i.e., optically dense systems, it is limited to transmission measurements, and the 

characteristic correlation time of the light intensity fluctuations is associated to a change of one 

wavelength in length over the entire light path. Additionally, the analysis of DWS data requires 

knowledge of the path length distribution of photons traveling through the sample, which can be 



2 
 

measured or assumed [3]. Therefore, DWS can access faster dynamics than DLS, but only if one 

knows the functional form of the distribution of path lengths throughout the scattering medium. 

The optical sensing approach presented here, a spatio-temporal coherence-gated DLS, provides 

information about the dynamics of media with optical densities between these two extremes. This 

is possible because of an effective isolation of single scattering events, which is realized solely by 

optical means. 

1.1 Fluctuations of light intensity 

In its most general form, the total electric field scattered by a collection of N particles illuminated 

with a plane wave along the direction of the scattering vector 𝑞𝑞� can be written as 

𝐸𝐸(𝑞𝑞�, 𝐸𝐸) = ∑ 𝑝𝑝𝑖𝑖(𝑞𝑞�, 𝐸𝐸)𝑒𝑒𝑒𝑒𝑝𝑝[−𝑖𝑖𝑞𝑞� ∙ 𝐸𝐸𝚤𝚤�(𝐸𝐸)]𝑁𝑁
𝑖𝑖     (1) 

where 𝑝𝑝𝑖𝑖(𝑞𝑞�, 𝐸𝐸) is an amplitude factor depending on the instantaneous ‘scattering configuration’ of 

the i-th particle which in turn is determined by the particle’s orientation and/or its (rapidly time-

varying) scattering cross-section. A case where the scattering cross section varies at optical 

frequencies is unlikely. However, the particle’s polarizability can lead to fast variations in its 

orientation. In the case of spherically symmetric particles with slowly-varying or constant 

scattering cross-section, the amplitude factor 𝑝𝑝𝑖𝑖 is independent of time such that: 

𝐸𝐸(𝑞𝑞�, 𝐸𝐸) = ∑ 𝑝𝑝𝑖𝑖(𝑞𝑞�)𝑒𝑒𝑒𝑒𝑝𝑝[−𝑖𝑖𝑞𝑞� ∙ 𝐸𝐸𝚤𝚤�(𝐸𝐸)]𝑁𝑁
𝑖𝑖      (2) 

If the particles are assumed to have identical scattering cross-section: 

𝐸𝐸(𝑞𝑞�, 𝐸𝐸) ≅ 𝑝𝑝(𝑞𝑞�)∑ 𝑒𝑒𝑒𝑒𝑝𝑝[−𝑖𝑖𝑞𝑞� ∙ 𝐸𝐸𝚤𝚤�(𝐸𝐸)]𝑁𝑁
𝑖𝑖      (3) 
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This is a simplified expression for the total electric field scattered by a collection of N identical 

spherically symmetric particles illuminated by a plane wave. Nevertheless, in Optics we never 

measure the electric field directly, but field-field correlations. 

Assuming the stationarity of the process (at least during the time of the measurement) the electric 

field autocorrelation function (ACF), can be written as: 

⟨𝐸𝐸(𝑞𝑞�, 𝐸𝐸)𝐸𝐸∗(𝑞𝑞�, 𝐸𝐸 + 𝜏𝜏)⟩ = |𝑝𝑝(𝑞𝑞�)|2 �∑ 𝑒𝑒𝑒𝑒𝑝𝑝 �−𝑖𝑖𝑞𝑞� ∙ �𝐸𝐸𝚤𝚤�(𝐸𝐸) − 𝐸𝐸𝚥𝚥�(𝐸𝐸 + 𝜏𝜏)��𝑖𝑖,𝑗𝑗 �  (4) 

The ij cross terms included in this equation describe correlated motion of the particles. If the 

particles are assumed to be statistically independent i.e., non-interacting, as it would be the case 

of a dilute system, these cross terms vanish and the ACF can be expressed only in terms of self-

interactions: 

⟨𝐸𝐸(𝑞𝑞�, 𝐸𝐸)𝐸𝐸∗(𝑞𝑞�, 𝐸𝐸 + 𝜏𝜏)⟩ = �
|𝑝𝑝(𝑞𝑞�)|2 ∑ �𝑒𝑒𝑒𝑒𝑝𝑝 �−𝑖𝑖𝑞𝑞� ∙ �𝐸𝐸𝚤𝚤�(𝐸𝐸) − 𝐸𝐸𝚥𝚥�(𝐸𝐸 + 𝜏𝜏)��� ≡ 0𝑖𝑖≠𝑗𝑗

|𝑝𝑝(𝑞𝑞�)|2 ∑ �𝑒𝑒𝑒𝑒𝑝𝑝�−𝑖𝑖𝑞𝑞� ∙ �𝐸𝐸𝚤𝚤�(𝐸𝐸) − 𝐸𝐸𝚤𝚤�(𝐸𝐸 + 𝜏𝜏)���𝑖𝑖 ≠ 0
  (5) 

But, since the particles were assumed to be identical, the sum would be performed N times such 

that the ACF can be written as: 

⟨𝐸𝐸(𝑞𝑞�, 𝐸𝐸)𝐸𝐸∗(𝑞𝑞�, 𝐸𝐸 + 𝜏𝜏)⟩ = 𝑁𝑁|𝑝𝑝(𝑞𝑞�)|2�𝑒𝑒𝑒𝑒𝑝𝑝�−𝑖𝑖𝑞𝑞� ∙ �𝐸𝐸𝚤𝚤�(𝐸𝐸) − 𝐸𝐸𝚤𝚤�(𝐸𝐸 + 𝜏𝜏)���   (6) 

The term 𝑁𝑁|𝑝𝑝(𝑞𝑞�)|2 is the total amplitude of scattering signal and can be taken as a normalization 

factor for the ACF. In this way, by normalizing with respect to the average total scattering, the 

electric field ACF can be written in terms only of the fluctuating quantities: 

𝑔𝑔(1)(𝑞𝑞�, 𝜏𝜏) = ⟨𝐸𝐸(𝑞𝑞�,𝑡𝑡)𝐸𝐸∗(𝑞𝑞�,𝑡𝑡+𝜏𝜏)⟩
⟨|𝐸𝐸(𝑞𝑞�,𝑡𝑡)|2⟩

= �𝑒𝑒𝑒𝑒𝑝𝑝�−𝑖𝑖𝑞𝑞� ∙ �𝐸𝐸𝚤𝚤�(𝐸𝐸) − 𝐸𝐸𝚤𝚤�(𝐸𝐸 + 𝜏𝜏)���   (7) 



4 
 

This expression for the normalized ACF can be found in the literature and it is typically written in 

the form [4, 5]: 

𝑔𝑔(1)(𝑞𝑞�, 𝜏𝜏) = ⟨𝑒𝑒𝑒𝑒𝑝𝑝[𝑖𝑖𝑞𝑞∆𝐸𝐸(𝜏𝜏)]⟩     (8) 

where ∆𝐸𝐸(𝜏𝜏) = 𝐸𝐸𝑖𝑖(𝐸𝐸 + 𝜏𝜏) − 𝐸𝐸𝑖𝑖(𝐸𝐸) is the separation distance between the positions of the i-th 

particle at times t and t+τ, and 𝑞𝑞 = [4𝜋𝜋𝜋𝜋𝐸𝐸𝑖𝑖𝜋𝜋(𝜃𝜃 2⁄ )] 𝜆𝜆0⁄   is the magnitude of the scattering vector. 

It is important to note that up to here no assumption has been made on the nature of the particle’s 

displacement (only uncorrelated motion was assumed). In other words, we have not imply anything 

about the probability distribution of the particles’ velocity. It is exactly this aspect of the system’s 

dynamics what comes into play for the calculation of the ensemble average in Eq. (8). 

For instance, it can be shown (by expanding the exponential term in Eq. (8)) that when the particle 

velocity has a symmetric probability distribution i.e., mean value and odd higher order moments 

are all zero, Eq. (8) can be written in terms of a generalized mean-square displacement (MSD) [6]: 

𝑔𝑔(1)(𝑞𝑞�, 𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
6
𝑞𝑞2⟨∆𝐸𝐸2(𝜏𝜏)⟩�    (9) 

If this symmetric particle velocity probability distribution is taken to be isotropic i.e., Maxell-

Boltzmann distribution; that is a zero mean, Gaussian probability distribution of the particles’ 

displacements, one would obtain the traditional expression of the ACF for a dilute, monodisperse 

collection of particles executing Brownian motion [1]: 

𝑔𝑔(1)(𝑞𝑞�, 𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑝𝑝[−𝐷𝐷𝑞𝑞2𝜏𝜏]     (10) 
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where the MSD is defined as ⟨∆𝐸𝐸2(𝜏𝜏)⟩ ≡ 6𝐷𝐷𝜏𝜏 with 𝐷𝐷 = 𝑘𝑘𝐵𝐵𝑇𝑇 6𝜋𝜋𝜋𝜋𝜋𝜋⁄  the translational diffusion 

coefficient. 

Regardless of the details discussed previously on the specific nature of the particles’ velocity 

probability distribution, if the central limit theorem is satisfied, then the Siegert relation, 𝑔𝑔(2)(𝜏𝜏) =

1 + 𝛽𝛽�𝑔𝑔(1)(𝜏𝜏)�
2
 is valid [1, 7]. Thus, the intensity ACF function can be directly linked to the 

electric field ACF. In this way, the thermodynamic and hydrodynamic properties of the system 

can be connected directly to measurable optical quantities. In other words, transport properties of 

the scattering centers in the system can be inferred from the analysis of the light intensity 

fluctuations. 

Fig. 1 summarizes this process where the dynamic information is encoded into light intensity 

fluctuations. The far-field speckle pattern formed by the interference of the field scattered from 

the scattering centers has regions of high and low intensity due to constructive and destructive 

interference. At a single speckle location, the well-defined temporal correlation properties of the 

light intensity fluctuations contain information of the transport properties of the scattering centers. 

 

Figure 1. a) The total electric field scattered by a collection of N identical, non-interacting particles 
illuminated by a plane wave produces a speckle pattern as the result of the interference between the 
field scattered from all the particles. b) The speckle pattern shows regions of high and low intensity 
due to constructive and destructive interference. At a single spatial point of the speckle strong 
temporal fluctuations of the intensity, with a certain well defined temporal correlation, are observed. 
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Eq. (8)-(9) encloses the most fundamental aspects of the system’s dynamics. The interpretation of 

the general MSD can take several forms depending upon the nature of the situation described. For 

instance, the time-varying MSD can be interpreted as the result of the diffusion of particles with 

time-varying size, or particles diffusing in a suspending medium with time-varying viscosity, or 

as a time-varying diffusion constant, or simply, by the definition of the MSD itself, as the time-

dependent evolution of the extent explored by the random walkers. All these interpretations can 

be incorporated into the Langevin equation through the velocity autocorrelation function in order 

to infer the forces acting on the particles [8]. The usefulness of this generalization of the MSD will 

be shown in the following sections in the context of the hydrodynamic coupling and caging effects 

typically encountered in complex systems consisting of polymer networks. 

1.2 Dynamic light scattering 

In DLS the autocorrelation function for Brownian particles (Eq. (10)) is extended to the general 

case of a polydisperse system such that it is expressed as a sum of the exponential decays 

corresponding to each of the species in the population [1]: 

�𝑔𝑔(1)(𝑞𝑞; 𝜏𝜏)� = ∫ 𝐺𝐺(Γ)𝑒𝑒𝑒𝑒𝑝𝑝(−Γ𝜏𝜏)𝑑𝑑Γ∞
0 = ∑ 𝐺𝐺(Γ𝑖𝑖)𝑒𝑒𝑒𝑒𝑝𝑝(−Γ𝑖𝑖𝜏𝜏)𝑁𝑁

𝑖𝑖=1   (11) 

where Γ𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑞𝑞2 is the characteristic decay rate of the i-th population and G(Γi) is the distribution 

of these decay rates.  

Fig. 2 shows a schematic of the DLS experimental setup. As general features, DLS is independent 

of the experimental geometry i.e., can be performed at various angles, and it is restricted to singly-

scattered light i.e., transparent samples. As an example, for silica particles (𝜋𝜋 ≈ 1.5) suspended in 
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water, multiple scattering effects can be neglected for concentrations < 1 𝑤𝑤𝐸𝐸%. The characteristic 

correlation time in DLS is associated to particles diffusing over one wavelength. Due to the 

experimental flexibility, the translational diffusion coefficient can be retrieved at a single or 

multiple angles depending on the wave vector q. 

 

Figure 2. Schematic of a DLS experiment with the option of having a referenced (heterodyne) 
configuration. The characteristic correlation time in DLS is associated to particles diffusing over 
one wavelength. 

In DLS, the intensity ACF is typically analyzed by the cumulants method first proposed by Koppel 

[9]. This analysis is justified because the electric field ACF (Eq. (11)) happens to have the form of 

the moment-generating function of Γ. This approach is overall less affected by experimental noise 

but one should exert care in that this method is valid for small τ and sufficiently narrow G(Γ) [10]. 

Also, despite the generality of this approach, in practice the analysis is truncated up to the second 

or third order moment due to the loss of accuracy of higher-order terms of the power-series [11].  

An alternative method, which was first proposed by Provencher, is based on the numerical 

inversion of Eq. (11) via Laplace transform using the well-known CONTIN algorithm [12, 13]. 

This approach is ideal for polydisperse systems with particle populations close in size (down to a 

factor of 5 between the populations) that cannot be resolved with the cumulants method. 
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1.3 Diffusing-wave spectroscopy 

DWS is derived from DLS in the limit of strong multiple scattering [3]. In this case, it has been 

demonstrated that the electric field ACF takes the form [14]: 

𝑔𝑔(1)(𝜏𝜏) ∝ ∫ 𝑝𝑝(𝐸𝐸)𝑒𝑒𝑒𝑒𝑝𝑝 �− �2𝜏𝜏
𝜏𝜏0
� �𝑠𝑠

𝑙𝑙∗
�� 𝑑𝑑𝐸𝐸∞

0     (12) 

where 𝜏𝜏 is the delay time, 𝜏𝜏0 = 1 Γ⁄ = 1 (𝐷𝐷2𝑞𝑞)⁄  is the characteristic diffusion time, 𝑙𝑙∗ is the 

transport mean free path, and 𝑝𝑝(𝐸𝐸) is the probability that the light travels the path 𝐸𝐸.  

Details in the derivation of Eq. (12) can be found elsewhere [15, 16]. It is important to notice that 

the analysis of DWS data is based on the theory of diffusion of light, which implies knowing the 

probability density of the distribution of photon paths through the medium, 𝑝𝑝(𝐸𝐸), and the 

associated parameters such as the photon transport mean free path, 𝑙𝑙∗, and the photon absorption 

length, 𝑙𝑙𝑎𝑎. This path lengths can be measured for the specific system under study but, for practical 

purposes, it is typically assumed to be Gaussian [3].  

Fig. 3 shows a schematic of the DWS experimental setup. As general features, DWS is restricted 

to situations of strong multiple scattering i.e., optically dense systems such as highly-concentrated 

samples, and is limited to transmission measurements. The characteristic correlation time in DWS 

is associated to a change of a wavelength over the entire path length. This means that in DWS, the 

scattering particles need to diffuse less, and therefore over shorter time scales, in order to 

cumulatively induce the path length difference required for the scattered field to decorrelate. 

Therefore, DWS can access much faster dynamics than DLS. 
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Figure 3. Schematic of a DWS experiment. The characteristic correlation time in DWS is associated 
to a change of one wavelength over the entire path length. 

Short after its creation, the use of DWS was extended to large variety of applications in condensed 

matter sciences. For instance, in homogeneous colloidal systems, DWS has been used to study fast  

hydrodynamics, interparticle correlations, phase transitions, and convective motion [17, 18]. One 

of its most popular uses is in microrheology for the quantitative measurement of the viscoelastic 

properties of complex fluids [19, 20]. More recently, its use has been extended to biomedical 

applications for clinical diagnosis [21]. 

The main drawback of this technique is its strong geometry dependence. Besides the assumptions 

on the distribution of path lengths that have to be made (which does not always apply) in the limit 

of diffusive transport, it is important to realize that 𝑝𝑝(𝐸𝐸) can take certain analytical forms only for 

samples with flat boundaries i.e., flat sample cells. It has been until very recently that that the 

information retrieval in DWS was extended for measurements in cylindrical sample cells [22].  

A brief review on DWS, including both a detailed discussion on its limitations as well as some 

approaches that have been developed to mitigate them, are summarized in the Appendix D. 
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CHAPTER II: COHERENCE-GATED DYNAMIC LIGHT SCATTERING 

2.1 General concept 

In general terms, the underlying principle of operation of our spatio-temporal coherence-gated 

DLS technique can be understood as the (temporal) partially coherent interference of two (spatial 

partially coherent) speckle fields. More specifically, in our optical fiber-based implementation, 

those two interfering fields correspond to that generated after reflection at the end facet of a 

multimode fiber (MMF), 𝐸𝐸(𝑟𝑟)(𝐸𝐸) (reference field), and the portion of the field scattered by the 

system under study, 𝐸𝐸(𝑠𝑠)(𝐸𝐸), that is coupled back to the MMF, as schematically shown in Fig. 4. 

 

Figure 4. Fiber-based implementation of the spatio-temporal coherence-gated dynamic light 
scattering. The reference field, 𝐸𝐸(𝑟𝑟)(𝐸𝐸), generated from the Fresnel reflection at the distal end facet 
A of a multimode fiber (MMF), interferes with the portion of the scattered field, 𝐸𝐸(𝑠𝑠)(𝐸𝐸), that is 
coupled back to the MMF. The depth from where coherent scattering is collected is determined by 
the coherent length of the light source, 𝑙𝑙𝑐𝑐. The heterodyne amplification of 𝐸𝐸(𝑠𝑠)(𝐸𝐸), which results 
from its interference with the local oscillator located at the fiber-medium interface, permits 
measuring the dynamics of the complex medium at the detector side B. 

The interaction between the reference and scattered fields is gated three-dimensionally by i) the 

spatial partially coherent speckle field distribution used for illumination, which across the facet of 

the fiber is coherent only within the extent of each speckle, and ii) the spectral properties of the 
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incident radiation, which leads to a finite depth in which the two fields maintain a phase relation, 

as illustrated in Fig. 4. 

This situation is similar to the addition of correlated speckle fields for the particular case where 

their correlation is limited to take place only within the extent of the coherence length [23] or, 

equivalently, as the heterodyne amplification of a scattered field, with a local oscillator of the same 

frequency, at multiple, independent spatial locations in parallel [24, 25]. 

Since 𝐸𝐸(𝑟𝑟)(𝐸𝐸) and 𝐸𝐸(𝑠𝑠)(𝐸𝐸) can interfere only at each location of independent illumination i.e., at 

each speckle, the total field at the end facet of the fiber (location A) can be written as the coherent 

addition i.e., on an amplitude basis, of the reference and scattered field in the form: 

𝐸𝐸𝐴𝐴(𝐸𝐸) = ∑ 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝐸𝐸)𝑁𝑁
𝑖𝑖     (13) 

It is well known that the coherent addition of speckle fields does not reduce the contrast of speckles 

and has no effect on the signal-to-noise ratio. In other words, the addition of two random fields on 

an amplitude basis results simply on a third random field distribution with statistics 

indistinguishable from the original ones [26, 27]. 

Based on this idea, the MMF can be thought to be a black box that transfers the field distribution 

𝐸𝐸𝐴𝐴(𝐸𝐸) into a new field distribution 𝐸𝐸𝐵𝐵(𝐸𝐸) on the other end. Thus, for a loss-less system and without 

any special cross-channel interaction between the two ends A and B, the inter-channel 

communication will lead to a uniform contribution from all the i-th locations on the A-side onto 

all the j-th locations on the B-side such that the total field at a single j location on the B-side is: 

𝐸𝐸𝑗𝑗𝐵𝐵(𝐸𝐸) = 1
√𝑁𝑁
∑ 𝐸𝐸𝑖𝑖

(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸)𝑁𝑁

𝑖𝑖     (14) 
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In their more general form, the reference and scattered fields at the i-th location can be written as: 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑟𝑟)(𝐸𝐸)𝑒𝑒−𝑗𝑗�𝜔𝜔𝑟𝑟𝑡𝑡−𝜙𝜙𝑖𝑖
(𝑟𝑟)(𝑡𝑡)�    (15a) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)(𝐸𝐸)𝑒𝑒−𝑗𝑗�𝜔𝜔𝑠𝑠𝑡𝑡−𝜙𝜙𝑖𝑖
(𝑠𝑠)(𝑡𝑡)�    (15b) 

In this general form one can recognize the notation typically used for the heterodyne technique in 

radar applications where, in general, the local oscillator has different frequency than the signal that 

is to be amplified [24, 25]. In our particular conditions of quasi-elastic scattering the optical 

frequency of both the local oscillator and the scattered field are the same i.e. 𝜔𝜔𝑟𝑟 ≈ 𝜔𝜔𝑠𝑠 = 𝜔𝜔. 

The electric field cannot be measured at optical frequencies and only the slowly-varying envelope 

can be followed. Moreover, since it is only the relative phases what contain the information of the 

relation between the two fields, the rapidly-varying oscillations can be removed from the previous 

expressions. Furthermore, if the field amplitudes are assumed to be approximately constant over 

time and only the time-varying phase 𝜙𝜙𝑖𝑖(𝐸𝐸) is considered, the previous definitions of the fields 

simplify to: 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝐸𝐸𝑖𝑖

(𝑟𝑟) = 𝜀𝜀𝑖𝑖
(𝑟𝑟)      (16a) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)      (16b) 

The total intensity right behind the end facet of the fiber on the A-side is the (incoherent) addition 

of the intensity contributions from at all i-locations. However, within each of these locations, the 

local intensity results from the coherent addition 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) and 𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝐸𝐸) such that: 
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𝐼𝐼𝐴𝐴(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖     (17) 

On the B-side the situation is similar in the sense that the total intensity associated to that spatially 

partially coherent field distribution is given by the contribution from all j locations, with the 

difference that now the local intensity at the j-th location contains contributions from all the i-

locations on the A-side: 

𝐼𝐼𝐵𝐵(𝐸𝐸) = ∑ 𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸)𝑀𝑀
𝑗𝑗 = ∑ � 1

√𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟) + 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖 �
2

𝑀𝑀
𝑗𝑗    (18) 

The above-mentioned energy conservation argument (the total intensity at both ands A and B is 

the same) i.e., 𝐼𝐼𝐴𝐴(𝐸𝐸) = 𝐼𝐼𝐵𝐵(𝐸𝐸), can be verified by expanding Eq. (6), while assuming that i) the 

amplitude of the electric fields involved is roughly the same at all locations i.e., 𝜀𝜀𝑖𝑖
(𝑟𝑟) = 𝜀𝜀(𝑟𝑟) and 

𝜀𝜀𝑖𝑖
(𝑠𝑠) = 𝜀𝜀(𝑠𝑠), ii) the self-interaction of the reference field at two different spatial locations if 

forbidden (due to the spatial partially coherent nature of the reference field), iii) the interaction 

between the reference field at certain location and the scattered field at a different location is 

forbidden (due to the scattered field is locked to interact only with its corresponding reference field 

at the same location), iv) the self-interaction of the scattered field at two different spatial locations 

if forbidden, and v) the scattered field 𝐸𝐸(𝑠𝑠)(𝐸𝐸) completely fills the acceptance cone of the MMF 

(the number of speckles remains the same at any location along the multimode fiber i.e., M=N). 

The conservation of energy has deeper implications since it results in that the field distributions at 

both ends are connected only by a phase relation, which means that the intensity statistics are 

conserved. In other words, the intensity autocorrelation function, which encodes the dynamic 
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information of the complex medium, gives the same result regardless of the location at which it is 

calculated along the fiber. 

2.2 Optical modes interpretation 

Interestingly, one can get to the same conclusion by following a different yet equivalent reasoning 

in terms of the modal coupling in the multimode fiber. 

Irrespectively of the initial input field distribution before reflection at the end facet of the fiber, a 

strong mode coupling occurs between the input and all the modes supported by the MMF due to 

the abrupt change of the propagation angle after the Fresnel reflection. The reference field can 

therefore be considered as the superposition of all the eigenmodes of the MMF. More importantly, 

at the fiber-medium interface all the mode are excited in phase. 

Strong inter-mode coupling in MMF occurs mainly due to the modal dispersion and the non-

uniformity of the fiber along the propagation direction [28, 29]. Due to the nature of their origin, 

these effects are naturally more significant in long fibers (hundreds of meters or longer). For short 

MMFs in the weakly-guiding regime both the modal dispersion and the non-uniformity of the 

optical fiber can be neglected such that the modes in the optical fiber are weakly coupled [30-33]. 

These are both reasonable assumptions for the short, standard MMFs used in our experiments. 

Having a weak modal coupling is equivalent to neglecting the cross-interactions at different spatial 

locations in the speckle fields. Moreover, if besides the in-phase excitation one assumes that all 

the modes are also equally excited in amplitude, one can easily picture the independent back-

propagation of all the modes in the MMF. In this way, one can see that the field distributions at 
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both ends A and B contain the contribution from all the modes and only a phase difference after 

propagation connects the two. 

2.3 Dynamic information retrieval 

From the same definitions of the reference, scattered, and total fields used before (Eq. (15)-(16)) 

i.e., 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑟𝑟), 𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡), and 𝐸𝐸𝑖𝑖(𝐸𝐸) = 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡), 

one can write the normalized electric field autocorrelation function (E-ACF) of the scattered field, 

𝐺𝐺1 (𝑠𝑠)(𝜏𝜏) = 〈𝐸𝐸(𝑠𝑠)(𝐸𝐸)𝐸𝐸∗(𝑠𝑠)(𝐸𝐸 + 𝜏𝜏)〉, as: 

𝑔𝑔1 (𝑠𝑠)(𝜏𝜏) = 〈𝐸𝐸(𝑠𝑠)(𝑡𝑡)𝐸𝐸∗(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉
〈𝐸𝐸(𝑠𝑠)(𝑡𝑡)〉〈𝐸𝐸(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉

= ∑ 〈𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]〉𝑁𝑁
𝑖𝑖     (19) 

after neglecting cross-interactions at different locations, and assuming that the amplitude of the 

electric fields is roughly the same at all locations i.e. 𝜀𝜀𝑖𝑖
(𝑠𝑠) = 𝜀𝜀(𝑠𝑠). From this expression, it can be 

seen that �𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�
2

= 1. 

Similarly, the E-ACF of the total field, 𝐺𝐺1(𝜏𝜏) = 〈𝐸𝐸(𝐸𝐸)𝐸𝐸∗(𝐸𝐸 + 𝜏𝜏)〉, can be calculated as: 

𝐺𝐺1(𝜏𝜏) = 𝑁𝑁𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)    (20) 

In this case, both cross-interactions have been neglected and the amplitude of the electric fields 

has been assumed to be roughly constant, but also the random process has been assumed to be 

statistically stationary i.e., 〈𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)〉 = 〈𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)〉, and the random variable, 𝜙𝜙𝑖𝑖, to be uniformly 

distributed over all possible angles i.e., the quantity 𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) is assumed to be uniformly distributed 

over the complex plane with zero average. 
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By following similar guidelines, the intensity autocorrelation function (I-ACF) of the total 

intensity, 𝐺𝐺2(𝜏𝜏) = 〈𝐼𝐼(𝐸𝐸)𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉   , where 𝐼𝐼(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖 ,  is given by: 

𝐺𝐺2(𝜏𝜏) = 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�
2

+ 4𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�   (21) 

Note that the term 𝜀𝜀4 (𝑠𝑠)implicitly contains the contribution �𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�
2

= 1. The normalized I-

ACF, 𝑔𝑔2(𝜏𝜏) = 〈𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡+𝜏𝜏)〉
〈𝐼𝐼(𝑡𝑡)〉〈𝐼𝐼(𝑡𝑡+𝜏𝜏)〉

= 𝐺𝐺2(𝜏𝜏)
〈𝐼𝐼(𝑡𝑡)〉〈𝐼𝐼(𝑡𝑡+𝜏𝜏)〉

, can then be written as: 

𝑔𝑔2(𝜏𝜏) =
𝐺𝐺2(𝜏𝜏)

〈𝐼𝐼(𝐸𝐸)〉〈𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉 =
𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�

2
+ 4𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�

𝑁𝑁2(𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠))2  

= 1
𝑁𝑁

+ � 2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑠𝑠)

𝑁𝑁�𝜀𝜀2 (𝑟𝑟)+𝜀𝜀2 (𝑠𝑠)�
�
2
𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�    (22) 

by using the expression of the total intensity 𝐼𝐼(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖  and noting that 

〈𝐼𝐼(𝐸𝐸)〉 = 〈𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉 = 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�.  

An expression of the normalized I-ACF can also be written as 

𝑔𝑔2(𝜏𝜏) = 1
𝑁𝑁

+ � 2𝛼𝛼
𝑁𝑁(𝛼𝛼2+1)

�
2
𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�    (23) 

where the relation 𝜀𝜀(𝑟𝑟) = 𝛼𝛼𝜀𝜀(𝑠𝑠) has been used. A detailed derivation of the expressions above can 

be found in the Appendix A. From this expression it follows that lim
𝑁𝑁→∞

𝑔𝑔2(𝜏𝜏) = 0 and lim
𝛼𝛼→∞

𝑔𝑔2(𝜏𝜏) =

1
𝑁𝑁

, which is consistent with the fact that for a very large number of speckles i.e., large N, all 

correlations vanish while, on the other hand, a very large amplitude of the reference field i.e., large 

𝛼𝛼, the dynamic information is screened due to the decrease of the contrast of the fluctuations. 
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It can also be seen that the best condition for recovering 𝑔𝑔1 (𝑠𝑠)(𝜏𝜏), which contains the information 

about the motion of the scattering centers, is for a single point of illumination (N = 1), similarly to 

the case in which a single-mode receiver is used in DLS [34]. However, it can also be noted that, 

at the expense of a sacrifice in the amplitude of the I-ACF, the dynamic information of the system 

contained in 𝑔𝑔1 (𝑠𝑠)(𝜏𝜏) can be recovered from the experimental observable 𝑔𝑔2(𝜏𝜏) regardless of the 

number of speckles. 

Using single-mode fibers is the best option if the noise at the detection system is low or if the 

scattering signal is strong enough. Unfortunately, these conditions are unlikely in reality and that 

is why multimode fibers exhibit a better performance. This becomes even more evident when a 

temporal gate is implemented since the signals involved are weaker. Rigorously, the optimization 

of the signal-to-noise ratio (optimal number of speckles N, of certain size, per unit area) can be 

achieved by dynamically controlling both the number of spots (spatial coherence), the spectral 

properties of the source (temporal coherence), and the finite size of the detector [35]. 

Finally, using a speckle field as the illumination gives an additional advantage. Due to the multiple, 

independent illumination locations that simultaneously sample the volume of observation at 

different spatial locations, non-ergodicity within the volume of observation can be mitigated since 

a much larger range of the system’s phase-space can be explored by this parallelized arrangement. 

A similar approach could be implemented with N single-mode fibers. Here, we are performing a 

parallel sampling with single optical fiber. Further details, including a detailed discussion on non-

ergodic manifestations in light scattering-based measurements, can be found in Ref. [36], and in 

the Appendix B. 
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In terms of the information retrieval, it is worth emphasizing that in a traditional DLS experiment 

the only parameter of interest is the characteristic correlation time of the light intensity 

fluctuations, 𝜏𝜏, which provides the hydrodynamic information of the diffusing scattering centers. 

Specifically, in a DLS experiment 𝜏𝜏 is retrieved from the characteristic decay of the (time-domain) 

intensity correlation function; 𝜏𝜏 can also be retrieved in the frequency domain, as in our case, from 

the so-called corner frequency of the power spectrum of the intensity fluctuations, 𝑃𝑃(𝑓𝑓), with 𝑓𝑓 

being the frequency. Importantly, 𝜏𝜏 does not depend on the actual magnitude of the signal 

measured, but on its temporal statistical characteristics. Additionally, in our approach, on the other 

hand, two additional optical parameters can be followed. The first one is the time-averaged total 

power, which is mainly determined by the local oscillator and therefore it provides information on 

the Fresnel reflection at the fiber-medium interface i.e., ⟨𝐼𝐼⟩𝑡𝑡 ≈ ⟨|𝐸𝐸𝑟𝑟|2⟩𝑡𝑡 ∝ |𝐸𝐸|2. The second 

parameter is the total energy in the power spectrum of the light intensity fluctuations, which 

provides information on the scattering density due to the optical isolation of single scattering: 𝛽𝛽 =

∫ 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓+∞
0 ∝ (𝜎𝜎𝑁𝑁)2. 

The capability to retrieve information on the effective optical properties of the medium is a unique 

feature that was not available in traditional DLS until now. It opens the possibility to fully 

characterize, mechanically and optically, inhomogeneous media in conditions of weak scattering, 

noisy backgrounds, and anisotropic scattering. These are circumstances commonly encountered in 

biological systems or gel-like materials [37]. 

On the basis of single-scattering dominance, the power spectrum of the intensity fluctuations 

measured can be decomposed into a collection of discrete representative contributions, 𝑃𝑃(𝑓𝑓) =
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(2/𝜋𝜋)∑ (𝜋𝜋𝑖𝑖 𝜏𝜏𝑖𝑖⁄ )[𝑓𝑓2 + (1 𝜏𝜏𝑖𝑖⁄ )2]−1𝑁𝑁
𝑖𝑖=1  with 𝜋𝜋𝑖𝑖 being the relative amplitude, ∑ 𝜋𝜋𝑖𝑖𝑁𝑁

𝑖𝑖=1 = 1, and 𝜏𝜏𝑖𝑖 the 

representative relaxation time of the i-th population, respectively [38, 39]. From here, the Stokes-

Einstein formulation can be followed to calculate the diffusion properties of the scattering centers 

i.e., effective diffusion coefficient, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝜋𝜋𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

= �2𝜋𝜋
𝑞𝑞2
� �1

𝜏𝜏𝑖𝑖
�, where 𝑘𝑘𝐵𝐵, 𝑇𝑇, 𝜐𝜐, and 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 are the 

Boltzmann constant, the absolute temperature, the (effective) viscosity of the solvent, and the 

hydrodynamic size, respectively, and 𝑞𝑞 = 2𝑘𝑘0𝜋𝜋𝐸𝐸𝑖𝑖𝜋𝜋(𝜃𝜃 2⁄ ) is the magnitude of the scattering vector, 

with 𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆0

 and 𝜃𝜃 = 𝜋𝜋 𝐸𝐸𝜋𝜋𝑑𝑑, in our reflection geometry [1]. 

The spectral decomposition of 𝑃𝑃(𝑓𝑓) can be directly incorporated into the calculation of the MSD, 

⟨∆𝐸𝐸2(𝐸𝐸)⟩ = − 6
𝑞𝑞2
𝑙𝑙𝜋𝜋 �∑ 𝜋𝜋𝑖𝑖𝑒𝑒𝑒𝑒𝑝𝑝 �−

2𝜋𝜋𝑡𝑡
𝜏𝜏𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 �, and for the estimation of the viscoelastic properties of 

the suspending medium (for tracers of known size) [40, 41], |𝐺𝐺∗(𝜔𝜔)| ≈ 𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝑎𝑎�∆𝑟𝑟2�1 𝜔𝜔� ��𝛤𝛤[1+𝛼𝛼(𝜔𝜔)] where 

𝛼𝛼(𝜔𝜔) = 𝜕𝜕𝑙𝑙𝜕𝜕�∆𝑟𝑟2(𝑡𝑡)�
𝜕𝜕𝑙𝑙𝜕𝜕(𝑡𝑡)

�
𝑡𝑡=1 𝜔𝜔�

, from where the elastic component, 𝐺𝐺′(𝜔𝜔) = |𝐺𝐺∗(𝜔𝜔)|𝑙𝑙𝑐𝑐𝐸𝐸(𝜋𝜋𝛼𝛼(𝜔𝜔)/2), 

and the viscous component, 𝐺𝐺′′(𝜔𝜔) = |𝐺𝐺∗(𝜔𝜔)|𝐸𝐸𝑖𝑖𝜋𝜋(𝜋𝜋𝛼𝛼(𝜔𝜔)/2), of the local complex viscoelastic 

moduli can be readily calculated. 

The parameter 𝛼𝛼(𝜔𝜔), which is calculated from the time-dependent logarithmic slope of the MSD, 

lies between the limits of elastic confinement (𝛼𝛼 = 0) and viscous diffusion (𝛼𝛼 = 1), and describes 

the transport properties in the intermediate viscoelastic regimes of complex media. 

Additionally, the ratio between the viscous and the elastic component i.e., the so-called frequency-

dependent loss tangent, 𝛾𝛾(𝜔𝜔) = 𝐺𝐺′′(𝜔𝜔) 𝐺𝐺′(𝜔𝜔)⁄ , contains information on the material’s energy 

dissipation. In other words, on the elasticity i.e., solid-like behavior, or plasticity i.e., liquid-like 
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behavior, of the medium. In our particular case, the frequency-dependent local viscoelasticity 

should not be strictly interpreted as the macroscopic rheological properties due to the inherent 

structural discontinuity around the particles which, additionally, could also be hydrodynamically 

coupled to the complex medium [42, 43]. Nevertheless, a measure of local stiffness of the material 

can still be obtained by following the frequency-averaged loss tangent �̅�𝛾 = 〈𝐺𝐺′′(𝜔𝜔) 𝐺𝐺′(𝜔𝜔)⁄ 〉𝜔𝜔 [40, 

44]. Interestingly, although it is determined by the scattering particles, this quantity does not 

require knowledge of the size of the tracer in order to be retrieved, which means that qualitative 

rheological properties of the medium can be retrieved by simply following the characteristic 

correlation times of the scattering events. 

In the following we review a number of different applications where the unique features of our 

technique – the effective isolation of single scattering, the large sensitivity and high collection 

efficiency, and the capability to operate over a wide range of optical regimes while providing 

means for proper ensemble averaging – can be clearly identified and used from a practical 

standpoint in situations that are beyond the capabilities of traditional light scattering-based 

techniques. 

2.4 Optical fiber-based experimental implementation 

The experimental setup, which is shown schematically in Fig. 5, consists of a robust 

implementation of a fiber-based, common path interferometer built around MMFs. Light from a 

low-coherence source (Superlum BLM-S-670-G-I-4, super luminescent diode of 7 nm bandwidth 

centered at 670 nm; coherence length of about 30 µm in aqueous media), is launched into the MMF 

and then coupled into a 50/50 multimode splitter. The fibers used in the experiments are 
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commercially available 62.5/125 MMF, whose core and cladding diameter is 62.5 μm and 125 μm, 

respectively. The fluctuations of the electrical signal are digitized using specialized DAQ hardware 

and further analyzed in the frequency domain. Effectively, the optical signals measured come from 

a picolitter-sized volume, as determined by the core size of the MMF and the spectral properties 

of the light source.  

The inset illustrates the depth-limited, heterodyne amplification of 𝐸𝐸(𝑠𝑠)(𝐸𝐸) through its self-

referenced interference with 𝐸𝐸(𝑟𝑟) when the complex medium is illuminated with a spatially 

partially coherent field through a partially-transmitting interface [45, 46].  

 

 

Figure 5. Schematic of the experimental implementation of the spatio-temporal coherence-gated 
dynamic light scattering. 
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2.5 Illumination in the experiments 

Fig. 6 shows part of the experimental setup shown in Fig. 5 – the output of the low-coherence light 

source (single-mode fiber, SMF) coupled into a multimode coupler with standard 62.5/125 MMF. 

The output ports of the coupler going to the sample and the detection system are indicated.  

Fig. 6(a)-(b) show pictures of the intensity distribution at the end facet of the MMF before and 

after the coupler, respectively. Note the logarithmic vertical scale in both histograms. It can be 

seen that a negative exponential distribution of intensities before the coupler (Fig. 6(a)), which is 

expected for a fully-developed speckle resulting after propagation through a sufficiently long 

section of MMF [23],  transforms into a Gaussian distribution at the output port of the coupler that 

goes to the sample (Fig. 6(b)). The latter constitutes the actual illumination used in the experiments. 

From this Gaussian intensity distribution, it can be seen that the speckles have certain average 

intensity. This probes valid the above-explained assumption on the approximately constant 

amplitude of the electric field at all locations (See details in the Appendix A, around Eq. (A5)).  
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Figure 6. Characteristics of the illumination used in the experiments. Pictures of the intensity 
distribution at the end facet of the MMF a) before, and b) after the coupler, and its corresponding 
histogram, are shown for comparison. Panel b) shows the actual illumination used in the 
experiments. The Gaussian distribution of intensities allows having speckles with certain average 
intensity such that most of them contribute roughly equally to the optical signal. 

 

Moreover, from the standpoint of the implementation and the information retrieval, having such a 

Gaussian distribution of intensities allows having a larger amount of independent, self-referenced 

signals contributing more or less equally to the optical signal as compared to the negative 

exponential distribution. This translates into an effective suppression of non-ergodicity since the 

system’s dynamics is measured at a large number of independent spatial locations. 

2.6 Other fiber-based approaches 

Regarding optical fiber-based DLS, which was first proposed by Wiese and Horn [47], and then 

used by a number of other researchers [48, 49], we note that both the principle of operation of our 

spatio-temporal coherence-gated DLS technique and the information content are different. 
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Traditional fiber-based DLS operates in a homodyne configuration and the light intensity 

fluctuations are measured non-interferometrically along a single wave vector by means of spatially 

filtering the signal with single mode fibers. In this context, it was proved that Brownian dynamics 

can be reliably retrieved, after correcting for both multiple scattering and particle interactions, only 

when (i) the acceptance angle is small and (ii) the core of the optical fiber is much smaller than 

the scattering mean-free path. As a result, this fiber-based DLS is limited due the low level signals 

associated to the reduction of the scattering mean free path in highly scattering environments [50]. 

Additionally, those implementations there is no selection of path lengths due to the use of coherent 

light. Thus, if the issues related to multiple scattering could be solved for multimode operation, 

this approach would be preferred due to the higher collection, which would be favorable in 

situations where weak scattering is generated by ‘inefficient’ scatterers, or by low particle number 

densities, which, additionally, limits the applicability of the traditional statistical tools for signal 

analysis, e.g., the central limit theorem [50]. Here, we solve the problem of multiple scattering for 

multimode operation by means of a temporal coherence gating together with the heterodyne 

amplification in our self-referenced common-path interferometer. This effectively isolates a 

picolitter-sized optical volume where the single scattering contribution collected amply dominates. 

Finally, from a more fundamental point of view, our three-dimensional spatio-temporal coherence 

shaping permits sampling simultaneously at multiple spatial locations within the coherence 

volume. This is extremely important because ensemble dynamics can then be measured in 

situations where long-term time averaging is not practical by accessing to an extended system’s 

phase space instead. In other words, the parallel sampling allows for averaging over a 
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representative number of the system’s configurations such that one can account for the non-ergodic 

dynamics, typically encountered in dense soft systems, even in non-stationary processes [51]. 
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CHAPTER III: CHARACTERIZATION OF DYNAMICS OF COMPLEX 

MEDIA 

3.1 Optically dense media 

First, we illustrate the impact of implementing a temporal coherence gate for the effective isolation 

of singly-scattered light over a wide range of optical regimes. This directly results, for instance, in 

the capability to perform particle sizing in optically dense colloids, in which strong scattering 

arises due to the large concentration of particulates. In other words, if single scattering is 

effectively isolated then the correlation time of the intensity fluctuations can be used to reliably 

retrieve hydrodynamic information irrespectively of the macroscopic scattering properties of the 

sample. 

3.1.1 Particle sizing in highly-concentrated colloids 

We demonstrate this by measuring the particle size of known tracers in highly concentrated 

colloidal suspensions. Fig. 7 shows the raw measurements of the hydrodynamic size measured in 

polystyrene colloidal suspensions over three decades of concentration, for beads with nominal size 

of 100 nm and 330 nm, respectively. The dashed lines on the plot show the nominal size and the 

manufacturer tolerances (standard deviation of ±10% of the nominal size). The inset shows a 

digital photograph of the samples measured. 

In a particle size measurement, multiple scattering manifests as a decreasing hydrodynamic size 

with increasing concentration due to faster decorrelation, as can be appreciated for the case of the 
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smaller particles. On the other hand, hydrodynamic interactions manifest as an increasing 

hydrodynamic size with increasing concentration due to correlated particle displacements, as in 

the case of larger particles. Despite both of these effects start taking place mainly at larger 

concentrations, and can be corrected, we show the raw measurements to emphasize that the 

contribution from multiple scattering is minimal, which indicates an efficient isolation of singly 

scattered light, as can be verified from the fact that the hydrodynamic size recovered lies within 

the boundaries of the manufacturer’s tolerances. 

 

Figure 7. Particle size measurements with LC-DLS in optically dense media. Polystyrene 
monodisperse colloidal suspension measured over three decades of concentration.  

3.1.2 Micro-rheology of gels 

As seen in the previous example, the fact that the measurement is performed over a small, 

optically-isolated volume allows collecting singly scattered light regardless of the macroscopic 

scattering characteristics of the complex medium. In other words, in the small coherence volume, 

the medium is optically transparent and single-scattering can be collected from the particles. 
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With this picture in mind, one can think of situations where the strong scattering is induced by the 

medium itself where the tracers are embedded, even though the concentration of particles remains 

low. In these situations, other light scattering-based techniques cannot operate or require a large 

concentration of particles to overcome the inherent background, which sometimes results in 

significant alterations of the structure of the medium.  

A good example of such complex media are gels and biological fluids. The micro-rheological 

characterization of such media, additionally, requires i) proper ensemble averaging due to the 

inhomogeneous nature of their structure and ii) low particles-doping levels in order to perform a 

passive measurement. In this context, the use of spatially partially coherent light and the larger 

collection area of a MMF allows avoiding non-ergodic manifestations while being sensitive 

enough to collect strong signals, as it will be seen in detail in upcoming sections. 

In these experiments, we show the characterization of the structural and rheological properties of 

a hydrogel [52]. Polystyrene spherical particles with a diameter of 100 nm were loaded into a 

hydrogel formed by the self-assembly of sodium deoxycholate (NaDC) in aqueous solution with 

sodium chloride. The NaDC hydrogel consists of a three-dimensional network of nanofibers and 

the polystyrene particles loaded into this network are used as light scattering probes to passively 

measure the local viscoelastic response of the hydrogel. 

The local viscoelastic properties of the medium around the particles influence their diffusion 

behavior. As mentioned before, this can be characterized by means of the temporal evolution of 

their MSD. The calculated MSD of the probe particles is presented in Fig. 8(a). The MSD clearly 

exhibits three different regimes. At short times, the MSD is governed by the normal diffusion of 
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the particles in the solvent and therefore grows linearly with time. At intermediate times the MSD 

increase slows down considerably while at longer times the normal linear increase is reached again. 

This is a typical behavior of complex fluids consisting of micellar solutions and particle probes 

embedded in worm-like structures. 

A quantitative description of the structure of the hydrogel can be pursued in terms of particles 

confined to cages formed by the polymer network [53], as indicated schematically in Fig. 8(a). 

Such caging effect is reflected in the transition of the MSD between two time scales in which the 

system diffuses normally with different diffusion constants i.e., asymptotic limits at short and long 

times, which are connected by a region of sub-diffusive motion i.e., temporarily, partial trapping, 

of the particles.  

      

Figure 8. a) Temporal evolution of the MSD of the particles loaded into the hydrogel, calculated 
from the power spectra of intensity fluctuations. The inset shows a photography of NaDC hydrogel 
formed at pH ~7.0 in an upturned glass vial. b) Viscoelastic moduli of the hydrogel. 

Fig. 8(b) shows the local viscoelastic properties of the hydrogel. As expected from the well-defined 

regions exhibited by the time evolution of the MSD, the viscous component dominates at both low 

and high frequency, 𝐺𝐺”(𝜔𝜔)  >  𝐺𝐺’(𝜔𝜔), i.e. at long and short times, respectively, while the elastic 
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component, which characterizes the probe’s confinement, dominates in the intermediate range, 

𝐺𝐺’(𝜔𝜔)  >  𝐺𝐺”(𝜔𝜔). 

Important aspects to highlight are the following. First, in the present experiment the embedded 

probes are much smaller than tracers traditionally used in DWS-based microrheology. This is 

rather beneficial since the small particles will have only marginal influence on the naturally-

forming structures i.e., cages of the polymer network. Also, from the frequency-dependent 

viscoelastic moduli (Fig. 8(b)), one can readily obtain characteristic values that are commonly 

used to describe gel-like dynamics i.e., crossing points at which 𝐺𝐺’(𝜔𝜔)  =  𝐺𝐺’’(𝜔𝜔). Moreover, one 

can also identify the presence of more complex dynamics, as can be seen Cole-Cole representation 

in the inset of Fig. 8(b). In this representation, a purely Maxwellian fluid would be described as a 

semicircle. However, this system deviates from the semicircular behavior predicted by the single 

exponential stress relaxation decay typical of Maxwellian fluids, which is the fingerprint of Rouse-

like dynamics related to the presence of both reptation and breaking of worm-like structures. 

Further details on the experiments and the interpretation of the results in the context of caging 

effects can be found in Ref. [52]. 

3.1.3 Dynamics of light-absorbing media 

As mentioned before, an effective collection of singly-scattered light in the optically-isolated 

coherence volume allows measuring dynamics of complex media which are optically dense at 

macroscopic scales. We demonstrated this in two different situations of strong scattering – in the 

first case (highly concentrated colloids) the strong scattering results from the large concentration 
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of particulates; in the second case (gels), on the other hand, the macroscopic strong scattering 

results from the inherent structure of the medium itself, not from the tracer particles. 

Nevertheless, besides scattering, absorption can also result in a large optical density due to the 

strong attenuation of light at macroscopic scales i.e., in the examples studied, the attenuation of 

light is perceived due to the photons are directed away from the direction in which the 

measurement is performed; in this case, due to they are absorbed. In practical applications, far-

field-based measurements are severely limited by absorption; only some free-space low-coherence 

interferometers have been demonstrated to be suitable when both absorption and scattering are 

present [54-56]. However, if the small coherence volume is optically transparent, as demonstrated 

in the previous examples for the case of scattering, the absorption of light would also be negligible 

at the microscopic scales tested, as it will be demonstrated in this section.  

Fig. 9 shows the hydrodynamic size measured in polystyrene colloidal suspensions (nominal size 

of 100 nm and 1 μm, respectively) of particles suspended in absorbing solvents consisting of liquid 

binary mixtures of water and commercial black ink. In this case, the samples were prepared with 

a constant concentration of particulates while the absorption in the solvent was varied with the 

concentration of the ink. No detectable particles were identified in the absorbing solvents alone. 

The macroscopic situation is amply dominated by absorption, as verified by independent 

measurements of the absorption and extinction coefficients of aqueous solutions of ink and 

aqueous suspensions of particles in the absorbing solvents, respectively (Appendix C). In those 

measurements, it was found that the dependence of the absorption coefficient of the solvent, 𝜋𝜋𝑎𝑎, 

as a function of concentration i.e., the molecular absorption function, is linear with the 
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concentration of ink. Therefore, a molecular absorption coefficient can be defined as 𝜋𝜋𝑎𝑎(𝐶𝐶) =

1.55 𝑚𝑚𝑚𝑚−1 𝑤𝑤𝐸𝐸%⁄ ,. The meaning of this value is that, for instance, at a concentration of ink of 

C=10wt% the characteristic attenuation length is only of 𝑙𝑙𝑎𝑎 = 𝜋𝜋𝑎𝑎−1 ≈ 60 𝜋𝜋𝑚𝑚, which is comparable 

to the coherence length of the broadband light sources used in our experiments. At larger 

concentrations of black ink (>10wt%), the measurement can still be performed regardless of the 

decrease in the fluctuating signal in the range 𝑙𝑙𝑐𝑐 ≲ 𝑙𝑙𝑎𝑎, however, a larger hydrodynamic size is 

retrieved due to a significant increase of the solvent’s viscosity, as shown in Fig. 9. 

 

Figure 9. Hydrodynamic size measurements of particles suspended in absorbing solvent (aqueous 
solutions of black ink) with different levels of absorption. The shaded region indicates the 
concentration range for which the viscosity of the solvent is altered significantly. 

We would like to note that with our coherence-gated DLS technique it can be possible to 

discriminate between whether the absorption comes from the medium or from the particles by 

means of a measurement based on a variable coherence length. As the coherence length is 

systematically increased, the amplitude of the power spectrum will decay in a linear fashion 
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(proportionally with the number of particles with the coherence volume) for absorbing particles or 

exponentially (Beer’s law) for absorbing medium. 

In this Section, we have shown that our coherence-gated DLS technique allows examining the 

complex fluids in a consistent manner with the same instrument, at the same irradiation power and, 

most importantly, regardless of the macroscopic optical properties of the sample. In the following 

sections, we will demonstrate the use of our technique in more challenging scenarios, which are 

more relevant to practical situations involving non-stationary dynamics and non-ergodic materials. 

 

3.2 Time-evolving structural dynamics 

An important aspect of our spatio-temporal coherence-gated DLS is its stability thanks to the fact 

that the phase noise between the reference and the scattered field is eliminated as a result of the 

common path configuration. 

For dynamic systems slowly evolving in time, a description of the long-term dynamics can be 

pursued by a generalized time-frequency i.e., spectrogram, representation of the system's structural 

dynamics, 

𝑃𝑃(𝑓𝑓, 𝐸𝐸) = 2
𝜋𝜋
∑ 𝑎𝑎𝑖𝑖(𝑡𝑡) 𝜏𝜏𝑖𝑖(𝑡𝑡)⁄

𝑒𝑒2+(1 𝜏𝜏𝑖𝑖(𝑡𝑡)⁄ )2
𝑁𝑁
𝑖𝑖=1 , with  ∑ 𝜋𝜋𝑖𝑖(𝐸𝐸)𝑁𝑁

𝑖𝑖=1 = 1   (24) 

where ai and τi are the relative amplitude and the characteristic relaxation time, respectively, of 

each Lorentzian component used in the decomposition of the power spectrum measured. 
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The collection of spectra in Eq. (12) can be used to describe the time-evolution of the spectral 

content of the light intensity fluctuations over time scales t much larger than the characteristic 

times associated with the power spectrum itself, as shown schematically in Fig. 10. In this way, 

our measurement can provide, simultaneously, both slow and fast dynamics which, in turn, allows 

accessing multi-scale dynamics with the same instrument. 

The changes in the spectral content experienced over time can be readily associated to the 

evolution of the transport properties, 〈∆𝐸𝐸2(𝐸𝐸′, 𝐸𝐸)〉 = − 6
𝑞𝑞2
𝑙𝑙𝜋𝜋[∑ 𝜋𝜋𝑖𝑖(𝐸𝐸)𝑒𝑒𝑒𝑒𝑝𝑝(− 2𝜋𝜋𝐸𝐸′ 𝜏𝜏𝑖𝑖(𝐸𝐸)⁄ )𝑁𝑁

𝑖𝑖=1 ], and 

these, in turn, to the time-evolving mechanical properties of the medium surrounding the probe 

particles, |𝐺𝐺∗(𝜔𝜔, 𝐸𝐸)| ≈ 𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝑎𝑎〈Δr2�1 𝜔𝜔� ,𝑡𝑡�〉Γ[1+ 𝛼𝛼(𝜔𝜔,𝑡𝑡)]  with 𝛼𝛼(𝜔𝜔) = 𝜕𝜕𝑙𝑙𝜕𝜕〈Δr2�𝑡𝑡′,t�〉

𝜕𝜕𝑙𝑙𝜕𝜕(𝑡𝑡′)
�
𝑡𝑡′=1 𝜔𝜔�

. 

 

Figure 10. The time-evolving spectral content in the LC-DLS spectra relates to the evolution of the 
transport properties and changes in the mechanical properties of the complex medium. 

In the following, we show that our technique can be used for the continuous monitoring structural 

dynamics in non-stationary, long-term processes. More specifically, we show measurements of i) 

colloidal dynamics in situations where both advection and diffusion are present e.g., biased 

diffusion due to sedimentation, ii) colloidal dynamics where in non-stationary solvents e.g., time-
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dependent diffusion during solvent mixing, and iii) the time-evolving structural dynamics and 

viscoelastic properties of gels e.g., characterization of pH-driven, viscoelastic modulations of bio-

compatible hydrogels. 

3.2.1 Diffusive and advective dynamics 

In this example, we highlight the spatially-resolved nature of our measurement and make use of 

one of the optical parameters that our technique allows accessing: the total energy in the power 

spectrum of the light intensity fluctuations, 𝛽𝛽, which provides information on the scattering 

density, 𝛽𝛽 ∝ (𝜎𝜎𝑁𝑁)2. More specifically, we show that one can perform spatially-resolved 

measurements of Brownian dynamics e.g., at different depths within the sample, while using 𝛽𝛽 to 

visualize the sedimentation wave front [57]. 

In general, the particle dynamics in colloidal suspensions is a combination of Brownian, thermally 

activated motion, and additional advective components of motion due to external fields. A typical 

case is a colloidal system under the influence of gravity. 

The specific dynamical regime of a colloidal system is characterized by the Péclet number (Pe), 

which quantifies the ratio between the diffusive and advective components with respect to the size 

of the suspended particles, 𝑃𝑃𝑒𝑒 = 𝑡𝑡𝑏𝑏
𝑡𝑡𝑠𝑠

= 𝑎𝑎𝑣𝑣𝑔𝑔
𝐷𝐷0

, where 𝑣𝑣𝑔𝑔is in general the advective velocity and 𝐷𝐷0 =

𝑘𝑘𝐵𝐵𝑇𝑇 6𝜋𝜋𝜋𝜋𝑒𝑒𝜋𝜋⁄  is the (Stokes-Einstein) diffusion constant for a particle with characteristic dimension 

𝜋𝜋. For the specific case of gravity-driven colloids, 𝑣𝑣𝑔𝑔 is the so-called free-settling (Stokes) velocity, 

𝑣𝑣𝑔𝑔 = 2𝑔𝑔�𝜌𝜌𝑝𝑝−𝜌𝜌𝑒𝑒�𝜋𝜋2 9𝜋𝜋𝑒𝑒� . In these expressions, 𝑔𝑔 is the gravity, 𝜌𝜌 is the mass density of the 
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particle and fluid, respectively, 𝜋𝜋 is the radius of the colloidal particle, 𝜋𝜋𝑒𝑒 is the dynamic viscosity 

of the fluid, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, and 𝑇𝑇 is the absolute temperature. 

Colloidal dynamics has been studied experimentally in detail in extreme regimes of primarily 

diffusive dynamics or advective transport i.e., 𝑃𝑃𝑒𝑒 ≪ 1 and 𝑃𝑃𝑒𝑒 ≫ 1, respectively. Intermediate 

regimes, however, are less well understood despite their relevance in applications where the phase 

behavior and the equilibrium density profiles play a major role for the colloidal stability. The 

challenges in these intermediate regimes, 𝑃𝑃𝑒𝑒 ≈ 1, are primarily experimental due to the time 

scales for diffusive and advective transport are comparable. Thus, neither of these contributions 

can be neglected and the colloidal dynamics is intrinsically non-stationary. 

The complete characterization of colloidal dynamics at 𝑃𝑃𝑒𝑒 ≈ 1 requires measuring both the 

diffusive and the advective contributions. In the example of gravity-driven colloids, this implies 

knowing both the diffusivity and the sedimentation velocity. 

Proof-of-concept experiments were performed on two different sedimenting colloidal systems 

consisting of 1 %wt concentrated aqueous suspensions of melamine and silica particles with 

nominal diameters of 1.0 µm (𝑃𝑃𝑒𝑒 ≈ 0.35) and 0.7 µm (𝑃𝑃𝑒𝑒 ≈ 0.15), respectively. At that 

concentration, the effect of hydrodynamic interactions is not considerable. 

Fig. 11(a) shows the hydrodynamic size retrieved as sedimentation progresses, at a fixed depth of 

3 mm below the air-liquid interface. The inset illustrates a typical example of an experimental 

spectrum and the corresponding fit to the multi-Lorentzian model (Eq. (12)). The averaged 

hydrodynamic sizes recovered over the entire duration of the measurement are indicated by the 
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dashed lines and are 1032.8 nm ± 13.7 nm and 675.6 nm ± 12.6 nm for melamine and silica, 

respectively.  

It can also be seen that the hydrodynamic size decreases by the end of the measurement. This is 

the signature of the sedimentation wavefront, where the smaller particles are left behind the bigger 

ones. In other words, this feature could be used as an indication of how mono-disperse the 

population of particles is. 

As mentioned before, 𝛽𝛽 ∝ (𝜎𝜎𝑁𝑁)2. In this case, the scattering cross-section, 𝜎𝜎, remains invariant 

throughout the experiment since neither the refractive index contrast between the medium and the 

particles nor the size of the particles changes in time. Thus, 𝛽𝛽(𝐸𝐸) can be used as a direct 

measurement of the time-evolution of the number of particles in the coherence volume i.e., 

�𝛽𝛽(𝐸𝐸) ∝ 𝑁𝑁(𝐸𝐸). At a fixed depth the number of particles is expected to remain invariant during 

certain time, due to the replenishing of the layers above, and then to progressively drop as the last 

layer of sedimenting particles leaves the coherence volume. 

In Fig. 11(b) we show 𝛽𝛽(𝐸𝐸) for the melamine colloidal system when placing the fiber at different 

depths below the surface, as indicated. The inset shows the fit of 𝛽𝛽(𝐸𝐸) to general analytic 

expressions of the time-evolving particle number density profile [58], from where the mean free-

settling velocity can be extracted given that the diffusion coefficient is measured independently 

(the sedimentation velocity is the only fitting parameter).  

It should also be noticed that the fit shown in the inset of Fig. 11(b) for the evolution of the particle 

number density needs to include a narrow size distribution in order to relax the step-like behavior 
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of a monodisperse population that is characterized by a single sedimentation speed (dashed line in 

the inset of Fig. 11(b)). 

We measured 𝛽𝛽(𝐸𝐸) at different depths, as indicated in Fig. 11(b). The retrieved mean free-settling 

velocities averaged over the different depths at which the measurements were performed (1-5 mm) 

are 0.29 µm/s ± 0.021 µm/s and 0.27 µm/s ± 0.026 µm/s for melamine and silica, respectively. 

The values retrieved are in good agreement with the theoretical estimates of 0.31 µm/s and 0.26 

µm/s, respectively. 

 

Figure 11. a) Hydrodynamic sizes retrieved for melamine and silica colloidal systems during the 
sedimentation process at a fixed depth of 3 mm below the air-liquid interface. The inset shows a 
typical multi-Lorentzian fit of experimental spectra. b) Total scattered power, 𝛽𝛽, measured during 
sedimentation at different depths, as indicated. 𝛽𝛽(𝐸𝐸) describes the temporal evolution of the particle 
number density within the coherence volume 

Up to here, it is clear that a complete description of the dynamics of gravity-driven colloids in the 

presence of both advection and diffusion can be achieved thanks to the fact that those two 

components of motion are measured independently. More specifically, the particles’ diffusion is 

measured from the characteristic correlation time of the intensity fluctuations while the 

sedimentation speed is measured from the time-evolution of the total scattered power. 
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However, one can do more by further exploiting the spatial resolution of our measurement. For 

instance, by performing spatially-resolved measurements of the sedimentation speed one can 

verify the linearity of the sedimentation process. In other words, one can verify whether or not the 

sedimentation speed varies with depth, which would be an indication of the ‘layering’ of the 

external field. In our particular examples, the sedimentation speed is independent of depth, as 

verified from the equal spacing between the curves in Fig. 10(b). However, in situations where the 

sedimenting particles are strongly coupled hydrodynamically [59-61], or when the solvent is 

inhomogeneous or structured e.g., stratified [62, 63], this is not the case. In those cases, the actual 

spatial distribution of the sedimentation speed can be retrieved with our technique thanks to the 

spatially-resolved nature of our measurement. In more general words, such a measurement could 

be used to verify the homogeneity of the advective action induced by an external field. Further 

details can be found in Ref. [57]. 

3.2.2 Diffusion at dissolving interfaces 

In this experiment we take advantage of the stability of our coherence-gated DLS technique over 

long-term periods of time to continuously measure the diffusive transport properties of Brownian 

particles in the proximity to a liquid-liquid interface that progressively dissolves during a passive 

mixing process. As the liquid molecules diffuse during mixing, the system changes its local 

properties such as viscosity, density, and refractive index. 

Our experiments are performed on model systems consisting of a binary mixture of fully miscible 

liquids in which an initially sharp liquid/liquid interface smears over time and eventually dissolves 

completely. The two liquids are pre-loaded with the same concentration of particles, such that the 



40 
 

nonstationarity arises only from the variations in the properties of the solvent.  This is an extreme 

case of dynamics of a soft interface, which exhibits practically all possible configurations, from a 

sharp, well-defined interface at initial times to an extended, diffuse interface in advanced stages of 

the process. From a practical perspective, assessing the diffusive mass transport in a context like 

this is complicated due to the difference in the time scales of the dynamic processes that take place: 

the slow process of interface dissolution (hours) resulting from the fast diffusion of liquid 

molecules at the interface (nanoseconds). 

We prepared our samples by first loading two different liquids, DI water and an aqueous solution 

of glycerol 50wt% concentrated, with the same concentration of silica beads (0.25 %vol; nominal 

diameter of 200 nm). This low concentration of tracers ensures a good signal-to-noise ratio in the 

scattering signal without affecting the natural inter diffusion of the liquids at the interface. After 

being loaded with particles, the liquids were carefully put in contact in a rectangular cuvette of 10 

mm x 10 mm. The same amount (0.5 cm3) of both fluids was added. Once in contact, the liquids 

were left to naturally mix without perturbations. 

Two complementary experiments were performed. In the first experiment, the time evolution of 

the depth profile of the diffusion coefficient was measured. More specifically, 𝑃𝑃(𝑓𝑓, 𝑧𝑧; 𝐸𝐸) was 

recorded at different depths by vertically scanning the optical fiber across the column of liquid. 

This was done with a single optical fiber, and this profiling was performed at different moments 

during the mixing process. At each sample point two power spectra were recorded. From their 

average spectrum, the effective diffusion constant at that particular depth, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧; 𝐸𝐸), was 

calculated. 
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Fig. 12(a) shows the time-evolution of the 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧; 𝐸𝐸) profile at different moments during the 

mixing process. The horizontal axis specifies the depth with respect to the air/liquid interface for 

a total height of the column of 10 mm. The dashed line indicates the step-like profile at the 

beginning of the process (t=0) for values of the diffusion coefficient of 200 nm particles in pure 

water (1.91 µm2/s) and glycerol 50wt% (0.96 µm2/s), respectively, at room temperature (20°C), 

which were calculated using the values of viscosity of similar binary mixtures reported in the 

literature [64]. 

      

Figure 12. Depth-resolved profile of a) the diffusion constant of the probe tracers along the column 
of liquid as the liquid/liquid interface dissolves over time, and b) the total power measured, which 
encodes the Fresnel reflectivity at the fiber-medium interface. 

Fig. 12(b) shows the total intensity detected which, as mentioned before, is mainly determined by 

the reference field and encodes information from the Fresnel reflectivity at the fiber-medium 

interface. It is important to note that, even though the trace of the curves in Fig. 12(a) and 12(b) is 

similar, they refer to two different aspects of the process and they were measured from two 

independent experimental parameters. More specifically, Fig. 12(a) provides a mechanical 

description i.e., viscosity of the solvent, while Fig. 12(b) provides an optical description i.e., 
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effective refractive index of the solvent. In our particular example, the close resemblance simply 

verifies that the viscosity and the refractive index of the solvent vary together. 

In the previous experiment, one could argue that the system is significantly perturbed due to 

scanning the fiber. In order to correct for this, one can alternatively perform a measurement in 

which the fiber is kept fixed at certain depth and the acquisition is done continuously throughout 

the entire process. 

Fig. 13 shows the time evolution of the raw power spectra 𝑃𝑃(𝑓𝑓, 𝐸𝐸) recorded at two positions 

simultaneously. The fibers are located symmetrically 2 mm above and below the position of the 

interface, respectively. The system is similar than before i.e., DI water and an aqueous solution of 

glycerol 75wt% concentrated, with the same concentration of silica beads (0.25vol%) with a 

nominal diameter of 200 nm. 

 

      

Figure 13. Temporal evolution of the power spectra recorded at fixed positions of 2 mm above and 
below the interface, respectively. 
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Fig. 14 shows the temporal evolution of 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝐸𝐸; 𝑧𝑧0) at those particular depths. In our case, since 

the two liquids are fully miscible, the initial non-equilibrium configuration evolves to a single 

homogeneous state of thermodynamic equilibrium that is intermediate with respect to those of the 

two bulk fluids. Thus, the measurements at the two different locations to converge to the same 

final condition, as shown in Fig. 14. Given that the particle size is known, once can construct the 

evolution of the local effective viscosity from 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝐸𝐸; 𝑧𝑧0) by following the Stokes-Einstein 

formulation, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧, 𝐸𝐸) ∝ 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒−1 (𝑧𝑧, 𝐸𝐸). At equilibrium, the diffusion profile reaches a constant value 

corresponding to the uniform fluid mixture. Notably, the measurements agree well with the 

theoretical predictions for isothermal mass transport in binary liquid mixtures driven solely by 

diffusion [65], which are indicated by the continuous lines in Fig. 14. 

 

Figure 14. Temporal evolution of the effective diffusion constant at fixed positions of 2 mm above 
and below the interface, respectively. 

The importance of this measurement relies in that the system’s dynamics can be measured 

quantitatively at multiple time scales by imposing the existence of an intermediate time scale that 

connects the others. This is done by loading known Brownian tracers and following the evolution 

of their thermally-activated diffusion. In this way, the slow dynamic of the interface is followed 
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continuously over hours while the fast transport of the liquid molecules can be inferred from the 

instantaneous, effective viscosity experienced by the probe particles at each moment in time. 

Additionally, one can notice that the final state of equilibrium above and below the interface is 

reached at different times, as indicated by the dashed arrows in Fig. 14. 

The mixing process is due to the diffusion of the molecules in the bulk fluids across an initially 

well-defined interface. This scenario can be examined in close analogy to the diffusive carrier 

transport across a p-n junction. In that case, the associated diffusion constant of the carriers 

depends on their mobility, 𝐷𝐷~𝜋𝜋, which, in turn, is inversely proportional to the effective mass, 

𝜋𝜋~𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
−1  [66]. In our particular case, one can simply think of the bulk fluids to be composed of 

diffusing molecules with different mobility. The ratio of the molecular diffusion coefficients or, 

equivalently, the ratio of the particles’ mobility, can be determined by the ratio of the effective 

masses which, in our case, is equivalent to the ratio of the bulk densities. In our measurement, this 

ratio can be estimated as the time is takes to reach equilibrium above and below the interface. From 

Fig. 14, the ratio of those times (~1.3) is close to the ratio of the densities of the bulk fluids 

(𝜌𝜌𝑔𝑔𝑙𝑙𝑔𝑔,75𝑤𝑤𝑡𝑡% 𝜌𝜌𝑤𝑤𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟⁄ ≈ 1.2) [64]. The variability can be due to a small error in positioning the fibers 

with the respect to the interface. 

3.2.3 Dynamics in confined geometries: drying colloidal droplets 

In the previous examples, we measured the non-stationary dynamics of time-evolving colloids. In 

the first example, the colloidal suspension evolves due to the sedimentation of the particles i.e., 

due to particle density fluctuations, while the solvent remains unaltered. Conversely, in the second 
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example, the evolution of the system results from the mixing process in the suspending medium 

i.e., due to solvent viscosity fluctuations, while the particles density remains unaffected. 

Nevertheless, in both cases the systems are open in the sense that, for the purpose of our 

measurement, they are boundary-less. 

In this Section, we demonstrate the use of spatiotemporal coherence-gated DLS in situations where 

the boundaries of a finite size complex medium actually influence the dynamics measured at the 

microscopic scales tested. Specifically, we focus on the non-stationary internal dynamics of drying 

colloidal droplets, where practically all the elements of the system (the particle number density, 

the viscosity of the solvent, and the extent and influence of the boundaries) change over time. 

In this context, we would like to spend more time to contextualize our work properly because our 

implementation actually alleviates some of the technical challenges of the current technology as it 

allows for a measurement that is non-contact, non-invasive, and label-free, and permits real-time 

observations of both optical and mechanical changes in the measurement volume. 

Colloidal droplets are essential to a wide range of applications such as, for instance, forensics and 

diagnostics based on biological fluids [67, 68]; micro-organisms and cellular separation [69]; the 

development of new materials like three-dimensional photonic crystals [70], hierarchically porous 

films and scaffolds [71, 72], or energy-sustainable devices with enhanced thermal transport 

properties [73]; chemical and biological assays using so-called droplet reactors [74, 75]. In spite 

of that, the vast majority of characterization techniques are applicable only during the preparation 

stages of the bulk nanofluids [76]. One possible reason for this can be that measuring the internal 

dynamics of these systems is not an easy task because all the cohesive and adhesive interactions 
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involved i.e., substrate-fluid, substrate-particle, particle-fluid, and particle-particle, play a major 

role for both the process and the outcome. 

Being essentially a mass-transfer phenomenon, droplet evaporation could be described by a simple 

differential weighting approach or, alternatively, by following the temporal evolution of some 

feature of the droplet morphology [77]. However, there are many other aspects associated to this 

phenomenon which are of interest. For instance, the study of the dynamics particularly at the 

droplet-substrate interface during evaporation is commonly approached by spectroscopic 

measurements of electrical impedance, by laying the colloidal droplet on a surface containing 

electrodes while the conductance and capacitance is continuously monitored [78]. Conversely, if 

the interest is on studying the evaporation of the droplet alone, without the influence of the 

substrate, one can perform evaporation experiments on acoustically-levitated droplets [79, 80].  

In situations where the evaporation process is to be studied under more ‘natural’ conditions, optical 

measurements are preferred due to their potential noninvasiveness. For instance, the temperature 

distribution across the droplet during evaporation has been assessed by means of infrared 

thermometry [81], infrared time-resolved spectroscopy [82], Raman spectroscopy [83, 84], and so-

called laser-induced fluorescence thermometry [85, 86], where the droplet is loaded with 

temperature-sensitive fluorescent dyes and the temperature is indirectly monitored through the 

intensity of the fluorescence light.  

Other optical techniques monitor the evolution of the droplet size as evaporation progresses. For 

this purpose, approaches such as interferometric imaging [87] or the so-called phase rainbow 

refractometry [88] are used, where the size is inferred from the changes in the angular spreading 
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of quasi-monochromatic light due to the variations in the droplet’s curvature. Sometimes, several 

of these techniques are combined together for a more detailed characterization [89].  

In some other cases, one could be interested in the internal dynamics of the droplet. Unfortunately, 

there exist only a few reports addressing this issue, especially regarding the movement of the 

particulate components inside the droplet. For such purpose, particle tracking-based approaches 

i.e., particle image velocimetry [90, 91], can be used but are limited to situations where the 

colloidal droplet is dilute (transparent) and the suspended particles are sufficiently large. Some 

implementations have been improved to construct, for instance, both the particles’ velocity and 

concentration fields, by using particles of different sizes that can fluoresce in different channels 

[92, 93]. The tracking resolution can be further enhanced using variants of dark field microscopy 

[94]. The main drawback of all these approaches is that they are limited to examine colloidal 

droplets in which the suspended particles serve only the purpose measurement beacons. In other 

words, the characteristics of the particles embedded into the droplets, e.g., size, concentration, or 

fluorescence emission, have to be carefully chosen such that the measurement can be optimally 

performed. This limits severely the composition of the droplets that can be examined [92, 93]. As 

a result the information about the micro-scale dynamics during nanoparticles evaporation is still 

limited and it has to be either simulated numerically [77, 95, 96] or inferred from dry deposition 

patterns at the end of the drying process [67-75].  

We use a similar implementation to that explained in detail in Chapter II. Similarly, the portion of 

the dynamic field that is scattered by the complex system, which in this case is the colloidal droplet, 

𝐸𝐸(𝑠𝑠)(𝐸𝐸), can be measured through the heterodyne amplification resulting from its interference with 
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a (static) reference field, 𝐸𝐸(𝑟𝑟) [45, 46]. In usual circumstances, as explained in the previous 

sections, the local oscillator results from the inherent Fresnel reflection at the end-facet of the fiber. 

Here, by using a refractive index matching layer, we axially displace the coherence volume away 

from the facet of the MMF into the droplet. The new interface from where 𝐸𝐸(𝑟𝑟) is generated is that 

between the colloidal droplet and the substrate on which the droplet sits i.e., the picolitter-sized 

coherence volume is located at the droplet-substrate interface.. This allows a contact-less 

measurement of the internal dynamics of the colloidal droplet by examining the signal collected 

from a coherence volume that is located at the base of the droplet, as illustrated in Fig. 15.  

      

Figure 15. Schematic of the fiber-based, multimode common-path interferometer used to measure 
the internal dynamics of colloidal droplets 

In all cases we used colloidal droplets of 50 μL consisting of aqueous suspensions of polystyrene 

particles (ThermoFisher; nominal size of 330 nm and deviation ≤ 3%). The particle concentration 

of the colloidal suspensions was adjusted by diluting a small sample of the original batch with de-

ionized water. The diluted samples were gently agitated by hand and then sonicated with 

ultrasound for 2 min to achieve complete homogenization. The colloidal droplets were deposited 

on standard square cover glasses (Fisher Scientific 12-540-B; 200 μm thickness), which were 
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previously cleaned sequentially with acetone, methanol, and isopropanol; then, they were rinsed 

with de-ionized water and, finally, dried slowly with compressed air. No further surface treatment 

was implemented to modify the inherent wetting properties of the glass surface.  

The droplets were let to evaporate naturally on an uncovered cover glass that was open to the 

ambient of the laboratory, at room temperature (21-22°C). In our evaporation experiments, the 

only free parameter was the particle concentration; both the particle size and material were kept 

invariant. The concentration range (<0.2wt%) considered in our experiments was chosen to work 

with diluted colloids that exhibit negligible hydrodynamic interactions in bulk, thus allowing us to 

assess the confinement effects in comparison to conditions where inter-particle interactions are 

practically absent. In all cases, the fiber was positioned at the center of the droplet and the process 

was followed during its entire duration i.e., until the droplet dried completely. Once in place, the 

optical fiber was kept fixed throughout the entire duration of the measurement. 

In a series of proof-of-concept experiments, the power spectra of light intensity fluctuations, 𝑃𝑃(𝑓𝑓), 

were recorded in the frequency range from 1 Hz to 10 kHz with a resolution of 1 Hz and integration 

time of 60 s (one sample spectrum per minute). Fig. 16 shows all the parameters followed in our 

measurement for the particular case of a colloidal droplet with an initial concentration of 0.1wt%. 

Fig. 16(a) shows the collection of raw spectra recorded, 𝑃𝑃(𝑓𝑓, 𝐸𝐸); each vertical line in the color map 

represents one power spectrum, 𝑃𝑃(𝑓𝑓; 𝐸𝐸0). Fig. 16(b)-(d) show the total intensity detected, the total 

scattered power, 𝛽𝛽 = ∫𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓, and the effective hydrodynamic size (diameter) of the diffusing 

particles, respectively.  
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Importantly, in our measurements the drying process is slow and the influence of the internal flows 

is not captured, at least in the time scales of our measurement. More specifically, we verified that 

in all cases 𝑃𝑃(𝑓𝑓, 𝐸𝐸) has essentially a single-Lorentzian shape, which indicates the diffusive motion 

of a monodisperse population of particles in a Newtonian solvent with an increased effective 

viscosity. 

      

Figure 16. Temporal evolution of the a) raw power spectra, b) the total intensity, c) the total power 
scattered (total power in the power spectrum, 𝛽𝛽), and d) the hydrodynamic size of the suspended 
particles, for a drying colloidal droplet (50uL) of PS particles (nominal size of 330 nm, 0.10wt%). 
The schematics in the insets illustrate the different aspects of the signal measured, from where the 
information is retrieved 

As can be seen in Fig. 16(b), the total intensity measured remains almost invariant for most of the 

measurement until a sharp transition occurs close to complete drying. This transition takes place 

when the boundaries of the droplet i.e., droplet-air interface, are ‘seen’ and they contribute to 
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increase the refractive index mismatch between the fiber and the complex medium thus reflecting 

more light. In other words, for most of the experiments the fiber ‘sees’ mostly water with 

suspended particles and by the end of the measurement, when the maximum reflectivity is reached, 

the fiber ‘sees’ air with a layer of particles deposited on the substrate. 

The total drying time can be clearly identified in all the parameters followed. Importantly, in the 

absence of moving particles only the spectrum of the noise in the detection system can be recorded 

(Fig. 16(a)) and, consequently, the total scattered power drastically reduces to the noise level, as 

seen in Fig. 16(c). Since the scattering cross-section, 𝜎𝜎, of the particles remains constant 

throughout the evaporation process, the time evolution of 𝛽𝛽 ∝ (𝜎𝜎𝑁𝑁)2 reflects the slow growing of 

the number of particles within the observation volume (𝑁𝑁 ∝ �𝛽𝛽) which, at least in the region of 

‘slow’ drying, can be used as an estimate of the rate of volume reduction of the droplet i.e., �̇�𝑉 ∝

−�̇�𝑁. In this measurement, one can also identify a region of ‘fast’ drying towards the end of the 

process. Finally, the total power in the dynamical signal drops to the noise level once the colloidal 

system has dried (Fig. 16(c)).  

It is also important to note that the effective hydrodynamic diameter measured (Fig. 16(d)) is 

significantly larger than the nominal size of the particles (by a factor of 1.3 for a concentration of 

0.1wt% (Fig. 16(d)). Recall that, in the concentration range of our experiments, those colloids 

exhibit negligible hydrodynamic interactions in bulk. Thus, the fact that an effectively increased 

hydrodynamic size is measured with respect to that expected for free-diffusion is indicative of the 

interactions in such conditions of confinement that overall result in a reduced diffusion coefficient. 
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We emphasize that our measurement is microscopic in nature, and consequently the information 

retrieved is local, since the optical signal is collected from an optically isolated, picolitter-sized 

volume much smaller than the droplet’s volume.  

We further examined these effects in experiments where the concentration was varied. The lifetime 

of 50 μL droplets with different concentration of particulates is shown in Fig 17(a). From the 

known initial droplet volume, 𝑉𝑉, and the measured droplet lifetime, 𝐸𝐸𝑑𝑑, one can estimate the 

pressure rate (the average rate of evaporative mass transfer of the solvent), (−�̇�𝑚) ≈ 𝜌𝜌𝑉𝑉 𝐸𝐸𝑑𝑑⁄ , as 

indicated in Fig. 17(a), where 𝜌𝜌 and 𝑉𝑉 are the effective density of the droplet and its initial volume, 

respectively [97].  

Furthermore, by knowing the initial droplet radius, 𝐸𝐸, one can also estimate the initial drying speed, 

𝑈𝑈𝑖𝑖~ 𝐸𝐸 𝐸𝐸𝑑𝑑⁄ , and also the average evaporative mass loss per unit area of substrate surface 

(evaporative mass flux), 𝐽𝐽𝑎𝑎𝑣𝑣𝑔𝑔 ≈ (−�̇�𝑚) (𝜋𝜋𝐸𝐸2)⁄  [97]. In our case, the droplets have a diameter of ~5 

mm (5.2 mm at a concentration of 0.05wt%, which corresponds to the intermediate concentration 

of the range explored). The diameter was measured by rapidly scanning the optical fiber across the 

droplet at the beginning of the experiment. The boundaries of the droplet’s base can be clearly 

identified by the increase in the reflected power due to the larger refractive index mismatch at 

glass/air interface (similar to that observed in Fig. 17(b)). Since we used polystyrene particles, the 

suspensions can be assumed to be density-matched i.e., 𝜌𝜌 ≈ 1𝑚𝑚𝑔𝑔/𝑚𝑚𝑚𝑚. This leads to characteristic 

initial drying speed and evaporative mass flux in the range 𝑈𝑈𝑖𝑖 ≈ 4 − 5 𝜋𝜋𝑚𝑚/𝑚𝑚𝑖𝑖𝜋𝜋 and 𝐽𝐽𝑎𝑎𝑣𝑣𝑔𝑔 ≈ 3.6 −

4.6 (𝜋𝜋𝑔𝑔 𝑚𝑚𝑖𝑖𝜋𝜋⁄ ) 𝑚𝑚𝑚𝑚2⁄ , respectively. We note that 𝑉𝑉 and 𝐸𝐸 can also provide additional initial 

macroscopic quantities of the droplet such as the contact angle, the drop surface (liquid-vapor 
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surface area), and the drop profile e.g., by assuming a spherical cap-shaped droplet and neglecting 

gravitational flattening [98, 99]. 

    

Figure 17. a) Drying time and b) effective hydrodynamic size for colloidal droplets (50uL in all 
cases) of PS particles (nominal size of 330 nm) with different concentrations. 

A summary of the hydrodynamic size retrieved at the beginning of the drying process is shown in 

Fig 17(b). At this early stage, the system is in quasi-thermodynamic equilibrium but evolves in a 

confined geometry where an increased hydrodynamic drag at the boundaries slow down the 

particles diffusion as compared to the estimates based on Stokes-Einstein relation [100-102]. 

Importantly, as we mentioned before, if the same colloids were measured in boundary-less 

conditions, these hydrodynamic interactions would be negligible, as the particles are more than ten 

diameters apart even at the largest concentration [103].  

The progressive increase of the droplet lifetime or, equivalently, the decrease of the evaporative 

mass transfer, (−�̇�𝑚)−1, relates to the so-called self-pinning capabilities, which basically describe 

the reduction of the average speed at which the triple line recedes by the inclusion of nanoparticles 

in the solvent [98, 104-107]. This process can also be regarded as an increase of the effective liquid 

viscosity [98, 108]. In fact, this apparent increased in viscosity, which is a macroscopic descriptor 
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of the entire droplet, can be estimated from the measured values of the diffusion coefficient. The 

relative effective viscosity can be calculated as the ratio of the diffusion coefficient measured 

inside the droplet and the theoretical one in the solvent alone (water), 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂0⁄ = 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷0⁄ , as 

indicated in the secondary axis of Fig. 17(b). 

We note that the macroscopic parameters retrieved, which are 1) the average rate of evaporative 

mass transfer of the solvent, −�̇�𝑚 (Fig. 17(a)), and 2) the relative inverse effective viscosity, 

�𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒�
−1

 (Fig. 17(b)), were retrieved directly from our microscopic measurements and did not 

require an assumption on a specific morphological model. Specifically, −�̇�𝑚 is retrieved from the 

droplet lifetime, while �𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒�
−1

 is retrieved from the effective diffusion coefficient measured.  

By using the inverse of the effective viscosity one can also estimate the drying speed as 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

=

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒̇ ∝ 𝛾𝛾𝛾𝛾(𝑡𝑡)
6𝜂𝜂

[𝑙𝑙𝑐𝑐𝐸𝐸𝜃𝜃0 − 𝑙𝑙𝑐𝑐𝐸𝐸𝜃𝜃(𝐸𝐸)]~�𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒�
−1

 [98, 108]. Moreover, using the same pieces of 

information, one can also evaluate the relative rate of radius evolution of the droplet (average speed 

of triple line recession) with respect to that of the solvent alone, 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 𝜂𝜂0⁄ = �𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒
̇
𝑟𝑟0̇
�
−1

 [98, 108].  

The fact that 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 measured is larger than 𝐷𝐷0 is indicative of the interactions that overall result in 

a reduced diffusion coefficient. In its more general form, the diffusion coefficient can be connected 

to the chemical potential [109, 110], or, alternatively, to the osmotic pressure [111] or the static 

structure factor [112]. Nevertheless, an interpretation of 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 in terms of specific type of potentials 

is pertinent to a particular situation, and it requires imposing both the structure of the individual 

particles (hard or soft spheres) and the necessary boundary conditions at the surface of the spheres 

e.g., sticky [109], mixed slip-stick [111], or charged boundaries [113]. 
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In closing this section, we would like to emphasize the versatility and practicality of our approach 

as well as to highlight some unique features. First, the coherent scattering interrogation is 

performed at the distal end of an endoscopic-like probe from a picolitter-sized volume that is 

optically isolated by using optical fibers in conjuncture with low-coherence radiation. This 

coherence volume can be optically transferred, by means of a proper refractive index-matching, 

from the end facet of the fiber to the inside of colloidal droplets thus allowing to measure the 

droplet internal dynamics. Additionally, our implementation in a common-path interferometer 

configuration allows performing noninvasive, contactless, label-free measurements continuously 

over the entire duration of the long-term process. 

Regarding the information retrieval, one can measure, simultaneously, two different physical 

properties namely the internal diffusion dynamics and the effective optical parameters, which are 

not available in traditional approaches. When all of these parameters are followed in time, a 

description of the evolution of the particles’ dynamics and accumulation can be pursued including 

the overall resultant of the adhesive and cohesive interactions that take place in such conditions of 

confinement. Moreover, we have also demonstrated that some important macroscopic descriptors 

of the drying process, which include, for instance, the average drying speed, the rate of evaporative 

mass transfer, and the time evolution of the droplet volume, can be estimated from the continuous 

measurement of these microscopic properties. 

Finally, our fiber-based implementation can be incorporated into existing characterization 

platforms such as drop profiling setups, including the ones based on the tracking florescent 

particles [92, 93], dark field microscopy [94], or approaches where droplets are pinned on pillars 

in order to speed up reaction assays [74, 75]. The spatially-resolved nature of an optical fiber-



56 
 

based instrumentation makes it possible to characterize even more complex situations where the 

solvent is either viscoelastic and/or heterogeneous [114], or to study other dynamical aspects such 

as internal flows in conditions of quasi-stabilized evaporation [96].  

 

3.3 Non-ergodic structural evolution 

3.3.1 Overcoming non-ergodicity 

The non-equivalence between time and ensemble averages i.e., non-ergodicity, in the context of a 

DLS experiment means that the intensity correlation function (ICF) measured cannot be 

interpreted in terms of ensemble-averaged properties of the medium [115]. In the measurements, 

typical manifestations of non-ergodic phenomena take place when a sufficient range of possible 

system’s configurations is not explored. Common situations occur in glassy colloids and polymer 

gels [116-122], and heterogeneous, dense soft systems in general [123-130]. Prominent examples 

in biology include the intracellular transport in the cytoplasm, cellular transport in the extracellular 

matrix and plasma membranes, and dynamics of blood [131-139]. In such complex media, the 

non-ergodicity is due to temporary localization of diffusion about mean positions and the globally 

slow structural dynamics. 

Non-ergodicity is even more critical when dealing with non-stationary processes when the time 

window available for measurements is limited by the process itself. In some cases, where long-
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term time averaging is not possible but the process is spatially stationary, one can still achieve a 

proper ensemble average by simultaneously measuring at multiple spatial locations. 

Nevertheless, the experimental difficulty for ensuring the operation in an ergodic regime relies in 

that there is not a clear and sharp threshold for when these effects start affecting the measurement. 

In fact, both the time scales for integration and the number of different spatial locations required 

to mitigate non-ergodicity largely differs depending not only on the dynamic characteristics of the 

sample but also on the specific mechanism implemented e.g., static light scattering (SLS) plus 

DLS [115], direct averaging (translational/rotational motion of the sample) [140], monitoring the 

temporal evolution of multiple speckles [141-143], or a ‘non-ergodic to ergodic conversion’ by 

cascading additional dynamic media [144]. 

In our case, where long-term, non-stationary dynamic process are to be followed, sufficiently long 

observations of temporal changes are not practical since the integration time must be kept short in 

order to properly describe the global evolution of the system from its microscopic characteristics. 

Thus, the only option for proper ensemble-averaging is the evaluation of the system’s dynamics at 

multiple locations. 

It was explained before that our technique can be described as a parallel heterodyne detection, at 

multiple independent and self-referenced locations, of the scattered field 𝐸𝐸𝑠𝑠(𝐸𝐸) using the local 

oscillator provided by 𝐸𝐸𝑟𝑟 [23-25]. This parallel sampling of the system allows measuring the 

structural dynamics averaged over a large number of spatial configurations of the complex medium 

and, therefore, to effectively mitigate its possibly non-ergodic behavior. 
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We tested this on a standard system that typically exhibits non-ergodic dynamics: particle-loaded, 

bio-compatible hydrogels. Fig. 18 shows the power spectra measured from probe particles loaded 

into a polymer network for different averaging times. Briefly, the system consists of polystyrene 

particles with nominal diameter of 100 nm, loaded into a 1wt% chitosan hydrogel [145]. The thin 

curves show all the samples acquired during 20 min in all cases, and the thick curves show the 

resulting averaged spectra (averaged over all the curves). 

      

Figure 18. a) Raw power spectra measured from probe particles loaded into a hydrogel for different 
integration times (30 s, 60 s, 90 s, and 120 s), as indicated. b) Averaged power spectra for the 
different integration times. For visualization purposes the curves for 60 s, 90 s, and 120 s where 
divided by a factor of 1.5, 3.5, and 5, respectively. The system consists of polystyrene particles with 
nominal diameter of 100 nm, loaded into a 1wt% chitosan hydrogel. 

It can be clearly appreciated that shorter integration time results in noisier measurements. This 

larger variation of the signal measured results in that the noise floor of the detection system is 

approached over a larger frequency range, as can be clearly seen in Fig. 18(a). Nevertheless, the 

shape of the power spectrum measured is similar irrespective of the integration time used to 

average, as shown in Fig. 18(b). This indicates that the spatial averaging provided by sampling at 

multiple locations was indeed effective and produced a proper ensemble averaging [144]. In other 
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words, that the parallelized spatial averaging allows overcoming the non-ergodic nature of the 

dynamic process. A more detailed discussion on non-ergodicity in light scattering-based 

measurements can be found in Ref. [36], and in the Appendix B. 

Thus, the simultaneous implementation of spatial and temporal coherence gates, together with the 

heterodyne amplification of the scattered field, results in that long-term processes can be 

continuously followed over their entire duration, without changing neither the hardware nor the 

data processing, while the time-evolving structural dynamics and local mechanical properties of 

the medium can be reliably retrieved [44, 146]. In addition, the large collection area of the MMF 

results in a high sensitivity, which in turn allows performing these measurements based only on 

intrinsic scattering, i.e. without the need of auxiliary scattering centers [39], or with a very small 

concentration of probe particles, as in the present case. For instance, we were able to study in detail 

the swelling properties of the same hydrogels used in Section 3.1.2, at different experimental 

conditions including the polymer concentration, the amount of binding sites, and the particle 

network interactions [44]. 

 

3.3.2 Viscoelastic modulations in hydrogels 

In the following we demonstrate that the unique features in our approach can be useful to disclose 

more complex dynamics, both structural and micro-rheological, that could not be measured 

otherwise. Specifically, we show the measurement of pH-driven viscoelastic modulation in 

chitosan-based biocompatible hydrogels [147]. 
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In the experiments, the power spectra of light intensity fluctuations were recorded in the frequency 

range from 100 Hz to 104 Hz with a resolution of 1 Hz and integration time of 120 s (one power 

spectra every two mins). Fig. 19(a)-(b) shows the time-evolution of the raw spectra and the 

frequency-averaged loss tangent, 𝛾𝛾(𝐸𝐸)������ = 〈𝐺𝐺′′(𝜔𝜔; 𝐸𝐸) 𝐺𝐺′(𝜔𝜔; 𝐸𝐸)⁄ 〉𝜔𝜔, respectively, during a full cycle 

of swelling, contraction, and recovery of the hydrogel in which the modulation of its viscoelastic 

properties is induced by varying the environmental pH. The blue arrow (Fig. 19(b)) indicates the 

time at which 2 mL water with pH 5.7 was added on the top of the 1wt% and 2wt% CS hydrogels, 

in order to induce their swelling. After swelling saturates, 0.5 mL of water with pH 2.0 was added 

on the top of the 1wt% and 2wt% swollen CS hydrogels, as indicated by the red arrow. 

The initial and final states of these two hydrogels are similar, as indicated by the magnitude of �̅�𝛾. 

However, the 1wt% CS hydrogel undergoes an additional contraction-expansion i.e., stiffening-

softening, transition. It is important to note that this transition would have gone unnoticed if the 

process had not been followed continuously and the measurement had been performed only at 

static points where the hydrogel is at equilibrium, as it is commonly done in measurements of 

relative weight after adsorption or release [148, 149]. This transition reveals the capability of the 

1wt% CS hydrogel to undergo viscoelastic modulations, which occur at a constant polymer mass 

content while the integrity of the hydrogel remains unaffected, as shown in the inset of Fig. 19(c). 
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Figure 19. Time evolution of a) the power spectra and b) the loss tangent for a full swelling-recovery 
cycle for 1wt% and 2wt% CS hydrogels. The intermediate compression-expansion transition 
identified for the particular case of the 1wt% hydrogel is highlighted. c) Detailed characterization 
of the intermediate transition: time evolution of the loss tangent of swollen 1wt% CS hydrogel after 
the addition of water with pH 2 at the time indicated by the red arrow. The inset in c) shows 
photographs of the hydrogel at different stages where the process was temporarily interrupted 

We were also able to study that intermediate stiffening-softening transition in more detail, by 

starting from swollen 1wt% CS hydrogels and inducing different pH-driven modulations. Fig. 

19(c) shows the time evolution of the loss tangent of those swollen 1wt% CS hydrogels after the 

addition of HNO3 solution with pH 2.0, at the time indicated by the red arrow. 

Several stages of the process can be clearly identified, which also correspond to those shown in 

the inset of Fig. 19(c). First, there is a steady response (from point A to B), from which the delay 
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in the response of the hydrogel (at the particular depth where the fiber sits, 7mm in this case) can 

be measured, Δt0 ≈ 180 min. Then, the hydrogel undergoes the intermediate stiffening-softening 

transition from point B to C (Δt1 ≈ 200 min; stiffening), and then from C to D (Δt2 ≈ 1,150 min; 

recovery (softening) between by the re-absorption of the water previously released. Finally, the 

hydrogel reaches a steady state 23 hours after the addition of the addition of HNO3 solution with 

pH 2.0 (point D). The steady state is slightly softer, as indicated by the value of the loss tangent at 

the end of the whole process. However, the similarity between those states suggests that the 

hydrogel goes back to a similar condition after a full cycle of viscoelastic modulations. Further 

details can be found in interactions [44, 147]. 

3.3.3 Blood: optically-dense, non-stationary, and non-ergodic medium 

Up to this point, we addressed the issues of the optical density, the non-stationarity, and the non-

ergodicity of the complex media separately. In this section we carry out studies of the structural 

dynamics and viscoelastic properties of the most prominent biological fluid – blood –, which is 

actually an optically-dense, non-stationary, and non-ergodic medium. 

In a variety of clinical settings, inability to precisely and continuously measure and effectively 

manage the coagulation status can be cause of catastrophic thrombosis and hemorrhage, often 

leading to death, despite using “adequate anticoagulation therapies”. Such settings include, for 

instance, cardiovascular surgery requiring cardiopulmonary bypass (CPB), any major surgery in 

patients with coagulation disorders, extracorporeal life support, catheter-based interventional 

procedures, hemodialysis, and other acute medical conditions affecting clotting and coagulation, 

[150-152]. 
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In this regard, optical methods have proved to capture some aspects of whole blood coagulation in 

the context of end-point measurements [153, 154]. Practical implementations, however, are 

restricted not only because of multiple scattering or strong attenuation typically encountered in 

optically dense media but also because of the inability to properly account for the non-ergodic 

nature of the slow dynamics in soft matter [115]. The main limitation of this and other recent 

approaches is that, even though these approaches can operate on whole blood, all of them are also 

based on end-point measurements. This requires a sample to be collected and sometimes prepared 

to induce coagulation under specific conditions and, after the measurement, the sample has to be 

disposed. Consequently, these approaches cannot provide real-time information hemostatic 

potential of the blood. A detailed discussion can be found in the Appendix E.  

As a clinical problem, we chose to focus on CPB for several reasons. First, CPB results in 

coagulation activation that is reproducible and can be used to study the system regulation, Second, 

CPB is an important clinical tool used in the treatment of heart disease that has significant risk. 

Finally, new drugs and technologies are being developed to reduce coagulation activation however 

their measurement and precise mechanisms of action are still debated. 

Among the number of different blood coagulation assays, some of which are conventional 

laboratory tests, only a few of them e.g., ACT and TEG, are well-stablished standards in the 

operation rooms. This is the case mainly due to the fact that most laboratory assays are in general 

labor intensive, expensive, and require repeated withdrawal of blood from the circuit. Moreover, 

the process of getting a readout from most laboratory assays can take a long time (several hours) 

which makes them impractical during surgical procedures. Even in the case of ACT and TEG, the 

tests are run only intermittently resulting in typical time gaps of at least 15-30 minutes. This time 
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gaps are determined by (i) the inherent end-point nature of the measurements (until full coagulation 

is reached) and (ii) the operation room logistics that aim at minimizing the exposure of the circuit 

to contamination due to sample withdrawal. During these time gaps, the precise status of blood 

coagulability is unknown. This is exactly what our approach can correct. By implementing 

mechanisms that prevent non-ergodic effects it is possible to keep the measurement time short 

such that a real-time feedback can be provided to the medical team during surgical procedures. 

Specifically, we demonstrate that the coagulability condition of blood can be monitored in real-

time, continuously, and directly in the operating room during a real clinical procedure. This is 

achieved without collecting samples, without special preparation procedures, without externally 

triggering the coagulation cascade. Thus, our procedure eliminates the time gaps associated with 

conventional technologies based on end-point measurements 

In a first stage, a systematic study has been conducted in clinical setting as follows, in order to 

validate the use of our technique. Specifically, we demonstrate that different coagulations states 

can be clearly discriminated. Ten infants (mean age 4.08±1.64 months, all weighting <10 kg) were 

included in the study. Blood samples were obtained before and after CPB. Standard coagulation 

tests were performed according to clinical protocol. In all cases, full systemic anticoagulation 

before CPB was achieved by the administration of heparin and its effects reversed with protamine 

at CPB offset. The light scattering-based measurements were performed at four time-points: Pre-

CPB before heparin administration, Pre-CPB after heparin administration, Post-CPB before 

protamine administration, and Post-CPB after protamine administration. These stages cover a full 

cycle of the coagulation status of blood, i.e. a “viscoelastic hysteresis”, that starts from a condition 

of normal coagulation (baseline), then is taken to a state of full anticoagulation that has to be 
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maintained at all times during the surgical procedure including CPB, and is finally reversed back 

to normal coagulation, as shown schematically in Fig. 20(a). These measurements were correlated 

with measurements of activated clotting time (ACT), which were performed simultaneously. This 

study was approved by both the UCF and the Orlando Health Institutional Review Boards. We 

obtained informed consent from all patients. 

 

Figure 20. a) Schematic representation of the viscoelastic hysteresis of blood experienced during 
cardiovascular surgery. A safe level of anti-coagulation is to be maintained during the 
cardiopulmonary bypass. b) Typical power spectral densities of signal fluctuations corresponding 
to scattering from whole blood at different stages during cardiovascular surgery measured with 
spatio-temporal coherence-gated dynamic light scattering.  

Fig. 20(b) illustrates typical power spectra corresponding to scattering from whole blood at 

different stages during the cardiovascular surgery. Those stages correspond to the data points 

shown schematically in Fig. 20(a). The effect of the anticoagulant is evident. The spectral 

amplitudes corresponding to heparinized blood are significantly larger indicating that the red blood 

cells are less impeded in their mechanical vibrations. It is also worth noting the time gap between 

the Pre-CPB and Post-CPB measurements (blue curves), which is the duration of the CPB 

(typically > 90 min). It is between these two stages where a tight, continuous assessment of the 

condition of blood is required in order to maintain a safe level of anti-coagulation to prevent 
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clotting. Having similar spectra before and after CPB is a good indication that the status of full 

anticoagulation was maintained throughout the procedure. Finally, the effect of the anticoagulant 

reversal can be verified as blood is brought back to the initial state of normal coagulation (black 

curve in Fig. 20(b)). 

From a Brownian diffusion analysis, it can be estimated that a typical RBC explores <1% of its 

own size in the frequency range >102 Hz. Being limited at high frequencies by the noise floor in 

the detection system and by potential flow effects at the lower ones, we have restricted our analysis 

to the frequency range from 102 Hz to 103 Hz (shaded region in Fig. 20(b)). Linear regression 

analysis was used to assess the correlation of log-slope measurements with the standard tests at all 

time-points (as defined above). Within the frequency window of interest, the log-slope of 𝑃𝑃(𝑓𝑓) 

shows moderate, statistically significant correlation with the standard coagulation tests 

individually (PLT: r = 0.53, p = 0.01; ACT: r = -0.39, p = 0.005; TEG-CI: r = 0.57, p = 0.009). 

These values of the univariate correlations are acceptable from the medical standpoint as verified 

at Arnold Palmer Hospital for Children (APHC).  

We have also determined the correlation between the incremental time-point differences of the 

log-slope and the ACT. We found that the incremental time-point differences of our measurement 

shows strong, statistically significant correlation (r=-0.76, p=0.0001), as can be seen in Fig. 21. 

Further details on both the statistical analysis of the data and how our correlation results compare 

to other studies can be found in the Supplementary Materials of Ref. [36]. 
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Figure 21. Linear regression of incremental time-point differences of the log-slope and the ACT 
showing the strong, statistically significant correlation between our measurement and the standard 
coagulation test ACT. 

The all-fiber realization of the spatio-temporal coherence-gated dynamic light scattering technique 

presented here operates in a common path interferometer configuration in reflection. This 

constitutes a robust and reliable sensing technology with an endoscopic design that allows for 

direct incorporation into standard vascular access devices which, in turn, permits the 

instrumentation of blood circulation equipment used in the operation room for the in-line 

assessment of coagulation status during cardiovascular surgery, as shown in the Fig. 22. 
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Figure 22. Instrumentation of blood circulation equipment for the in-line assessment of blood 
coagulability is possible thanks all-fiber realization of the spatio-temporal coherence-gated dynamic 
light scattering technique. 

Fig. 23 illustrates some examples of typical collections of time-evolving power spectra acquired 

during CPB in cardiovascular surgery. The condition of whole blood is monitored continuously in 

vivo, in situ throughout the CPB without the need for sample collection or any other preparation. 

Important features such as heparin administration and variations at CPB offset are also captured 

by our technique. 

       

Figure 23. Typical example of the time-evolution of the power spectra measured continuously with 
spatio-temporal coherence-gated DLS during CPB (several hours), for different patients in the pilot 
study carried out at APHC. 
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In summarizing this Section, our spatio-temporal coherence-gated approach permits a clear 

discrimination between different conditions of blood during cardiovascular surgery and shows 

strong correlation with standard coagulation tests. Moreover, the all-fiber implementation allows 

direct incorporation into standard vascular access devices for the instrumentation of blood 

circulation equipment with minor modifications to the circulation equipment and minimal invasion 

to the operation room. The real-time measurement capabilities demonstrated here constitute a 

paradigm shift in blood monitoring as they provide real-time feedback and allow timely 

interventions and effective anticoagulation management during clinical procedures. Ongoing work 

addresses the development of suitable rheological models to describe the microscopic viscoelastic 

properties measured in our experiments and to identify relevant clinical events during CPB. 
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CHAPTER IV: CONCLUSIONS 

In closing, we would like to comment on the versatility of our fiber-based implementation of the 

spatio-temporal coherence-gated DLS technique and to highlight some of the unique features that 

enable measurements that go beyond the capabilities of traditional DLS. 

In our approach, the coherent scattering is collected at the distal end of an endoscopic-like probe 

from a picolitter-sized volume that is optically isolated by the use of low-coherence radiation. The 

single-scattering component of the signal that is coupled back to the fiber is amplified by the 

interference with a local oscillator that arises naturally at the end facet of the fiber due to inherent 

Fresnel reflections. This interferometric operation in a common-path geometry provides a high 

sensitivity in detecting to weak scattered fields. Additionally, the use of multimode fibers allows 

working with spatially partially coherent fields, which provides means for proper ensemble 

averaging. 

Moreover, our technique offers access, in addition to diffusion dynamics, to optical parameters 

that are not available in traditional DLS. These parameters – the total time-averaged power and 

the total scattered power – provide information about the Fresnel reflection at the fiber-medium 

interface and the scattering density, respectively. As a result, one has access to a complete, 

mechanical and optical, characterization of the medium tested.  

We presented several practical examples that rely on the unique features of our technique including 

(i) the effective isolation of single scattering, (ii) the large sensitivity and high collection 

efficiency, (iii) the capability to operate over a wide range of optical regimes, and (iv) the ability 
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to provide an efficient ensemble averaging. We have shown that these characteristics permit a 

detailed description of the local structural and micro-rheological properties of complex, 

inhomogeneous media in conditions of strong scattering and noisy backgrounds. The examples 

presented in this paper include applications of both statistically-stationary and time-evolving 

complex media and included particle sizing in optically dense systems, micro-rheology of gel-like 

materials, simultaneous measurement of diffusive and advective dynamics of colloids, diffusion 

and dissolving dynamics of liquid interfaces, the dynamics of non-ergodic colloids, and the 

viscoelastic evolution of bio-compatible hydrogels.  

Finally, we would like to mention that the above-listed applications are examples where the unique 

characteristics of our technique can be clearly identified. Other applications may include the 

passive optical mapping of polymer assemblies [39], or the in-situ, in-vivo assessment of blood 

coagulability during cardiovascular surgery without the need of samples collection and end-point 

measurements [55] or any other scenarios that involve following the dynamics of optically 

inhomogeneous media. 
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APPENDIX A: DERIVATION OF THE INTER-CHANNEL 

COMMUNICATION IN SPECKLE FIELDS 
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Spatio-temporal coherence-gated dynamic light scattering can be thought as the (temporal) 

partially coherent interference of two (spatial partially coherent) speckle fields, one being the field 

reflected at the end facet of the multimode fiber 𝐸𝐸(𝑟𝑟)(𝐸𝐸) (reference) and the other the field scattered 

from the system under study 𝐸𝐸(𝑠𝑠)(𝐸𝐸). 

The interaction between the reference and scattered field is three-dimensionally gated by the field 

distribution used for illumination i.e. spatial partially coherent speckle field, coherent only within 

the extent of each speckle (across the facet of the fiber), and the spectral properties of the light 

source. The interference between these two fields is controlled by the temporal coherence of the 

incident radiation i.e. partial temporal coherence leads to a finite depth in which the two fields 

maintain a phase relation, as illustrated in Fig. A1.  

This situation is similar to the addition of correlated speckle fields for the particular case in which 

their correlation is limited to take place only within the extent of the coherence length [23] or, 

equivalently, as the heterodyne amplification of a scattered field, with a local oscillator of the same 

frequency, at multiple, independent spatial locations in parallel [24, 25]. 

 

Figure A1. Fiber-based three-dimensional implementation of the spatio-temporal coherence-gated 
dynamic light scattering. Non-ergodicity is effectively overcome by sampling the scattered field at 
multiple, independent locations of self-reference illumination. 
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The scattered electric field can interfere with the reference field only at each location of 

independent illumination i.e. at each speckle. The total field at the end facet of the fiber (location 

A) is the coherent addition i.e. on a field or amplitude basis, of the reference and scattered field: 

𝐸𝐸𝐴𝐴(𝐸𝐸) = ∑ 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝐸𝐸)𝑁𝑁
𝑖𝑖     (A1) 

In this context, it is well known that the coherent addition of speckle fields i.e. on an amplitude 

basis, does not reduce the contrast of speckle and has no effect on the signal-to-noise ratio i.e. the 

addition of two random fields on an amplitude basis simply results on a third random field 

distribution with statistics indistinguishable from the original ones [26, 27]. Based on this idea, the 

multimode fiber can be thought to be a black box that transfers the field distribution 𝐸𝐸𝐴𝐴(𝐸𝐸) into a 

new field distribution 𝐸𝐸𝐵𝐵(𝐸𝐸) on the other end.  

For a loss-less system (same total power at both MMF ends) and without any special cross-channel 

interaction between the two ends, the inter-channel communication will lead to a uniform 

contribution from all the i-th locations on the A-side onto all the j-th locations on the B-side such 

that the total field at a single j location on the B-side is: 

𝐸𝐸𝑗𝑗𝐵𝐵(𝐸𝐸) = 1
√𝑁𝑁
∑ 𝐸𝐸𝑖𝑖

(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸)𝑁𝑁

𝑖𝑖     (A2) 

In their more general form, the reference and scattered fields at the i-th location i.e. at each speckle, 

can be written as: 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑟𝑟)(𝐸𝐸)𝑒𝑒−𝑗𝑗�𝜔𝜔𝑟𝑟𝑡𝑡−𝜙𝜙𝑖𝑖
(𝑟𝑟)(𝑡𝑡)�    (A3a) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)(𝐸𝐸)𝑒𝑒−𝑗𝑗�𝜔𝜔𝑠𝑠𝑡𝑡−𝜙𝜙𝑖𝑖
(𝑠𝑠)(𝑡𝑡)�    (A3b) 
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In this general form one can recognize the notation typically used for the heterodyne technique in 

radar applications in which the local oscillator has different frequency than the signal that is to be 

amplified [24, 25]. For our particular case the optical frequency of both the local oscillator and the 

scattered field are the same i.e. 𝜔𝜔𝑟𝑟 = 𝜔𝜔𝑠𝑠 = 𝜔𝜔. 

The electric field cannot be measured at optical frequencies and only the slowly-varying envelope 

can be followed. Moreover, since it is only the relative phases what contain the information of the 

relation between the two fields, the rapidly-varying oscillations can be removed from the previous 

expressions: 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑟𝑟)(𝐸𝐸)      (A4a) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)(𝐸𝐸)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)     (A4b) 

where 𝜙𝜙𝑖𝑖(𝐸𝐸) = 𝜙𝜙𝑖𝑖
(𝑟𝑟)(𝐸𝐸) − 𝜙𝜙𝑖𝑖

(𝑠𝑠)(𝐸𝐸). If the field amplitudes are assumed to be approximately 

constant over time and only the time-varying phase 𝜙𝜙𝑖𝑖(𝐸𝐸) is considered, the previous definitions 

of the fields simplify to: 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝐸𝐸𝑖𝑖

(𝑟𝑟) = 𝜀𝜀𝑖𝑖
(𝑟𝑟)      (A5a) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)      (A5b) 

The total intensity right behind the end facet of the fiber on the A-side is the incoherent addition 

i.e. on an intensity basis, of the intensity contributions from at all i-locations. At each of this 

locations, the local intensity is the coherent addition i.e. on a field basis, of the reference and 

scattered field such that: 
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𝐼𝐼𝐴𝐴(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖     (A6) 

On the B-side the situation is similar in the sense that at this end the field distribution is also a 

spatially incoherent speckle field such that the total intensity is given by the intensity contribution 

from all j locations: 

𝐼𝐼𝐵𝐵(𝐸𝐸) = ∑ 𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸)𝑀𝑀
𝑗𝑗       (A7) 

with the difference that now, as mentioned before, the local intensity at the j-th location contains 

contributions from all the i-locations on the A-side:  

𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸) = � 1
√𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟) + 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖 �
2
    (A8) 

Such that the total intensity on the B-side is given by: 

𝐼𝐼𝐵𝐵(𝐸𝐸) = ∑ 𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸)𝑀𝑀
𝑗𝑗 = ∑ � 1

√𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟) + 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖 �
2

𝑀𝑀
𝑗𝑗    (A9) 

Appealing to the above-mentioned energy conservation argument, the total integrated power 

should be the same at both ends of the multimode fiber. In other words, the total intensity at both 

ands A and B is the same i.e. 𝐼𝐼𝐴𝐴(𝐸𝐸) = 𝐼𝐼𝐵𝐵(𝐸𝐸). This can be verified by expanding the sums as follows: 

𝐼𝐼𝐴𝐴(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖 = ∑ 𝜀𝜀𝑖𝑖

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁

𝑖𝑖  (A10) 

If the amplitude of the electric fields is considered to be roughly the same at all locations i.e. 𝜀𝜀𝑖𝑖
(𝑟𝑟) =

𝜀𝜀(𝑟𝑟) and 𝜀𝜀𝑖𝑖
(𝑠𝑠) = 𝜀𝜀(𝑠𝑠), the expression above simplifies to: 

𝐼𝐼𝐴𝐴(𝐸𝐸) = 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)� + 2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑟𝑟) ∑ 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁
𝑖𝑖   (A11) 
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Doing the same on the B-side, the intensity at a single j-location (see Eq. (8)) is: 

𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸) = 1
𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑘𝑘
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑘𝑘
(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑘𝑘(𝑡𝑡) + 𝜀𝜀𝑘𝑘

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝜀𝜀𝑘𝑘
(𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑘𝑘(𝑡𝑡)]𝑁𝑁

𝑖𝑖,𝑘𝑘  (A12) 

Which can be expressed in terms of two sums representing the interactions at the same location 

and the cross-interactions between two spatial locations: 

𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸) = 1
𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁

𝑖𝑖 + 1
𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑘𝑘
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑘𝑘
(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑘𝑘(𝑡𝑡) +𝑁𝑁

𝑖𝑖≠𝑘𝑘

𝜀𝜀𝑘𝑘
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑘𝑘

(𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑘𝑘(𝑡𝑡)]   (A13) 

From this expression it can be seen that the first term is already the same obtained for the intensity 

on the A side. 

The second term contains different contributions. The first contribution, 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑘𝑘

(𝑟𝑟), represents the 

self-interaction of the reference field at two different spatial locations. This interaction is forbidden 

simply due to the spatial partially coherent nature of the reference field i.e. self-interaction takes 

place only within the extent of a single speckle. 

The second and third contribution, 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑘𝑘

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑘𝑘(𝑡𝑡) and 𝜀𝜀𝑘𝑘
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡), represent the interaction 

between the reference field at certain location and the scattered field at a different location. This 

interaction can also be forbidden if the scattered field is locked to interact only with its 

corresponding reference field at the same location. This implies that, given a short coherence 

length, the scattered field from each discrete location does not diffract enough to contribute to 

several speckles simultaneously such that each speckle ‘sees’ only what is front of it i.e. back 

scattering within a relatively narrow angle. 
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The last contribution, 𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑘𝑘

(𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑘𝑘(𝑡𝑡)], represents the self-interaction of the scattered field 

at two different spatial locations. This interaction could be thought to be forbidden if one considers 

the scattered field to be also spatial partially coherent due to the nature of illumination. However, 

in general, this term cannot be neglected due to possible spatial correlations in the wavefront of 

the scattered field. The fact that the scattered field comes from an optically isolated picolitter-sized 

volume leads to the assumption that the amplitude of the reference field is much larger than the 

amplitude of the scattered field i.e. 𝜀𝜀𝑖𝑖
(𝑟𝑟) ≫ 𝜀𝜀𝑖𝑖

(𝑠𝑠), such that this last contribution can also be 

neglected. 

Summarizing the above-listed observations, the whole second sum can be neglected: 

𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸) = 1
𝑁𝑁
∑ 𝜀𝜀𝑖𝑖

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁

𝑖𝑖    (A14) 

If again the amplitude of the electric fields is considered to be roughly the same at all locations i.e. 

𝜀𝜀𝑖𝑖
(𝑟𝑟) = 𝜀𝜀(𝑟𝑟) and 𝜀𝜀𝑖𝑖

(𝑠𝑠) = 𝜀𝜀(𝑠𝑠), the expression above simplifies to: 

𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸) = �𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)� + 1
𝑁𝑁

2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑟𝑟) ∑ 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁
𝑖𝑖   (A15) 

The total intensity on the B-side is 

𝐼𝐼𝐵𝐵(𝐸𝐸) = ∑ 𝐼𝐼𝑗𝑗𝐵𝐵(𝐸𝐸)𝑀𝑀
𝑗𝑗 = 𝑀𝑀�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)� + 𝑀𝑀

𝑁𝑁
2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑟𝑟) ∑ 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁

𝑖𝑖   (A16) 

Moreover, the scattered field 𝐸𝐸(𝑠𝑠)(𝐸𝐸) can be assumed to fill uniformly the acceptance cone of the 

multimode fiber i.e. backscattering containing a large number of k-vectors, sufficient to cover the 

numerical aperture of the multimode fiber uniformly.  



79 
 

This leads to the consequence that both sides A and B have the same number of speckles i.e. M=N. 

Actually, by this assumption, the number of speckles remains the same at any location along the 

multimode fiber. In other words, this means that the random field distributions at both ends are 

connected only by a phase relation. The final result is that, indeed, the intensity at both sides is 

exactly the same, 𝐼𝐼𝐵𝐵(𝐸𝐸) = 𝐼𝐼𝐴𝐴(𝐸𝐸), since the number of speckles is the same at both ends i.e. M=N: 

𝐼𝐼𝐵𝐵(𝐸𝐸) = 𝑀𝑀�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)� +
𝑀𝑀
𝑁𝑁

2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑟𝑟) �𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
𝑁𝑁

𝑖𝑖

 

= 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)� + 2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑟𝑟) ∑ 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�𝑁𝑁
𝑖𝑖 = 𝐼𝐼𝐴𝐴(𝐸𝐸)  (A17) 

This conclusion has deeper implications. If the field distributions at both ends are connected only 

by a phase relation it means that the intensity statistics are conserved. In other words, the intensity 

autocorrelation function gives the same result regardless of the location at which it is calculated 

along the fiber. 

From the same definitions of the reference, scattered, and total fields used before (Eq. A5): 

𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑟𝑟) 

𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) 

𝐸𝐸𝑖𝑖(𝐸𝐸) = 𝐸𝐸𝑖𝑖
(𝑟𝑟)(𝐸𝐸) + 𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝐸𝐸) = 𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) 

The electric field autocorrelation function (ACF) of the scattered field can be calculated as: 

𝐺𝐺1 (𝑠𝑠)(𝜏𝜏) = 〈𝐸𝐸(𝑠𝑠)(𝐸𝐸)𝐸𝐸∗(𝑠𝑠)(𝐸𝐸 + 𝜏𝜏)〉 = 〈��𝜀𝜀𝑖𝑖
(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)

𝑁𝑁

𝑖𝑖

� ��𝜀𝜀𝑗𝑗
(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)

𝑁𝑁

𝑗𝑗

�〉 
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= 〈�𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�
𝑁𝑁

𝑖𝑖,𝑗𝑗

〉 

= 〈∑ 𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]𝑁𝑁

𝑖𝑖   +   ∑ 𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�𝑁𝑁
𝑖𝑖≠𝑗𝑗 〉  (A18) 

If cross-interactions at different locations are forbidden, Eq. (A18) becomes: 

𝐺𝐺1 (𝑠𝑠)(𝜏𝜏) = 〈∑ 𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]𝑁𝑁

𝑖𝑖 〉    (A19) 

If the amplitude of the electric fields is considered to be roughly the same at all locations i.e. 𝜀𝜀𝑖𝑖
(𝑠𝑠) =

𝜀𝜀(𝑠𝑠), the expression above simplifies to 

𝐺𝐺1 (𝑠𝑠)(𝜏𝜏) = 𝜀𝜀2 (𝑠𝑠) ∑ 〈𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]〉𝑁𝑁
𝑖𝑖     (A20) 

The normalized ACF of the scattered field is therefore: 

𝑔𝑔1 (𝑠𝑠)(𝜏𝜏) = 〈𝐸𝐸(𝑠𝑠)(𝑡𝑡)𝐸𝐸∗(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉
〈𝐸𝐸(𝑠𝑠)(𝑡𝑡)〉〈𝐸𝐸(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉

= ∑ 〈𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]〉𝑁𝑁
𝑖𝑖    (A21) 

From this expression, it can be seen that �𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�
2

= 1 

Similarly, for the electric field autocorrelation function of the total field: 

𝐺𝐺1(𝜏𝜏) = 〈𝐸𝐸(𝐸𝐸)𝐸𝐸∗(𝐸𝐸 + 𝜏𝜏)〉 = 〈��𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖

� ��𝜀𝜀𝑗𝑗
(𝑟𝑟) + 𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)
𝑁𝑁

𝑗𝑗

�〉 

= 〈�𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑟𝑟) + 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏) + 𝜀𝜀𝑗𝑗
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�
𝑁𝑁

𝑖𝑖,𝑗𝑗

〉 
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= 〈∑ 𝜀𝜀𝑖𝑖
2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)� + 𝜀𝜀𝑖𝑖

2 (𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]𝑁𝑁
𝑖𝑖   +    ∑ 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑗𝑗
(𝑟𝑟) +𝑁𝑁

𝑖𝑖≠𝑗𝑗

𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏) + 𝜀𝜀𝑗𝑗
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉  (A22) 

If cross-interactions at different locations are forbidden: 

𝐺𝐺1(𝜏𝜏) = 〈∑ 𝜀𝜀𝑖𝑖
2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)� + 𝜀𝜀𝑖𝑖

2 (𝑠𝑠)𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]𝑁𝑁
𝑖𝑖 〉 (A23) 

If the amplitude of the electric fields is considered to be roughly the same at all locations i.e. 𝜀𝜀𝑖𝑖
(𝑟𝑟) =

𝜀𝜀(𝑟𝑟) and 𝜀𝜀𝑖𝑖
(𝑠𝑠) = 𝜀𝜀(𝑠𝑠), the expression above simplifies to: 

𝐺𝐺1(𝜏𝜏) = 𝑁𝑁𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑠𝑠) �〈𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)〉
𝑁𝑁

𝑖𝑖

+ 𝜀𝜀2 (𝑠𝑠) �〈𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]〉
𝑁𝑁

𝑖𝑖

 

= 𝑁𝑁𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑠𝑠) ∑ �〈𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)〉 + 〈𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)〉�𝑁𝑁
𝑖𝑖 + 𝜀𝜀2 (𝑠𝑠)𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)   (A24) 

Assuming the process is statistically stationary i.e. 〈𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)〉 = 〈𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)〉: 

𝐺𝐺1(𝜏𝜏) = 𝑁𝑁𝜀𝜀2 (𝑟𝑟) + 2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑠𝑠) ∑ 〈𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)〉𝑁𝑁
𝑖𝑖 + 𝜀𝜀2 (𝑠𝑠)𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)   (A25) 

If the random variable 𝜙𝜙𝑖𝑖 is assumed to be uniformly distributed over all possible angles, the 

quantity 𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)will be uniformly distributed over the complex plane with zero average: 

𝐺𝐺1(𝜏𝜏) = 𝑁𝑁𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)    (A26) 

The intensity autocorrelation function of the total intensity is given by: 

𝐺𝐺2(𝜏𝜏) = 〈𝐼𝐼(𝐸𝐸)𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉   , where:     𝐼𝐼(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖  
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= 〈��𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁

𝑖𝑖

��𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)�
2

𝑁𝑁

𝑖𝑖

〉 

= 〈��𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)��𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)��𝜀𝜀𝑗𝑗
(𝑟𝑟) + 𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)��𝜀𝜀𝑗𝑗
(𝑟𝑟) + 𝜀𝜀𝑗𝑗

(𝑠𝑠)𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�
𝑁𝑁

𝑖𝑖,𝑗𝑗

〉 

= 〈��𝜀𝜀𝑖𝑖
2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖

2 (𝑠𝑠) + 𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)�𝑒𝑒+𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡) + 𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)���𝜀𝜀𝑗𝑗
2 (𝑟𝑟) + 𝜀𝜀𝑗𝑗

2 (𝑠𝑠)
𝑁𝑁

𝑖𝑖,𝑗𝑗

+ 𝜀𝜀𝑗𝑗
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑠𝑠)�𝑒𝑒+𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏) + 𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)��〉 

= 〈�

𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑟𝑟)𝜀𝜀𝑗𝑗
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)�

+  𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑟𝑟)𝜀𝜀𝑗𝑗
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�

+  2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝜀𝜀𝑗𝑗
2 (𝑟𝑟)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)� + 2𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�

+2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝜀𝜀𝑗𝑗
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑠𝑠) �𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)���

𝑁𝑁

𝑖𝑖,𝑗𝑗

〉 

= 〈∑ 𝜀𝜀𝑖𝑖
4 (𝑟𝑟) + 𝜀𝜀𝑖𝑖

4 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
3 (𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)�𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

3 (𝑠𝑠)�𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)� +𝑁𝑁
𝑖𝑖

𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 2𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑖𝑖

2 (𝑠𝑠) �1 + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)��� +

∑

𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑟𝑟)𝜀𝜀𝑗𝑗
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)�

+  𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑟𝑟) + 𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
2 (𝑠𝑠)𝜀𝜀𝑗𝑗

(𝑟𝑟)𝜀𝜀𝑗𝑗
(𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�

+  2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝜀𝜀𝑗𝑗
2 (𝑟𝑟)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)� + 2𝜀𝜀𝑖𝑖

(𝑟𝑟)𝜀𝜀𝑖𝑖
(𝑠𝑠)𝜀𝜀𝑗𝑗

2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�

+2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)𝜀𝜀𝑗𝑗
(𝑟𝑟)𝜀𝜀𝑗𝑗

(𝑠𝑠) �𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)���

𝑁𝑁
𝑖𝑖≠𝑗𝑗 〉  (A27) 

If cross-interactions are forbidden, Eq. (A27) becomes: 
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𝐺𝐺2(𝜏𝜏) = 〈∑ 𝜀𝜀𝑖𝑖
4 (𝑟𝑟) + 𝜀𝜀𝑖𝑖

4 (𝑠𝑠) + 2𝜀𝜀𝑖𝑖
3 (𝑟𝑟)𝜀𝜀𝑖𝑖

(𝑠𝑠)�𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� +𝑁𝑁
𝑖𝑖

2𝜀𝜀𝑖𝑖
(𝑟𝑟)𝜀𝜀𝑖𝑖

3 (𝑠𝑠)�𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡)� + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� + 2𝜀𝜀𝑖𝑖
2 (𝑟𝑟)𝜀𝜀𝑖𝑖

2 (𝑠𝑠) �1 + 𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�� +

𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)���〉    (A28) 

This simplifies dramatically if the random variable 𝜙𝜙𝑖𝑖 is assumed to be uniformly distributed over 

all possible angles, the amplitude of the electric fields is considered to be roughly the same at all 

locations, and the process is statistically stationary: 

𝐺𝐺2(𝜏𝜏) = 𝑁𝑁�𝜀𝜀4 (𝑟𝑟) + 𝜀𝜀4 (𝑠𝑠)�

+ 2𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠) ��1 + 〈𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)��〉 + 〈𝑅𝑅𝑒𝑒�𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)��〉�
𝑁𝑁

𝑖𝑖

 

= 𝑁𝑁�𝜀𝜀4 (𝑟𝑟) + 2𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠) + 𝜀𝜀4 (𝑠𝑠)�

+ 2𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒 ��〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉
𝑁𝑁

𝑖𝑖

+ �〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉
𝑁𝑁

𝑖𝑖

� 

= 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�
2

+ 2𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒�∑ 〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉𝑁𝑁
𝑖𝑖 + ∑ 〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)+𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉𝑁𝑁

𝑖𝑖 � (A29) 

Recall the ACF of the scattered field was calculated to be: 

𝑔𝑔1 (𝑠𝑠)(𝜏𝜏) =
〈𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝑡𝑡)𝐸𝐸𝑖𝑖
∗(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉

〈𝐸𝐸𝑖𝑖
(𝑠𝑠)(𝑡𝑡)〉〈𝐸𝐸𝑖𝑖

(𝑠𝑠)(𝑡𝑡+𝜏𝜏)〉
= ∑ 〈𝑒𝑒−𝑗𝑗[𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑖𝑖(𝑡𝑡+𝜏𝜏)]〉𝑁𝑁

𝑖𝑖     (A30) 

Since the real part of the complex exponential is symmetric (cosine) i.e. 〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)−𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉 =

〈𝑒𝑒−𝑗𝑗�𝜙𝜙𝑖𝑖(𝑡𝑡)=𝜙𝜙𝑗𝑗(𝑡𝑡+𝜏𝜏)�〉: 

𝐺𝐺2(𝜏𝜏) = 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�
2

+ 4𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�   (A31) 
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Note: the term 𝜀𝜀4 (𝑠𝑠)implicitly contains the contribution �𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�
2

= 1. 

The normalized intensity autocorrelation function is: 

𝑔𝑔2(𝜏𝜏) = 〈𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡+𝜏𝜏)〉
〈𝐼𝐼(𝑡𝑡)〉〈𝐼𝐼(𝑡𝑡+𝜏𝜏)〉

= 𝐺𝐺2(𝜏𝜏)
〈𝐼𝐼(𝑡𝑡)〉〈𝐼𝐼(𝑡𝑡+𝜏𝜏)〉

    (A32) 

From the expression of the total intensity:  

𝐼𝐼(𝐸𝐸) = ∑ �𝜀𝜀𝑖𝑖
(𝑟𝑟) + 𝜀𝜀𝑖𝑖

(𝑠𝑠)𝑒𝑒−𝑗𝑗𝜙𝜙𝑖𝑖(𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖     (A33) 

It can be seen that 〈𝐼𝐼(𝐸𝐸)〉 = 〈𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉 = 𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�. Thus, the normalized ACF of the total 

intensity is: 

𝑔𝑔2(𝜏𝜏) =
𝐺𝐺2(𝜏𝜏)

〈𝐼𝐼(𝐸𝐸)〉〈𝐼𝐼(𝐸𝐸 + 𝜏𝜏)〉 =
𝑁𝑁�𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠)�

2
+ 4𝜀𝜀2 (𝑟𝑟)𝜀𝜀2 (𝑠𝑠)𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�

𝑁𝑁2(𝜀𝜀2 (𝑟𝑟) + 𝜀𝜀2 (𝑠𝑠))2  

= 1
𝑁𝑁

+ � 2𝜀𝜀(𝑟𝑟)𝜀𝜀(𝑠𝑠)

𝑁𝑁�𝜀𝜀2 (𝑟𝑟)+𝜀𝜀2 (𝑠𝑠)�
�
2
𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�    (A34) 

If the reference field is defined to be proportional to the scattered field i.e. 𝜀𝜀(𝑟𝑟) = 𝛼𝛼𝜀𝜀(𝑠𝑠), an 

expression of the normalized intensity ACF in terms of normalized quantities can be obtained: 

𝑔𝑔2(𝜏𝜏) = 1
𝑁𝑁

+ � 2𝛼𝛼
𝑁𝑁(𝛼𝛼2+1)

�
2
𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�   (A35) 

From this expression it follows that lim
𝑁𝑁→∞

𝑔𝑔2(𝜏𝜏) = 0 and lim
𝛼𝛼→∞

𝑔𝑔2(𝜏𝜏) = 1
𝑁𝑁

. These conclusions are 

consistent with the fact that for a very large number of speckles i.e. large N, the dynamic 

information is screened and there is no correlation between the contributions. On the other hand, 

very large amplitude of the reference field ends up decreasing the contrast of the fluctuations until 
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they cannot be distinguished anymore and a constant value is obtained for the normalized intensity 

autocorrelation function. 

Working out the expression above a single coefficient for the ACF can be obtained: 

𝑔𝑔2(𝜏𝜏) = �𝑁𝑁�𝛼𝛼
2+1�2+4𝛼𝛼2

[𝑁𝑁(𝛼𝛼2+1)]2 � 𝑅𝑅𝑒𝑒�𝑔𝑔1 (𝑠𝑠)(𝜏𝜏)�   (A36) 

The ACF function of the scattered field is what contains information about the correlated motion 

of the scattering centers and, therefore, about the properties of the suspending medium. It can be 

seen that the best condition for recovering 𝑔𝑔1 (𝑠𝑠)(𝜏𝜏) is for a single point of illumination (N = 1), 

similarly to the case in which a single-mode receiver is used in DLS [34]. It can also be seen that 

for large N the coefficient practically does not change anymore with increasing ratio between the 

field amplitudes. This probes that, at the expense of a sacrifice in its amplitude, the dynamic 

information of the system contained in the ACF of the scattered field, 𝑔𝑔1 (𝑠𝑠)(𝜏𝜏), can be recovered 

from the intensity autocorrelation function, 𝑔𝑔2(𝜏𝜏), which is actually the experimental observable. 

Thus, there must be a balance between the quality of the optical signal and the quality of the 

electrical signal from where the optical contribution containing the dynamic information of the 

system under study is extracted. 

On one hand, using a single, small location of coherent illumination e.g., single-mode fiber, 

provides the best quality in the optical signal for the calculation of the ACF since the contrast of 

the fluctuations is large i.e., the fluctuations represent a large variation in the overall small average 

amplitude. The limitation in this case is the low signal level due to the small aperture which makes 

it vulnerable to other sources of noise. If one increases the size of the illumination spot i.e., of the 
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aperture (larger fiber core, still single-mode), the optical contribution will be more significant than 

the inherent noise at the expense of losing some contrast in the light intensity fluctuations. 

On the other hand, using multiple, independent locations of coherent illumination e.g. illuminating 

with a speckle field through a multimode fiber, provides an optical contribution much stronger 

than the intrinsic electrical noise of the detection system. The drawback in this case is that the 

amplitude of the ACF reduces with increasing number of illumination spots, which could 

compromise the accuracy of the dynamic information retrieved. 

SMFs would definitely be the best option if the noise at the detection system is extremely low or 

if the optical contribution is strong enough to overcome the intrinsic noise. The reality is that these 

conditions are unlikely to be achieved and that is why the use of MMFs exhibit a better 

performance in terms of overcoming the electrical noise. This becomes even more evident when a 

temporal gate is implemented since the signals involved are weaker.  

When illuminating with a speckle field through a MMF the contrast of the intensity fluctuations 

remains unaffected. Thus, the problem reduces to the task of isolating single scattering in order to 

reliably retrieve the dynamic information. If one could dynamically control both the number of 

spots (spatial coherence) and the spectral properties of the source (temporal coherence), for 

instance by tuning the spectral properties of the light source (central wavelength and bandwidth), 

then the quality of both the optical and the electrical signal can be optimized.   

Finally, using a speckle field as the illumination gives an additional advantage. Due to the multiple, 

independent illumination locations that simultaneously sample the volume of observation at 

different spatial locations, non-ergodicity within the volume of observation can be mitigated since 
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a much larger range of the system’s phase-space can be explored. It is worth noting that this 

approach could be implemented with single-mode fibers only by using a large number of them. 

Here, we are performing this parallel sampling by using a single optical fiber. 

One could take the present derivation one step further and include the finite size of the detector in 

order to calculate the optimum number of speckles N [35]. Here it was assumed that the area of 

the detector is large enough to integrate the total intensity of the light coming out from the MMF. 
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APPENDIX B: NON-ERGODICITY IN LIGHT SCATTERING-BASED 

DYNAMIC MEASUREMENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

In brief, non-ergodicity, that is the non-equivalence between time and ensemble averages, in the 

context of a DLS experiment means that the intensity correlation function (ICF) measured cannot 

be interpreted in terms of ensemble-averaged properties of the medium [115].  Typical examples 

of errors when non-ergodicity is not effectively mitigated are summarized here: 

• Different samples, although similarly prepared, will contain scattering centers in different 

average positions and will be described by different sub-ensembles. Thus, the time-averaged 

ICF obtained from a single DLS measurement on a particular sample will constitute an 

average over a sub-ensemble of configurations. The form of this time or sub-ensemble-

averaged ICF will depend on the particular sample under study.  

• If one analyzes the ICF measured on a non-ergodic medium as if it was that of an ergodic 

medium, one would not obtain the diffusion coefficient characteristic of the particles’ 

motions, but rather an apparent diffusion coefficient that may lead to wrong decision 

regarding the system’s dynamics. For instance, obtaining a large diffusion constant in the 

presence of non-ergodicity does not imply rapid particle motions, as it would be the 

interpretation if ergodicity is assumed; instead, a large diffusion constant results simply 

from incorrect analysis of the data. 

• The micro-rheological (viscoelastic) properties of the medium, estimated form the diffusion 

characteristics of the scattering centers, which are in turn retrieved from the ICF or 

equivalently the power spectral density, will be erroneous. Thus, any diagnosis pursued in 

terms of the mechanical properties of the medium will be compromised. 
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In our experiments, a direct signature of non-ergodicity would be that the shape of the power 

spectrum reported in Fig. 13 in the main text would be different for different integration times. 

The fact that the shape of the power spectrum measured is similar irrespective of the integration 

time used to average is a clear, quantitative indicative that the spatial averaging provided by 

sampling at multiple locations is indeed effective and produced a proper ensemble averaging. In 

other words, that non-ergodicity is effectively mitigated. 

The problem is that there is not a clear and sharp threshold for when these effects start affecting 

the measurement. In fact, both the time scales for integration and the number of different spatial 

locations required to mitigate non-ergodicity largely differs depending not only on the dynamic 

characteristics of the sample but also on the specific mechanism implemented to work in the 

ergodic regime.  

Table C1 below summarizes the integration time and number of measurements averaged for the 

proper calculation of the ICF in light scattering-based measurements (both DLS and DWS) 

performed on systems exhibiting non-ergodic dynamics. In these works different spatial averaging 

mechanisms have been implemented e.g. static light scattering (SLS) plus DLS [115], direct 

averaging (translational/rotational motion of the sample) [140], temporal evolution of multiple 

speckles [141], or non-ergodic to ergodic conversion [144]. 
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Ref System Averaging time for the calculation of the ICF 
and some important notes 

[T1] Particles in gel 
In linear mode: ten runs, each a length of 60 s. 
In multiple mode: three runs, each a length of 15 min. 
37 ensembles averaged. 

[T2] Colloidal glass or crystal Averaging time 103 s.  
10 different spatial locations. 

[T3] Colloidal glass or crystal Averaging time 103 s.  
1000 independent speckles at the detector. 

[T4] Polymer gel (no particles) Averaging time 103 s. 100 ensembles averaged. 

[T5] Particles in gel Averaging time 30 min.  
Number of spatial locations not specified. 

[T6] Highly concentrated suspensions 
of PS–microgel lattices 

Averaging time over multiple speckles: 50 000 s (833 min; 13.8 
hours). 
Averaging time, DLS: 200 000 s (3333 min; 55.6 hours). 
50 speckles per picture. 

[T7] Highly concentrated suspensions 
of PS–microgel lattices 

Averaging time over multiple speckles: no data available 
(measurement not possible). 
Averaging time, DLS: 200 000 s (3333 min; 55.6 hours) to 
resolve a characteristic time of 103 s. 
50 speckles per picture. 

[T8] Particles in Laponite suspensions 
No averaging is performed; ICF is calculated directly from 2 
acquired images separated by 40 ms. 
5000 speckles per picture. 

[T9] Particles in gel Averaging time 10 000 s (167 min; 2.8 hours).  
1000 different ICF, 10 s acquisition time for each. 

[T10] Particles in Maxwellian fluid Averaging time 18 000 s (300 min; 5 hours). 
Number of speckles on the camera not specified. 

[T11] Particles in (slightly 
interconnected) polymer network 

Averaging time 2-3 min. 
Number of speckles on the camera not specified. 

 

[T1]   Joosten et al. Phys. Rev. A, 42(4), pp. 2161 (1990). 
[T2]   Van Megen et al. Phys. Rev. A, 43(10), pp. 5429 (1991). 
[T3]   Van Megen, et al. Phys. Rev. Lett., 67(12), pp. 1586 (1991). 
[T4]   Xue, et al. Phys. Rev. A, 46(10), pp. 6550 (1992). 
[T5]   Joosten, J., Dynamic light scattering by non-ergodic media, in Application of Scattering Methods to 
the Dynamics of Polymer Systems. Springer. p. 149-152 (1993). 
[T6]   Kirsch et al., J. Chem. Phys., 104(4), pp. 1758-1761 (1996). 
[T7]   Bartsch et al., J. Chem. Phys., 106(9), pp. 3743-3756 (1997). 
[T8]   Knaebel et al., Europhys. Lett., 52(1), pp. 73 (2000). 
[T9]   Nisato et al., Phys. Rev. E, 61(3), pp. 2879 (2000). 
[T10]   Galvan-Miyoshi et al., Eur. Phys. J. E, 26(4), pp. 369-377 (2008). 
[T11]   Sarmiento-Gomez et al., J. Phys. Chem. B, 118(4), pp. 1146-1158 (2014). 

 

Table B1. Average and standard deviation of the different metrics at different stages of the surgery 
and their corresponding incremental time-point differences. The average and standard deviation are 
calculated between all the subjects included in the pilot study. 
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As it can be seen, the issue of non-ergodicity can seriously impact both the measurement and the 

interpretation of the data. The integration time can increase rapidly even if the measurement is 

performed at several spatial locations. Our cases, where non-stationary are to be followed as 

accurately as possible, the integration time must be kept as short as possible. Therefore, the only 

option for proper ensemble-averaging is the evaluation of the system’s dynamics at multiple 

locations. In this regard, the parallelization of our measurement at multiple spatial locations 

permits having a ‘preventive’ mechanism to reliably retrieve dynamic information fast and over a 

broad range of dynamical regimes without the need of empiric corrections.   
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APPENDIX C: MOLECULAR ABSORPTION COEFFICIENT OF BLACK INK 
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Independent measurements of the absorption coefficient, 𝜋𝜋𝑎𝑎, and the extinction coefficient, 𝜋𝜋𝑒𝑒, of 

aqueous solutions of ink and light-absorbing colloids, respectively, were carried out by performing 

transmittance measurements using the experimental setup shown in Fig. C1. In general, 𝜋𝜋𝑒𝑒 = 𝜋𝜋𝑎𝑎 +

𝜋𝜋𝑠𝑠, where 𝜋𝜋𝑠𝑠 is the scattering coefficient. In the case of the aqueous solutions of black ink used in 

our experiments 𝜋𝜋𝑒𝑒 = 𝜋𝜋𝑎𝑎, since the sample is practically absorbing-only (scattering-less) i.e., the 

composition is closer to a dye than to an ink. This was verified by the absence of a detectable 

power spectrum in measurements of coherence-gated DLS.  

As shown in Fig. C1, the illumination was restricted to be single-mode in order to measure the 

attenuation along a single k-vector i.e., along a single direction, as shown in Fig. C1. From this 

perspective (single-direction attenuation), one can easily understand why scattering and absorption 

are inherently intertwined and, in general, cannot be decoupled. More specifically, from the 

viewpoint of a fixed detector, attenuation would be equally perceived either because the light is 

directed away from the direction in which the measurement is performed, as in the case of 

scattering; or, because the light is absorbed. 

 

Figure C1. Schematic of the experimental setup used for the measurement of extinction coefficient 
of liquid samples which are in general both light-scattering and light-absorbing. The setup was 
constructed to measure along a single k-vector and uses a triangular (wedge) cell that allows 
measuring directly the extinction coefficient without having to modify the setup or replace the 
sample.  
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Ensuring a single-direction measurement allows using the formalism of the Beer-Lambert law, 𝐼𝐼 =

𝐼𝐼0𝑒𝑒−(𝜇𝜇𝑠𝑠+𝜇𝜇𝑎𝑎)𝑥𝑥, which predicts an exponential decay of the intensity as the light propagates in a 

medium with a constant extinction coefficient. Nevertheless, our goal is to actually measure the 

extinction coefficient.  

In order to do so, one needs to be able to measure the transmitted intensity for different thicknesses, 

from where the value of 𝜋𝜋𝑒𝑒 = 𝜋𝜋𝑠𝑠 + 𝜋𝜋𝑎𝑎, can be extracted. This could be done, for instance, by using 

multiple samples consisting of slabs of different thickness which contain the same medium under 

study. In that case, the number of different samples required would be determined by the number 

of data points that are necessary to fit an exponentially decaying function with sufficient accuracy.  

In our case, on the other hand, a triangular (wedge) cell was used instead, which can simply be 

displaced in order to adjust the thickness of the sample, as indicated in Fig. C1. In this way, a 

collection of data points of transmittance versus the sample’s thickness can be acquired for each 

sample in a simple manner, from where the extinction coefficient can be extracted without having 

to modify the setup or use multiple samples.  

Moreover, by performing measurements on samples with different 𝜋𝜋𝑒𝑒, one can actually measure a 

more fundamental dependence of the extinction coefficient on the actual composition of the sample 

which is responsible for the attenuation.  

For example, in the case of aqueous solutions of black ink, 𝜋𝜋𝑎𝑎 changes with the concentration of 

ink i.e., 𝜋𝜋𝑎𝑎 increases with the concentration of ink. Thus, one needs to also measure 𝜋𝜋𝑎𝑎 at different 

concentrations in order to stablish a more general relationship which can tell the corresponding 𝜋𝜋𝑎𝑎 

for an arbitrary concentration of ink. This information is more fundamental since it refers to the 
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inherent light-absorbing properties of the absorbers i.e., ink molecules. Sometimes, such 

relationship is referred to as the molecular extinction function. 

Fig.  C2 shows the results of our measurements on aqueous solutions of black ink. Specifically, 

Fig. C2(a) shows the transmittance measurements for aqueous solutions of commercial-grade 

black ink (Royal talens Ecoline) with different concentration, as indicated, as a function of the 

increasing thickness of the sample. The markers indicate the experimental data points while the 

solid lines are the fits to the Beer-Lambert law (note the logarithmic scale in the vertical axis). 

Prior to the transmittance measurements, the relationship between the distance from the reference 

edge, 𝑑𝑑, and the thickness of the sample, 𝐸𝐸, was measured (see schematic in Fig. C1). In this way, 

the wedge cell was simply displaced, as indicated in the schematic, and then each position was 

associated to its corresponding thickness, as indicated in Fig. C2(a). 

 

Figure C2. a) Transmittance measurements for aqueous solutions of black ink with different 
concentration, as indicated, as a function of the increasing thickness of the simple. The solid lines 
indicate the fits to the logarithmic version of the Beer-Lambert law; 𝜋𝜋𝑎𝑎 is encoded in the slope of 
the straight lines. b) Linear dependence of 𝜋𝜋𝑎𝑎 on the concentration of black ink and the 
corresponding molecular absorption coefficient. 
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In Fig. C2(a) 𝜋𝜋𝑎𝑎 for each concentration is encoded in the slope of the straight line (note the 

logarithmic scale in the vertical axis). Fig. C2(b) summarizes the value of 𝜋𝜋𝑎𝑎 as a function of the 

concentration of black ink (slopes in Fig. C2(a)). It was found that the dependence of 𝜋𝜋𝑎𝑎 on the 

concentration i.e., the molecular absorption function, is linear with the concentration of ink (Fig. 

C2(b)). Therefore, a molecular absorption coefficient can be defined as 𝜋𝜋𝑎𝑎
(𝑚𝑚𝑚𝑚𝑙𝑙)(𝐶𝐶) =

1.55 𝑚𝑚𝑚𝑚−1 𝑤𝑤𝐸𝐸%⁄ , as indicated. The meaning of this value is that, for instance, at a concentration 

of ink of C=10wt% the characteristic attenuation length is only of 𝑙𝑙𝑎𝑎 = 𝜋𝜋𝑎𝑎−1 ≈ 60 𝜋𝜋𝑚𝑚.  

Finally, we would like to note some of the practical complications that arise in a measurement of 

the absorption coefficient and, more generally, of the molecular absorption function. We 

thoroughly reviewed the literature and noted, for instance, that both samples from different brands 

of commercial inks and even samples from different batches of the same brand can have 

significantly different values. Normally, only samples from the same batch have almost identical 

optical properties. Also, in spite of this large brand-to-brand and batch-to-batch variations 

observed for the specific extinction and absorption coefficients, very similar values have been 

obtained for the ratio between the molecular absorption and extinction coefficients, 𝜋𝜋𝑎𝑎
(𝑚𝑚𝑚𝑚𝑙𝑙) 𝜋𝜋𝑒𝑒𝑥𝑥𝑡𝑡

(𝑚𝑚𝑚𝑚𝑙𝑙)� , 

and for the albedo. Finally, we also noticed that the optical properties of diluted ink remain stable 

for a long time as opposed to those with higher concentrations. In Ref. [155], for instance, 𝜋𝜋𝑎𝑎
(𝑚𝑚𝑚𝑚𝑙𝑙) 

of a diluted sample of Higgins ink was monitored for about one year without observing significant 

variations. 



98 
 

In order to put our results in perspective, we compared them with those from a number of different 

reports. The table below shows the molecular absorption coefficient, 𝜋𝜋𝑎𝑎
(𝑚𝑚𝑚𝑚𝑙𝑙), which was either 

explicitly reported or estimated from the experimental results in the corresponding reference. 

Ref Ink Commercial 
brand 

𝜆𝜆0 
(nm) 

𝜋𝜋𝑎𝑎
(𝑚𝑚𝑚𝑚𝑙𝑙) 

(mm-1/wt%) 
Notes 

[156] Black 
Regal 1 

594 
7.72 ± 0.05  

Regal 2 34.5 ± 1.0  
Higgins 12.3 ± 0.2  

[54] Black Royal talens 
Ecoline 827 --- 

µa = 50.47 and 0.94 mm-1 are reported for two different 
concentrations. The actual values of these 

concentrations is not given. But, this is the same ink that 
we used. 

[55] Black Unknown 850 0.072 
Unknown black ink. The reported volume fractions of 

ink were taken to be the same as the weight 
concentration for the estimation. 

[56] Green Royal talens 
Ecoline 680 0.15 

This is an ink from the same brand that we used. For red 
light, the absorption coefficient should be comparable to 

that of black ink i.e., green ink is a strong absorber at 
these wavelengths. 

[157] Black Unknown 570- 
590 2.5 

The plot reported is actually very similar to our 
measurements – the original black ink is simply diluted 
with DI water (original black ink is taken explicitly as 

100% concentration). 

[155] Black 

Higgins 1 

632.8 

3.7 

Values estimated from the data points in a plot. 

Higgins 2 4.5 
Pelikan 1 5.1 
Pelikan 2 5.2 
Pelikan 3 4.9 
Rotring 1 7.8 
Rotring 2 9.6 

Koh l Noor 5.0 
Staedtler 8.2 

[158] Black Higgins 633 

3.84 
The measurements were carried out on samples at 

different labs where different characterization 
techniques were used for the measurement of the optical 

properties. 

3.55 
3.93 
3.75 
3.86 

687 3.4 
 

Us Black Royal talens 
Ecoline 670 1.55 Measured experimentally in the wedge configuration. 

 

Table C1. Average and standard deviation of the different metrics at different stages of the surgery 
and their corresponding incremental time-point differences. The average and standard deviation are 
calculated between all the subjects included in the pilot study 
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APPENDIX D: BRIEF REVIEW OF DIFFUSING WAVE SPECTROCOPY 
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In a typical DWS experiment [3, 14], one obtains quantitative dynamic information on the basis 

of the theory of diffusion of light. Specifically, this implies knowing the probability density of the 

distribution of photon paths through the medium, 𝑝𝑝(𝐸𝐸), and the associated parameters such as the 

photon transport mean free path, 𝑙𝑙∗, and the photon absorption length, 𝑙𝑙𝑎𝑎.  

A number of limitations arise in applying this procedure: 

• Many dynamic systems of practical interest, although they are multiply scattering, are not 

optically diffusive. These media, in general, cannot be characterized by a DWS treatment 

[159, 160] (although some corrections to the diffusive models may exist for special cases). 

In this context, it has also been shown that sometimes complete diffusion is not fully 

achieved even for longer paths [161, 162]. Naturally, in geometries involving light transport 

in the low-order multiple-scattering regime, such as backscattering, the diffusion 

approximation often breaks down and the outcome is quite sensitive to the shape of 𝑝𝑝(𝐸𝐸) 

[159]. 

• 𝑙𝑙∗ cannot always be calculated and an independent measurement is required, often subject 

of specific boundary conditions. In this regard, the boundary conditions become critical to 

describe scattering processes close to boundaries or interfaces. In those cases, the 

interpretation of a DWS-like signal is far from trivial because the diffusion process in 

proximity to a boundary introduces new length scales due to the re-injection of light, which 

is forced to travel along new paths inside the scattering medium [163]. This dependence on 

the boundary can be removed by performing so-called ‘monostatic’ and ‘bistatic’ optical 

path length spectroscopic measurements [164]. 
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• The dynamics measured is in fact averaged over a range of time scales (the detected signal 

is integrated over all photon path lengths).  

Some of the above-listed limitations can be overcome by time-gating techniques i.e., pulsed-DWS  

[165], where the dependence on 𝑝𝑝(𝐸𝐸) is removed (by selectively isolating a single path length) 

while providing means to simultaneously measure 𝑙𝑙∗. This approach can be refined by alternating 

measurements of the system’s dynamics and the background signals for in situ background 

subtraction [166-168]. 

More recent DWS-based implementations target a different problem: non-ergodicity and the 

validity of so-called Siegert relation. These newer approaches, i.e., interferometric near-infrared 

spectroscopy, utilize interferometric schemes that allow measuring not only 𝑙𝑙∗ and intensity 

correlations [169], but also field correlations directly [170].  

Some of these implementations have also attempted to remove some of the geometry dependence 

of traditional DWS, by operating in the so-called “reflectance” mode, both interferometrically 

[171, 172], and non-interferometrically [173], which allows injecting and collecting light on the 

same side of the complex medium, albeit at different locations. 

Unlike the above-listed limitations e.g., the dependence on 𝑝𝑝(𝐸𝐸), which are pertinent to situations 

involving multiple scattering, these latter issues (ergodicity and Siegert relation) actually pertain 

to any light scattering-based dynamic measurement.  

Nevertheless, it is important to note that in the newer DWS-based implementations both ergodicity 

and the validity of the Siegert relation can be compromised due to the measurement being 
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performed over photon paths that are static or slowly-varying during the time of the measurement, 

which is inherent to the time-gating required to remove the dependence on 𝑝𝑝(𝐸𝐸). 

As discussed in detail in the Appendix B, in other scenarios, where time gating is not involved, 

ergodicity can be easily forced by means of different approaches including, for instance, the 

combination of static and dynamic light scattering [115], direct averaging by translating or rotating 

the sample [140], temporal evolution of multiple speckles [141], or the implementation of a non-

ergodic to ergodic conversion [144]. 

Finally, we would like to note that in some recent reports DWS has been claimed to be ‘geometry 

independent’, in the context of implementations where the source of light and the detector are 

located on the same side of a complex medium, thus making it look like a reflection-like situation.  

However, it is worth clarifying that, in the context of light scattering-based dynamic 

measurements, the term ‘geometry independence’ refers to the capability to perform the 

measurements at any angle, with containers of arbitrary shape, and irrespective of the scattering 

characteristics of the sample, among others. In this respect DWS cannot be ‘geometry independent’ 

because one has to ensure that the light scattering regime can be appropriately described as a 

photon diffusion (which allows assuming the Gaussian shape of on 𝑝𝑝(𝐸𝐸) and, consequently, an 

analytical form of the correlation function; see Section 1.3).   

It is well known that in certain important geometries, such as backscattering, the diffusion 

approximation breaks down, and interpretation of the autocorrelation function measured in a DWS 

experiment is complicated since a more complete understanding of the crossover from ballistic to 
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diffusive propagation is required [165, 174]. Furthermore, it has been demonstrated that sometimes 

the transition to a complete diffusion regime is not fully achieved even for long paths [161]. 

If the source and the detector happen to be on the same side of a material, as in the so-called 

“reflectance-mode” interferometric DWS [171, 172], this does not necessarily mean that the 

measurement is operated in reflection! Moreover, the outcome of such measurement depends on 

the geometry i.e., the separation distance between the locations of light injection and collection, as 

well as the scattering properties of the medium and, therefore, the conditions for the diffusion 

approximation must be enforced at all times. 

In the references [171, 172] it can be clearly seen that the light is launched at one location, 

propagates inside the medium, and then it is collected at a different spatial location. For light that 

is multiply scattered, this is actually representative for a transmission rather than reflection 

geometry. A technically unambiguous terminology refers to the measurement as being 

“monostatic”, when the point source and point detector are collocated, and “bi-static” when the 

emitter and receiver are physically separated (see for instance [164]). 
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APPENDIX E: OTHER ATTEMPTS FOR MEASURING BLOOD 

COAGULABILITY  
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In laser speckle rheology (LSR) [153, 175, 176], more recently named as optical 

thromboelastography (OTEG) [154], a sample of blood (of about 100 µL, typically) is collected 

and prepared with anticoagulants prior to the measurement. Later, at the beginning of the 

measurement, the anticoagulation reversed (by the addition of kaolin) and backscattered speckle 

patterns are recorded on a CCD camera [153]. This technique has been demonstrated in vivo in 

animal models where both vessel occlusion and micro-injuries are purposely induced to promote 

clot formation [176].  

The idea is the following: during coagulation, platelet-fibrin clot formation progressively restricts 

the mean square displacement (MSD) of the scattering centers (RBCs) thus increasing the 

characteristic decorrelation time due to the reduction of speckle fluctuations i.e., the recorded 

frames exhibit lower variability as coagulation progresses due to the constrained motion in the 

sample. Correlation analysis of the speckle frames provides the characteristic decorrelation time, 

which can be used as a direct indicator of the coagulation process [153], and allows estimating 

both the MSD and the viscoelastic modulus of blood. The increase in the decorrelation time also 

reflects in the increased magnitude of the elastic moduli, which relates to a ‘solid-like’ behavior 

and is sometimes used as figure of merit to retrieve an evolution curve similar to than obtained 

from TEG [154]. In some cases, additional statistical descriptors such as the variance of the 

fluctuations (speckle contrast) are also complementary used [175]. 

Blood coagulation assessment based on the continuous measurement of the complex electrical 

impedance is well-stablished since long time ago [177-179], and it is widely used to evaluate the 

quality of stored blood.  In this approach, similarly to the above-described techniques, a sample of 

whole blood is collected and coagulation is activated. During coagulation, the electrical impedance 
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(magnitude and phase angle) of the sample is continuously measured between two electrodes that 

are in contact with the blood. In this measurement, the magnitude of the blood’s impedance is 

typically correlated to the concentration of fibrin (the larger the concentration the larger the 

impedance magnitude). 

More recently, these technique has been incorporated into more sophisticated measurement 

platforms using micro-fluidic channels and high-tech electronics that allow for an accurate 

monitoring of the coagulation process in more compact platforms where one requires micro-litter-

sized samples and multiple samples can be evaluated simultaneously [180, 181]. By following the 

magnitude of the impedance at certain relevant frequency one can retrieve a curve similar to that 

of TEG where the value of the impedance magnitude eventually saturates when the clot has been 

completely formed [180, 181]. 

In a recent report, a big step was made as compared to the above-described techniques and all the 

gold standards: the measurement of blood coagulation under relevant flow conditions that can 

resemble those from micro-vasculature in vivo [182]. This allows having a more realistic picture 

of the coagulation process since it allows incorporating effects of hemodynamic forces (pressure, 

flow and shear stress), platelet function, and related cellular interactions that are known to 

significantly impact whole blood thrombosis in the living vasculature. 

In this approach, blood is flowed through a microfluidic device that, by means of cascaded regions 

of accelerating, constant, and deceleration flows, mimics a network arteriolar vessels, and permits 

evaluating blood clotting within small sample volumes under pathophysiological flow. In this case, 

coagulation is mechanically induced through platelet aggregation due to the fluid shear gradients 
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produced in the circuit. This technique can be integrated directly into vascular access lines and 

blood-contacting medical devices for the real-time, but ex vivo coagulation monitoring. 

Experimentally, the rise of pressure in the channels over time is recorded as occlusion progresses. 

The formation of clots is verified by fluorescence microscopy images in which platelets and fibrin 

were tagged with different fluorophores. 

Indeed, these approaches operate on whole blood, however, all of them are also based on end-point 

measurements. This requires a sample to be collected and sometimes prepared to induce 

coagulation under specific conditions and, after the measurement, the sample has to be disposed. 

Consequently, these approaches cannot provide real-time information hemostatic potential of the 

blood. 

Other techniques, recently reported, include, for instance, a miniaturized acoustic resonator that 

uses a zinc oxide film bulk to measure viscoelasticity changes with coagulation [183]. Wang et al 

integrated acoustic radiation force and optical imaging to measure plasma elasticity changes during 

clot formation [184]. Lakshmanan et al used a quartz crystal microbalance to study the changes in 

viscoelasticity during clot formation [185]. All of these techniques, however, were developed as 

intermittent, in vitro measures. Another notable development is a continuous assay for the 

measurement of tissue factor procoagulant activity on intact cells, but for clinical laboratory usage  

[186]. A continuous droplet microfluidic system was developed to measure thrombin generation 

but was not tested in the real-time clinical setting [187]. Sakota et al have used the observation that 

RBCs aggregate locally in the presence of fibrinogen to suggest that clotting status during ECLS 

can be assessed by using optical aggregometry of RBCs [188]. The technique as described, 

however, requires pulsatile flow, which is not typically present in either ECLS or CPB. 
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A critical limitation to the above mentioned newer technologies is also their inability to monitor 

continuously and dynamically the of blood coagulation abnormalities especially in the setting of 

rapidly changing coagulation status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

PUBLICATIONS AND PRESENTATIONS 

Refereed Journal Papers 

[10] Guzman-Sepulveda, J. R., Wu R., and Dogariu, Continuous optical measurement of internal 

dynamics in drying colloidal droplets (under review in Journal of Colloid and Interface Science). 

[9] Guzman-Sepulveda, J. R., Wu, R., Kalra, A. P., Aminpour, M., Tuszynski, J.A., and Dogariu, 

A. Tubulin polarizability in aqueous suspensions, ACS Omega, 4(5), 9144-9149 (2019). 

[8] Guzman-Sepulveda, J. R. and Dogariu, A. Probing complex dynamics with spatiotemporal 

coherence-gated DLS, Applied Optics, 58 (13), D76-D90, (2019). 

[7] Guzman-Sepulveda, J. R. and Dogariu, A., Multimode interference dynamic light scattering, 

Optics Letters, 43(17), 4232-4235 (2018).  

[6] Guzman-Sepulveda, J. R., Deng, J., Fang, J., and Dogariu, A. (2017) Characterizing 

viscoelastic modulations in biopolymer hydrogels by coherence-gated light scattering. The Journal 

of Physical Chemistry B, 121(39), 9234–9238.  

[5] Guzman-Sepulveda, J. R., Argueta-Morales, R., DeCampli, W. M., & Dogariu, A. (2017). 

Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering. 

Nature Biomedical Engineering, 1, 0028. 

[4] Guzman-Sepulveda, J.R., Deng, J., Fang, J., & Dogariu, A. (2016). In-situ characterization of 

structural dynamics in swelling hydrogels. Soft Matter, 12, 5986-5994. 



110 
 

[3] Guzman-Sepulveda, J. R., Amin, S., Lewis, E. N., & Dogariu, A. (2015). Full characterization 

of colloidal dynamics at low-Péclet numbers. Langmuir, 31 (38), pp 10351–10357. 

[2] Liang, W., Guzman-Sepulveda, J. R., He, S., Dogariu, A., & Fang, J. Y. (2015). Microrheology 

and Release Behaviors of Self-Assembled Steroid Hydrogels. Journal of Materials Science and 

Chemical Engineering, 3(8), 6.  

[1] Guzman-Sepulveda, J. R., Douglass, K. M., Amin, S., Lewis, N. E., & Dogariu, A. (2015). 

Passive optical mapping of structural evolution in complex fluids. RSC Advances, 5(7), 5357-5362.  

 

 

 

 

 

 

 

 

 



111 
 

Conference Proceedings 

[C14] J. R. Guzman-Sepulveda, R. Wu, and A. Dogariu. Continuous Optical Measurement of 

Dynamic Colloidal Droplets. Applications & Technology section in Conference on Lasers and 

Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2019), paper 

ATh4K.3. 

[C13] C. H. Acevedo, J. R. Guzman-Sepulveda, and A. Dogariu. Brownian Dynamics Controlled 

by Phase Gradients. QELS Fundamental Science section in Conference on Lasers and Electro-

Optics (CLEO), OSA Technical Digest (Optical Society of America, 2019), paper FTh1C.8. 

[C12] J. R. Guzman-Sepulveda and A. Dogariu (2018, May). Multimode interference dynamic 

light scattering. Applications & Technology section in CLEO (pp. AF1M.5). 

[C11] J. R. Guzman-Sepulveda, W. M. DeCampli, and A. Dogariu (2018, Apr). Intraoperative 

Assessment of Blood Coagulability using Coherence-gated Light Scattering. Clinical and 

Translational Biophotonics section in the OSA Biophotonics Congress: Biomedical Optics (pp. 

CW4B.5). 

[C10] Guzman-Sepulveda, J.R., Deng, J., Fang, J., & Dogariu, A. (2017, Oct). Light scattering 

characterization of viscoelastic modulations in biopolymer hydrogels. In IEEE Photonics 

Conference (pp. TuE2.1). 

[C9] Guzman-Sepulveda, J.R., Deng, J., Fang, J., & Dogariu, A. (2017, May). Continuous 

characterization of viscoelasticity-modulated biopolymer hydrogels. In CLEO: Applications and 

Technology (pp. ATu1A-5). Optical Society of America. 



112 
 

[C8] Guzman-Sepulveda, J. R., Argueta-Morales, R., Pourmoghadam, K., DeCampli, W. M., and 

Dogariu, A (2016, Jun). Optical rheology of blood during cardiovascular surgery. In CLEO: 

Science and Innovations. Optical Society of America. 

[C7] Argueta-Morales, R., Guzman-Sepulveda, J. R., DeCampli, W. M., and Dogariu, A (2016, 

Jun). Pilot study of optical rheology as a method to assess coagulation status in pediatric patients 

before and after undergoing cardiopulmonary bypass for open heart surgery – Progress towards 

continuous real-time coagulation monitoring. In 5th International Conference on Engineering 

Frontiers in Pediatric and Congenital Heart Disease. 

[C6] Guzman-Sepulveda, J. R. and Dogariu, A. (2016, Mar). Continuous monitoring of structural 

dynamics in polymer assemblies. In APS March Meeting. American Physics Society. 

[C5] Guzman-Sepulveda, J. R. and Dogariu, A. (2016, Mar). Continuous characterization of 

structural dynamics in complex systems. In FLAVS Annual Joint Symposium and Exhibition 

Symposium. American Vacuum Society – Science and Technology of Materials, Interfaces, and 

Processing. 

[C4] Guzman-Sepulveda, J. R., Hurtado-Gimenez, D. E., and Dogariu, A. (2015, October). 

Measurement of Diffusive Transport at Liquid-Liquid Interfaces. In Frontiers in Optics (pp. 

FW5E-3). Optical Society of America. 

[C3] Guzman-Sepulveda, J. R., Hurtado-Gimenez, D. E., and Dogariu, A. (2015, Aug). Measuring 

local diffusion properties in colloidal systems. In International Conference in Speckle Metrology. 



113 
 

[C2] Guzman-Sepulveda, J. R. and Dogariu, A. (2015, May). Real-time Full Characterization of 

Colloidal Dynamics. In CLEO: Science and Innovations (pp. AF1J2). Optical Society of America. 

[C1] Guzman-Sepulveda, J. R., Falusi, C. K., Douglass, K. M., and Dogariu, A. (2014, August). 

Active and passive measurements of local properties of complex fluids using low-coherence 

dynamic light scattering. In Biological and Pharmaceutical Complex Fluids II: Novel Trends in 

Characterizing Interactions, Microstructure and Rheology. ECI Conference Series. 

 

 

 

 

 

 

 

 

 

 

 



114 
 

REFERENCES 

1. B. J. Berne and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and 

physics (Courier Corporation, 1976). 

2. E. R. Pike, "The theory of light scattering," in NATO Advanced Study Institutes Series (Series B: 

Physics, v.3). Photon correlation and light beating spectroscopy., H. Z. Cummins and E. R. Pike, eds. 

(Springer Science & Business Media, New York, 1974), pp. 9-40. 

3. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing wave spectroscopy," 

Physical Review Letters 60, 1134-1137 (1988). 

4. P. N. Pusey, "The study of Brownian motion by intensity fluctuation spectroscopy," Philosophical 

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 

293, 429-439 (1979). 

5. G. L. Paul and P. N. Pusey, "Observation of a long-time tail in Brownian motion," Journal of Physics 

A: Mathematical and General 14, 3301-3327 (1981). 

6. H. Z. Cummins and P. N. Pusey, "Dynamics of macromolecular motion," in NATO Advanced Study 

Institutes Series (Series B: Physics, v.23). Photon correlation spectroscopy and velocimetry., H. Z. 

Cummins and P. N. Pusey, eds. (Springer Science & Business Media, New York, 1977), pp. 164-199. 

7. H. C. v. d. Hulst, Light scattering by small particles (Dover Publications Inc., 1981). 

8. P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge university 

press, 2000). 

9. D. E. Koppel, "Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the 

method of cumulants," The Journal of Chemical Physics 57, 4814-4820 (1972). 

10. B. J. Frisken, "Revisiting the method of cumulants for the analysis of dynamic light-scattering data," 

Applied Optics 40, 4087-4091 (2001). 



115 
 

11. P. A. Hassan and S. K. Kulshreshtha, "Modification to the cumulant analysis of polydispersity in 

quasielastic light scattering data," Journal of colloid and interface science 300, 744-748 (2006). 

12. S. W. Provencher, "CONTIN: a general purpose constrained regularization program for inverting 

noisy linear algebraic and integral equations," Computer Physics Communications 27, 229-242 

(1982). 

13. S. W. Provencher, "A constrained regularization method for inverting data represented by linear 

algebraic or integral equations," Computer Physics Communications 27, 213-227 (1982). 

14. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian 

motion of scatterers," Zeitschrift für Physik B Condensed Matter 65, 409-413 (1987). 

15. D. A. Weitz and D. J. Pine, "Diffusing wave spectroscopy," in Dynamic Light Scattering, W. Brown, 

ed. (Oxford University Press, New York, 1993), pp. 652-720. 

16. D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, H. Herbolzheimer, and P. W. Chaikin, "Dynamical 

correlations of multiply scattered light," in Scattering and localization of classical waves in random 

media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312-372. 

17. D. A. Weitz, J. X. Zhu, D. J. Durian, H. Gang, and D. J. Pine, "Diffusing-wave spectroscopy: The 

technique and some applications," Physica Scripta T49, 610-621 (1993). 

18. G. Maret, "Diffusing-wave spectroscopy," Current opinion in colloid & interface science 2, 251-257 

(1997). 

19. T. G. Mason, H. Gang, and D. A. Weitz, "Diffusing-wave-spectroscopy measurements of 

viscoelasticity of complex fluids," JOSA A 14, 139-149 (1997). 

20. J. L. Harden and V. Viasnoff, "Recent advances in DWS-based micro-rheology," Current opinion in 

colloid & interface science 6, 438-445 (2001). 



116 
 

21. I. Meglinski and V. V. Tuchin, "Diffusing Wave Spectroscopy: Application for Blood Diagnostics," 

in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental 

Monitoring, and Materials Science, V. V. Tuchin, ed. (Springer, New York, 2013), pp. 149-166. 

22. Z. Fahimi, F. Aangenendt, P. Voudouris, J. Mattson, and H. M. Wyss, "Diffusing-wave spectroscopy 

in a standard dynamic light scattering setup," arXiv preprint arXiv:1509.03454 (2015). 

23. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company 

Publishers, 2007). 

24. H. Cummins and H. Swinney, "Light beating spectroscopy," in Progress in Optics, E. Wolf, ed. 

(North-Holland, Amsterdam, The Netherlands, 1970), pp. 146-150. 

25. E. Jakeman, "Photon correlation," in Photon correlation and light beating spectroscopy (Springer, 

1974), pp. 75-149. 

26. J. W. Goodman, "Some fundamental properties of speckle*," JOSA 66, 1145-1150 (1976). 

27. J. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Physics in 

Medicine and Biology 42, 1427 (1997). 

28. D. Gloge, "Optical power flow in multimode fibers," Bell System Technical Journal 51, 1767-1783 

(1972). 

29. R. Olshansky, "Mode coupling effects in graded-index optical fibers," Applied optics 14, 935-945 

(1975). 

30. D. Gloge and E. Marcatili, "Multimode Theory of Graded‐Core Fibers," Bell System Technical 

Journal 52, 1563-1578 (1973). 

31. S. Fan and J. M. Kahn, "Principal modes in multimode waveguides," Optics letters 30, 135-137 (2005). 

32. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, "Principal modes in graded-index 

multimode fiber in presence of spatial-and polarization-mode coupling," Journal of lightwave 

technology 27, 1248-1261 (2009). 



117 
 

33. K.-P. Ho and J. M. Kahn, "Statistics of group delays in multimode fiber with strong mode coupling," 

Lightwave Technology, Journal of 29, 3119-3128 (2011). 

34. J. Rička, "Dynamic light scattering with single-mode and multimode receivers," Applied Optics 32, 

2860-2875 (1993). 

35. M. Salem and A. Dogariu, "Optical heterodyne detection of random electromagnetic beams," Journal 

of Modern Optics 51, 2305-2313 (2004). 

36. J. Guzman-Sepulveda, R. Argueta-Morales, W. DeCampli, and A. Dogariu, "Real-time intraoperative 

monitoring of blood coagulability via coherence-gated light scattering," Nature Biomedical 

Engineering 1, 0028 (2017). 

37. S. Torquato, Random heterogeneous materials: microstructure and macroscopic properties (Springer 

Science & Business Media, 2013), Vol. 16. 

38. I. Sohn, R. Rajagopalan, and A. Dogariu, "Spatially resolved microrheology through a liquid/liquid 

interface," Journal of colloid and interface science 269, 503-513 (2004). 

39. J. R. Guzman-Sepulveda, K. M. Douglass, S. Amin, N. E. Lewis, and A. Dogariu, "Passive optical 

mapping of structural evolution in complex fluids," RSC Advances 5, 5357-5362 (2015). 

40. T. G. Mason, "Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–

Einstein equation," Rheologica Acta 39, 371-378 (2000). 

41. T. G. Mason and D. Weitz, "Optical measurements of frequency-dependent linear viscoelastic moduli 

of complex fluids," Physical review letters 74, 1250 (1995). 

42. A. Maggs, "Micro-bead mechanics with actin filaments," Physical Review E 57, 2091 (1998). 

43. F. MacKintosh and C. Schmidt, "Microrheology," Current opinion in colloid & interface science 4, 

300-307 (1999). 

44. J. Guzman-Sepulveda, J. Deng, J. Fang, and A. Dogariu, "In-situ characterization of structural 

dynamics in swelling hydrogels," Soft Matter 12, 5986-5994 (2016). 



118 
 

45. G. Popescu and A. Dogariu, "Dynamic light scattering in localized coherence volumes," Optics letters 

26, 551-553 (2001). 

46. G. Popescu and A. Dogariu, "Scattering of low coherence radiation and applications," The European 

Physical Journal-Applied Physics 32, 73-93 (2005). 

47. H. Wiese and D. Horn, "Single‐mode fibers in fiber‐optic quasielastic light scattering: A study of the 

dynamics of concentrated latex dispersions," The Journal of chemical physics 94, 6429-6443 (1991). 

48. F. Stieber and W. Richtering, "Fiber-optic-dynamic-light-scattering and two-color-cross-correlation 

studies of turbid, concentrated, sterically stabilized polystyrene latex," Langmuir 11, 4724-4727 

(1995). 

49. S. L. Elliott, R. J. Butera, L. H. Hanus, and N. J. Wagner, "Fundamentals of aggregation in 

concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic 

measurements," Faraday discussions 123, 369-383 (2003). 

50. H. Wiese and D. Horn, "Fiber‐Optic Quasielastic Light Scattering in Concentrated Latex Dispersions: 

The Performance of Single‐Mode vs. Multimode Fibers," Berichte der Bunsengesellschaft für 

physikalische Chemie 96, 1818-1828 (1992). 

51. P. N. Pusey and W. Van Megen, "Dynamic light scattering by non-ergodic media," Physica A: 

Statistical Mechanics and its Applications 157, 705-741 (1989). 

52. W. Liang, J. R. Guzman-Sepulveda, S. He, A. Dogariu, and J. Y. Fang, "Microrheology and Release 

Behaviors of Self-Assembled Steroid Hydrogels," ournal of Materials Science and Chemical 

Engineering 3, 6-15 (2015). 

53. M. Bellour, M. Skouri, J. P. Munch, and P. Hébraud, "Brownian motion of particles embedded in a 

solution of giant micelles," The European Physical Journal E 8, 431-436 (2002). 



119 
 

54. A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. de Mul, "Effects of absorption on 

coherence domain path length resolved dynamic light scattering in the diffuse regime," Applied 

physics letters 81, 595-597 (2002). 

55. H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, "Measurement of optical constants for dense media by 

low-coherence dynamic light scattering," Optics Communications 281, 1331-1336 (2008). 

56. N. Bosschaart, M. C. Aalders, D. J. Faber, J. J. Weda, M. J. van Gemert, and T. G. van Leeuwen, 

"Quantitative measurements of absorption spectra in scattering media by low-coherence 

spectroscopy," Optics letters 34, 3746-3748 (2009). 

57. J. R. Guzman-Sepulveda, S. Amin, E. N. Lewis, and A. Dogariu, "Full characterization of colloidal 

dynamics at low-Péclet numbers," Langmuir 31, 10351–10357 (2015). 

58. M. Mason and W. Weaver, "The settling of small particles in a fluid," Physical Review 23, 412-426 

(1924). 

59. E. Guazzelli and J. Hinch, "Fluctuations and instability in sedimentation," Annual review of fluid 

mechanics 43, 97-116 (2011). 

60. R. Piazza, S. Buzzaccaro, and E. Secchi, "The unbearable heaviness of colloids: facts, surprises, and 

puzzles in sedimentation," Journal of Physics: Condensed Matter 24, 284109 (2012). 

61. R. Piazza, "Settled and unsettled issues in particle settling," Reports on Progress in Physics 77, 056602 

(2014). 

62. R. Govindarajan and K. C. Sahu, "Instabilities in viscosity-stratified flow," Annual review of fluid 

mechanics 46, 331-353 (2014). 

63. A. Doostmohammadi and A. Ardekani, "Suspension of solid particles in a density stratified fluid," 

Physics of Fluids 27, 023302 (2015). 

64. D. W. Rankin, "CRC handbook of chemistry and physics, edited by David R. Lide,"  (Taylor & 

Francis, 2009). 



120 
 

65. A. Vailati and M. Giglio, "Nonequilibrium fluctuations in time-dependent diffusion processes," 

Physical Review E 58, 4361 (1998). 

66. C. Kittel, Introduction to solid state physics (Wiley New York, 1976), Vol. 8. 

67. D. Brutin, B. Sobac, B. Loquet, and J. Sampol, "Pattern formation in drying drops of blood," Journal 

of fluid mechanics 667, 85-95 (2011). 

68. R. Chen, L. Zhang, D. Zang, and W. Shen, "Blood drop patterns: Formation and applications," 

Advances in colloid and interface science 231, 1-14 (2016). 

69. T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, "Nanochromatography driven by the coffee ring 

effect," Analytical chemistry 83, 1871-1873 (2011). 

70. J. Zhang, Z. Sun, and B. Yang, "Self-assembly of photonic crystals from polymer colloids," Current 

Opinion in Colloid & Interface Science 14, 103-114 (2009). 

71. S. Khapli, I. Rianasari, T. Blanton, J. Weston, R. Gilardetti, R. Neiva, N. Tovar, P. G. Coelho, and R. 

Jagannathan, "Fabrication of hierarchically porous materials and nanowires through coffee ring 

effect," ACS applied materials & interfaces 6, 20643-20653 (2014). 

72. S. Khapli, I. Rianasari, S. Sharma, T. Blanton, and R. Jagannathan, "Fabrication of hierarchically 

structured porous films of metal oxides and carbonates through coffee ring effect," Materials Today: 

Proceedings 3, 362-368 (2016). 

73. P. Keblinski, J. A. Eastman, and D. G. Cahill, "Nanofluids for thermal transport," Materials today 8, 

36-44 (2005). 

74. R. Hernandez-Perez, Z. H. Fan, and J. L. Garcia-Cordero, "Evaporation-driven bioassays in suspended 

droplets," Analytical chemistry 88, 7312-7317 (2016). 

75. J. L. Garcia-Cordero and Z. H. Fan, "Sessile droplets for chemical and biological assays," Lab on a 

Chip 17, 2150-2166 (2017). 



121 
 

76. D. K. Devendiran and V. A. Amirtham, "A review on preparation, characterization, properties and 

applications of nanofluids," Renewable and Sustainable Energy Reviews 60, 21-40 (2016). 

77. X. Zhong, A. Crivoi, and F. Duan, "Sessile nanofluid droplet drying," Advances in colloid and 

interface science 217, 13-30 (2015). 

78. P. Dak, A. Ebrahimi, and M. A. Alam, "Non-faradaic impedance characterization of an evaporating 

droplet for microfluidic and biosensing applications," Lab on a Chip 14, 2469-2479 (2014). 

79. Y. Serfert, J. Schröder, A. Mescher, J. Laackmann, M. Shaikh, K. Rätzke, V. Gaukel, H. Schuchmann, 

P. Walzel, and H.-U. Moritz, "Characterization of the spray drying behaviour of emulsions containing 

oil droplets with a structured interface," Journal of microencapsulation 30, 325-334 (2013). 

80. B. Al Zaitone and A. Lamprecht, "Single droplet drying step characterization in microsphere 

preparation," Colloids and Surfaces B: Biointerfaces 105, 328-334 (2013). 

81. F. Girard, M. l. Antoni, and K. Sefiane, "Infrared thermography investigation of an evaporating sessile 

water droplet on heated substrates," Langmuir 26, 4576-4580 (2010). 

82. P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, "Evaporation of 

ethanol and ethanol− water mixtures studied by time-resolved infrared spectroscopy," The Journal of 

Physical Chemistry A 112, 6512-6516 (2008). 

83. R. J. Hopkins and J. P. Reid, "Evaporation of ethanol/water droplets: examining the temporal evolution 

of droplet size, composition and temperature," The Journal of Physical Chemistry A 109, 7923-7931 

(2005). 

84. J. D. Smith, C. D. Cappa, W. S. Drisdell, R. C. Cohen, and R. J. Saykally, "Raman thermometry 

measurements of free evaporation from liquid water droplets," Journal of the American Chemical 

Society 128, 12892-12898 (2006). 



122 
 

85. V. Deprédurand, P. Miron, A. Labergue, M. Wolff, G. Castanet, and F. Lemoine, "A temperature-

sensitive tracer suitable for two-colour laser-induced fluorescence thermometry applied to evaporating 

fuel droplets," Measurement Science and Technology 19, 105403 (2008). 

86. P. Strizhak, R. Volkov, G. Castanet, F. Lemoine, O. Rybdylova, and S. Sazhin, "Heating and 

evaporation of suspended water droplets: Experimental studies and modelling," International Journal 

of Heat and Mass Transfer 127, 92-106 (2018). 

87. A. Bilsky, Y. A. Lozhkin, and D. Markovich, "Interferometric technique for measurement of droplet 

diameter," Thermophysics and aeromechanics 18, 1 (2011). 

88. Y. Wu, C. Crua, H. Li, S. Saengkaew, L. Mädler, X. Wu, and G. Gréhan, "Simultaneous measurement 

of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow 

refractometry," Journal of Quantitative Spectroscopy and Radiative Transfer 214, 146-157 (2018). 

89. L. Perrin, G. Castanet, and F. Lemoine, "Characterization of the evaporation of interacting droplets 

using combined optical techniques," Experiments in Fluids 56, 29 (2015). 

90. N. Liu, W. Wang, J. Han, M. Zhang, P. Angeli, C. Wu, and J. Gong, "A PIV investigation of the effect 

of disperse phase fraction on the turbulence characteristics of liquid–liquid mixing in a stirred tank," 

Chemical Engineering Science 152, 528-546 (2016). 

91. E. Y. Stepanov, V. Maslov, and D. Zakharov, "A stereo PIV system for measuring the velocity vector 

in complex gas flows," Measurement Techniques 52, 626-631 (2009). 

92. H. Bodiguel and J. Leng, "Imaging the drying of a colloidal suspension," Soft Matter 6, 5451-5460 

(2010). 

93. H. Bodiguel and J. Leng, "Imaging the drying of a colloidal suspension: Velocity field," Chemical 

Engineering and Processing: Process Intensification 68, 60-63 (2013). 



123 
 

94. I. Ghaeli, Z. Hosseinidoust, H. Zolfagharnasab, and F. Jorge Monteiro, "A New Label-Free Technique 

for Analysing Evaporation Induced Self-Assembly of Viral Nanoparticles Based on Enhanced Dark-

Field Optical Imaging," Nanomaterials 8, 1 (2017). 

95. H. Fan and A. Striolo, "Nanoparticle effects on the water-oil interfacial tension," Physical Review E 

86, 051610 (2012). 

96. C. N. Kaplan and L. Mahadevan, "Evaporation-driven ring and film deposition from colloidal 

droplets," Journal of Fluid Mechanics 781(2015). 

97. R. G. Larson, "Transport and deposition patterns in drying sessile droplets," AIChE Journal 60, 1538-

1571 (2014). 

98. J. R. Moffat, "Experimental investigation into the evaporating behaviour of pure and nanofluid 

droplets," (2011). 

99. A. Munshi, V. Singh, M. Kumar, and J. Singh, "Effect of nanoparticle size on sessile droplet contact 

angle," Journal of Applied Physics 103, 084315 (2008). 

100. L. P. Faucheux and A. J. Libchaber, "Confined brownian motion," Physical Review E 49, 5158 (1994). 

101. L. Lobry and N. Ostrowsky, "Diffusion of Brownian particles trapped between two walls: Theory and 

dynamic-light-scattering measurements," Physical Review B 53, 12050 (1996). 

102. B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated 

sphere between two walls," Physical Review E 62, 3909 (2000). 

103. J. R. Guzman-Sepulveda, S. Amin, E. N. Lewis, and A. Dogariu, "Full Characterization of Colloidal 

Dynamics at Low Péclet Numbers," Langmuir 31, 10351-10357 (2015). 

104. C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. A. Mintsa, "Temperature 

and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon," 

International Journal of Heat and Fluid Flow 28, 1492-1506 (2007). 



124 
 

105. B. Wang, L. Zhou, and X. Peng, "Viscosity, thermal diffusivity and Prandtl number of nanoparticle 

suspensions," Progress in Natural Science 14, 922-926 (2004). 

106. H. Chen, Y. Ding, Y. He, and C. Tan, "Rheological behaviour of ethylene glycol based titania 

nanofluids," Chemical physics letters 444, 333-337 (2007). 

107. P. K. Namburu, D. K. Das, K. M. Tanguturi, and R. S. Vajjha, "Numerical study of turbulent flow and 

heat transfer characteristics of nanofluids considering variable properties," International Journal of 

Thermal Sciences 48, 290-302 (2009). 

108. J. Joanny and P.-G. De Gennes, "A model for contact angle hysteresis," The journal of chemical 

physics 81, 552-562 (1984). 

109. G. Batchelor, "Sedimentation in a dilute dispersion of spheres," Journal of fluid mechanics 52, 245-

268 (1972). 

110. G. Batchelor, "Brownian diffusion of particles with hydrodynamic interaction," Journal of Fluid 

Mechanics 74, 1-29 (1976). 

111. B. Felderhof, "Diffusion of interacting Brownian particles," Journal of Physics A: Mathematical and 

General 11, 929 (1978). 

112. P. Pusey, "The dynamics of interacting Brownian particles," Journal of Physics A: Mathematical and 

General 8, 1433 (1975). 

113. M. Watzlawek and G. Nägele, "Sedimentation of strongly and weakly charged colloidal particles: 

Prediction of fractional density dependence," Journal of colloid and interface science 214, 170-179 

(1999). 

114. D. Brutin, Droplet wetting and evaporation: from pure to complex fluids (Academic Press, 2015). 

115. P. Pusey and W. Van Megen, "Dynamic light scattering by non-ergodic media," Physica A: Statistical 

Mechanics and its Applications 157, 705-741 (1989). 



125 
 

116. J. Bergenholtz, M. Fuchs, and T. Voigtmann, "Colloidal gelation and non-ergodicity transitions," 

Journal of Physics: Condensed Matter 12, 6575 (2000). 

117. J. Bergenholtz and M. Fuchs, "Nonergodicity transitions in colloidal suspensions with attractive 

interactions," Physical Review E 59, 5706 (1999). 

118. W. Härtl, "Colloidal glasses," Current opinion in colloid & interface science 6, 479-483 (2001). 

119. L. Cipelletti and L. Ramos, "Slow dynamics in glasses, gels and foams," Current opinion in colloid & 

interface science 7, 228-234 (2002). 

120. K. A. Dawson, "The glass paradigm for colloidal glasses, gels, and other arrested states driven by 

attractive interactions," Current opinion in colloid & interface science 7, 218-227 (2002). 

121. H. Tanaka, J. Meunier, and D. Bonn, "Nonergodic states of charged colloidal suspensions: repulsive 

and attractive glasses and gels," Physical Review E 69, 031404 (2004). 

122. V. Trappe and P. Sandkühler, "Colloidal gels—low-density disordered solid-like states," Current 

opinion in colloid & interface science 8, 494-500 (2004). 

123. A. G. Cherstvy, A. V. Chechkin, and R. Metzler, "Anomalous diffusion and ergodicity breaking in 

heterogeneous diffusion processes," New Journal of Physics 15, 083039 (2013). 

124. A. G. Cherstvy, A. V. Chechkin, and R. Metzler, "Particle invasion, survival, and non-ergodicity in 

2D diffusion processes with space-dependent diffusivity," Soft Matter 10, 1591-1601 (2014). 

125. A. G. Cherstvy and R. Metzler, "Nonergodicity, fluctuations, and criticality in heterogeneous diffusion 

processes," Physical Review E 90, 012134 (2014). 

126. J.-H. Jeon, A. V. Chechkin, and R. Metzler, "Scaled Brownian motion: a paradoxical process with a 

time dependent diffusivity for the description of anomalous diffusion," Physical Chemistry Chemical 

Physics 16, 15811-15817 (2014). 



126 
 

127. P. Massignan, C. Manzo, J. Torreno-Pina, M. García-Parajo, M. Lewenstein, and G. Lapeyre Jr, 

"Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium," Physical review 

letters 112, 150603 (2014). 

128. R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, "Anomalous diffusion models and their 

properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking," 

Physical Chemistry Chemical Physics 16, 24128-24164 (2014). 

129. A. G. Cherstvy and R. Metzler, "Ergodicity breaking and particle spreading in noisy heterogeneous 

diffusion processes," The Journal of chemical physics 142, 144105 (2015). 

130. A. G. Cherstvy and R. Metzler, "Ergodicity breaking, ageing, and confinement in generalized diffusion 

processes with position and time dependent diffusivity," Journal of Statistical Mechanics: Theory and 

Experiment 2015, P05010 (2015). 

131. I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sørensen, "Anomalous 

diffusion in living yeast cells," Physical Review Letters 93, 078102 (2004). 

132. L. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, "Fast and 

slow dynamics of the cytoskeleton," Nature materials 5, 636-640 (2006). 

133. I. Golding and E. C. Cox, "Physical nature of bacterial cytoplasm," Physical review letters 96, 098102 

(2006). 

134. I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, and Y. Garini, "Transient anomalous 

diffusion of telomeres in the nucleus of mammalian cells," Physical review letters 103, 018102 (2009). 

135. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, 

and R. Metzler, "In vivo anomalous diffusion and weak ergodicity breaking of lipid granules," 

Physical review letters 106, 048103 (2011). 



127 
 

136. A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, "Ergodic and nonergodic processes coexist in 

the plasma membrane as observed by single-molecule tracking," Proceedings of the National 

Academy of Sciences 108, 6438-6443 (2011). 

137. F. Höfling and T. Franosch, "Anomalous transport in the crowded world of biological cells," Reports 

on Progress in Physics 76, 046602 (2013). 

138. S. A. Tabei, S. Burov, H. Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L. H. Philipson, A. R. Dinner, 

and N. F. Scherer, "Intracellular transport of insulin granules is a subordinated random walk," 

Proceedings of the National Academy of Sciences 110, 4911-4916 (2013). 

139. C. Manzo, J. A. Torreno-Pina, P. Massignan, G. J. Lapeyre Jr, M. Lewenstein, and M. F. G. Parajo, 

"Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity," 

Physical Review X 5, 011021 (2015). 

140. J.-Z. Xue, D. Pine, S. Milner, X.-l. Wu, and P. Chaikin, "Nonergodicity and light scattering from 

polymer gels," Physical Review A 46, 6550 (1992). 

141. S. Kirsch, V. Frenz, W. Schärtl, E. Bartsch, and H. Sillescu, "Multispeckle autocorrelation 

spectroscopy and its application to the investigation of ultraslow dynamical processes," The Journal 

of chemical physics 104, 1758-1761 (1996). 

142. E. Bartsch, V. Frenz, J. Baschnagel, W. Schärtl, and H. Sillescu, "The glass transition dynamics of 

polymer micronetwork colloids. A mode coupling analysis," The Journal of chemical physics 106, 

3743-3756 (1997). 

143. A. Knaebel, M. Bellour, J.-P. Munch, V. Viasnoff, F. Lequeux, and J. Harden, "Aging behavior of 

laponite clay particle suspensions," EPL (Europhysics Letters) 52, 73 (2000). 

144. F. Scheffold, S. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of 

nonergodic media," Physical Review E 63, 061404 (2001). 



128 
 

145. J. Guzman-Sepulveda, J. Deng, J. Fang, and A. Dogariu, "In-situ characterization of structural 

dynamics in swelling hydrogels," Soft Matter 12, 5986-5994 (2016). 

146. W. Liang, J. Guzman-Sepulveda, S. He, A. Dogariu, and J. Fang, "Microrheology and release 

behaviors of self-assembled steroid hydrogels," Journal of Materials Science and Chemical 

Engineering 3, 6 (2015). 

147. J. Guzman-Sepulveda, J. Deng, J. Fang, and A. Dogariu, "Characterizing Viscoelastic Modulations in 

Biopolymer Hydrogels by Coherence-Gated Light Scattering," The Journal of Physical Chemistry B 

121, 9234-9238 (2017). 

148. A. Gutowska, J. Seok Bark, I. Chan Kwon, Y. Han Bae, Y. Cha, and S. Wan Kim, "Squeezing 

hydrogels for controlled oral drug delivery," J. Controlled Release 48, 141-148 (1997). 

149. M. Falamarzian and J. Varshosaz, "The Effect of Structural Changes on Swelling Kinetics of 

Polybasic/ Hydrophobic pH-Sensitive Hydrogels," Drug Dev. Ind. Pharm. 24, 667-669 (1998). 

150. H. J. Dalton, R. Reeder, P. Garcia-Filion, R. Holubkov, R. A. Berg, A. Zuppa, F. W. Moler, T. Shanley, 

M. M. Pollack, and C. Newth, "Factors associated with bleeding and thrombosis in children receiving 

extracorporeal membrane oxygenation," American journal of respiratory and critical care medicine 

196, 762-771 (2017). 

151. S. M. Hastings, D. N. Ku, S. Wagoner, K. O. Maher, and S. Deshpande, "Sources of circuit thrombosis 

in pediatric extracorporeal membrane oxygenation," Asaio Journal 63, 86-92 (2017). 

152. J. R. Neal, E. Quintana, R. B. Pike, J. D. Hoyer, L. D. Joyce, and G. Schears, "Using daily plasma-

free hemoglobin levels for diagnosis of critical pump thrombus in patients undergoing ECMO or VAD 

support," The journal of extra-corporeal technology 47, 103 (2015). 

153. M. M. Tripathi, Z. Hajjarian, E. M. Van Cott, and S. K. Nadkarni, "Assessing blood coagulation status 

with laser speckle rheology," Biomedical optics express 5, 817-831 (2014). 



129 
 

154. Z. Hajjarian, M. M. Tripathi, and S. K. Nadkarni, "Optical Thromboelastography to evaluate whole 

blood coagulation," Journal of biophotonics 8, 372-381 (2015). 

155. P. Di Ninni, F. Martelli, and G. Zaccanti, "The use of India ink in tissue-simulating phantoms," Optics 

express 18, 26854-26865 (2010). 

156. S. J. Madsen, M. S. Patterson, and B. C. Wilson, "The use of India ink as an optical absorber in tissue-

simulating phantoms," Physics in medicine and biology 37, 985 (1992). 

157. Z. Guo, S. Hu, and L. V. Wang, "Calibration-free absolute quantification of optical absorption 

coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue," Optics letters 

35, 2067-2069 (2010). 

158. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. 

Durduran, and F. Foschum, "Determination of reference values for optical properties of liquid 

phantoms based on Intralipid and India ink," Biomedical optics express 5, 2037-2053 (2014). 

159. G. Popescu and A. Dogariu, "Dynamic light scattering in subdiffusive regimes," Applied optics 40, 

4215-4221 (2001). 

160. K. Yoo, F. Liu, and R. Alfano, "When does the diffusion approximation fail to describe photon 

transport in random media?," Physical review letters 64, 2647 (1990). 

161. K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly 

scattering random media: The transition to diffusing wave spectroscopy," Physical Review E 58, 7664 

(1998). 

162. M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light 

scattering in solutions of monodisperse polystyrene spheres," Physical Review E 59, 3631 (1999). 

163. G. Popescu, C. Mujat, and A. Dogariu, "Evidence of scattering anisotropy effects on boundary 

conditions of the diffusion equation," Physical Review E 61, 4523 (2000). 



130 
 

164. K. M. Douglass and A. Dogariu, "Measuring diffusion coefficients independently of boundary 

conditions," Optics letters 34, 3379-3381 (2009). 

165. A. Yodh, P. Kaplan, and D. Pine, "Pulsed diffusing-wave spectroscopy: High resolution through 

nonlinear optical gating," Physical review B 42, 4744 (1990). 

166. J.-M. Tualle, E. Tinet, and S. Avrillier, "A new and easy way to perform time-resolved measurements 

of the light scattered by a turbid medium," Optics communications 189, 211-220 (2001). 

167. J.-M. Tualle, H. L. Nghiem, C. Schäfauer, P. Berthaud, E. Tinet, D. Ettori, and S. Avrillier, "Time-

resolved measurements from speckle interferometry," Optics letters 30, 50-52 (2005). 

168. J.-M. Tualle, H. L. Nghiem, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, "Time-resolved diffusing 

wave spectroscopy beyond 300 transport mean free paths," JOSA A 23, 1452-1457 (2006). 

169. D. Borycki, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, "Interferometric Near-Infrared 

Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media," Optics 

express 24, 329-354 (2016). 

170. D. Borycki, O. Kholiqov, and V. J. Srinivasan, "Interferometric near-infrared spectroscopy directly 

quantifies optical field dynamics in turbid media," Optica 3, 1471-1476 (2016). 

171. D. Borycki, O. Kholiqov, and V. J. Srinivasan, "Reflectance-mode interferometric near-infrared 

spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo," Optics letters 42, 

591-594 (2017). 

172. W. Zhou, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, "Highly parallel, interferometric diffusing 

wave spectroscopy for monitoring cerebral blood flow dynamics," Optica 5, 518-527 (2018). 

173. J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. 

Tosi, and D. A. Boas, "Time-domain diffuse correlation spectroscopy," Optica 3, 1006-1013 (2016). 

174. F. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in 

correlated random media," Physical Review B 40, 2383 (1989). 



131 
 

175. Y. Piederriere, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, and J. Franc, "Evaluation of 

blood plasma coagulation dynamics by speckle analysis," Journal of biomedical optics 9, 408-412 

(2004). 

176. V. Kalchenko, A. Brill, M. Bayewitch, I. Fine, V. Zharov, E. Galanzha, V. Tuchin, and A. Harmelin, 

"In vivo dynamic light scattering imaging of blood coagulation," Journal of biomedical optics 12, 

052002-052002-052004 (2007). 

177. R. L. Rosenthal and C. W. Tobias, "Measurement of the electric resistance of human blood; use in 

coagulation studies and cell volume determinations," J. Lab. Clin. Med 33, 1110-1122 (1948). 

178. A. Ur, "Changes in the electrical impedance of blood during coagulation," Nature 226, 269-270 

(1970). 

179. A. Ur, "Determination of blood coagulation using impedance measurements," Biomedical engineering 

5, 342 (1970). 

180. H. Berney and J. O’Riordan, "Impedance measurement monitors blood coagulation," Analog Dialogue 

42, 42-08 (2008). 

181. K. F. Lei, K.-H. Chen, P.-H. Tsui, and N.-M. Tsang, "Real-time electrical impedimetric monitoring of 

blood coagulation process under temperature and hematocrit variations conducted in a microfluidic 

chip," PloS one 8, e76243 (2013). 

182. A. Jain, A. Graveline, A. Waterhouse, A. Vernet, R. Flaumenhaft, and D. E. Ingber, "A shear gradient-

activated microfluidic device for automated monitoring of whole blood haemostasis and platelet 

function," Nature communications 7(2016). 

183. D. Chen, Z. Zhang, J. Ma, and W. Wang, "ZnO film bulk acoustic resonator for the kinetics study of 

human blood coagulation," Sensors 17, 1015 (2017). 



132 
 

184. C. W. Wang, M. J. Perez, B. P. Helmke, F. Viola, and M. B. Lawrence, "Integration of acoustic 

radiation force and optical imaging for blood plasma clot stiffness measurement," PloS one 10, 

e0128799 (2015). 

185. R. S. Lakshmanan, V. Efremov, J. S. O’Donnell, and A. J. Killard, "Measurement of the viscoelastic 

properties of blood plasma clot formation in response to tissue factor concentration-dependent 

activation," Analytical and bioanalytical chemistry 408, 6581-6588 (2016). 

186. J. A. Caldwell, J. G. Dickhout, A. A. Al-Hashimi, and R. C. Austin, "Development of a continuous 

assay for the measurement of tissue factor procoagulant activity on intact cells," Laboratory 

Investigation 90, 953 (2010). 

187. J. Yu, D. Tao, E. X. Ng, C. L. Drum, A. Q. Liu, and C.-H. Chen, "Real-time measurement of thrombin 

generation using continuous droplet microfluidics," Biomicrofluidics 8, 052108 (2014). 

188. D. Sakota, R. Kosaka, M. Nishida, and O. Maruyama, "Optical aggregometry of red blood cells 

associated with the blood-clotting reaction in extracorporeal circulation support," Journal of Artificial 

Organs 19, 241-248 (2016). 

 


	Optical Sensing of Structural Dynamics in Complex Media
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER I: INFORMATION ENCODED IN TEMPORAL FLUCTUATIONS OF LIGHT
	1.1 Fluctuations of light intensity
	1.2 Dynamic light scattering
	1.3 Diffusing-wave spectroscopy

	CHAPTER II: COHERENCE-GATED DYNAMIC LIGHT SCATTERING
	2.1 General concept
	2.2 Optical modes interpretation
	2.3 Dynamic information retrieval
	2.4 Optical fiber-based experimental implementation
	2.5 Illumination in the experiments
	2.6 Other fiber-based approaches

	CHAPTER III: CHARACTERIZATION OF DYNAMICS OF COMPLEX MEDIA
	3.1 Optically dense media
	3.1.1 Particle sizing in highly-concentrated colloids
	3.1.2 Micro-rheology of gels
	3.1.3 Dynamics of light-absorbing media

	3.2 Time-evolving structural dynamics
	3.2.1 Diffusive and advective dynamics
	3.2.2 Diffusion at dissolving interfaces
	3.2.3 Dynamics in confined geometries: drying colloidal droplets

	3.3 Non-ergodic structural evolution
	3.3.1 Overcoming non-ergodicity
	3.3.2 Viscoelastic modulations in hydrogels
	3.3.3 Blood: optically-dense, non-stationary, and non-ergodic medium


	CHAPTER IV: CONCLUSIONS
	APPENDIX A: DERIVATION OF THE INTER-CHANNEL COMMUNICATION IN SPECKLE FIELDS
	APPENDIX B: NON-ERGODICITY IN LIGHT SCATTERING-BASED DYNAMIC MEASUREMENTS
	APPENDIX C: MOLECULAR ABSORPTION COEFFICIENT OF BLACK INK
	APPENDIX D: BRIEF REVIEW OF DIFFUSING WAVE SPECTROCOPY
	APPENDIX E: OTHER ATTEMPTS FOR MEASURING BLOOD COAGULABILITY
	PUBLICATIONS AND PRESENTATIONS
	Refereed Journal Papers
	Conference Proceedings

	REFERENCES

