
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2019

Evolutionary Model Discovery: Automating Causal Inference for Evolutionary Model Discovery: Automating Causal Inference for

Generative Models of Human Social Behavior Generative Models of Human Social Behavior

Chathika Gunaratne
University of Central Florida

 Part of the Sociology Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gunaratne, Chathika, "Evolutionary Model Discovery: Automating Causal Inference for Generative Models
of Human Social Behavior" (2019). Electronic Theses and Dissertations. 6871.
https://stars.library.ucf.edu/etd/6871

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/416?utm_source=stars.library.ucf.edu%2Fetd%2F6871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6871?utm_source=stars.library.ucf.edu%2Fetd%2F6871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

EVOLUTIONARY MODEL DISCOVERY: AUTOMATING CAUSAL INFERENCE FOR
GENERATIVE MODELS OF HUMAN SOCIAL BEHAVIOR

by

CHATHIKA GUNARATNE
B.Sc. University of Colombo, 2012

M.S. University of Central Florida, 2016

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the School of Modeling, Simulation, and Training
in the College of Engineering & Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2019

Major Professor: Ivan Garibay

c© 2019 Copyright by Chathika S. Gunaratne 2019

All Rights Reserved

ii

ABSTRACT

The desire to understand the causes of complex societal phenomena is fundamental to the social

sciences. Society, at a macro-scale has many measurable characteristics in the form of statistical

distributions and aggregate measures; data which is increasingly abundant with the proliferation

of online social media, mobile devices, and the internet of things. However, the decision-making

processes and limits of the individuals who interact to generate these statistical patterns are often

difficult to unravel. Furthermore, multiple causal factors often interact to determine the outcome

of a particular behavior. Quantifying the importance of these causal factors and their interactions,

which make up a particular decision-making process, towards a societal outcome of interest helps

extract explanations that provide a deeper understanding of social behavior.

Holistic, generative modeling techniques, in particular agent-based modeling, are able to ‘grow’

artificial societies that replicate emergent patterns seen in the real world. Driving the autonomous

agents of these models are rules, generalized hypotheses of human behavior, which upon validation

against real-world data, help assemble theories of human behavior. Yet often, multiple hypothetical

causal factors can be suggested for the construction of these rules. With traditional agent-based

modeling, it is often up to the modeler’s discretion to decide which combination of factors best

represent the rule at hand. Yet, due to the aforementioned lack of insight, the modeled agent rule

is often one out of a vast space of possible rules.

In this dissertation, I introduce Evolutionary Model Discovery, a novel framework for automated

causal inference, which treats such artificial societies as sandboxes for rule discovery and causal

factor importance evaluation. Evolutionary Model Discovery consists of two major phases. Firstly,

a rule of interest of a given agent-based model is genetically programmed with combinations of

hypothesized factors, attempting to find rules which enable the agent-based model to more closely

iii

mimic real-world phenomena. Secondly, the data produced through genetic programming, regard-

ing the correspondence of factor presence in the rule to fitness, is used to train a random forest

regressor for importance evaluation. Besides its scientific contributions, this work has also led

to the contribution of two Python open-source software libraries for high performance computing

with NetLogo, Evolutionary Model Discovery and NL4Py.

The results of applying Evolutionary Model Discovery for the causal inference of three very dif-

ferent cases of human social behavior are discussed, revisiting the rules underlying two widely

studied models in the literature, the Artificial Anasazi and Schelling’s Segregation, and an ensem-

ble model of diffusion of information and information overload. First, previously unconsidered

factors driving the socio-agricultural behavior of an ancient Pueblo society are discovered, as-

sisting in the construction of a more robust and accurate version of the Artificial Anasazi model.

Second, factors that contribute to the coexistence of mixed patterns of segregation and integra-

tion are discovered on a recent extension of Schelling’s Segregation model. Finally, causal factors

important to the prioritization of social media notifications under loss of attention due to informa-

tion overload are discovered on an ensemble of a model of Extended Working Memory and the

Multi-Action Cascade Model of conversation.

iv

ACKNOWLEDGMENTS

The research presented in this dissertation would not have been possible without the funding, data,

and through-provoking, DARPA-hard challenge events, provided throughout the DARPA Social-

Sim program (DARPA program HR001117S0018 (FA8650-18-C-7823) and the endless computa-

tional resources provided through AWS research grants.

It goes without saying that much of this work was done under the close supervision of my PhD

advisor and committee chair Dr. Ivan Garibay, who throughout the past years provided me with all

the support and guidance I needed to grow into independent researcher. Whether be it a though-

provoking discussion over results or the extra-funding needed to attend a summer school for extra

skills, he has always supported me with whatever means possible, for which I am indebted. I

would like to thank the rest of my committee Dr. Gita Sukthankar, Dr. Stephen Fiore, and Dr. Paul

Wiegand for their guidance and advice throughout the dissertation process.

Much of this work features collaborative research conducted with experts in the areas of agent-

based modeling and computational social sciences with whom I have had the great honor to work

with. I have had the pleasure of working with Prof. Joshua Epstein of New York University,

upon who’s foundational contributions on ‘Generative Social Sciences’ and ‘Inverse Generative

Social Sciences’ I have based Evolutionary Model Discovery, and has provided valuable advice

throughout. Chapter 3 of this dissertation builds on the work of Dr. Erez Hatna of New York

University, who provided his expertise and model of residential segregation for which I am grateful.

I am ever grateful to Dr. William Rand of North Carolina State University with whom I have had

the great pleasure of working closely on the development of the models described in Chapter 5,

lending me his expertise and guiding me towards my career goals.

I would like to thank the folks at the Complex Adaptive Systems Lab whom I have been fortunate

v

to work alongside. Over the years I have seen the lab grow from three of us to over 30 associated

individuals. I was fortunate and very grateful to have a wonderful mentor early on in my PhD

career, Dr. Ilhan Akbas previously our Research Associate, who never hesitated to make room

in his impossibly busy schedule for those many coffees over which I would dump on him my

graduate student woes and he would mentor me with his experience. A big thank you to my fellow

PhD students Chathura Jayalath, Nisha Baral, and Chathurani Senevirathna for sharing the many

sleepless nights over which we developed the Multi-Action Cascade Model. I am grateful for all

the data and compute infrastructure support by Brandon Barnes, and from Ezequiel Gioia of the

Office of Research Commercialization. Also, many thanks to Dr. Asli Soyler Akbas for giving me

the opportunity to experience how agent-based modeling is put to practice in the industry, during

my internship at Universal Studios, Orlando.

Mostly, I am ever grateful to my parents and my sister back in Colombo for their patience and

understanding, while I have been in Florida pursuing my dreams. My father for being my inspi-

ration as a child, for surrounding me with science, programming, and philosophy at a very young

age. Finally, I am dearly grateful for the unconditional love and support my partner, Praimmika

Choopromkeaw has shown me throughout the past few years, patiently supporting me through the

many hardships of being a international graduate student.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xxii

LIST OF ABBREVIATIONS .xxiii

CHAPTER 1: INTRODUCTION . 1

Causal and Mechanistic Explanations through Agent-Based Models 2

Why is Modeling Multiple Theories of Agent Behavior Difficult? 6

EMD: Overcoming the Difficulties of ‘Many Modeling’ of Agent-Based Models to Ex-

ploit their Explanatory Power . 8

Statement of Contributions . 10

Statement of Originality . 12

CHAPTER 2: LITERATURE REVIEW . 14

CHAPTER 3: THE EVOLUTIONARY MODEL DISCOVERY FRAMEWORK 19

Mechanistic Explanation and Causal Factors of Human-Decision Making 20

Genetically Programming Agent Rules with Hypothesized Causal Factors 23

vii

Representation . 24

From Narrative to GP Syntax Tree . 24

Evaluating Importance and Optimal Presence of Causal Factors with Random Forests . . 25

Parallelization and Computational Complexity . 29

Implementation . 32

CHAPTER 4: CASE STUDY 1: SOCIO-AGRICULTURAL BEHAVIOR OF THE ANCES-

TRAL PUEBLO . 33

The Artificial Anasazi model . 33

Hypothesized Alternate Factors Influencing Farm Plot Selection 36

Experiments . 39

Results . 40

Discussion . 48

CHAPTER 5: CASE STUDY 2: MIXED PATTERNS OF RESIDENTIAL SEGREGATION

AND INTEGRATION . 50

Hatna’s Model of Mixed Segregation-Integration Patterns 51

Causal Factors for Mixed Patterns of Segregation and Integration 52

Experiments . 54

viii

Results . 55

Discussion . 62

CHAPTER 6: CASE STUDY 3: PRIORITIZATION OF RESPONSES UNDER INFOR-

MATION OVERLOAD ON ONLINE SOCIAL MEDIA 65

A Theory of Extended Working Memory and Implications of Information Overload . . . 65

The Multi-Action Cascade Model of conversation . 67

Modeling Extended Working Memory . 69

Causal Factors for Notification Response Prioritization 72

Experimental Setup . 73

Results . 75

Discussion . 83

CHAPTER 7: OPEN SOURCE SOFTWARE CONTRIBUTIONS 85

EvolutionaryModelDiscovery . 85

Documentation, Source, and Installation . 85

EvolutionaryModelDiscovery Annotations . 85

Strong Typing . 87

Running EvolutionaryModelDiscovery . 88

ix

NL4Py . 90

Software Architecture . 90

Controlling NetLogo in Python with NL4Py . 93

Installation . 94

Requirements . 94

Using the NL4Py API . 94

Starting and stopping the NetLogoControllerServer 94

Using NetLogo in GUI mode . 95

Using NetLogo headless workspaces . 95

Opening and closing models . 96

Commands and basic reporters . 97

Working with parameters . 97

Reporter scheduling . 98

CHAPTER 8: CONCLUSION . 100

Future Work . 102

APPENDIX A: IRB OUTCOME LETTER . 104

x

APPENDIX B: FURTHER CONSIDERATIONS . 106

Evolvability . 107

Model Size and Bloat . 115

LIST OF REFERENCES . 119

xi

LIST OF FIGURES

Figure 1.1: A conceptual view of the components of an agent-based model. Agent-based

models consist of one or more sub-models that specify autonomous rules of

behavior. The agents are allowed to interact with a simulated environment

and provided an interaction infrastructure. 10

Figure 3.1: An example syntax tree representation of the causal factors and operators

driving the behavior of two GitHub users with different motives. 26

Figure 3.2: Schematic Architecture of Evolutionary Model Discovery 29

Figure 4.1: Ancestral Pueblo ruins on the valley floor at the Bandalier National Mon-

ument, a site similar to the Long House valley. (Photo credits: Chathika

Gunaratne) . 34

Figure 4.2: Cliff dwellings of the ancestral Pueblo at the Bandalier National Monument.

(Photo credits: Chathika Gunaratne) . 35

Figure 4.3: Best fit to data was obtained under SAll. Comparison of the RMSE pro-

duced by the Artificial Anasazi model when agents had full information

(SAll), information through family households (SFam), information through

the households with most agricultural success (SPer f), or information through

neighboring households (SNeigh). Models that used SAll produced the lowest

RMSE overall argmaxx∈SAll
f (x) < argmaxx∈SFam

f (x) (p = 2.045×10−113),

argmaxx∈SAll
f (x)< argmaxx∈SNeigh

f (x) (p= 4.856×10−154), argmaxx∈SAll
f (x)<

argmaxx∈SPer f
f (x) (p = 1.983×10−57). 41

xii

Figure 4.4: RMSE vs Factor Presence under SAll. RMSE distributions by factor presence

produced by Evolutionary Model Discovery of the farm selection strategy of

the Artificial Anasazi under SAll . Only presence values that appeared at least

200 times in the genetic program are displayed. Most factors display negative

correlations to RMSE, while FDry shows a positive correlation. 43

Figure 4.5: FQual , FSoc, FDist , and FMig have highest Gini and Permutation Accuracy Im-

portance. Gini importance and permutation accuracy importance of the hy-

pothesized factors towards a random forest’s ability to predict the models’

RMSE. Gini importance results are less decisive than permutation accuracy

importance. Both techniques agree that FQual , FSoc, FDist , and FMig are the

most important factors. 44

Figure 4.6: Statistical confirmation of the existence of order by importance among causal

factors. Results from systematic Mann-Whitney U tests on the permutation

accuracy importance results. The cells contain p-values for the alternate hy-

pothesis that A > B (null hypothesis A = B). Green cells indicate agreement

of the alternate hypothesis. The results indicate a clear ordering of the factors

by importance. 45

Figure 4.7: FQual, [FQual,FMig], and [FQualFSoc] have highest joint contribution to farm

plot selection. Ordered barchart of highest normalized joint contribution

scores of factors and interactions of three or less under SAll . Again, FQual

shows a far larger contribution to the random forest’s ability to predict model

RMSE than other factors and factor interactions, and is present in all of the

highest contributing interactions. Interactions [FQual ,FMig] and [FQual ,FSoc]

also demonstrate high joint contribution. 46

xiii

Figure 4.8: Optimal presence scores for causal factors with highest importance. Results

from systematic one-tailed Mann-Whitney U tests between presence values

of the 5 most important factors for the alternate hypothesis: RMSE for presence A<

RMSE for presence B (null hypothesis: RMSE for presence A=RMSE for presence B)

for α = 0.05. Green cells indicate agreement of the alternate hypothesis. Re-

sults indicate that for FQual , FSoc, FMig, and FDist RMSE is generally lower

for higher, positive presence. For FDry, both negative and higher positive

presence may provide low RMSE scores. 47

Figure 4.9: Models designed through Evolutionary Model Discovery insights are signif-

icantly more robust. Comparison between the RMSE of 100 runs of three

models with farm selection strategies designed taking into consideration the

insights from Evolutionary Model Discovery, 1) argmaxx∈SAll
(FQual(x)), 2)

argmaxx∈SAll
(5FSoc(x)+6FQual(x)), and 3) argmaxx∈SAll

(3FMig(x)+5FQual(x)),

against 100 runs of the original farm selection strategy argmaxx∈SAll
(−FDist(x))

in [1, 2, 3, 4], under random initialization of parameters. The three farm se-

lection strategies derived from Evolutionary Model Discovery are far more

robust under random parameter initialization and show significantly better

RMSE scores compared to the original model. 48

xiv

Figure 5.1: Marginal distributions of C-index with varying presence of the hypothesized

factors driving mixed patterns of segregation (only presence values for which

the genetic program produced at least 100 samples are considered). Higher

C-index indicates . FRace and FIsol show the largest variation in C-index.

Moderately negative (-1) FSatDiv and positive FTolDiv also show higher C-

index. Other factors considered do not show any visible relationships and

require statistical tests of significance. 57

Figure 5.2: Gini and Permutation importance values for factors hypothesized to generate

mixed patterns of segregation and integration. There is some disagreement

between the two techniques, yet FRace, FIsol , and FTolDiv are give high impor-

tance by both techniques. Permutation importance indicates that FMove also

has high importance but with high uncertainty on this measurement. 58

Figure 5.3: P-values of Mann-Whitney U tests comparing significance of difference in

permutation importance of factors for mixed patterns (alternate hypothesis

that A > B; null hypothesis A = B, α = 0.05). Green cells indicate agreement

of the alternate hypothesis. Results indicate an statistically confirmed order-

ing of factors by importance, except of the a lack of difference between FRace

and FIsol , and FRes and FTolMean. 59

Figure 5.4: Joint contributions of factors towards the generation of mixed patterns of

segregation and integration. The factor interaction [FRace,FIsol,FTolDiv] show

the highest joint importance. Moderate importance is shown by FIsol alone. . 60

xv

Figure 5.5: Optimal presence scores of the top 5 causal factors important to the gener-

ation of mixed patterns of segregation and integration. Shown above are p-

values of Mann-Whitney U tests on pairwise comparisons of the marginal C-

index produced user presence of A and B for the alternate hypothesis RMSE

for presence A < RMSE for presence B (null hypothesis: RMSE values are

equal), α = 0.05. Green squares indicate that the test showed was unable

to falsify the null hypothesis. Results demonstrate that preference for diver-

sity in tolerance and avoidance of areas with high variance in neighborhood

satisfaction is important, while preference of race or isolation can inhibit

emergence of mixed patterns. 61

Figure 5.6: 100 Runs of Hatna-Benenson Segregation with residence utility rules inferred

through Evolutionary Model Discovery with randomized parameter initial-

ization. The rule ua,i = −2FMove(i)+ 3FIsol(i)+ 2FRace(i) in particular was

able to allow the model to generate significantly higher C-index values than

the other rules. 62

Figure 5.7: A narrative-like explanation of the emergence of mixed patterns (density =

0.75). Noisy integration, tight integration, and segregation with borders can

result from considering reluctance to move, desire for less crowding, and

preference for racial similarity separately. Yet, when considered within the

same rule, stable, static mixed patterns easily emerge. 64

xvi

Figure 6.1: An illustrated demonstration of the actionable information queue and the

process of information overloading. Step 1) Actionable information stores

incoming information, is accessed in a last-in-first-out fashion. Its capacity

is synonymous to the individual’s current attention span, Mt . 2) Received

information is added to the front of the actionable information. A user is

overloaded if Mt is exceeded, in which case a new Mt is calculated based

on the extent of overload experienced. 3) Excess messages are dropped in a

first-in-first-out fashion, removing the oldest messages first. 70

Figure 6.2: Marginal RMSE distributions for factors hypothesized to affect response pri-

oritization to notifications under information overload. RMSE is generally

lower with positive presence of FRecn and negative presence of FInitPop. RMSE

is lowest when factors considering URLs present in the content, FURLFam and

FURLPop, are not considered. Slight correlations are indicated by FIn f o and

FRecip but further statistical tests for significance are required and have been

performed below. 78

Figure 6.3: Comparison of Gini and Permuation Accuracy importance of factors hy-

pothesized to drive response prioritization under information overload. A

general order of importance is agreed on by both techniques, with the ex-

ception of the importance of the interactions [FURLFam,FInitPop,FRecn] and

[FConvSize,FInitPop,FRecn]. 79

xvii

Figure 6.4: P-values of systematic Mann-Whitney U-test on the first-order permutation

accuracy importance of factors hypothesized to drive the prioritization of re-

sponse under information overload. The cells contain p-values for one-tailed

Mann-Whitney U tests of the alternate hypothesis that permutation impor-

tance of A > permutation importance of B (null hypothesis: permutation im-

portance of A = permutation importance of B) at α = 0.05. Green cells indi-

cate agreement of the alternate hypothesis. A clear order of descending im-

portance is confirmed FRecn, FInitPop, FConvSize, FRecip, FIntr, FIn f o, FConvoPop,

FURLPop, and FURLFam. 80

Figure 6.5: Joint contributions of interactions of three or less factors. Still, FRecn on its

own by far has the highest joint contribution when predicting model fitness.

The interaction of three factors [FRecn,FInitPop,FURLPop] has the second high-

est joint contribution, despite FURLPop by itself being among the least impor-

tant factors. The interaction of the two factors with the highest first-order

importance [FRecn,FInitPop] has the third highest joint contribution. 81

Figure 6.6: Optimal presence scores for causal factors with highest importance. P-values

of systematic one-tailed Mann-Whitney U tests between presence values of

the 5 most important factors for the alternate hypothesis: RMSE for presence A<

RMSE for presence B (null hypothesis: RMSE for presence A=RMSE yfor presence B)

for significance level 0.05. Green cells indicate agreement of the alternate hy-

pothesis. Results indicate that for positive presence of FRecn and FRecip, and

negative presence of FInitPop, RMSE is generally higher than when consid-

ered negatively. RMSE is generally highest when FConvSize and FURLPop are

not present in the prioritization process at presence 0. 82

xviii

Figure 6.7: 100 Runs of MACM-EWM with response prioritization rules inferred through

Evolutionary Model Discovery. Models where FRecen interacts with FInitPop,

FIntr, FRecip have lower RMSE in responsiveness see in the actual data. 83

Figure 7.1: The entry point for EvolutionaryModelDiscovery is the line where the rule

to be evolved is specified in the NetLogo model. This can be indicated by

adding the @EvolveNextLine annotation in a comment directly above the line

as shown. This may be followed by @Factors-File= providing a string with

the location of a .nls file that contains the causal factor reports, and the re-

quired annotation return-type= that indicates the return type expected by the

root of evolved GP trees. 86

Figure 7.2: An example of the implementation of a causal factor for EvolutionaryMod-

elDiscovery in NetLogo with the @Factor annotation. In addition, return-

type= must specified, followed by @parameter-type specified for each pa-

rameter, if parameters exist. 87

Figure 7.3: Example of an operator defined as a NetLogo reporter and tagged with the

@Operator annotation for EvolutionaryModelDiscovery. @return-type= must

be defined, followed by parameter-type= for each parameter, if parameters

exist. In addition, the @structure= annotation must be specified, providing

the contributions of each parameter in order, as ‘+’ or ‘-’, separated by com-

mas, respectively. 87

Figure 7.4: Example of Python commands required to set up EvolutionaryModelDiscov-

ery of a NetLogo model. 88

xix

Figure 7.5: Example of Python commands that may be used to configure the genetic

program of EvolutionaryModelDiscovery. 89

Figure 7.6: Example of Python commands that can be must be used to specify the objec-

tive function for the genetic programming of the NetLogo function. 89

Figure 7.7: Example Python command to begin the genetic programming of the NetLogo

model with EvolutionaryModelDiscovery. The if __name__ = ’__main__’:

condition is a standard Python best practice to avoid issues related to the

absence of a fork implementation on certain operating systems when using

parallelization. 89

Figure 7.8: UML Component Diagram of NL4Py . 91

Figure 7.9: UML Class Diagram of NL4Py Python client. 92

Figure 7.10:UML Class Diagram of NL4Py NetLogoControllerServer. 93

Figure B.1:Convergence of the genetic programming of the farm selection decision-

making rule in the Artificial Anasazi. Average RMSE and the 95% confi-

dence interval are shown. 109

Figure B.2:Convergence of the genetic programming of the residential location utility

function in Hatna and Benenson’s model of segregation. Average C-index

and the 95% confidence interval are shown. 110

Figure B.3:Convergence of the genetic programming of the response prioritization utility

function in the model of extended working memory. Average RMSE and the

95% confidence interval are shown. 111

xx

Figure B.4:Primitive selection of the genetic programming of the farm selection strategy

in the Artificial Anasazi. Factor presence and the respective RMSE are shown

over generations. 112

Figure B.5:Primitive selection of the genetic programming of the residential location

utility function of Hatna’s model of segregation. Factor presence and the

respective RMSE are shown over generations. 113

Figure B.6:Primitive selection of the genetic programming of the response prioritization

of the model of extended working memory. Factor presence and the respec-

tive RMSE are shown over generations. 114

Figure B.7:Simplified model size (size and color of points) and fitness over the progres-

sion of generations of all gp-individuals for genetically programming farm

selection decision-making rule in the Artificial Anasazi. 116

Figure B.8:Simplified model size (size and color of points) and fitness over the progres-

sion of generations of all gp-individuals for genetically programming resi-

dential location utility function in Hatna and Benenson’s model of segregation.117

Figure B.9:Simplified model size (size and color of points) and fitness over the pro-

gression of generations of all gp-individuals for genetically programming re-

sponse prioritization utility function in the model of extended working memory.118

xxi

LIST OF TABLES

Table 4.1: The candidate farm selection strategies of models produced by the Evolution-

ary Model Discovery process along with their best fitness as reported by the

genetic programming search. 42

Table 5.1: Best 20 rules that produced the highest C-index, greatest mixing of segre-

gated of integrated residential locations. 56

Table 6.1: Best 20 rules that produced the lowest RMSE in Responsiveness to the real-

world data. 76

xxii

LIST OF ABBREVIATIONS

API Application Programming Interface

ABM Agent-Based Model

EMD Evolutionary Model Discovery

EWM Extended Working Memory

GP Genetic Programming

GUI Graphical User Interface

JDK Java Development Kit

JVM Java Virtual Machine

ODD Overview, Design, and Details

ODD+D Overview, Design, and Details plus Decisions

NL4Py NetLogo for Python

POM Pattern-Oriented Modeling

MACM Multi-Action Cascade Model

RMSE Root Mean Squared Error

UML Unified Modeling Language

xxiii

CHAPTER 1: INTRODUCTION

What socio-agricultural factors might have lead to the sudden demise of a flourishing ancient

civilization? Why do communities of individuals with no racial bias still maintain pockets of seg-

regation? What drives compulsive information sharing by highly active social media users? Such

are the questions that the computational social science strives to answer. Understanding the causes

of social phenomena at the level of the individual is crucial for policy decisions. Such insights

provide the ability to design interventions to ensure desirable societal outcomes and mitigate un-

desirable ones. Simulation models that are driven by these generating factors can be used simulate

intervention strategies and inform of the expected outcomes in advance minus the cost and time

required to observe and test them in the real-world.

However, providing explanations for complex social phenomena is not a trivial task as the decision-

making processes of the individuals generating the society-scale phenomena is not explicitly ob-

servable. Often, gathering data on individual-level motivations through surveys is tedious, prone to

sampling biases, in cases of large-scale phenomena, such as those that occur over online social me-

dia, quite difficult to sample. Instead, data observed as population-level outcomes of society, such

as community sizes of an ancient civilization measured through archaeological excavations, racial

diversity in an urban community, or the distribution of responsiveness to social media notifications,

are typically more reliable sources of information. Such sources of data have motivated a series of

successes in deep learning and artificial intelligence that focus on prediction. Yet these algorithms

lack the ability to provide human-interpretable explanations of the causes of these phenomena.

Society is a complex adaptive system. It consists of autonomous individuals that interact and

adapt to the actions of one-another, self-organizing into groups, and producing emergent societal

phenomena. As with any complex system, the emergent properties of society are a result of the

1

interactions of its individuals and cannot be studied through experimentation on human behavior

in isolation.

Generative models of society, also known as artificial societies, encapsulate human-interpretable

rules of behavior. Such models embrace the holistic view of complex adaptive systems and model

social phenomena ‘from the bottom up’ [5]. Quoting Epstein and Axtell in [5], “... if you haven’t

grown it, then you haven’t explained it...”. As with any complex adaptive system, the trajectory

of events that occur within a society are highly sensitive to the underlying rules with which the

individuals act. This is due to the fact that small changes in behavior of the individual quickly

compound into large macro-scale deviations due to the highly interactive nature of such systems.

‘Top down’ models that are learned off of statistical correlations in data are limited in their ability to

follow such non-linear trajectories. In contrast, generative models grow societies along trajectories

similar to those in the real-world, and are able to follow the non-linear dynamics that are produced

as a result. Agent-based models are an example of such generative models.

Causal and Mechanistic Explanations through Agent-Based Models

The work presented in this dissertation is premised on the view that agent-based models of society

are able to provide mechanistic explanations of human behavior, and that mechanistic explana-

tions can be considered as causal explanations for the social sciences. While prediction has his-

torically been a major goal of simulations, explanation has more recently seen increasing interest

[6, 7, 8, 9, 10]. There has been debate as to whether prediction and explanation can be considered

separate or are interdependent. Epstein considers explanation and prediction distinct; He provides

supporting examples such as ‘plate tectonics’ help explain earthquakes, but do not allow us to pre-

dict their ‘time and place of occurrence’ [11]. This was in contrast to earlier views that explanation

and prediction were of indistinguishable structure and view explanation merely as a retrodictive

2

prediction, as is described in the symmetry thesis by Hempel and Oppenheim [12]. Thompson

and Derr argue that instead of being separable, explanation can lead to better prediction as more

knowledge regarding the causes of the phenomena is unraveled [10]. Nonetheless, understanding

what the type and scope of explanations agent-based models are able to provide is important.

Elsenbroich categorizes explanations in social science into four types: 1) Covering laws: explana-

tions deducted from applying general laws and considering initial conditions, the result of classical

deductive reasoning, 2) Causal explanations: a complete, step-by-step account of how a phenom-

ena came about including all relevant facts [13], 3) Mechanistic explanations: a form of causal

explanation, where the full story is not told, instead entities causing a macroscale phenomena

and their relevant activities are provided as an explanatory account [14], and 4) Unifying explana-

tions: attributing observations to a general theory that covers several such, similar phenomena [15].

Elsenbroich explains how agent-based models are able to provide mechanistic explanations. They

oppose Grune-Yanoff’s earlier claim that agent-based models cannot provide causal explanations

as causal explanations require knowledge of all facts, and instead provide functional explanations;

instead, they argue that full causal knowledge can never be achieved in complex social phenomena,

and that explanations that consist of entities and their actions that lead to reproduction of aspects

of macroscale patterns in data can be considered mechanistic, and thereby causal.

Agent-based models are not only mechanistic representations of the real-world, but the mecha-

nisms they encode are human-interpretable. According to Machamer et al., mechanisms are enti-

ties and their activities that activate to lead a system from its initial conditions to a particular end

state [14]. In agent-based models, agents represent these entities, while agent rules are specified

to encode the activities of the entities that are hypothesized to generate the macroscale phenom-

ena. These rules are typically specified as utility functions, threshold functions, or decision trees,

and implemented in computer software. These implementations can easily be interpreted by a re-

searcher, a comparative advantage when considering highly predictive deep-learning or machine

3

learning algorithms for example, where despite the accuracy and precision of prediction, often the

neural networks fitted to patterns in the data cannot be used to provide a causal explanation of

why the outcomes are as they are. I demonstrate the ease with which agent rules can represent

human-interpretable causal narratives in Chapter 3.

Yet, I argue that agent-based models are rarely manipulated to their full explanatory potential. If,

according to Elsenbroich and Epstein, the explanatory potential of ABM’s lie in the specification

of their rules, then ideally, the white-box manipulation of the causal factors constituting the rules

would be crucial in the exploration of the space of alternate mechanisms for the most plausible

mechanistic explanation. Yet, this is rarely done.

The true explanatory power of agent-based models (ABMs) lie in the flexibility and ease with

which these behavior rules can be encapsulated within agents. An agent’s rules can typically be

reduced to a mathematical function of utility maximization (or cost minimization) on the possi-

ble decisions given the agent’s state, memory, and sensory input. These functions define how the

agent decides to act under different conditions. In the computational social sciences, it is com-

mon for these functions to be organized to represent social drives, or factors of the human mental

process(es). Often, agents are driven by multiple such rules governing the execution of multi-

ple behavior choices. In such cases, agent behavior rules are organized into sub-models of agent

behavior.

These rules may be parameterized, allowing for some flexibility in behavior. For example, param-

eters could fix weights in the behavior rule functions, controlling the level of impact of a certain

human decision making factor on the behavior selection of the agent. When these parameters are

provided as a distribution, the model developer is able to simulate a heterogeneous population of

agents in terms of the level of impact of decision making factors. Calibration of these parame-

ters is then performed either through a grid search of the parameter space [3] or more powerful

4

optimization algorithms [16, 17].

However, the underlying behavior rule is not affected through this type of parameter variation. By

modeling a different agent behavior rule, the simulation output can potentially be vastly altered.

Critics have claimed this to be a fallacy in agent-based modeling, stating that an Agent-Based

Model merely embodies the model developer’s or model development team’s ideology of the hu-

man rationale [18]. Instead of exploring various behavior rules representing different human men-

tal processes, the model developer would assume a behavior rule set and attempt to calibrate their

model to find the best parameter set that allows them to replicate the desired macro-patterns to the

lowest error possible when compare to real world data. In other words, researchers often find them-

selves modeling one out of a large space of possible hypotheses of the underlying decision-making

process and then calibrating this rule until it fits real-world data. Yet, no comparison to alternative

hypotheses is made, so there is no way to falsify the behavior hypothesized by the researcher in

the first place.

Pattern-oriented modeling (POM) [19], was developed to address this issue. In POM, Grimm et

al, recommend that multiple instances of a single ABM be produced and compared on their ability

to replicate patterns seen in the real-world. Each instance would encapsulate a competing possible

explanation of the underlying generative behavior. Then by identifying the models that are able

to most closely simulate patterns seen in real-world data, the researcher is able to compare and

identify explanations that most likely describe the mechanism that may be at work in the actual

decision-making process. However, POM as originally described is manual and limited due to

several reasons, which I will discuss below.

5

Why is Modeling Multiple Theories of Agent Behavior Difficult?

Creating multiple ABMs embodying alternate, plausible explanations as agent behavior rules with-

out automation is difficult and infeasible due to the following reasons.

• Repeated manual implementation leads to increased probability for programmatic er-

ror. Modeling multiple hypotheses as specified by POM requires the re-implementation of

multiple versions of the same Agent-Based Model embodying alternate hypotheses of hu-

man behavior. This increases the chance of introducing programmatic bugs in the code. It

also increases the complexity of the total codebase. If a bug is introduced into an initial

version of the Agent-Based Model this bug will have propagated to all the alternate ABMs

and will have to be corrected throughout the entire collection. The entire collection must

then be retested and validated. If parameters were calibrated, calibration, which is usually

an expensive computation in itself, must be redone. This results in the management of a

huge codebase and the requirement of a large team of developers to maintain the project as

it evolves.

• It is difficult to manually maintain a structure of comparable rule components repre-

senting factors of human decision making, across many versions of the same agent-

based model. A theory of human social behavior can be represented as the combination

of factors driving the human decision making process. A clear modular representation of

these factors allows for easy cross-analysis of the many hypotheses being tested to asses

factor impact on the macro-properties being simulated. Manually maintaining this regu-

lar agent cognition structure while developing multiple versions of them same agent-based

model quickly becomes a difficult task.

• Limitations to model implementation resources (programmers in particular.) leads to

6

modeling and testing of a limited or biased sample of all possible factor combinations.

Manually developing each agent-based model associated to every combination of factors, is

not practical. As shown in [8, 20] the factors driving human behavior can be arranged as a

mathematical function of utility. This results in a vast number of possible configurations they

can be arranged in, resulting in an equally vast number of hypotheses of human behavior to

be modeled and tested. Therefore, model developers commonly resort to modeling a single

combination of factors, or a limited set of combinations, as theories of human behavior.

• Due to lack of domain expertise, researchers many models have a disconnect between

theories of human social behavior and data. Often, theories used to model human deci-

sion making within agents are backed with scientific knowledge from domain experts. Yet,

it has been shown that often additional theories that consider further causal factors may exist

[21, 22, 23, 20, 24, 25] that support the explanation of a macro-phenomena. In particular,

according to Weisberg’s interpretation of Levin’s strategy of model building [25], it is the

underlying common components of causality captured across each alternate theory that al-

lows for each of them to produce the same solution. Therefore, human biases may govern

the selection of theory choice when constructing the agent behavior rules. Despite many

Agent-Based Modeling efforts for the computational social sciences usually being multi-

disciplinary efforts with input from diverse teams of domain experts, there may be instances

when the team lacks complete domain knowledge. In such a situation model developers

could greatly benefit from a collection of human decision making factors.

7

EMD: Overcoming the Difficulties of ‘Many Modeling’ of Agent-Based Models to Exploit their

Explanatory Power

The aim of this dissertation is to enhance explanatory potential of agent-based models by enabling

the exploration of the vast space of possible functions of factors of human behavior. This is done

through the genetic programming of agent rules, followed by factor importance evaluation through

random forest regression. The modification of agent rules may lead to the emergence of patterns

previously unseen, as demonstrated in the three case studies that follow. Therefore, an agent-based

model embodying a combination of factors, that is able to replicate target patterns in data, provides

a plausible explanation of the social phenomena under investigation.

Evolutionary Model Discovery answers the four issues described in Sec. 1 as follows. The use

of genetic programming, automates the programming of multiple models, reducing the chances

for programmatic error. Genetic programming works by choosing modules of model code from

a primitive set. Each primitive encapsulates a factor of human behavior. The genetic program

then evolves generations of syntax trees, combining multiple factors through operators. The func-

tion that is represented by a syntax tree calculates a utility (or cost) that the agent perceives they

would incur if they take a particular decision. This utility (or cost) function will then determine

which behavior the agent will choose to perform, dependent on its state, interactions, memory, and

environment sensors. Further description of this process is given in Sec. 3.

The modularization of agent rules into hypothesized factors of human decision making based on

theories of human behavior answers the second difficulty of maintaining a structure of comparable

rule components. In Agent_Zero, Epstein derives, from neuro-cognitive foundations, that an agent

cognitive architecture must consider emotional drives, ortho-rational drives, and social forces on

information received by the agent through the individuals it received information from [26]. Sim-

ilarly, Social/Psycho-Social theories have been used to drive agents towards replicating collective

8

social phenomena [8, 20]. Evolutionary Model Discovery evolves plausible candidate models, able

to replicate desired patterns of collective social behavior. The presence of causal factors of these

candidate models is then assessed on the ability the give the model to reproduce the phenomena of

interest.

Evolutionary Model Discovery is provided as an open-source library implementation [27] to use

with the NetLogo ABM software [28], answering third difficulty. This library discussed in Chapter

7, allows researchers to easily code factors in the NetLogo modeling language, and tag them as

factors using annotated comments, which are automatically interpreted for the genetic program.

Evolutionary Model Discovery then provides a Python API for the specification of model setup

conditions, parameters of the genetic program, and the fitness function.

Finally, by allowing concepts from multiple theories to combine as factors, Evolutionary Model

Discovery answers the fourth difficulty. Depending on the operators provided to the genetic pro-

gram for factor manipulation, complex factor interactions can also be explored. Instead of training

a structure that is not easily interpreted back to an explainable form, such as a neural network,

Evolutionary Model Discovery works with chunks of human-interpretable concepts implemented

as rules, promoting the use of theory in agent-based models towards mechanistic explanations.

9

Figure 1.1: A conceptual view of the components of an agent-based model. Agent-based models
consist of one or more sub-models that specify autonomous rules of behavior. The agents are
allowed to interact with a simulated environment and provided an interaction infrastructure.

Statement of Contributions

Multiple scientific and engineering contributions are made in this dissertation. Primarily, Evolu-

tionary Model Discovery provides a novel technique through which complex social systems can be

given human-interpretable explanations in terms of their generating factors. This framework has

shed light on the causal factors generating three very different cases of human social behavior:

1. Previously unconsidered factors driving the socio-agricultural behavior of an ancient ances-

tral Pueblo civilization are discovered, constructing a more robust and accurate version of

the Artificial Anasazi model.

2. Factors leading to the coexistence of mixed patterns of segregation and integration are dis-

covered on a recent extension of Schelling’s Segregation model.

3. Factors determining the prioritization of social media notifications under loss of attention

10

due to information overload are discovered on an ensemble of a model of Extended Working

Memory and the Multi-Action Cascade Model of conversation.

A major reason automated rule exploration has not been popular for the causal inference of agent-

based modeling is due to the vast search space of possibilities. Theoretically, this search space

may be infinitely large. Also, despite parameter calibration being a regular part of most agent-

based modeling projects, there has been no standardized tool for rule exploration, let alone causal

factor importance evaluation. This work presented in this dissertation has done the ground work

for such a tool, through the EvolutionaryModelDiscovery Python package for factor importance

analysis through parallelized genetic programming of NetLogo models. In order to achieve this

goal, the following engineering contributions were made:

1. NL4Py, an open-source toolkit for the parallel execution of NetLogo models through Python

was developed and release on the Python Package Index. https://github.com/chathika/NL4Py

2. EvolutionaryModelDiscovery, a implementation of the framework described in this disserta-

tion, for the causal inference of NetLogo models through random forest importance evalua-

tion of genetically programmed agent-based models with parallel computing.

https://github.com/chathika/EvolutionaryModelDiscovery

NL4Py, in particular is currently in use by the community and has 7 major releases at the time of

writing, with users actively contributing with issue posts and feature suggestions on the GitHub

project page.

11

https://github.com/chathika/NL4Py
https://github.com/chathika/EvolutionaryModelDiscovery

Statement of Originality

Parts of this work have been included in conference presentations and preprints under review for

journal publications. Other than the work discussed in the following manuscripts, the rest of this

dissertation has not been published publicly at the time of writing:

• Gunaratne, C., & Garibay, I. (2017, July). Alternate Social Theory Discovery using Genetic

Programming: Towards Better Understanding the Artificial Anasazi. In Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO) (pp. 115-122). ACM.

• Gunaratne, C., Senevirathna, C., Jayalath, C., Baral, N., Rand, W., & Garibay, I. (2019) A

Multi-Action Cascade Model of Conversation. In 5th International Conference on Compu-

tational Social Science. Amsterdam, NL.

• Gunaratne, C., Garibay, I., & Dang, N. (2019). Evolutionary model discovery of causal

factors behind the socio-agricultural behavior of the ancestral Pueblo. arXiv preprint

arXiv:1802.00435. In review: PLOS One.

• Gunaratne, C., Baral, N., Rand, W., Garibay, I., Jayalath, C., & Senevirathna, C. (2019). A

Theory of Extended Working Memory and its Role in Online Conversation Dynamics. arXiv

preprint arXiv:1910.09686. In review: Computational and Mathematical Organization The-

ory.

• Baral, N., Gunaratne, C., Jayalath, C., Rand, W., Senevirathna, C., & Garibay, I. (2019)

Negative Influence Gradients Lead to Lowered Attention Span on Social Networks. In Con-

ference of the Computational Social Science Society of the Americas (CSS). Santa Fe, NM.

• Gunaratne, C., & Garibay, I. (2019). NL4Py: Agent-Based Modeling in Python with Par-

allelizable NetLogo Workspaces. arXiv preprint arXiv:1808.03292. In review: Simulation

12

Modelling Practice and Theory.

• Gunaratne, C., Rand, W., & Garibay, I. (2020). Inferring Mechanistic Explanations of Re-

sponse Prioritization on Social Media under Information Overload. Submitted to the 19th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020).

Auckland, NZ.

13

CHAPTER 2: LITERATURE REVIEW

The field of Computational Social Sciences has benefited heavily from Agent-Based Modeling as

a tool allowing social scientists and policy makers to embody rules of human behavior and inter-

action within artificial agents, letting them play out scenarios of society, and measuring emergent

macro-phenomena as simulation output. Prime examples include, explaining the population dy-

namics of ancient societies [29, 2, 3, 30], modeling job markets [31], innovation and economic

growth of society and ecosystems [32, 33, 34, 35, 36, 37], urban expansion [38, 39] , evaluating

control strategies for the prevention of disease spread [40, 41], and the evolution of languages

[42], social norms and culture[43, 44]. Advances in data driven validation of Agent-Based Models

have further enhanced the practical applicability of simulation output, through model calibration

[45, 46, 47, 48, 49, 50]. Particularly helpful are data-driven calibration tools that come with simula-

tion packages such as OptQuest, an ensemble of Tabu Search, Neural Networks, and Scatter-Search

that comes with AnyLogic and Arena [51] and the BehaviorSearch calibration tool that comes with

NetLogo, equipped with Standard Genetic Algorithms, Hill-Climber, Stimulated Annealing, and

Random Search [16]. These tools treat agent-based models as black-boxes, tuning the parameters

they expose to users with the objective of minimizing error between simulation output and pat-

terns in target datasets. There have been efforts to explore the state space of agent-based models

with other machine learning methods [52, 45], by treating the model as a black-box and tuning its

parameters.

However, there are no such software tools or frameworks in the literature for white-box exploration

of agent rules and evaluation of potential causal factors derived from theory. Yet, recently Georges

et al. report automating model selection by trading agents using least absolute shrinkage and selec-

tion operator (LASSO) on a polynomial form of hypothesized variables and variable interactions

[53], similar to the genetic programming of agent rules in Evolutionary Model Discovery. Deep-

14

learning of agent behavior rules has been suggested [54], which has the potential to improve the

predictive power of agent-based models, but undermines the explanatory potential by replacing

human-interpretable rules with layers of neural networks. Rand discusses the importance of theory

interpretable models [6], highlighting successes of rule induction [55] and causal state modeling

[56, 57, 58] towards the discovery of agent rules, learned off of individual-scale data.

Genetic Programming has been used in the past to evolve agent rules for multi-agent systems since

[59] where an ‘artificial ant’ was programmed, through evolution, to navigate an in Silico San Ma-

teo trail and is still in a preferable approach in this area [60, 61]. Yet, Genetic Programming has

been sparingly for rule-exploration of Agent-Based Modeling within the computational social sci-

ences, some of the prominent studies being: evolving crowd evacuation [62], human-environment

action decision making [63], understanding bounded rationality in human decision making [64],

and understanding human decision making in behavior finance [65]. An [66] recognizes the ca-

pability of genetic programming to discover ‘rules of thumb’ often defined by domain experts but

also calls for the need of more studies into ‘why and when’ Genetic Programming can best bene-

fit causal exploration in modeling. Manson recognizes the need for standardization of the human

decision making process [63], allowing methods like Genetic Programming to be intuitively ap-

plied to enhance the explanatory ability of generative Agent-Based Models. In particular, Manson

used symbolic regression of factors of land-use as the representation for the Genetic Programming

in [63]. This absence of a standard human decision making representation for generative Agent-

Based Modeling, ready for Genetic Programming, has limited the use of this methodology in the

computational social sciences.

However, with standardization efforts such as the ODD (Overview, Design, and Details) docu-

mentation standard [67] being used regularly, there is more transparency and record of the factors

and social theories leading to the successful simulation of plausible collective human behavior. The

ODD protocol has been used in at least 137 models out of the 447 models in the OpenABM library,

15

a live compendium of agent-based modeling research 1. The ODD protocol, and its descendant for

models of human decision making ODD+D [68], have sections for the specification of sub-models

where model developers are able to elaborate on the agent behavior rules modeled. The body of

ODD and ODD+D documentation has grown sufficiently to draw inferences on common structure

used in modeling the human decision making process.

Adding to this, has been the creation of agent cognitive architectures to specifically capture social,

emotional and rational theories of human behavior founded on neuro-cognitive principles, such

as Agent_Zero [26] that aim specifically to model generative aspects of human society. Impor-

tantly, Agent_Zero expresses the quantification of emotional decision making, rational decision

making, and social influence towards the computation of a social utility. Similarly, Whitmeyer et

al. [20, 69] quantify three theories of obedience: Legitimacy, Coercion, and Representative, three

theories of Social Influence: None, Social Influence, Resistance to Repression, and four theories of

Adaptation/Psychological change: Cognitive Dissonance, Results-Based, Homophily, and Social-

ization. Together, they make 144 combinations of theories, each representable by a utility function,

of human social behavior, driving agents to simulate allegiance patterns in Afghanistan. Similar

to this work, Davis and O’Mahony [8] quantify social, emotional, and rational factors of human

decision making to produce ‘factor trees’.

Koza also demonstrates the ability to evolve programs leading to complex emergent behavior due to

the interactions of agents embodying simple rules [59]. Genetic Programming, as defined by Koza,

aims to produce programs which are able to evolve new, highly fit programs with regards to the task

or tasks they are supposed to solve. Genetic Improvement, the improvement of existing software

through automated search has seen an increasing trend in recent years with many successes in the

improvement of industrial level programs [70, 71, 72].

1This statistic was done by mining ODD documents from OpenABM using a web-crawler. Code available at:
https://gitlab.com/chathika/OpenABMCrawler

16

Genetic Programming has its own pros and cons, a primary disadvantage being its susceptibility to

‘bloat’. Langdon defines bloat as increasing redundancy in generated code caused by introduction

of introns, genes or GP nodes whose phenotypes have no added value to the behavior expected of

the program [73, 74]. Instead, as the Genetic Program nears convergence, the probability of adding

an intron to the program syntax tree surpasses the probability of making a mutation or crossover

that will further improve the fitness of the resulting program. Despite having a potential of helping

the evolutionary process by increasing the number of ‘safe’ crossover points on the syntax tree,

bloat introduces a significant challenge to answering one of the research questions of this study:

the relationship between evolved logic depth and task complexity, an issue overlooked in Mason’s

isometric relationship of bounded rationality to genetic programming syntax depth [64]. This is

a disadvantage as true logic depth, accounting for introns, would potentially give a measure of

bounded rationality. An agent decision process evolved to fit actual patterns in data would then

potentially provide an estimate of the actual limits of human cognition. Langdon summarizes

three approaches to avoiding bloat: 1) setting a maximum tree depth, 2) Including program size in

the fitness function to introduction selection of parsimonious syntax trees, and 3) tailored genetic

operators [73].

Layered Learning [75] has been proposed towards the generalization of solutions evolved through

Genetic Programming. With Layered Learning the problem space is decomposed into subtasks

which are subjected to learning through the Genetic Program incrementally. This is concept of

avoiding over-fitting borrows from the Machine Learning traditions of using validation and test

data sets in addition to training data. In particular, Layered Learning has been applied in multi-

agent problems such as for agents playing the keep-away soccer game [76, 77].

Several Genetic Programming software exist, including ECJ by Sean Luke et al [78] where GP

nodes are written as Java class files, Clojush by Spector et al for the Clojure language [79], DEAP,

a distributed evolutionary algorithms software written in Python [80], and FlexGP written in Java

17

from ALFA Group, MIT [81]. Koza identifies 3 ways of parallelizing genetic programming without

the use of sub-populations: distributing by fitness case, distributing by individual syntax trees, and

distributing by runs [59]. FCube [82] and CCube [83] are software enabling Genetic Programming

distribution over cloud services. FCube in particular, is able to distribute FlexGP learners across

Amazon Web Services EC2 instance.

18

CHAPTER 3: THE EVOLUTIONARY MODEL DISCOVERY

FRAMEWORK

Agent-based models consist of autonomous agents driven by rules. The scientific analogy made

is that these rules represent hypotheses of human behavior. When the macro-outcomes of the

agent-based model are validated against real-world data, these hypotheses declared as not falsifi-

able. From an engineering standpoint, these rules are often functions of sensory input to the agents

through the environment they exist in, sensory input from other agents, or their own internal state.

Typically, in the design of an agent-based model, the researcher decides which of these variables

are important when defining the rules with which the agents act. Rules are often specified as util-

ity functions, thresholds, or decision trees, with operators combining the variables into a single

decision-making unit. Due to the complex nature of the resulting agent interactions, the emer-

gent macro-output of an agent-based model is highly sensitive to the selection of variables and

operators, and the design of the rules.

Evolutionary Model Discovery focuses on identifying the sensory inputs from the environment

and other agents, and internal state variables, collectively referred to as causal factors, that have

the best ability to generate the macro-phenomena being simulated by the agent-based model. This

requires isolating the rule to be explored and providing a set of hypothesized causal factors as

input. The fitness of the simulations under varying presence of each factor within the isolated rule

is the experimented with. This is performed through the following two stages.

1. Alternate forms of the rule are genetically programmed into the agent-based model, with the

objective of improving the fitness of the simulations to a metric, qualitative measurement or

comparison to data, specified by the researcher.

19

2. The data generated through the evolution of the agent-based model relating factor presence

to fitness is then used to train a random forest regressor. Feature importance analysis is then

used to determine the importance of the hypothesized factors towards the prediction of the

model fitness.

The factor importance data along with the marginal fitness produced under varying presence of

each factor in the rule is then used to determine the optimal structure/s of the rule.

Mechanistic Explanation and Causal Factors of Human-Decision Making

Definition 1 An agent-based mechanism M can be defined as follows:

MF = GT (N0)

Where, G(Nt+1) = (ux0,F(Nt)◦ux1,F(Nt)....◦ux|N|−1,F(Nt))

(3.1)

Where, M is modeled as T iterations of a step function, G, on a population of agents, N, with each

agent, x ∈ N, acting by a function, u, of one or more factors of human-decision making, F, applied

to evaluate N, per time step. M is one out of a space of alternate mechanisms M, defined with

varying, F (F ⊂ F), where F is the set of all factors of human-decision making.1

As elaborated on in Chapter 1, agent-based models are mechanistic explanations of social phenom-

ena [7]. By definition [14], a mechanism consists of entities and their activities that take a system

from its initial conditions, φ0, into its observed state, φt , over time, T . In an agent based model the

entities are the agents, x, of a population of, N. The activity of, x, is defined by the agent rules that

1GT denotes each T iterations of function G. ◦ denotes functional composition, an abstraction of the operations
used to calculate the macro-state of the simulation from agent actions.

20

can be represented as a function, u, of a set of factors of human-decision making, F , applied on

the current state of the population, or ux1,F(Nt). Each simulation step, t, the composition of these

activities, G(Nt+1), defines the next macro-state. Iteration of G(Nt+1) T number of times, should

then transition the simulation to G(NT)

Definition 2 A factor of human decision-making Fi ∈ F, where F is the modeler’s set of hypoth-

esized causal factors and operators, is defined as in Eq (3.2).

Fi = (C,R,P | θR,θRPk ∈Θ ∀k = 1...n) (3.2)

∃k, θRR fi = θRPf j,k (3.3)

Where C is the set of commands defined within F that are applied on the n number of input pa-

rameters P to produce an output return value R, where the type of each parameter θPj and the type

of the return value θR are each an element of the set Θ of all possible parameter and return types

defined by the modeler. A factor is considered an operator if C resembles an operation on one or

more factors, which it accepts as parameters, rather than resembling a decision-making step. In

order for a factor or operator Fi to accept another Fj as an input, the condition Eq (3.3) must be

met.

An agent behavior rule u is represented as a tree of factors combined under this condition. Depend-

ing on Θ and the factor definitions, the space of behavior rules can be infinitely large. To prevent

the construction of such undesirably large trees a maximum depth for all u are specified. There

must be at least one Fi of which θRFi
is the return type expected by the entire agent behavior rule.

21

Given Definition 1 of an agent-based mechanism and Definition 2 of a factor of decision-making,

we theorize what constitutes a mechanistic explanation.

Theorem 1 An agent-based mechanistic explanation, MF(Γφ0 7→ ΓφT), of the cause of a system,

Γ, with initial macro-state, φ0, to enter a macro-state, φT , at time, T , must be driven by a step

function, G∗, that considers the set of factors, F∗ (F∗ ∈ F), that drive the activities of the real-

world entities of that system (equation 3.4).

MF(Γφ0 7→ ΓφT) = G∗T (N0)

G∗(Nt+1) = (ux0,F∗(Nt)◦ux1,F∗(Nt)....◦ux|N|−1,F∗(Nt))

(3.4)

MF(Γφ0 7→ ΓφT) can be represented by a data-validated model, M∗, with a step function, G∗. G∗

encodes u with F∗ ∈ F, such that the simulations make minimal deviations from the actual trajec-

tory of the real system over time. Assuming, total deviation from the data is calculated with some

loss function, L, F∗ is defined in equation 3.5.

F∗ = argmin
F⊂F

T

∑
t=0

(L((EG(Nt),(Γφt))) (3.5)

A mechanistic explanation, MF∗ , would then follow the trajectory of the real-world system the

closest out of the possible space of mechanisms, M.

Definition 3 Presence of a factor or interaction of factors in an agent rule, u, is denoted by its

coefficient in u. For example:

In,

u(N) = aF1(N)+bF2(N)+ab(F1(N)◦F2(N)) (3.6)

22

Factor presence of F1 is pF1 = a, F2 is pF2 = b, and F1 ◦F2 is pF1◦F2 = ab.

Theorem 2 The importance of of causal factors of human-decision making to a valid mechanistic

explanation, M∗, of the macro-phenomena is proportional to the sensitivity of the simulations’

deviation from data, with changing factor presence:

Importance Fi ∝

var(EM∗
ΠpFi

)

var(EM∗)
(3.7)

Where, var indicates variance, and M∗
ΠFi

is M∗ perturbed with random permutations of the pres-

ence of Fi.

Given the above theorems 1 and 2, I make the following claim and test it empirically, with the

cases presented in Chapters 4 to 6:

Claim 1 An agent-based mechanism, M∗, encoding the casual factors, F∗, of a macro-phenomena

at their optimal presence values p∗Fi
will produce highly robust simulations with the least deviation

from the real-world trajectory of Γφ0 7→ ΓφT .

Due to the vastness of M finding F∗ and M∗ is difficult. Often, there may not exist a single

global optimum due to model stochasticity. Therefore, Evolutionary Model Discovery attempts to

computationally approach the best approximations of F∗ and M∗.

Genetically Programming Agent Rules with Hypothesized Causal Factors

During the first stage of Evolutionary Model Discovery, models driven by alternate decision mak-

ing processes consisting of combinations of elements of F are evolved through genetic program-

ming [59, 84, 70]. Genetic programming performs automated program implementation and is a

23

suitable approach towards automating the rule discovery process [63, 64, 62, 85]. Genetic pro-

gramming evolves generations of programs through crossover and mutation operators performed

on a representation consisting of primitives and terminals that combine to define program state-

ments. Primitives are defined as a set of functions that encode program statements and may be

strongly typed to only accept child and parent primitives that are compatible with the arguments

and return statements accepted by its program statement. Primitives with no arguments are consid-

ered terminals. Programs in a generation that have a closer fit to data are more likely to be selected

for reproduction through crossover and mutation to populate the next generation of programs.

Representation

Defining the representation structure for primitives is an important part of evolutionary algorithms.

Syntax tree representations are among the most commonly used for genetic programming [59].

Tree representations allow for easily defining limits on how primitives can combine through strong

typing, which is important in ensuring the compilability of the generated programs. In the case

of Evolutionary Model Discovery the terminals, primitives making up the leaves of the generated

trees, are the factors while these factors are combined through multiple operators. Strong typing

ensures that this structure is maintained while crossover and mutation operators function.

From Narrative to GP Syntax Tree

In order to explain how causal factors, representing theories and constructs of human behavior

can be included in the genetic programming of agent rules, consider the following example. The

following is a narrative explaining the behavior of two GitHub users:

24

Albert and Betsy are two GitHub users. Albert wants help regarding a project, but

is shy to post publicly, and doesn’t want to embarrass himself. Meanwhile, Betsy is

eager to show off her programming skills, not necessarily to be helpful. After a direct

request from Albert, Betsy makes a publicly visible contribution to Albert’s project as

a response. 2

Several, causal factors can be identified from analyzing keywords, which have been underlined, of

this narrative. Consider a set of causal factors, hypothesized to drive the actions described above:

friendship (f), status (s), risk (r), achievement (a). Albert’s behavior is driven through positive s

and negative r, with a moderate contribution of positive f. On the other hand Betsy’s behavior is

driven by positive s and positive a, without necessarily being driven by r or f.

Accordingly, this behavior can be represented in the syntax tree shown in Fig. 3.1. This tree

represents the process through which utility is assigned to a set of perceived possible behaviors. In

the case of GitHub these behaviors are typically restricted to creation of repositories, contribution

to or sharing existing repositories, or commenting or posting issues to existing repositories. The set

of perceived behaviors may be inherently limited between different individuals and given different

situations. For instance Albert is not a good programmer and, therefore, does not have the option

of contributing code to existing repositories.

Evaluating Importance and Optimal Presence of Causal Factors with Random Forests

The second stage of Evolutionary Model Discovery is identifying important causal factors and their

optimal presence within the behavior being studied. Random forest feature importance methods in

combination with non-parametric statistical tests are used for this purpose.

2This example is an extended adaptation from a communication with Dr. Joseph Whitmeyer regarding the DARPA
SocialSim project

25

Figure 3.1: An example syntax tree representation of the causal factors and operators driving the
behavior of two GitHub users with different motives.

Random forests are powerful ensemble machine learning algorithms for predictive analysis. Pre-

dictions of ensemble models are the combined prediction of a set of weak learners. This technique

has shown to provide much better results than using a single prediction algorithm [86]. Prediction

error of machine learning algorithms exists in a trade-off of the prediction bias and the prediction

variance. Ensemble learning algorithms dilute prediction bias and variance through the combina-

tion of many high bias single weak learners. In the case of random forests, the weak learners are

decision trees and their predictions are combined through bagging and random feature sampling.

Bagging refers to the individual training of each weak learner, or tree in the case of random forests,

on bootstrapped samples of the training data. Bootstrapped sampling refers to the approximation

of additional data required to train independent weak learners, learner trees. By sub-sampling the

feature set for training independent learners, a random forest is also able to asses the importance of

features and feature interactions towards prediction, and is a powerful tool for feature importance

analysis and engineering.

26

Multiple techniques for feature importance evaluation through random forests exist, including gini

importance, permutation accuracy importance, and functional analysis of variance. The two most

common factor importance measurement techniques for random forests are gini importance (or

mean decrease in impurity), and permutation importance (or mean decrease in accuracy)[87, 88,

86]. Unlike gini and permutation importance, fANOVA [89, 90] uses variance based measurements

and is unsuitable for use in Evolutionary Model Discovery considering the heteroskedasticity of

the fitness data produced by the evolutionary process as the genetic program finds more optimal

solutions.

Unfortunately, unlike fANOVA, both gini and permutation importance are only able to identify

first order importance of features, but not the importance of feature interactions, instances where

joint occurrence of features together are more important than when considered alone. A simple

example of the value to feature interactions is demonstrated when considering the importance of

two inputs related to an output through an XOR gate. Considered alone, the first order importance

of both features is misleadingly high. However, the reality is that the output can be completely

defined by the interaction of the two inputs. Fortunately, an algorithm for estimating joint con-

tributions in random forests was designed by Saabas [91, 92]. This algorithm is able to extract

the importance of sets of features existing together within a decision tree towards the prediction

accuracy of the random forest. Saabas’ joint contribution and it’s implementation TreeInterpreter

have been succesfully applied in assessing the importance of feature interactions in a large number

of recent studies [93, 94, 95, 96, 97, 98, 99].

The second stage of Evolutionary Model Discovery, involves applying these feature importance

evaluation techniques to understand the causal factors and causal factor interactions that were

important in the generation of the target macro-phenomena of the agent-based model. Accordingly,

a random forest regressor is trained on the factor presence to fitness data produced by the genetic

program. Gini importance and permutation accuracy importance for each factor is then calculated.

27

Joint contributions for factors and factor interactions are also contributed. Due to super-linear

relationship between the number factors considered in an interaction and the calculation of joint

contribution, in the cases presented in this dissertation, I only consider factor interactions of up to

three factors.

Both gini and permutation accuracy importance provide multiple estimates of the importance of a

particular feature. In many cases the importance of two or more features may not be distinguishable

without statistical tests of significance. Respecting the heteroskedasticity of the factor presence to

fitness data, single-tailed Mann-Whitney U tests are used to compare the importance values of

each factor pair, say A and B, for all factors, under the alternate hypothesis importance of A >

importance of B, for a significance 0.05.

Finally, results of the three techniques, gini importance, permutation accuracy importance, and

joint contribution, are used to identify the factors whose change in presence most affects the ability

to predict the model fitness. The thus identified causal factors can now be considered to construct a

more robust agent rule. In order to do so, the optimal presence of the most important factors must

be identified through the data generated by the genetic program. Single-tailed Mann-Whitney

U tests are again employed to systematically compare levels of presence of each causal factor,

say A and B, under the alternate hypothesis that marginal simulation fitness under A > marginal

simulation fitness under B.

Now, the knowledge of the most important causal factors and their respective optimal presence

in agent rule can be used to construct versions of the agent-based model that are more robust to

parameters and accurately reproduces the target macro-phenomena.

28

Figure 3.2: Schematic Architecture of Evolutionary Model Discovery

Parallelization and Computational Complexity

Theorem 3 The time complexity O(T) for the genetic programming of agent-based models of max-

imum factor tree depth, d, and m number of agents, over g generations, each with n gp-individuals

requiring e evaluations each, increases quadratically with the ABM scale and exponentially with

logical depth:

O(T) = O(gnem222d) (3.8)

Both genetic programming and random forests have the advantage of being well suited for parallel

computation. Genetic programs, similar to many evolutionary algorithms, evolve generations of

individuals, referred to gp-individuals to avoid confusion with individuals as humans. This pro-

cess requires the evaluation of the fitness of each individual. In the case of Evolutionary Model

29

Discovery, evaluation of gp-individuals means the simulation of the respective agent-based model

programmed by that individual. Evaluation of genetically programmed agent rules may be com-

putationally expensive. For each of g generations, each gp-individual of the genetic program of

population of size n must be written into the agent-based model as a rule and evaluated multiple

times to allow for stochasticity of output, say e evaluations. The aggregated output will then be

used for selection for reproduction of the next generation. Assuming the genetic programming uses

a simple one-point crossover, point mutation, and tournament selection, and a maximum tree depth

of d for the generated syntax trees, the time complexity of the genetic programming, G, without

the fitness evaluation would be as shown in Eq. 3.9, as every unit increase in tree depth doubles

the number of theory components.

O(G) = O(g(n2d +n2d +n)) = O(gn2d) (3.9)

Each e evaluations, of the agent-based model would perform runs with populations of m agents

of logical depth d, for a maximum 2d causal factors each, matching that of the respective gp-

individual. Assuming each causal factor takes O(m) time (calculating once across all neighbors),

the time complexity of execution of the generated agent-based model, A, would be as shown in Eq.

3.10.

O(A) = O(m∗ (m∗2d)) = O(m22d) (3.10)

Performing e evaluations per gp-individual, the total time complexity of the genetic programming

of agent-based models, T , is given in Eq. 3.11.

O(T) = O(G∗ e∗A)

= O(gn2d ∗ e∗m22d)

= O(gnem222d)

(3.11)

30

Therefore, the runtime of EMD will typically increase quadratically with the agent-based model

scale/population size of the agents and exponentially with unit increases in the logical depth.

The implementation of the genetic program for the experiments that follow, was ‘embarrassingly

parallel’; i.e. it parallelized the evaluations of the agent-based models. The time complexity

was thus reduced to O(gm222d), with a computing core dedicated to the evaluation of each gp-

indivudal. In future work, parellelizing the agent-based model itself, in particular, the execution of

the causal factors would be desirable. However, the technology to support parallel factor execution

on top of parallel evaluations at the time of writing is under development.

The time complexity of random forests is discussed in depth by Louppe [86]. Time complexity of

the CART algorithm for random forest training O(XZY 2log(Y)), where X is the number of weak

learner trees, Z is the number of features, in this case the number of unique factors and factor

interactions, and Y the number of samples. In our case Y = gne, prior to bootstrapping. Therefore,

the time complexity of training the random forest with CART is:

O(XZY 2log(Y)) = O(XZ(gne)2log(gne)) (3.12)

According to Louppe, the worst case time complexity of prediction through a random forest is

O(XY), which reduces to:

O(XY) = O(Xgne) (3.13)

31

Implementation

The Evolutionary Model Discovery framework has been implemented as an open-source Python

library, for causal inference of NetLogo models, to be used by the computational social science

community. A detailed description of this software is provided in Sec. 7, and is available for quick

installation through pip package manager for Python.

Several open-source technologies were used for the development of Evolutionary Model Discov-

ery. Evolutionary Model Discovery is able to evolve NetLogo models and the NetLogo controlling

API was heavily used in the implementation of this framework [28]. The DEAP library [100]

in combination with [101] was used to implement the parallelized genetic program. In order to

accommodate for the high computing resources required to expore such a vast search space as

described in the next sections, all model runs had to be performed on an AWS EC2 cloud envi-

ronment. The Scikit-learn [102] library was used for the implementation of random forests and

gini importance measurement. Permutation importance was implemented using the ELI5 library

[103] was used for permutation accuracy importance, and tree interpreter [92] for joint contribution

measurement.

32

CHAPTER 4: CASE STUDY 1: SOCIO-AGRICULTURAL BEHAVIOR

OF THE ANCESTRAL PUEBLO

What socio-agricultural factors might have lead to the sudden demise of a flourishing ancient

civilization? Researchers have no direct insight into the decisions made by people of past societies.

However, with the thorough assessment of simulation models against archaeological data, we can

infer possible decisions that could have led to patterns that are observed in the data. The Artificial

Anasazi is one of the first important demonstrations of the success of this technique. I demonstrate

how Evolutionary Model Discovery can relax certain assumptions made in the model through

exploration of the possible space of rules and highlight factors, which were already present in the

original model, that might have proven more important to the patterns seen in the archaeological

data.

The Artificial Anasazi model

The Artificial Anasazi is an agent-based model of an ancestral Pueblo community, the Kayenta

Anasazi during the years of 800 AD to 1350 AD [1, 2]. This model was initially developed as part

of a larger effort to study the ancestral Pueblo civilization that occupied the Long House Valley

region. Ancestral Pueblo typically lived in cliff dwellings carved into the face of the rock (Figures

4.1 and 4.2). They depended on agriculture for nutrition and farmed on the valley floor below,

typically consisting of rich alluvial soil from the river flood plains. The ABM is implemented

in NetLogo [28, 1]. Archaeological excavations provide annual population time series data as

estimated counts of households that existed in the valley during the period of study. Annual data

on water sources and estimated soil dryness (Adjusted Palmer Drought Severity Index) for each

grid location on the map are provided. The model used a normal distribution to map relative

33

quality of soil over the map. The agent-based model simulates the rise and fall of households

over a geographic map of the valley over time and produces a time series of annual household

count. The original purpose of the Artificial Anasazi was to test if environmental factors could

have triggered the sudden disappearance of the Anasazi from the Long House Valley around 1350

AD.

Figure 4.1: Ancestral Pueblo ruins on the valley floor at the Bandalier National Monument, a site
similar to the Long House valley. (Photo credits: Chathika Gunaratne)

Critics of the Artificial Anasazi have argued that the agent-based model itself is but a single can-

didate explanation of the social phenomenon at hand, the rise and fall of the Anasazi population

over time [18]. However, this can be viewed as an advantage as the Artificial Anasazi can be used

as a test-bed to discover multiple plausible explanations of the population dynamics of the Long

Valley at the time. Testing combinations of hypothesized factors that may have influenced actual

decision-making processes of the individuals results in a vast search space of plausible Artificial

Anasazi behavior results. We concentrated on a particular sub-model of the Artificial Anasazi: the

34

farm plot selection strategy. The households perform farm plot selection under two conditions:

1) when a new child household is hatched by a household that has enough resources to increase

its family size, or 2) when the current farm plot is unable to produce enough yield to satisfy the

nutrition needs of the household anymore. The original model, hypothesizes that the households

simply selected the next closest available farm plot to the household’s current farm plot during

farm plot selection, i.e., minimizing over distance. A patch must be free of farms or households

and not be located inside a water body to be available. Consequently, the original farm selection

strategy ignores other sensory data available to the households regarding the land and the state of

other households in the valley.

Figure 4.2: Cliff dwellings of the ancestral Pueblo at the Bandalier National Monument. (Photo
credits: Chathika Gunaratne)

35

Hypothesized Alternate Factors Influencing Farm Plot Selection

Human social behavior is rarely entirely rational. Accordingly, our hypothesis proposed that the

farm selection decisions of the ancestral Pueblo were complex, and took into account the state

of the potential farm plots available to them and the social influences of other households around

them. Agent_Zero [9] models the human decision making process into three dimensions: social,

emotional and rational. Similarly, factors hypothesized to influence the farm plot selection process

within these dimensions were defined. The social component is expressed through four mutually

exclusive social connectivity configurations through which the agent could receive information on

a subset of potential farm plots, s, out of the entire set of potential farm plots in the valley, SAll . The

received information is then processed through a utility function f (x) defined as a combination of

factors and operators, F , which consider both the internal state of the household and the conditions

of the farm plot and its surroundings in order to determine the next farm plot x′ ∈s⊂ SAll as in

Eq (4.1).

x′ = argmax
x∈s⊂SAll

f (x) (4.1)

Households in the original Artificial Anasazi model consider a single factor, distance, which will

be referred to as FDist , and choose the potential farm plot with minimal distance to their current

farm location. No further factors are considered in the decision making process. Furthermore, the

original model assumes that the households have complete information of the valley, and every

potential farm plot is compared. Therefore, the farm selection process of the original Artificial

Anasazi can be represented as in Eq (4.1).

x′ = argmax
x∈SAll

(−FDist(x)) (4.2)

36

Arguing that the farm selection decision may have been more complex, considering a variety of

other factors, an extended factor set is proposed, consisting of four social and five rational fac-

tors, namely: homophily by age (FHAge), homophily by agricultural productivity (FHAgri), social

presence (FSoc), migration from current zone (FMig), comparison of quality (FQual), comparison of

dryness (FDry), comparison of yield (FYeild), comparison of water availability (FWater), and com-

parison of distance (FDist). Additionally, the numerical operators + and − are included in F , for

the aggregation of sub-scores reported by the social/emotional and rational factors.

Four hypothesized configurations of social connectivity were included F . These configurations

determined the subset of all viable farm plots that were to be considered by the households for

comparison.

• Full information (SAll): Households had complete knowledge of all potential farm plots in

the valley. Full information was used by agents in the original version of the model, assuming

that each household knew and compared every potential farm plot in the Long House Valley.

• Family inherited information (SFam): Households solely depended on information avail-

able through their ‘family’. Families are defined as a household’s parent household, sibling

households, any surviving grandparents, and the household itself.

• Nearest-neighbor information (SNeigh): agents only consider the farm plots known to their

neighboring households within a fixed radius of their current location.

• Best performers SPer f : Households only consider potential farm plots known to the best

performing households, demonstrating a leadership dynamic.

Four social/emotional factors were included in F : two types of homophily (the tendency for social

entities to congregate among those with similar traits), need for social presence, and one of flee-

ing/migration. Each social/emotional factor returned a sub-score representing the desirability of

37

each evaluated farm plot. Sub-scores were normalized within the factors, to lie in the range of 0 to

1, for fair comparison.

• Homophily by age (FHAge): Households prefer to select farm plots near other households

that are of similar age, where age is measured as the number of simulation steps the house-

hold has survived since splitting from its parent.

• Homophily by agricultural productivity (FHAgri): Households tend to select farm plots

near other households with a similar corn stock to itself.

• Social presence (FSoc): Agents score potential farm plots with many nearby households

higher than those in isolation.

• Fleeing/migration (FMig): Agents score potential farm plots that are in a completely differ-

ent zone than the current one with a full sub-score, while patches in the same zone receive a

sub-score of zero.

Five Rational factors considered for the farm selection process were logical comparisons of sensory

data on the potential farm plots already available to the households in the original model. Similar

to the social/emotional factors, rational factors also returned a normalized sub-score of farm plot

desirability between 0 and 1.

• Comparison of quality (FQual): Higher sub-scores were reported for potential farm plots

with higher quality of land.

• Comparison of dryness (FDry): Higher sub-scores were reported for potential farm plots

with higher dryness of land.

• Comparison of yield (FYeild): Higher sub-scores were reported for potential farm plots that

were known to have higher yield in the previous year.

38

• Water availability (FWater): Higher sub-scores were reported for potential farm plots with

more nearby water sources.

• Comparison of distance (FDist): Higher sub-scores were reported for potential farm plots

that were closer to the current farm plot location.

The addition (+) and subtraction (−) operators were included as primitives of the genetic program

to construct rules from the hypothesized factors.

Experiments

Twenty genetic programming runs were executed with the objective of minimizing the (RMSE) be-

tween the simulated household count to the actual household count over 550 simulation ticks of the

Artificial Anasazi. Details on the RMSE calculation can be found in [85]. In order to ensure robust-

ness of the evolved rules, the parameters of the ABM were randomly initialized with values ±5%

about the optimal parameter values found through Stonedahl’s calibration of the Artificial Anazasi

through a genetic algorithm [16] (ie: water source distance = (10.925,12.075), death age span =

(9.5,10.5), min fertility = (0.1615,0.1785), base nutrition need = (175.75,194.25), fertility span =

(0.0285,0.0315), min fertility ends age = (27.55,30.45), harvest variance = (0.418,0.462), harvest

adjustment = (0.608,0.672), maize gift to child = (0.4465,0.4935), min death age = (38.0,42.0),

fertility ends age span = (4.75,5.25)). Each genetic program run was executed for 100 generations

over populations of 50 individuals. Syntax trees of minimum depth 4 and maximum depth 10 were

used to avoid trees exhibiting bloat. The Half-and-Half tree builder was used for initialization [59].

Finally, new farm selection strategies were designed taking into account the insights gained through

Evolutionary Model Discovery. The robustness of the Artificial Anasazi with these new strategies

were tested against the original model by comparing the RMSE of 100 runs of each model under

39

randomized initialization of parameters within the ranges above.

Results

The resulting best farm selection strategies evolved by the genetic program by run are provided in

Table 6.1 along with their respective RMSE values. 15 of the runs produced RMSE values lower

than the current best RMSE in the literature obtained through parameter calibration of the Artificial

Anasazi model with the original farm plot selection by closeness (733.6) [4]. All best scoring rules

for each run utilized SAll , i.e., the model produced best results when the agents had full informa-

tion regarding available farm plots as shown in Fig. 4.3, comparing SAll , SFam, SNeigh, and SPer f

over the complete factor presence to fitness data. One-tailed Mann-Whitney U tests comparing

the fitness of all rules by their social connectivity configurations confirmed that rules with SAll had

significantly (α = 0.05) lower RMSE than the other three configurations: argmaxx∈SAll
f (x) <

argmaxx∈SFam
f (x) (p = 2.045× 10−113), argmaxx∈SAll

f (x) < argmaxx∈SNeigh
f (x) (p = 4.856×

10−154), argmaxx∈SAll
f (x) < argmaxx∈SPer f

f (x) (p = 1.983× 10−57). Also, rules with SNeigh

were shown to have significantly (alpha=0.05) lower RMSE than those with SFam and SPer f :

argmaxx∈SNeigh
f (x)< argmaxx∈SFam

f (x) (p = 3.535×10−14), argmaxx∈SNeigh
f (x)<

argmaxx∈SPer f
f (x) (p = 2.339−24). Finally, rules with SFam were shown to have significantly (al-

pha=0.05) lower RMSE than rules with SPer f : argmaxx∈SFam
f (x)< argmaxx∈SPer f

f (x) (p= 0.012).

Accordingly, the rest of the analyses detailed in this paper were performed on rules where the social

connectivity configuration was SAll .

40

1000 1500 2000 2500 3000
Root Mean Squared Error

SAll

SFam

SPerf

SNeigh

Figure 4.3: Best fit to data was obtained under SAll. Comparison of the RMSE produced by
the Artificial Anasazi model when agents had full information (SAll), information through family
households (SFam), information through the households with most agricultural success (SPer f), or
information through neighboring households (SNeigh). Models that used SAll produced the lowest
RMSE overall argmaxx∈SAll

f (x) < argmaxx∈SFam
f (x) (p = 2.045× 10−113), argmaxx∈SAll

f (x) <
argmaxx∈SNeigh

f (x) (p = 4.856× 10−154), argmaxx∈SAll
f (x) < argmaxx∈SPer f

f (x) (p = 1.983×
10−57).

41

Table 4.1: The candidate farm selection strategies of models produced by the Evolutionary Model
Discovery process along with their best fitness as reported by the genetic programming search.

GP Run Best scoring rule Best Fitness
0 argmax

x∈SAll

(FMig(x)) 753.43

1 argmax
x∈SAll

(−FDist(x)−FDry(x)+2∗FMig(x)) 755.27

2 argmax
x∈SAll

(FYield(x)+FHAgri(x)) 709.50

3 argmax
x∈SAll

(FMig(x)−FHAgri(x)) 738.95

4 argmax
x∈SAll

(FMig(x)) 730.48

5 argmax
x∈SAll

(FDist(x)) 752.52

6 argmax
x∈SAll

(FDist(x)) 728.29

7 argmax
x∈SAll

(FYield(x)) 714.21

8 argmax
x∈SAll

(FDist(x)−FDry(x)) 734.25

9 argmax
x∈SAll

(4∗FDist(x)+FDry(x)+FQual(x)+FWater(x)+FSoc(x)+FHAge(x)) 701.21

10 argmax
x∈SAll

(FDist(x)+FQual(x)+FWater(x)−FYield(x)+FMig(x)+FSoc(x)) 720.285

11 argmax
x∈SAll

(FMig(x)) 723.63

12 argmax
x∈SAll

(FDist(x)+FQual(x)+2∗FYield(x)+2∗FMig(x)+FSoc(x)+FHAgri(x)) 687.12

13 argmax
x∈SAll

(FDist(x)+FSoc(x)) 732.19

14 argmax
x∈SAll

(FQual(x)) 728.77

15 argmax
x∈SAll

(FQual(x)) 706.28

16 argmax
x∈SAll

(FDist(x)+2∗FQual(x)+FYield(x)+FSoc(x)+3∗FHAge(x)) 715.96

17 argmax
x∈SAll

(FMig(x)) 715.47

18 argmax
x∈SAll

(−FDist(x)+FSoc(x)−FHAgri(x)) 701.44

19 argmax
x∈SAll

(FQual(x)+FMig(x)+FSoc(x)) 701.30

42

Fig. 4.4 displays the distribution of RMSE against factor presence, for presence values that were

recorded in at least 200 rules across the 20 genetic program runs. Negative correlations to RMSE

(higher fitness) are seen between FDist , FQual , FWater, FYield , FMig, FSoc, and FAge, and in general the

genetic program favored the positive presence of these factors, and evolved more rules with these

factors having a positive effect on farm selection. FDry on the other hand had a negative correlation

to RMSE for presence less than 2.

-1 0 1 2 3 4 5 6
1000

2000

3000
FDist

-3 -2 -1 0 1 2

FDry

-1 0 1 2 3 4 5 6 8

FQual

-1 0 1 2 3

1000

2000

FWater

-2 -1 0 1 2 3 4

FYield

-2 -1 0 1 2 3 4 6

FMig

-1 0 1 2 3 4 5

1000

2000

FSoc

-1 0 1 2 3 4 7

FHAge

-2 -1 0 1 2 3

FHAgri

Factor Presence

Ro
ot
 M
ea

n
Sq

ua
re
d
Er
ro
r

Figure 4.4: RMSE vs Factor Presence under SAll. RMSE distributions by factor presence produced
by Evolutionary Model Discovery of the farm selection strategy of the Artificial Anasazi under SAll .
Only presence values that appeared at least 200 times in the genetic program are displayed. Most
factors display negative correlations to RMSE, while FDry shows a positive correlation.

43

The random forest fit the factor presence to fitness data best for a forest of 520 regression trees,

testing from 10 to 1000 trees with a train/test split 90%-10%. Accordingly, a forest of 520 trees

was used for factor importance determination. Factor importance under SAll obtained through both

the gini importance and permutation accuracy importance techniques can be seen in Fig. 4.5. Gini

importance generally had less precise estimations than permutation accuracy importance. Yet both

techniques indicated FQual as the factor of highest importance towards RMSE prediction. FSoc,

FMig, and FDist also scored higher importance values than the other factors hypothesized. Fig. 4.6

displays the p-values of one-tailed Mann Whitney U tests (alpha=0.05), comparing the permu-

tation importance of each factor A against every other factor B, testing the alternate hypothesis:

importance ofA > importance ofB. According to the results, 7 of the 9 factors showed significant

difference and could be ordered in terms of permutation accuracy importance as FQual , FSoc, FDist ,

FMig, FWater, FYield , FHAgri, FHAge, and FDry.

0.00.10.20.30.4

Gini Importance

0.0 0.1 0.2 0.3 0.4
FDry
FHAge
FHAgri
FYield
FWater

FMig
FDist
FSoc
FQual

Permutation Accuracy Importance

Figure 4.5: FQual , FSoc, FDist , and FMig have highest Gini and Permutation Accuracy Importance.
Gini importance and permutation accuracy importance of the hypothesized factors towards a ran-
dom forest’s ability to predict the models’ RMSE. Gini importance results are less decisive than
permutation accuracy importance. Both techniques agree that FQual , FSoc, FDist , and FMig are the
most important factors.

44

FDry FHAge FHAgri FYield FWater FMig FDist FSoc FQual
B

FQual

FSoc

FDist

FMig

FWater

FYield

FHAgri

FHAge

FDry

A
9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 1.6e-04 4.4e-02 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 1.1e-03 5.2e-01 9.6e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 4.6: Statistical confirmation of the existence of order by importance among causal factors.
Results from systematic Mann-Whitney U tests on the permutation accuracy importance results.
The cells contain p-values for the alternate hypothesis that A > B (null hypothesis A = B). Green
cells indicate agreement of the alternate hypothesis. The results indicate a clear ordering of the
factors by importance.

Fig. 4.7 compares the top ten joint contributions towards RMSE prediction of the random forest by

individual factors, and joint contributions of factors considered in pairs and triples. Again, FQual

demonstrates far higher importance than any other factor or factor interaction. The factor pairs

(FQual,FMig) and (FQual,FSoc) also demonstrate high importance, followed by (FQual,FMig,FSoc),

(FDry,FQual,FMig), and (FDist ,FQual,FSoc). Overall, FQual is present in all highest scoring joint

contributions. Despite FDry having very low individual importance, FDry showed higher importance

when considered in combination with FQual and FMig.

45

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Contribution to Random Forest Prediction

['FDist', 'FQual', 'FSoc']
['FDry', 'FQual', 'FMig']
['FQual', 'FMig', 'FSoc']

['FQual', 'FSoc']
['FQual', 'FMig']

['FQual']
Fa

ct
or
 In

te
ra
ct
io
n

Figure 4.7: FQual, [FQual,FMig], and [FQualFSoc] have highest joint contribution to farm plot selec-
tion. Ordered barchart of highest normalized joint contribution scores of factors and interactions
of three or less under SAll . Again, FQual shows a far larger contribution to the random forest’s
ability to predict model RMSE than other factors and factor interactions, and is present in all of the
highest contributing interactions. Interactions [FQual ,FMig] and [FQual ,FSoc] also demonstrate high
joint contribution.

Considering the evidence of FQual , FSoc, FMig, FDist , and FDry as important factors, Fig. 4.8 demon-

strates Mann Whitney U tests conducted for each factor Fi, for the alternate hypothesis that RMSE

when presence of Fi was A, is less than the RMSE when presence of Fi was B in rules with SAll .

Models with positive presence of FQual , FSoc, FDist , and FMig showed significantly higher fitness

(with the exception of when presence of FMig = -2). Models with strong positive or negative pres-

ence of FDry showed lower RMSE overall, most likely a result of FDry’s interaction with FQual ,

FSoc, or FMig. The lowest median RMSE for (FQual,FSoc) was 985 at presence of FSoc at 5 and

presence of FQual at; the lowest median RMSE for (FQual,FMig) was 997 at presence of FMig at 3

and presence of FQual at 5.

46

-1 0 1 2 3 4 5 6 8
B

-1
0
1
2
3
4
5
6
8

A

5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

1.1e-26 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.0e-48 1.5e-66 5.0e-01 9.6e-01 1.0e+00 1.0e+00 9.7e-01 8.0e-01 9.9e-01

3.1e-46 2.1e-33 3.7e-02 5.0e-01 1.0e+00 1.0e+00 8.7e-01 6.4e-01 9.8e-01

1.2e-52 1.3e-43 6.9e-08 8.2e-04 5.0e-01 6.1e-01 3.4e-01 2.3e-01 8.2e-01

3.1e-44 2.8e-26 8.4e-06 2.3e-03 3.9e-01 5.0e-01 2.8e-01 2.1e-01 7.7e-01

2.7e-24 3.7e-08 3.4e-02 1.3e-01 6.6e-01 7.2e-01 5.0e-01 3.7e-01 8.5e-01

2.6e-14 5.4e-04 2.0e-01 3.6e-01 7.7e-01 7.9e-01 6.3e-01 5.0e-01 8.8e-01

6.7e-19 2.7e-07 5.1e-03 2.1e-02 1.8e-01 2.3e-01 1.5e-01 1.2e-01 5.0e-01

FQual

-1 0 1 2 3 4 5
B

-1

0

1

2

3

4

5

A

5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.4e-05 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.7e-13 4.2e-22 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

1.9e-18 1.3e-24 4.7e-04 5.0e-01 8.2e-01 8.5e-01 9.3e-01

9.4e-14 3.9e-11 1.8e-03 1.8e-01 5.0e-01 5.5e-01 7.4e-01

2.3e-12 1.9e-09 2.8e-03 1.5e-01 4.5e-01 5.0e-01 6.9e-01

7.6e-12 7.3e-09 1.4e-03 7.0e-02 2.6e-01 3.1e-01 5.0e-01

FSoc

-2 -1 0 1 2 3 4 6
B

-2

-1

0

1

2

3

4

6

A

5.0e-01 1.1e-03 3.7e-01 9.3e-01 9.8e-01 1.0e+00 9.8e-01 9.9e-01

1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

6.3e-01 5.7e-12 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

7.2e-02 3.8e-26 1.5e-27 5.0e-01 9.9e-01 1.0e+00 9.2e-01 9.8e-01

1.7e-02 2.8e-25 8.2e-16 1.1e-02 5.0e-01 9.5e-01 7.3e-01 9.1e-01

2.0e-03 1.3e-19 3.6e-10 7.8e-04 4.5e-02 5.0e-01 3.4e-01 5.7e-01

2.1e-02 8.0e-09 6.5e-04 7.6e-02 2.7e-01 6.6e-01 5.0e-01 6.7e-01

6.4e-03 4.7e-11 2.5e-05 1.5e-02 9.3e-02 4.3e-01 3.3e-01 5.0e-01

FMig

-3 -2 -1 0 1 2
B

-3

-2

-1

0

1

2

A

5.0e-01 7.0e-01 1.8e-01 7.6e-02 8.3e-03 9.4e-01

3.0e-01 5.0e-01 7.9e-04 1.3e-06 5.0e-10 9.5e-01

8.2e-01 1.0e+00 5.0e-01 2.1e-02 6.4e-06 1.0e+00

9.2e-01 1.0e+00 9.8e-01 5.0e-01 8.5e-05 1.0e+00

9.9e-01 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.0e+00

5.8e-02 4.8e-02 5.4e-05 1.2e-06 4.5e-09 5.0e-01

FDry

-1 0 1 2 3 4 5 6
B

-1

0

1

2

3

4

5

6
A

5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

1.5e-13 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.2e-22 7.2e-13 5.0e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

1.9e-32 6.3e-25 2.6e-08 5.0e-01 5.9e-01 7.2e-01 8.9e-01 9.8e-01

1.6e-23 1.6e-12 2.9e-05 4.1e-01 5.0e-01 6.5e-01 8.5e-01 9.7e-01

1.5e-18 4.5e-09 2.0e-04 2.8e-01 3.5e-01 5.0e-01 7.7e-01 9.5e-01

4.2e-13 8.4e-07 4.8e-04 1.1e-01 1.5e-01 2.3e-01 5.0e-01 8.2e-01

7.9e-11 1.8e-06 2.0e-04 2.0e-02 3.3e-02 5.3e-02 1.8e-01 5.0e-01

FDist

Figure 4.8: Optimal presence scores for causal factors with highest importance. Results from
systematic one-tailed Mann-Whitney U tests between presence values of the 5 most important fac-
tors for the alternate hypothesis: RMSE for presence A < RMSE for presence B (null hypothesis:
RMSE for presence A = RMSE for presence B) for α = 0.05. Green cells indicate agreement of
the alternate hypothesis. Results indicate that for FQual , FSoc, FMig, and FDist RMSE is generally
lower for higher, positive presence. For FDry, both negative and higher positive presence may
provide low RMSE scores.

Finally, rules following the three highest joint contributions were constructed using the best val-

ues for each factor concerned: argmaxx∈SAll
(FQual(x)), argmaxx∈SAll

(5FSoc(x) + 6FQual(x)), and

argmaxx∈SAll
(3FMig(x) + 5FQual(x)), and RMSE was compared against the original farm selec-

tion strategy argmaxx∈SAll
(−FDist(x)) for 100 runs each under random initialization of parameters

within the ranges specified in section 4. Fig. 4.9 shows that all three of these rules derived through

Evolutionary Model Discovery have significantly lower RMSE than that of the original farm se-

lection strategy under randomized parameter initialization.

47

Figure 4.9: Models designed through Evolutionary Model Discovery insights are significantly
more robust. Comparison between the RMSE of 100 runs of three models with farm selection
strategies designed taking into consideration the insights from Evolutionary Model Discovery,
1) argmaxx∈SAll

(FQual(x)), 2) argmaxx∈SAll
(5FSoc(x)+6FQual(x)), and 3) argmaxx∈SAll

(3FMig(x)+
5FQual(x)), against 100 runs of the original farm selection strategy argmaxx∈SAll

(−FDist(x))
in [1, 2, 3, 4], under random initialization of parameters. The three farm selection strategies derived
from Evolutionary Model Discovery are far more robust under random parameter initialization and
show significantly better RMSE scores compared to the original model.

Discussion

Mechanistic Explanation Upon failure of a farm plot, the ancestral Pueblo households of the

Long House valley, were likely to consider the whole valley in search of new land to farm on,

preferring areas that indicated higher soil quality, higher social presence, and farming further

away from areas where farm plots failed previously.

Applying Evolutionary Model Discovery on the Artificial Anasazi, I show that the socio-agricultural

behavior of the ancestral Pueblo of the Long House Valley was more deliberative and informed

than originally assumed. Our results indicate that, contrary to the original farm selection behav-

ior, where households would select the next closest possible plot of land once their present farm

48

was depleted, the households most likely selected potential farming land with higher soil quality

(FQual). Further, it was highly likely that the households had good knowledge of the potential arable

land throughout the valley, since SAll was the best social connectivity configuration for information

spread. Also, the desire to congregate into communities was indicated, as positive desire for social

presence (FSoc) was the second most important factor, and acting on information on arable land

known to neighboring households (SNeigh) was the second most successful social connectivity con-

figuration. Further, instead of choosing closer potential farm plots (−FDist), choosing farm plots

that were further away from the households current farm plot (FDist) or moving to a completely

different zone in the region (FMig) was found to be a more likely behavior. Finally, versions of

the Artificial Anasazi where farm plot selection was driven by seeking higher quality land, higher

quality land with more social presence, and higher quality land in different zones, all proved to be

significantly more robust than the decision to move to the next closest available plot of land (Fig.

4.9).

49

CHAPTER 5: CASE STUDY 2: MIXED PATTERNS OF RESIDENTIAL

SEGREGATION AND INTEGRATION

Why do communities of individuals with no racial bias still maintain pockets of segregation?

Among the earliest phenomena recognized as an unexpected, emergent result of complex inter-

actions at an individual-scale, this phenomena was originally studied by Thomas Schelling in his

seminal, model of residential segregation [104]. One of the earliest demonstrations of the value

of Agent-Based Modeling in the Computational Social Sciences, Schelling’s model of segregation

[104] modeled the dynamics of residential segregation among two races sharing a common spatial

residential region. Through his model, Schelling demonstrated how populations of individuals who

did not prefer a majority of their neighbors to be of similar race, could still end up in segregated

neighborhoods. Each agent prefers to have F percent of its immediate neighbors be of similar race.

In the original model, F is a homogeneous parameter of the Agent-Based Model. The only other

parameter of the Agent-Based Model is the density of agents D in the residential region. An agent

that is able to satisfy this condition is labeled as ‘happy’. If an agent is unhappy, i.e. if there are

not enough neighbors of its own race as its immediate neighbors of its current location c to satisfy

F , the agent decides to move its residence to a random new location. The rule of racial preference

for any agent a used in Schelling’s Segregation can be represented as follows:

Relocatea ⇐⇒ Ha 6= 1

Ha = fa(c)> F

Where H is the boolean state of happiness of the agent and fa(c) is the percentage of similar neigh-

bors immediately surrounding the agent a at location c. In the original Schelling’s Segregation, the

above inequality is the sole determinant of an agent’s decision to relocate. This rule expresses the

50

agent’s internal disposition to its neighborhood. It does not consider the influence of the disposition

of other agents in its neighborhood.

Hatna’s Model of Mixed Segregation-Integration Patterns

Hatna and Benenson [105], extend the original Schelling’s Segregation model in several ways.

Most importantly, The desirability of a residential location on the grid is measured through a utility

function, ua,i, eq. 5.1.

ua,i =

fa(i)
Fa

, if fa(i)< Fa∧Fa > 0,

1, otherwise.
(5.1)

Where, i is a location considered by agent a, Fa is its personal tolerance to the fraction of racially

similar neighbors, and fa is its current fraction of friends. The agents would relocate to a patch i if

its utility, ua,i, exceeded the utility of its current patch, c, as shown in eq. 5.2.

Relocate ⇐⇒ (∃iua,i > ua,c)∨ (ua,c = 1∧ p < m) (5.2)

Where, p is a uniform random noise function and m the probability of moving despite complete

satisfaction, a parameter of the model. The utility function eq. 5.1 was still premised on the

Schelling’s original thesis of racial preference. Additionally, they separate the processes of needing

to leave one’s current household and the decision to move to a new residential location. This allows

agent’s who desire to move to a new location to resist moving unless they find a more desirable

location to move to. Further, this model, allows agent’s who are completely satisfied with their

current location to still move to a new location at a certain probability, acting as a noise function.

51

They allow for heterogeneous tolerance experimenting with ratios of high and low tolerance agents

and distributions of tolerance, in addition to ratios of the abundance of both races.

Hatna and Benenson are able to demonstrate that with these extensions, slightly mixed patterns of

segregation and integration are able to co-exist within a population for specific parameter values.

They provide evidence through spatio-demographic analysis of several cities, showing that such

mixed patterns are more likely to exist in urban areas. They develop a metric, the C-index [106],

which is able to quantify the equal existence of segregated and integrated areas on a single map.

In [105], they provide extensive analysis of the racial tolerance distributions and race abundance

ratios that are able to produce residential patterns with high c-indices. It is seen that C-index is

highest when both races are in equal proportion and there are equal numbers of highly racially

intolerant and highly racially tolerant individuals.

However, racial preference is not the sole factor defining the desirability of a residence. Perhaps

other factors could lead to stronger mixed patterns with higher c-indices. Several factors such as

financial suitability, safety and stability of the neighborhood, or familiarity with the neighborhood,

usually affect the decision to select a place of resident, to name a few. The question however, is

how important these factors are towards the emergence of mixed patterns of segregation to form?

With minimal modification to the Hatna’s model of segregation I test the importance of racial

preference against several other hypothesized factors on their ability to produce mixed patterns of

segregation and integration.

Causal Factors for Mixed Patterns of Segregation and Integration

The following factors are hypothesized to affect the desirability of a new location of residence.

Each factor provides a utility sub-score between 0 and 1 and takes in a location of interest or the

52

current residential location as a parameter.

• Fraction of racial similarity FRace: The fraction of agents in the neighborhood who are of

the same race as the agent. This is the factor considered in both Schelling’s seminal work

[104] and Hatna’s more recent model [105]

• Mean neighborhood’s tolerance FTolMean: Represents the typical tolerance to the other race

shown in the neighborhood. Measured as the mean racial tolerance of all the agents in the

neighborhood.

• Diversity of neighborhood’s tolerance FTolDiv: Represents the diversity of tolerance shown

in the neighborhood towards the other race. Measured as the variance of the racial tolerance

of all the agents in the neighborhood.

• Neighborhood isolation FIsol: Represents the isolation of the neighborhood. The normal-

ized number of unoccupied locations in the neighborhood.

• Length of residence FRes: Represents the time spent in the neighborhood. Measures the

number of time steps this agent has resided at the location.

• Mean satisfaction of neighborhood residents FSatMean: Scores higher if the residents of

the neighborhood of the location are themselves satisfied. Measured by taking the mean of

the home utility of the residents in the neighborhood of the location being considered.

• Diversity of satisfaction of neighborhood residents FSatDiv: Scores higher if the residents

of the neighborhood show more diverse levels of satisfaction. Measured by taking the vari-

ance of the home utility of the residents in the neighborhood of the location being considered.

• Distance FDist : Measures the distance the location is from the agent’s current home patch.

53

• Tendency to move FMove: Scores higher if the agent has moved residential locations more

frequently in the past. If the location considered is the home patch, measured as 1 - the

number of residences the agent has had in the past divided by the number of ticks. If the

location considered is not the home patch then is measured as the number of residences the

agent has had in the past divided by the number of ticks.

The addition (+) and subtraction (−) operators were included as primitives of the genetic program

to construct rules from the hypothesized factors.

Experiments

Hatna’s NetLogo implementation of residential segregation [105] was extended for Evolutionary

Model Discovery. The utility function measuring desirability was tagged as the entry point for

EMD with implementations of the factors defined in 5.

In [105], C-index is found to be highest when equal proportions of the two races (blue and green)

were present, along with equal proportions of less tolerant and highly tolerant agents of both races.

Accordingly, the fraction of blue agents was set to 0.5, and tolerance distributions of both blue and

green races was set to 50% 0.125 and 50% 0.833 to match the parameter values found in [105].

Density was allowed to vary uniform randomly in the range [0.5...0.9] in increments of 0.05. The

probability of a happy agent relocating was set to 0.01. Neighborhoods were considered as the grid

locations 1 hop away from a patch. The model was run for 100 ticks per simulation.

The genetic program parameters for EMD was set as follows. Mutation rate was set to 0.1,

crossover rate to 0.8, minimum depth set to 2, maximum depth set to 6, and population size was

set to 50 models per generation. The results over 5 genetic program runs were used for factor

importance analysis through random forest regression.

54

Results

The results of running Evolutionary Model Discovery on Hatna’s model of segregation are dis-

cussed in this section. Fig. 5.1 displays the marginal distributions of C-index produced by varying

values of the presence of each factor. In this case, unlike that of the Artificial Anasazi Sec.4, or as

later discussed in the case of notification prioritization Sec. 6, a more limited region of the factor

space was explored by the genetic program. This is indicated by the fact that most factors only

had 2 or 3 unique presence values which appeared at least in 100 samples of the data produced

by the genetic program. Higher C-index is desired for the existence of mixed patterns. Preference

for race and preference for isolation seem to have the largest impact on the C-index. Diversity

of satisfaction and diversity of tolerance also seemed to have a slight effect on the C-index with

the C-index maximal for FSatDiv = −1 and FTolDiv = 1. However, further statistical analysis was

required to confirm these findings.

55

Table 5.1: Best 20 rules that produced the highest C-index, greatest mixing of segregated of inte-
grated residential locations.

Rule C-Index
ua,i = FRace(i)−FMove(i)+2FTolDiv(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = 2FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = 2FRace(i)−2FMove(i)+2FIsol(i)+FTolDiv(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = 2FRace(i)+FSatMean(i)−2FMove(i)+2FIsol(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = FRace(i)+FIsol(i)+FTolDiv(i) 0.2999
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2910
ua,i = FRace(i)−2FMove(i)+FIsol(i)+FTolDiv(i) 0.2903
ua,i = 2FRace(i)−FMove(i)+FIsol(i) 0.2887
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2880
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2876
ua,i = FRace(i)−2FMove(i)+2FIsol(i)+FTolDiv(i) 0.2868
ua,i = 2FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2868
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2857
ua,i = FRace(i)−4FMove(i)+3FIsol(i)+2FTolDiv(i) 0.2849
ua,i = FRace(i)−FMove(i)+FIsol(i)+FTolDiv(i) 0.2841

56

0 1 2
0.0

0.1

0.2

0.3
FRace

0 1

FDist

0 1

FSatMean

0 1
0.00

0.01

0.02

0.03

0.04
FTolMean

-1 0 1

FRes

-2 -1 0 1

FMove

-2 -1 0 1 2
0.0

0.1

0.2

0.3
FIsol

-1 0 1

FSatDiv

-1 0 1 2 3

FTolDiv

Factor Presence

Ro
ot
 M

ea
n
Sq

ua
re
d
Er
ro
r

Figure 5.1: Marginal distributions of C-index with varying presence of the hypothesized factors
driving mixed patterns of segregation (only presence values for which the genetic program pro-
duced at least 100 samples are considered). Higher C-index indicates . FRace and FIsol show the
largest variation in C-index. Moderately negative (-1) FSatDiv and positive FTolDiv also show higher
C-index. Other factors considered do not show any visible relationships and require statistical tests
of significance.

57

The results of first order random forest importance evaluation on the data produced by the genetic

program are displayed in Fig. 5.2. There was some disagreement between the two techniques,

compared to Permutation importance, Gini importance underestimates the improtance of FTolDiv

and FMove. However, both methods agree that FRace, FIsol , and FTolDiv have are among the most

important factors for mixed pattern generation. Permutation importance rated FTolDiv as the most

important factor and FMove as the second most important factor, though a significant uncertainty

was attributed to FMove. FSatDiv, FRes, FTolMean, FSatMean, and FDist had relatively low importance.

0.00.20.40.60.8
FTolMean

FDist

FSatMean

FRes

FSatDiv

FTolDiv

FIsol

FRace

FMove

Gini Importance

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Permutation Accuracy Importance

Figure 5.2: Gini and Permutation importance values for factors hypothesized to generate mixed
patterns of segregation and integration. There is some disagreement between the two techniques,
yet FRace, FIsol , and FTolDiv are give high importance by both techniques. Permutation importance
indicates that FMove also has high importance but with high uncertainty on this measurement.

The p-values of Mann-Whitney U tests comparing the permutation importance of each factor are

shown in Fig. 5.3 for the alternate hypothesis that A > B for all factors A and B (null hypothesis

A = B, α = 0.05). Green cells indicated where there was no evidence for supporting the null hy-

pothesis at a significance of α = 0.05. Despite being unable to distinguish between the importance

of FRace and FIsol , and FRes and FTolMean, there was a reasonable ordering of the importance of

58

the hypothesized causal factors; in descending order of importance: FTolDiv,FMove,FRace and FIsol ,

FSatDiv, FRes and FTolMean, FSatMean, and FDist .

FTolMean FDist FSatMean FRes FSatDiv FTolDiv FIsol FRace FMove

B

FMove

FRace

FIsol

FTolDiv

FSatDiv

FRes

FSatMean

FDist

FTolMean

A

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 2.9e-03 5.2e-01 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 6.6e-04 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 5.3: P-values of Mann-Whitney U tests comparing significance of difference in permutation
importance of factors for mixed patterns (alternate hypothesis that A > B; null hypothesis A =
B, α = 0.05). Green cells indicate agreement of the alternate hypothesis. Results indicate an
statistically confirmed ordering of factors by importance, except of the a lack of difference between
FRace and FIsol , and FRes and FTolMean.

Joint contributions of interactions of three or less factors are shown in 5.4. Interestingly, the pres-

ence of the three factors FRace, FIsol , and FTolDiv together provided the highest contribution to the

predictions made by the random forest. FIsol alone showed relatively modest importance as well.

59

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Contribution to Random Forest Prediction

['FMove', 'FIsol', 'FSatDiv']

['FRace', 'FMove', 'FIsol']

['FMove', 'FIsol']

['FMove', 'FIsol', 'FTolDiv']

['FMove']
Fa

ct
or
 In

te
ra
ct
io
n

Figure 5.4: Joint contributions of factors towards the generation of mixed patterns of segregation
and integration. The factor interaction [FRace,FIsol,FTolDiv] show the highest joint importance.
Moderate importance is shown by FIsol alone.

Considering the previous results the top five factors causing mixed patterns to form in Hatna’s

model of segregation were FRace, FTolDiv, FIsol , FMove, and FSatDiv. Fig. 5.5 shows the p-values

of conducting pairwise Mann-Whitney U tests for significant difference in C-index produced by

the different presence values considered for each of these factors. The alternate hypothesis of this

test was RMSE for presence A < RMSE for presence B (null hypothesis: RMSE values are equal)

and α = 0.05. Green cells indicate instances were there was evidence for falsification of the null

hypothesis. Mixed patterns were more likely to form when both FRace and FIsol were not present in

the model, FTolDiv was 1„ FSatDiv was -1. There was insufficient evidence to make a conclusion on

the best value for FMove.

60

-4 -3 -2 -1 0 1
B

-4

-3

-2

-1

0

1

A

5.0e-01 5.2e-01 8.5e-01 6.0e-01 3.3e-09 7.9e-09

4.9e-01 5.0e-01 7.8e-01 5.2e-01 9.8e-08 1.9e-07

1.5e-01 2.2e-01 5.0e-01 4.5e-02 3.7e-40 4.1e-31

4.0e-01 4.8e-01 9.6e-01 5.0e-01 1.6e-73 3.9e-41

1.0e+00 1.0e+00 1.0e+00 1.0e+00 5.0e-01 1.6e-02

1.0e+00 1.0e+00 1.0e+00 1.0e+00 9.8e-01 5.0e-01

FMove

-1 0 1 2
B

-1

0

1

2

A

1.0e+00 1.0e+00 1.0e+00 1.0e+00

2.6e-10 5.0e-01 1.0e+00 1.0e+00

1.9e-06 3.3e-26 5.0e-01 9.9e-01

1.5e-06 6.3e-22 9.4e-03 5.0e-01

FRace

-3 -2 -1 0 1 2 3 4
B

-3

-2

-1

0

1

2

3

4

A

5.1e-01 6.6e-01 7.9e-01 5.5e-01 9.9e-01 1.0e+00 1.0e+00 8.9e-01

3.5e-01 5.0e-01 8.2e-01 4.6e-01 1.0e+00 1.0e+00 1.0e+00 8.6e-01

2.1e-01 1.8e-01 5.0e-01 5.2e-05 1.0e+00 1.0e+00 1.0e+00 9.0e-01

4.5e-01 5.4e-01 1.0e+00 5.0e-01 1.0e+00 1.0e+00 1.0e+00 9.2e-01

9.4e-03 5.7e-06 2.5e-15 2.1e-25 5.0e-01 1.0e+00 1.0e+00 7.7e-02

4.5e-05 1.8e-13 9.7e-23 1.6e-27 1.1e-03 5.0e-01 9.6e-01 5.8e-03

5.4e-08 1.9e-13 1.3e-15 3.3e-18 1.5e-04 3.7e-02 5.0e-01 5.6e-04

1.2e-01 1.4e-01 1.0e-01 7.9e-02 9.2e-01 9.9e-01 1.0e+00 5.1e-01

FIsol

-1 0 1 2 3 4
B

-1

0

1

2

3

4

A

5.0e-01 2.5e-02 5.6e-03 8.0e-02 3.4e-01 2.9e-01

9.8e-01 5.0e-01 5.6e-01 8.1e-01 9.7e-01 6.1e-01

9.9e-01 4.4e-01 5.0e-01 8.3e-01 9.9e-01 6.6e-01

9.2e-01 1.9e-01 1.7e-01 5.0e-01 8.5e-01 5.4e-01

6.6e-01 3.0e-02 1.3e-02 1.5e-01 5.0e-01 3.5e-01

7.1e-01 3.9e-01 3.4e-01 4.6e-01 6.5e-01 5.1e-01

FTolDiv

-2 -1 0 1 2
B

-2

-1

0

1

2
A

5.0e-01 8.7e-01 7.6e-01 9.8e-01 9.7e-01

1.4e-01 5.0e-01 2.7e-02 1.0e+00 1.0e+00

2.4e-01 9.7e-01 5.0e-01 1.0e+00 1.0e+00

1.8e-02 8.3e-05 3.4e-28 5.0e-01 8.0e-01

3.4e-02 2.8e-03 4.1e-04 2.0e-01 5.0e-01

FSatDiv

Figure 5.5: Optimal presence scores of the top 5 causal factors important to the generation of
mixed patterns of segregation and integration. Shown above are p-values of Mann-Whitney U
tests on pairwise comparisons of the marginal C-index produced user presence of A and B for the
alternate hypothesis RMSE for presence A < RMSE for presence B (null hypothesis: RMSE values
are equal), α = 0.05. Green squares indicate that the test showed was unable to falsify the null
hypothesis. Results demonstrate that preference for diversity in tolerance and avoidance of areas
with high variance in neighborhood satisfaction is important, while preference of race or isolation
can inhibit emergence of mixed patterns.

Taking into account the results above, models including FMove, FIsol , FTolDiv, and FSatDiv with their

optimal presence values were created and compared against the original utility function contain-

ing only FRace. In particular, models containing the rules: ua,i =−2FMove(i)+3FIsol +3FTolDiv(i),

ua,i =−2FMove(i)+3FIsol(i)+2FRace(i), and ua,i =−2FMove(i)+2FRace(i)+3FIsol(i)+3FTolDiv(i)+

2FSatDiv(i), where compared against the original rule ua,i = FRace(i). Fig. 5.6 compares c-indices

of 100 simulations of each model under random D in the range [0.5,0.9]. The models created with

insights from Evolutionary Model Discovery showed the ability to produce higher C-index values

despite random parameter settings. The rule ua,i =−2FMove(i)+3FIsol(i)+2FRace(i) in particular

61

was able to allow the model to generate significantly higher C-index values than the other rules.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

c-index

−2 ∗ FMove + 2 ∗ FRace + 3 ∗ FIsol + 3 ∗ FTolDiv + 2 ∗ FSatDiv

−2 ∗ FMove + 3 ∗ FIsol + 2 ∗ FRace

−2 ∗ FMove + 3 ∗ FIsol + 3 ∗ FTolDiv

FRace

Figure 5.6: 100 Runs of Hatna-Benenson Segregation with residence utility rules inferred
through Evolutionary Model Discovery with randomized parameter initialization. The rule ua,i =
−2FMove(i)+3FIsol(i)+2FRace(i) in particular was able to allow the model to generate significantly
higher C-index values than the other rules.

Discussion

Mechanistic Explanation: Mixed patterns of segregation and integration cannot be explained

by individuals evaluating residential locations on a single factor alone, and instead is the result

of individuals evaluating residential locations on an interplay between resistance to moving from

their current location, preference for less crowded neighborhoods, and preference for higher racial

similarity, prior to moving.

In this chapter Evolutionary Model Discovery was applied to attempt to discover factors causing

the emergence of mixed patterns of coexisting residential segregation and integration. Hatna and

Benenson have shown that in reality urban communities are more likely to not either be completely

segregated nor completely integrated, but have coexisting mixed patterns [105, 106]. Agents of

62

Hatna and Beneson’s model of segregation embody the same rule for evaluating the desirability of a

potential neighborhood patch for relocation as originally specified by Schelling [104]. Desirability

of a potential residential location is solely estimated through racial similarity, i.e. locations where

the number of neighbors of similar race are higher are preferred.

In this experiment I have tested multiple factors which I hypothesize to affect the desirability of a

residential location, and as a result, generate the emergence of mixed patterns. Out of the tested

factors, reluctance to move, similar racial preference, and desire for isolation/less crowding were

important in the generation of mixed patterns. Additionally, acceptance of neighborhoods with

diverse tolerance and conflicting satisfaction levels showed moderate importance. Models that are

constructed with these insights consistently have higher C-indices than when only racial preference

was considered. The residential desirability produced highest C-indices when reluctance to move,

similar racial preference, and desire for isolation/less crowding were considered together when

making the decision to move or not. Given that mixed patterns are common in urban environments,

these findings are reflective of the thought processes of urban residents consisting of the above

desires.

The ease of visualizing the macro-state of this model, i.e. the patterns of segregation, allowed

for closer examination, exposing a narrative-like explanation of the contribution of the more im-

portant factors towards the emergence of mixed patterns. Fig. 5.7, shows how incrementally

adding factors to the residential location desirability function, affects the macro-state in surprising

ways. FMove and FIsol by themselves produce integrated, unsettled patterns, with low C-indices.

Including both factors at optimal presence, i.e. ua,i = −2FMove(i) + 3FIsol(i), produces a tight

unstable, and constantly shifting mass of agents, compressed by a bubble of isolation, highly

integrated with even lower C-index. FRace by itself, i.e. the original rule ua,i = FRace(i), pro-

duces static segregated neighborhoods surrounded by boundaries, as is already known. However,

when FRace is added to ua,i = −2FMove(i) + 3FIsol(i) with its optimal presence to give the rule

63

ua,i =−2FMove(i)+3FIsol(i)+2FRace(i), neither a bubble of isolation or segregated patterns occur.

Instead, the boundaries disappear and communities with areas of segregation and some regions of

integration, i.e. mixed patterns, quickly emerge and settle into a stable, static state, with far higher

C-index. This demonstrates how there may be instances where desired emergent patterns might

only be generated when multiple causal factors are considered in the decision-making process.

Figure 5.7: A narrative-like explanation of the emergence of mixed patterns (density = 0.75).
Noisy integration, tight integration, and segregation with borders can result from considering re-
luctance to move, desire for less crowding, and preference for racial similarity separately. Yet,
when considered within the same rule, stable, static mixed patterns easily emerge.

64

CHAPTER 6: CASE STUDY 3: PRIORITIZATION OF RESPONSES

UNDER INFORMATION OVERLOAD ON ONLINE SOCIAL MEDIA

What drives compulsive information sharing by highly active social media users? Agent-based

diffusion of information models [107, 108, 109, 110] have been shedding light to our understanding

of the dynamics of information cascades throughout the literature. Understanding the factors that

cause information to go viral online is of high interest to policy makers as this information can be

easily used for the successful dissemination of polarizing propaganda and (dis)information. The

users of online social media are (mostly; many automated bot accounts exist on social media sites)

human and are subject to limits of cognition and attention span.

A Theory of Extended Working Memory and Implications of Information Overload

Due to the biological limits of human cognition, humans are susceptible to information overload.

Extensive research in lab experiments from psychology and neuro-science have shown that humans

posses a working memory [111, 112], in addition to their long-term memory, which functions as

a temporary storage within which individuals keep information for immediate processing. The

information retrieved from long-term memory is recalled and stored in working memory as chunks

of information [113]. However, under information overload, these chunks are reduced to single

units of information [111]. The number of units of information that can be held in working memory

has been shown to be limited due to the limit of cognitive processing. This limit was originally

estimated to be 7 +/- 2 [114] but in more recent studies shown to be around 4 units of information

[115, 116].

The theory of extend self posits that humans have a tendency to depend on familiar physical and

65

virtual objects as a means to re-embody oneself, including their memories and identity [117].

Examples of extended self can range from a depending on instructions written in a personal journal

for future reference [118], to online social media profiles [119, 120]. In recent years, increasing

numbers of individuals have become hooked to the use of social media, not only as their main form

of communication, but to re-embody themselves, re-defining themselves with doctored selfies,

catchy taglines, and targeted shares of popular opinion. Motivations for this behavior include

the removal of inhibitions and freedom of expression through anonymity [121, 122, 123], fear of

missing out (or FOMO) [124], and in some cases due to being the sole means of self expression

for oppressed individuals [125].

Considering the premise that online social media allows for the formation of an extended self, the

processes of information overload and memory capacity should reflect in one’s extended memory

and cognition. Extended working memory can be defined as the information stored in a techno-

logical scaffold, such the notification feeds of a social media profile, that are accessed in order

to perform tasks. The extended working memory capacity can then be defined as the number of

messages in the extended working memory that individuals are able to respond to, without actively

searching through their notification feed (Actively searching through one’s notification feed could

be considered as accessing one’s long-term memory). However, unlike working memory, the atten-

tion associated with extended working memory may be more volatile, depending on the cognition

devoted to the social media profile, i.e., the extended self, by the original self. Similar to working

memory, large in-flows of distracting information on the notification feeds may cause information

overload in an individual. Unlike one’s biological working self, this may lead to an individual

‘detaching’ from their extended self. That is, the overload experienced through an individual’s

extended social media self may force a loss in the attention span an individual dedicates to their

incoming notifications, allowing more notifications to go unanswered. I refer to attention span as

Mt , as it may, therefore, vary with time, t. I model the suppression of attention as having a power-

66

law relationship to the information overload experienced by the user, with an exponent, α , which

I refer to as the rate of attention suppression. Of course, there would be an upper limit to extended

working memory, i.e., extended working memory capacity (Mmax), determined by both properties

of the social media platform and biological limits, which would be observed under unoverloaded

conditions.

In the following sections I discuss how this theory of extended working memory is modeled and

combined with a model of conversation in order to model information dynamics of conversation

participants experiencing information overload through a heterogeneous network of influence.

The Multi-Action Cascade Model of conversation

The (Multi-Action Cascade Model) MACM [126] derives from traditional diffusion of information

models such as the independent cascade model [107, 108, 109, 110], but it is unique, as it is the

first of its kind to simulate diffusion of information in the form of conversations, following the

principles of conversation theory [127], instead of merely simulating the binary adoption of a topic

or opinion. The MACM is based on four premises:

• Premise 1: Diffusion of information over online social media occurs through conversations.

Individuals participate in conversations due to the following factors: 1) influence of other

participants, 2) influence from information sources exogenous to the conversation, or 3) the

internal need to participate in conversation.

• Premise 2: Conversation participants can perform three types of actions: 1) Initiation of a

new conversation, 2) contribution to an existing conversation, 3) sharing existing information

from a conversation.

67

• Premise 3: Given a particular topic of interest, the influences q ∈ Q,p ∈ P, and i ∈ I can be

determined from event timeseries data, by measuring the ratio of information flow from the

timeseries of events of the influencing user’s action type to the timeseries of events of the

influenced user’s action type [128, 126].

MACM agents exist on a network of endogenous influence probabilities that govern the probability

that an agent’s neighbor takes a particular action (out of the actions listed in Premise 2) provided

information that the agent has itself performed an action. When a MACM agent performs a par-

ticular action, they produce a message, representative of a social media notification, that indicates

which user performed the action, the action type, and the conversation the action is being per-

formed on. These messages are propagated to neighboring agents to which the acting agent has an

influence probability greater than 0 over the receiving agent performing any given action type. The

receiving agents then act on the incoming messages according with a probability indicated by the

influence probability the sender agent has over it, q. MACM messages are thus akin to information

chunks, as referred to in the literature on cognitive models of short-term memory [114, 113]. Once

an MACM agent receives a message, it can then decide to initiate a new conversation on the topic,

contribute to the sender’s conversation, or share the sender’s conversation with other agents. For

the experiments in this paper, q between the agents in the simulations presented in this paper are

derived by considering diadic relationships between social media users, and calculating the ratios

of information flow over time from one user, as the influencer, to another, as the influenced, to the

total information produced by the influencer agents as described in [126]. p and i are established

similarly, but for the purposes of the experiments in this paper, considering the endogenous influ-

ence probabilities q is sufficient. The GPU-based implementation of the MACM in python can be

found in [129].

68

Modeling Extended Working Memory

We integrate the extended working memory sub-model into MACM based on a further three

premises:

• Premise 4: Information exists in extended working memory in the form of chunks and the

number of chunks can be recalled for immediate processing is quantified by the current

attention span, Mt , of one’s extended self [114, 130, 115, 113].

• Premise 5: Attention span, and effectively responsiveness, to messages has an upper bound

due to cognitive limits Mmax [115, 131].

• Premise 6: Extended selves’ experience the effects of information overload once the number

of incoming messages has exceeded their extended working memory capacity Mmax, after

which the suppression of Mt follows a power-law relationship of exponent α with the amount

of incoming information overload experienced [131, 132, 133]

Fig. 6.1 summarizes our model of extended working memory and the reduction of attention span

under information overload. Individuals modeled in the MACM are often subject to receiving more

than a single message every time step. Often, the influence probability of the sender is insufficient

for the users to act on the particular piece of information within the same time step it was received.

Accordingly, all MACM agents have an actionable information queue which buffers incoming

messages until they are processed and removed in a last-in-first-out manner. If new information is

received by an agent while the actionable information queue is full, then the oldest messages are

pushed out of the queue in a first-in-first-out manner to make room for the incoming messages.

69

Figure 6.1: An illustrated demonstration of the actionable information queue and the process of in-
formation overloading. Step 1) Actionable information stores incoming information, is accessed in
a last-in-first-out fashion. Its capacity is synonymous to the individual’s current attention span, Mt .
2) Received information is added to the front of the actionable information. A user is overloaded if
Mt is exceeded, in which case a new Mt is calculated based on the extent of overload experienced.
3) Excess messages are dropped in a first-in-first-out fashion, removing the oldest messages first.

In other words, when applied to a social media context, the current actionable information queue

capacity at a given time t, (Mt), represents the attention span of a conversation participant to in-

coming notifications. In order to simulate information overload, I allow (Mt) to varying according

70

to the rate of information inflow to the agent. At every time step, the current attention span (Mt) of

each individual is re-calculated based on the overload (Ot−1) experienced by the user due to exces-

sive information in-flow during the previous time step raised to the power of a α (0 <= α <= 1) as

shown in eq.6.1. A parameter of the model, α represents the power-law in [131], which represents

an agent’s susceptibility to loss in responsiveness under information overload.

We model the impact of information overload on attention span to notifications by deriving the

overloading mechanism discovered between reduced user responsiveness under information over-

load on Twitter described in [131]. The overload experienced by an individual at time t, Ot−1

is calculated as the number of excess messages, beyond the current attention span of the user, as

shown in eq. 6.2, i.e. by how many messages does the sum of number of messages that were

received from the previous time step (Rt−1) and the number of messages left over on the action-

able information queue from the previous time step (|At−1|) exceed the extended working memory

capacity, Mmax. Ot−1 has a lower limit of 0. [131] estimate the value of Mmax to be 30.

Mt =

Mt−1−Oα
t−1, if Oα

t−1 <= Mt−1

0, otherwise
(6.1)

Ot−1 =

(|At−1|+ |Rt−1|)−Mmax, if |At−1|+ |Rt−1|>= Mmax

0, otherwise
(6.2)

If Mt < |At−1|+ |Rt−1|, the oldest messages in the actionable information queue are removed during

at t until |At |= Mt .

71

Causal Factors for Notification Response Prioritization

The original model of extended working memory assumes that when experiencing information

overload, individuals tend to focus their attention towards information that they have received more

recently. In other words, notifications that are received more recently are given higher priority for

response. However, it is necessary to test whether there is sufficient evidence that message recency

is in fact the factor that drives message prioritization. There could exist other factors, pertaining to

qualities of the influencer or the information content that the notification displays that affect this

prioritization process.

In order to test the importance of message recency, I propose seven other factors that may possibly

affect the prioritization of notifications for response. All eight hypothesized factors are listed

below:

• Conversation popularity FConvPop: Conversation popularity represents the global popularity

of a particular information cascade. It is measured by the normalized number of users that

have responded to the conversation created by the root message that was created by the

original poster.

• Conversation size FConvSize: Conversation size represents the global volume of a particu-

lar information cascade. It is measured by the normalized number of responses that have

accumulated to the root message that was created by the original poster.

• Initiators popularity FInitPop: Initiator’s popularity represents the global popularity of the

conversation initiator. This is measured as the number of times messages by this individual

had been responded too by any individual, normalized by the corresponding maximum in

the data.

72

• User common interests FIntr: User common interests measures the number of times the

individual has participated in a conversation which the other user has participated in.

• User reciprocity FRecip: Absolute reciprocity (both positive and negative) between two

users. This was measured as the number of times the individual has responded to an an-

other individual, normalized by the corresponding maximum in the data.

• URL domain popularity FURLPop: URL domain popularity represents the global popularity

of any URL domains that were mentioned by all users. It is measured as the normalized

count of messages that have a reference to the URL domain.

• URL Domain familiarity FURLFam: URL domain familiarity represents the local popularity

of any URL domains, measured as the normalized number of references this individual has

made to the URL domain in their past messages.

• Information expertise FIn f o: Information expertise represents how often this user mentions

a particular piece of information, normalized by the corresponding maximum in the data.

• Recency FRecn: Recency was measured as the reciprocal of the amount of time that had

passed since the message was originally received by the individual.

Unlike the previous two cases, × and ÷ were also included in the genetic program, in addition to

+ and −, which allowed for the evolution of more complicate factor interactions.

Experimental Setup

Evolutionary Model Discovery was run on the model of extended working memory and the multi-

action model of conversation. Data used for this experiment was obtained through the DARPA

73

SocialSim program 1. This data consisting of timestamped events of user profiles engaged in

discussion and development related to cyber vulnerabilities and exploits over three social media

platforms, GitHub, Reddit, and Twitter. Each event in the dataset consisted of the following in-

formation: 1) time of event, 2) anonymized user identifier, 2) the anonymized event identifier of

the immediate parent event to which this event responds to if any, 3) keywords identifying the

information being discussed by the individual, and 4) domains of any external URLs referred to in

the event. The training period was from February 1st 2017 to April 1st 2017, while the simulation

period was from April 1st 2017 to May 1st 2017. The eight most responsive Twitter users in terms

of their retweet count during the training period were considered as influencees for the experiment.

The influencers of these influencees and their hourly probabilities of influence per action-action

relationship per influencee were measured using pairwise measurements of marginal transfer en-

tropy on the training data according to the MACM [126]. The GPU implementation of MACM

initialization in [129] was used for this purpose. The event data throughout training and simulation

period were used to extract data related to users, conversations, URL domains, and topics that were

required to calculate the measures required for the eight factors described in section 6. The events

performed by the influencers during the simulation period were extracted from the data and loaded

in as MACM messages into the model, while the events performed as responses to these messages

were simulated through MACM and EWM.

The MACM and EWM were implemented in NetLogo. A NetLogo procedure for the calculation

of message utility was included as an extension to the EWM model. This routine was tagged as the

behavior for evolution and evaluation through EMD with implementations of the factors described

in section 6. The time resolution of the model was set to hours to match the probabilities extracted

during the initialization process and was run for 720 ticks simulating the entire month of April,

1All user information was completely anonymized in compliance to IRB standards. For more details please see
Appendix A

74

2017.

The following metric was used to measure how closely the simulation matched the real world data

in terms of user responsiveness to messages (equation 6.3). The real-world events performed by

the eight influencees in response to the influencers during the period for simulation were isolated.

The number of responses per influencer message, in the real-world data, were then measured.

The same was performed on the messages produced through the simulations. The model fitness

was calculated as the squared root of the sum of the squared errors between the total number of

responses by the selected user U in the data Rreal
U (m) for each message received through their

influencers, m ∈ mall , against that of the simulation Rsim
U (m)

RMSE =

√
1
|mall| ∑

m∈mall

(Rreal
U (m)−Rsim

U (m))2 (6.3)

Parameters of the genetic program for EMD were set as follows. Mutation rate was set to 0.1,

crossover rate set to 0.8, tree depth was set between 2 and 10, and population size of 50 individuals

were used, with no fitness caching. Each model was run for 720 time steps. The genetic program

was run for 50 generations.

Results

In this section the results of applying Evolutionary Model Discovery to identify factors driving

the prioritization of Twitter notifications for response among the selected cryptocurrency interest-

community are discussed. Fig. 6.2 displays the marginal distributions of the RMSE error of

responsiveness under varying values of presence for all nine hypothesized factors. Only factors

presence values for which at least 100 samples were present in the data produced by the genetic

75

program have been displayed and have been considered throughout the rest of the analysis. Merely

through observation of the marginal distributions of RMSE, it can be observed that URL related

factors, FURLFam and FURLPop were best when absent and very limited exploration of these factors

were performed by the genetic program. The other factors had at least five values of factor pres-

ence for which at least 100 instances were generated through the genetic program. The RMSE

under negative presence of FInitPop was seen to be much lower than when this factor was present

positively. In contrast, the RMSE under positive presence of FRecn was seen to be much lower than

when this factor was present negatively. Relationships between the marginal RMSE and presence

for the other factors were difficult to distinguish visually and required further statistical testing, as

performed below.

Table 6.1: Best 20 rules that produced the lowest RMSE in Responsiveness to the real-world data.

Rule RMSE
ua =−FInitPop +FRecn 7.6597
ua =−FInitPop 7.6669
ua =−4FInitPop +3FRecn 7.6674
ua = FRecn 7.6706
ua = FRecn−1FIntr 7.6750
ua =−2FInitPop +FRecn +2FRecip 7.6751
ua = FConvPop +2FRecn 7.6751
ua = 2FIn f o−4FInitPop +2FRecn 7.6758
ua =−2FInitPop 7.6761
ua = FRecn 7.6765
ua =−FInitPop +FRecn 7.6768
ua =−2FInitPop +3FRecn 7.6769
ua = [′F ′InitPop,

′F ′Recn] 7.6776
ua =−FInitPop +FRecn 7.6783
ua =−2FInitPop +FRecn +FIntr 7.6783
ua = [′F ′InitPop,

′F ′Recn] 7.6786
ua =−FInitPop +FRecn 7.6787
ua =−FInitPop +FRecn 7.6792
ua =−2FInitPop−1FIntr 7.6798
ua =−4FInitPop +2FRecip 7.6805

76

The first-order gini and permutation importance of the top 10 factors and factor interactions found

by training the random forest on the factor presence data are shown in Fig. 6.3. Unlike the

case of mixed patterns of segregation in Sec 5, there was a considerable agreement between

the results of both techniques. FRecn was by far the most important factor when predicting the

RMSE of the models generated by the genetic program, and FInitPop followed with high impor-

tance values under both techniques. The interaction between these two factors [FRecn,FInitPop]

followed with very similar importance to FInitPop. Other factor and factor interactions showed rel-

atively lower importance; FIntr was next with more than 8 times less than that of FRecn, followed

by the interactions [FURLFam,FInitPop,FRecn], [FIntr,FRecip], and [FConvSize,FInitPop,FRecn]. FConvSize

followed by FConvPop, was next in terms of decreasing importance, followed by the interaction

[FInitPop,FRecn,FIntr]. FIn f o and FURLPop were not among the 10 factors and factors interactions

with highest importance.

77

-2 -1 0 1 2

7.7

7.8

7.9
FConvPop

-2 -1 0 1 2 3 4 5

FConvSize

-1 0 1

FURLFam

-1 0 1

7.8

8.0

8.2

FURLPop

-2 -1 0 1 2

FInfo

-5 -4 -3 -2 -1 0 1 2

FInitPop

-3 -2 -1 0 1 2 3 4 5 6 7 8
7.75

8.00

8.25

FRecn

-1 0 1 2 3 4 5 6

FIntr

-2 -1 0 1 2 3 4 5

FRecip

Factor Presence

Ro
ot
 M

ea
n
Sq

ua
re
d
Er
ro
r

Figure 6.2: Marginal RMSE distributions for factors hypothesized to affect response prioritization
to notifications under information overload. RMSE is generally lower with positive presence of
FRecn and negative presence of FInitPop. RMSE is lowest when factors considering URLs present
in the content, FURLFam and FURLPop, are not considered. Slight correlations are indicated by FIn f o
and FRecip but further statistical tests for significance are required and have been performed below.

Pairwise Mann-Whitney U tests helped further confirm this ordering of factor importance. Mann-

Whitney U tests were conducted for the alternate hypothesis: permutation importance of a factor

A > permutation importance of a factor B (null hypothesis permutation importance of a factor

A = permutation importance of a factor B) for a significance level of 0.05. Fig. 6.4 shows

the p-values for these pairwise tests. The results confirm that there clear ordering to the im-

portance of the hypothesized factors; in descending order of importance: FRecn, FInitPop, FIntr,

[FURLFam,FInitPop,FRecn], [FIntr,FRecip], [FConvSize,FInitPop,FRecn], FConvSize, FConvPop, [FInitPop,FRecn,FIntr]

78

Figure 6.3: Comparison of Gini and Permuation Accuracy importance of factors hypothe-
sized to drive response prioritization under information overload. A general order of impor-
tance is agreed on by both techniques, with the exception of the importance of the interactions
[FURLFam,FInitPop,FRecn] and [FConvSize,FInitPop,FRecn].

The joint contributions of interactions of three or less factors are displayed in Fig. 6.5. Again FRecn

by itself shows the highest importance, even greater than interactions of other factors. Interestingly,

FURLPop, when considered with the two factors of highest first-order importance FRecn and FInitPop,

showed moderate importance. Interactions of other factors with these two factors followed with

relatively lower joint contribution to prediction of the fitness data.

79

['F
In
itP

op
',
'F

Re
cn
',
'F

In
tr
']

F C
on

vP
op

F C
on

vS
iz
e

['F
Co

nv
Si
ze
',
'F

In
itP

op
',
'F

Re
cn
']

['F
In
tr
',
'F

Re
ci
p']

['F
U
RL

Fa
m
',
'F

In
itP

op
',
'F

Re
cn
']

F I
nt
r

['F
In
itP

op
',
'F

Re
cn
']

F I
ni
tP
op

F R
ec

n

B

FRecn

FInitPop

['FInitPop', 'FRecn']

FIntr

['FURLFam', 'FInitPop', 'FRecn']

['FIntr', 'FRecip']

['FConvSize', 'FInitPop', 'FRecn']

FConvSize

FConvPop

['FInitPop', 'FRecn', 'FIntr']

A

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 5.0e-04 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

9.1e-05 9.1e-05 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

8.5e-04 5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

5.2e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Figure 6.4: P-values of systematic Mann-Whitney U-test on the first-order permutation accuracy
importance of factors hypothesized to drive the prioritization of response under information over-
load. The cells contain p-values for one-tailed Mann-Whitney U tests of the alternate hypothesis
that permutation importance of A > permutation importance of B (null hypothesis: permutation im-
portance of A = permutation importance of B) at α = 0.05. Green cells indicate agreement of the
alternate hypothesis. A clear order of descending importance is confirmed FRecn, FInitPop, FConvSize,
FRecip, FIntr, FIn f o, FConvoPop, FURLPop, and FURLFam.

Given the factor importance results, FRecn, FInitPop, FConvSize, FURLPop, and FRecip are considered

the top five important factors for the generation of mixed patterns of segregation and integration.

The optimal values for these factors are determined through pairwise Mann-Whitney U tests of

the presence values considered for each of these factors. The alternate hypothesis of these tests

were RMSE for presence A < RMSE for presence B (null hypothesis: RMSE values are equal) for

α = 0.05. The p-values for these tests are displayed in Fig. 6.6. Green cells indicate instances

where there was evidence for the falsification of the null hypothesis. The results indicate that

positive FRecn, negative FInitPop were important for the prioritization of notifications for response

under overload. The optimal values for FConvSize were centered around 0, and the optimal value for

80

FURLPop was 0. FRecip was generally better with positive presence, particularly at values of 1, 2,

and 4.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Contribution to Random Forest Prediction

['FInitPop', 'FRecn', 'FIntr']

['FInitPop', 'FRecn', 'FRecip']

['FInfo', 'FInitPop', 'FRecn']

['FInitPop', 'FRecn']

['FURLPop', 'FInitPop', 'FRecn']

['FRecn']

Fa
ct
or
 In

te
ra
ct
io
n

Figure 6.5: Joint contributions of interactions of three or less factors. Still, FRecn on its own by far
has the highest joint contribution when predicting model fitness. The interaction of three factors
[FRecn,FInitPop,FURLPop] has the second highest joint contribution, despite FURLPop by itself being
among the least important factors. The interaction of the two factors with the highest first-order
importance [FRecn,FInitPop] has the third highest joint contribution.

81

Figure 6.6: Optimal presence scores for causal factors with highest importance. P-values of sys-
tematic one-tailed Mann-Whitney U tests between presence values of the 5 most important fac-
tors for the alternate hypothesis: RMSE for presence A < RMSE for presence B (null hypothesis:
RMSE for presence A = RMSE yfor presence B) for significance level 0.05. Green cells indicate
agreement of the alternate hypothesis. Results indicate that for positive presence of FRecn and
FRecip, and negative presence of FInitPop, RMSE is generally higher than when considered nega-
tively. RMSE is generally highest when FConvSize and FURLPop are not present in the prioritization
process at presence 0.

Models with response prioritization rules derived from the results above are constructed with FRecn,

FInitPop, FConvSize, FURLPop, and FRecip and compared against the original prioritization rule FRecn. In

particular, the rules ua = 4FRecn−3FInitPop−2FIntr +2FRecip and ua = 4FRecn−3FInitPop +2FRecip

were tested against ua = FRecn. As the parameters of the model Mmax and α were know through

analysis calibration [134], the values 30 and 0.8 were used, respectively. As shown in Fig. 6.7,

models where FRecen interacts with FInitPop, FIntr, FRecip have lower RMSE in responsiveness see

in the actual data.

82

7.70 7.72 7.74 7.76 7.78 7.80 7.82 7.84

Root Mean Squared Error

4 ∗ FRecn − 3 ∗ FInitPop + 2 ∗ FRecip

4 ∗ FRecn − 3 ∗ FInitPop − 2 ∗ FIntr + 2 ∗ FRecip

FRecn

Figure 6.7: 100 Runs of MACM-EWM with response prioritization rules inferred through Evo-
lutionary Model Discovery. Models where FRecen interacts with FInitPop, FIntr, FRecip have lower
RMSE in responsiveness see in the actual data.

Discussion

Mechanistic Explanation Users experiencing information overload on social media prioritize

responses mainly by the recency with which they had been received, but also are more likely to

respond to messages on conversations initiated by globally less popular users, and messages from

individuals whom they have less in common with and yet have a history of responding to.

In this chapter I have applied Evolutionary Model Discovery to identify and compare the factors

driving the prioritization of Twitter notifications for response under information overload. There

is much evidence surrounding the fact information overload can hinder responsiveness. Results

of lab experiments in the psychology literature show that under information overload an individ-

ual’s attention span is reduced, focusing on immediate tasks at hand. The theory of extended self

posits that an individual can manifest themselves through physical or virtual objects that they use

83

regularly, without any conscious decision to do so. Most social media users have shown to treat

their social media profiles as extended selves. The theory of extended memory combines these

concepts, relating information buffers such as notification lists of social media profiles to one’s ex-

tended working memory. Under information overload, however, attention to one’s extended self, or

social media profile can be lost, leading to a loss of attention, and thereby a loss of responsiveness.

Under information overload users have to prioritize incoming messages to which the would re-

spond. The model of extended working memory places information on the actionable information

queue, a last in first out stack for processing, while as new information arrives under overload older

messages are truncated in a first in first out order. The original model of extended working memory

considers the recency of received messages as the sole factor for message prioritization, hence the

first in first out order of messages as excessive messages are received.

I have proposed several alternate factors that are hypothesized to affect the prioritization of message

on the actionable information queue under information overload. Out of the factors considered, re-

cency is shown to be the factor of highest importance, with messages received more recently being

prioritized for response. Global popularity of the conversation initiator is also of high importance,

however, interestingly, conversations initiated by users with high global popularity are less likely

to be responded to by highly active individuals. This result is similar to the findings by Hodas et al.

[135] and Lerman et al. [136] that globally popular information is shared relatively less among a

user’s immediate neighborhood. Conversation size and popularity of URL domains included in the

content of the notifications are not factors that are considered for message prioritization by highly

active Twitter users functioning under information overload. Reciprocity, having a history of mu-

tual response to one another, increases the chance of a highly active user responding to a message

from another user, despite being under information overload. In particular, like case 2 Chapter 5,

the interaction of the main causal factor, recency, with other factors, global unpopularity, lack of

common interests, and reciprocity, better explains the phenomena at hand.

84

CHAPTER 7: OPEN SOURCE SOFTWARE CONTRIBUTIONS

EvolutionaryModelDiscovery

The framework described in this paper has been implemented an open-source Python library. The

EvolutionaryModelDiscovery software is a highly-parallelizable library for the genetic program-

ming of NetLogo models followed by causal factor importance evaluation through random forests.

Documentation, Source, and Installation

The documentation for the project is available online at:

https://evolutionarymodeldiscovery.readthedocs.io/en/latest/

The source code is available on GitHub: https://github.com/chathika/evolutionarymodeldiscovery.

The Python library can be easily installed using pip package manager with the following command:

>>> p i p i n s t a l l E v o l u t i o n a r y M o d e l D i s c o v e r y

EvolutionaryModelDiscovery Annotations

EvolutionaryModelDiscovery is able to identify components to be evolved via genetic program-

ming on the NetLogo model through annotated NetLogo comments. All lines to be processed by

EvolutionaryModelDiscovery must be tagged with the @EMD annotation in a comment in the im-

mediately prior line of the NetLogo model code. The rule to be evolved must be tagged with the

85

https://evolutionarymodeldiscovery.readthedocs.io/en/latest/
https://github.com/chathika/evolutionarymodeldiscovery

@EvolveNextLine tag. An example is shown in Fig 7.1. Typically, this annotation is followed by

the .nls file that contains the hypothesized causal factors, if they are in a separate file, and the final

return type expected by the root of the evolved GP tree, with the annotations @Factors-File= and

@return-type=, respectively.

Figure 7.1: The entry point for EvolutionaryModelDiscovery is the line where the rule to be
evolved is specified in the NetLogo model. This can be indicated by adding the @EvolveNextLine
annotation in a comment directly above the line as shown. This may be followed by @Factors-
File= providing a string with the location of a .nls file that contains the causal factor reports, and
the required annotation return-type= that indicates the return type expected by the root of evolved
GP trees.

Hypothesized causal factors can also be implemented as NetLogo reporters within the original

model itself by tagging them with the @Factor annotation. An example is shown in Fig. 7.2.

Factors must be accompanied with typing of the return types and all, if any, parameters through

the @return-type= and @parameter-type= annotations. Operators are similarly defined with the

@Operator annotation, followed by the @return-type= and @parameter-type= annotations, an

example is shown in Fig. 7.3, but in addition require a @structure= annotation which is a comma

sperate list of ‘+’ or ‘-’ signs indicating a positive or negative contribution to presence by the

parameter at the corresponding position, respectively.

86

Figure 7.2: An example of the implementation of a causal factor for EvolutionaryModelDiscovery
in NetLogo with the @Factor annotation. In addition, return-type= must specified, followed by
@parameter-type specified for each parameter, if parameters exist.

Figure 7.3: Example of an operator defined as a NetLogo reporter and tagged with the @Oper-
ator annotation for EvolutionaryModelDiscovery. @return-type= must be defined, followed by
parameter-type= for each parameter, if parameters exist. In addition, the @structure= annotation
must be specified, providing the contributions of each parameter in order, as ‘+’ or ‘-’, separated
by commas, respectively.

Strong Typing

In order to ensure compilation of the genetically programmed NetLogo models, EvolutionaryMod-

elDiscovery enforces strong typing. As discussed above the rule to be evolved, the causal factors,

and operators, must all have types specified. Components will only be attached to each other in

child-parent fashion if the return type of the child matches the parameter type of the parent. If no

such primitives are available, then an exception will be thrown. Types are specified on-the-fly as

the EMD entry point specified through @return-type=, and at causal factors and operators through

the @return-type= and @parameter-type= annotations. The types are user defined and any strings

87

valid in both Python and NetLogo can be used. No explicitly declaration of types is required and

EvolutionaryModelDiscovery will automatically identify the typing structure for the genetic pro-

gram primitives through the annotation system. At the time of writing the library does not support

dynamic typing.

Running EvolutionaryModelDiscovery

The library can be imported and set up as shown in Fig 7.4.

Figure 7.4: Example of Python commands required to set up EvolutionaryModelDiscovery of a
NetLogo model.

Several parameters related to the genetic program can be set as in Fig 7.5. An objective function

for the genetic program must be set by defining the objective function callback, as shown in Fig

7.6. The NetLogo model can then be evolved as shown in the example in Fig. 7.7.

For parallel execution, the script should be saved and run using the SCOOP library with the fol-

lowing command:

>>> python −m scoop RunEMD . py

88

Figure 7.5: Example of Python commands that may be used to configure the genetic program of
EvolutionaryModelDiscovery.

Figure 7.6: Example of Python commands that can be must be used to specify the objective func-
tion for the genetic programming of the NetLogo function.

Figure 7.7: Example Python command to begin the genetic programming of the NetLogo model
with EvolutionaryModelDiscovery. The if __name__ = ’__main__’: condition is a standard
Python best practice to avoid issues related to the absence of a fork implementation on certain
operating systems when using parallelization.

89

NL4Py

NL4Py is a NetLogo controller for Python, developed with the goals of usability, rapid parallel

execution, and model parameter access in mind. In addition, NL4Py is platform independent,

supporting Windows, MacOS, and Linux, and supports both Python 2 and 3. Unlike PyNetLogo,

which uses the Java native interface (JNI) framework to access the JVM, NL4Py, inspired by [137],

employs a client-server architecture via Py4J [138], a Python-Java bridging package. NL4Py au-

tomatically downloads and hosts a NetLogoControllerServer Java archive (JAR) executable that

handles the parallel execution of NetLogo workspaces internally as Java threads. The client-server

architecture allows NL4Py to package and hide the excessive programming required to maintain

multiple parallely executing NetLogo models, which may even have to be queried regularly de-

pending on the usecase. Further, the NetLogoControllerServer ensures thread safety and handles

JVM memory allocation/garbage collection, reducing these burdens from the Python application

developer. In short, NL4Py performs the parallelization of NetLogo workspaces on the JVM,

instead of leaving it to the user’s Python application, unlike PyNetLogo.

Software Architecture

NL4Py uses a client-server architecture and consists of two main components, the NL4Py client

written in Python and the NetLogoControllerServer JAR executable written in Java, as shown in

Fig. 7.8. The client code communicates to the NetLogoControllerServer through a socket enabled

by the Py4J library. The entire NL4Py package is hosted on the Python package index and is auto-

matically downloaded through the pip installer and sets up the NetLogoControllerServer in the Pip

package installation directory. The client-server architecture allows NetLogoHeadlessWorkspaces

to be run in parallel as Java threads on the NetLogoControllerServer, independent of the user’s

90

Python application code. This eliminates the need for users to have to manage the connection to

the JVM, thread/process creation, and garbage collection of multiple headless workspaces from

their Python application code.

Figure 7.8: UML Component Diagram of NL4Py

NetLogo provides headless workspaces through its controlling API, which can be controlled through

Java or Scala application. NetLogo headless workspaces are inherently thread safe. NL4Py,

uses this to its advantage by pushing concurrency to the JVM via the NetLogoContollerServer.

The NL4Py Python client provides thread-safe NetLogoHeadlessWorkspace objects to the Python

application developer, created according to the factory design pattern. Each NetLogoHeadless-

Workspace object is mapped to a HeadlessWorkspaceController object on the NetLogoController-

Server, which is responsible for starting and stopping the NetLogo model, sending commands to

the model, fetching results from reporters to the model, querying parameters, and scheduling re-

porters over model execution. NL4Py relieves the Python application of thread/process creation,

by ensuring that the procedures with long execution times are non-blocking, i.e., results for pro-

cedures such as scheduled reporters, whose results must wait till the end of a model run, return

91

immediately and results can be queried later at a custom time by the user application, without

blocking the Python application.

Figure 7.9: UML Class Diagram of NL4Py Python client.

Fig. 7.9 and Fig. 7.10 explain the internal organization of the NL4Py Python client and NetLo-

goControllerServer, respectively. The NL4Py client consists of a NetLogoControllerServerStarter

object, the NetLogoWorkspaceFactory object, and a NetLogoGUI object respectively. Each object

has access to the JVM through the Java_gateway offered by Py4J. The NetLogoWorkspaceFac-

tory, is able to create and manage multiple NetLogoHeadlessWorkspace objects, each which maps

to a HeadlessWorkspaceController object on the NetLogoControllerServer. On the NetLogoCon-

trollerServer, each HeadlessWorkspaceController executes its own command thread for communi-

92

cation with the NetLogoHeadlessWorkspace object through the NetLogo controlling API. Through

this command thread, each HeadlessWorkspaceController is able to pass commands and schedule

and query from reporters to the NetLogo model concurrently.

Controlling NetLogo in Python with NL4Py

This section describes how users can setup NL4Py and control multiple NetLogo model runs from

within their Python script with the help of NL4Py.

Figure 7.10: UML Class Diagram of NL4Py NetLogoControllerServer.

93

Installation

NL4Py is made available on the Python package index [139] for easy installation and version

control. At the time of writing, NL4Py is in release version 0.5.0 [140]. Pip tools (Python’s

package manager) can be used to install NL4Py using the following command:

>>> p i p i n s t a l l NL4Py

Requirements

NL4Py works with NetLogo 6.0.2 or higher and requires Java development kit (JDK) 8 or higher

to be installed. Other Python dependencies such as Py4J will be installed automatically with pip

tools. NL4Py has been tested on both Python 2.7 and Python 3.6 on Windows 10, MacOSX 10.10

and Ubuntu operating systems.

Using the NL4Py API

NL4Py allows both NetLogo HeadlessWorkspace creation and control, and also NetLogo GUI-

enabled application control. In this section, I describe how users can control NetLogo in both GUI

and headless modes with NL4Py.

Starting and stopping the NetLogoControllerServer

The first step to controlling NetLogo through NL4Py is by importing NL4Py and starting the

NetLogoController server. This can be done with the following commands:

>>> import n l4py

94

>>> nl4py . s t a r t S e r v e r (p a t h _ t o _ n e t l o g o)

The function requires the path to the top level directory of the NetLogo installation as a string argu-

ment. The NetLogoControllerServer is then started and ready for requests from the NL4Py client

through Python for NetLogo controlling. In complement to this, the NetLogoControllerServer can

be shutdown, in order to free computational resources using the following command:

>>> n l4py . s t o p S e r v e r ()

Using NetLogo in GUI mode

In order to start and control the NetLogo application in GUI mode, users can execute the following

command in their Python script:

n l4py . NetLogoApp ()

Users can then use the NetLogoApp() functions to send commands, execute reporters, and schedule

reporters to the NetLogo Application. These functions are described in the next section.

Using NetLogo headless workspaces

However, most optimization work requires vast parallel runs of NetLogo models and GUI mode

unnecessarily burdens computational resources during such an analysis. NetLogo provides head-

less workspaces for these purposes, which are essentially NetLogo models running without the

GUI enabled. HeadlessWorkspaces tend to run more efficiently, since there is no computation

required for rendering visualizations BehaviorSearch, the model calibration tool that is packaged

with NetLogo, uses headless workspaces driven by optimization algorithms and is a prime example

of their utility.

95

NL4Py provides API controls for Python developers to create NetLogo headless workspaces, open

and close models on these workspaces, get and set parameters to the models, send NetLogo com-

mands these models, and schedule and execute reporters to query the simulation state at regular

intervals or at the end of a simulation run. Resulting NetLogoHeadlessWorkspace objects can then

be used to open and control NetLogo models from within Python.

NetLogoHeadlessWorkspaces can be created with the following function:

n l4py . newNetLogoHeadlessWorkspace ()

Additionally, users can get a list of all the existing NetLogoHeadlessWorkspaces, delete all the

existing NetLogoHeadlessWorkspaces, and delete a single NetLogoHeadlessWorkspace with the

following commands, respectively:

n l4py . d e l e t e A l l H e a d l e s s W o r k s p a c e s ()

n l4py . g e t A l l H e a d l e s s W o r k s p a c e s ()

n l4py . d e l e t e H e a d l e s s W o r k s p a c e (n l4py . NetLogoHeadlessWorkspace)

Opening and closing models

The following commands can be then used to open and close models on

NetLogoHeadlessWorkspaces, respectively:

n l4py . NetLogoHeadlessWorkspace . openModel (" p a t h _ t o _ m o d e l ")

n l4py . NetLogoHeadlessWorkspace . c loseMode l ()

Similarly, the same can be done on the NetLogo GUI application with the following:

n l4py . NetLogoGUI . openModel (p a t h _ t o _ m o d e l)

n l4py . NetLogoGUI . c loseMode l ()

96

Commands and basic reporters

NL4Py provides users the ability to execute NetLogo commands and reporters from within their

Python application. The command function takes NetLogo syntax as strings and executes the

command on the respective workspace. The report function takes in NetLogo syntax as strings,

executes the reporter, and returns the results. In the case of a failed reporter due to a NetLogo

exception, report will report the exception. Return values from report are typically strings and must

be cast into their correct data types accordingly. On NetLogoHeadlessWorkspaces the following

execute commands and reporters:

n l4py . NetLogoHeadlessWorkspace . command (n e t l o g o _ c o m m a n d _ s t r i n g)

n l4py . NetLogoHeadlessWorkspace . r e p o r t (n e t l o g o _ r e p o r t e r _ s t r i n g)

Similarly, the equivalent for NetLogo GUI application control:

n l4py . NetLogoGUI . openModel (p a t h _ t o _ m o d e l)

n l4py . NetLogoGUI . c loseMode l ()

Working with parameters

NL4Py allows users to query a NetLogo model’s parameter names, get the suggested ranges as set

on the NetLogo interface objects (slider min/max values, list values, etc), and set the parameters

to random values. The three following methods provide these functions for NetLogoHeadless-

Workspaces, respectively:

n l4py . NetLogoHeadlessWorkspace . setParamsRandom ()

n l4py . NetLogoHeadlessWorkspace . getParamNames ()

n l4py . NetLogoHeadlessWorkspace . ge tParamRanges ()

97

Similarly, these functions are available for the NetLogo GUI application:

n l4py . NetLogoGUI . setParamsRandom ()

n l4py . NetLogoGUI . getParamNames ()

n l4py . NetLogoGUI . ge tParamRanges ()

Reporter scheduling

In certain instances, a user may require to record the simulation state at regular intervals, often for

every simulation tick, over a given period of time. For this, NL4Py provides scheduled reporters.

Multiple reporters can be specified as a Python list of strings of NetLogo commands. This reporter

list along with the start tick, stop tick, and interval of ticks required between each reporter execu-

tion can be passed into into scheduleReporterAndRun for this purpose. Optionally, a custom go

command can be supplied to scheduleReportersAndRun in the case that the NetLogo model’s ex-

ecution procedure has a name different to the standard go. NL4Py then schedules the reporters to

execute on the respective NetLogo workspaces and store results on the NetLogoControllerServer

from start time till stop time at every interval number of ticks.

On NetLogoHeadlessWorkspaces, this method signature is:

n l4py . NetLogoHeadlessWorkspace . s c h e d u l e R e p o r t e r s A n d R u n (

r e p o r t e r s _ a r r a y , s t a r t A t T i c k =0 , i n t e r v a l T i c k s =1 , s t o p A t T i c k =−1,

goCommand=" go ")

Similarly, on the NetLogo GUI Application mode this is:

98

n l4py . NetLogoGUI . s c h e d u l e R e p o r t e r s A n d R u n (r e p o r t e r s _ a r r a y ,

s t a r t A t T i c k =0 , i n t e r v a l T i c k s =1 , s t o p A t T i c k =−1,goCommand=" go ")

The results stored on the NetLogoControllerServer can be queried at anytime during or after the

scheduled reporters execution, with getScheduledReporterResults. This function returns a Numpy

array of lists of the reporter results, for each execution thus far. This function is non-blocking to

prevent imposing unnecessary wait times on the user’s application. If the model has not finished

execution, then an empty array will be returned. On NetLogoHeadlessWorkspaces this function is:

n l4py . NetLogoHeadlessWorkspace . g e t S c h e d u l e d R e p o r t e r R e s u l t s ()

Similarly, in the NetLogo GUI application:

n l4py . NetLogoGUI . g e t S c h e d u l e d R e p o r t e r R e s u l t s ()

99

CHAPTER 8: CONCLUSION

Despite being an excellent tool for the construction and analysis of human-interpretable, mecha-

nistic explanations of social phenomena, ABMs risk premature assumptions when modeling in-

dividuals’ decision-making processes. Parameter calibration alone cannot adequately explore the

causal factors and their possible interactions in order to infer more accurate decision-making pro-

cesses. This is primarily due to the absence of a systematic method for behavior inference and

discovery. I address this issue with the development of Evolutionary Model Discovery, a frame-

work for automated causal inference in agent-based artificial societies. Given a set of factors of

decision-making hypothesized to generate the societal phenomena of interest, Evolutionary Model

Discovery is able to quantify, compare, and discover the optimal presence of the causal factors

for the robust and accurate replication of the target phenomena. By combining automated pro-

gram generation of genetic programming with feature importance evaluation of random forests,

Evolutionary Model Discovery is able to quantify the importance of these factors to the decision-

making process that results in society-level phenomena simulated by the ABM. This allows for

the construction of agent rules that more accurately represent the actual decision-making process

of individuals and result in more models that deviate less from the actual trajectory of the system

being studied and remain robust even under random parameter initialization, as stated in Claim 1

in Chapter 3.

Evolutionary Model Discovery was applied to three separate cases where the causes of a societal

phenomena were not directly understood due to the disappearance of a culture, hidden motives,

and/or complex thought processes at play. Results from applying Evolutionary Model Discovery

to the Artificial Anasazi show highlight the danger of constructing socio-behavioral models with-

out a complete exploration of the space of possible rules. Contrary to the original model, the most

important factors driving farm plot selection of the ancestral Pueblo community were found to be

100

desire for higher quality soil and social presence, instead of the closeness of the next plot. close-

ness actually hindered the model from robustness to randomized parameter settings. In hindsight,

this result indicates quite intuitive behavior of a society that was aware of the more arable areas of

land that would yield better crops, but at the same time wish to agglomerate into tighter neighbor-

hoods. These results seem to agree with the archaeological evidence from ruins that exist today

demonstrating that the ancestral Pueblo lived in dwellings that were often located close together,

centered around their respective farm plots.

Secondly, Evolutionary Model Discovery of factors leading to the emergence of mixed patterns of

segregation and integration, indicate that the factor driving the desirability of residential locations,

racial preference alone, as modeled originally by Schelling [104] and used in later extension of the

model [105] is insufficient and may hinder the production of robust models of mixed patterns. In

fact, it was shown that no single factor could generate such patterns well. Instead the interplay of

multiple factors: reluctance to move, preference of less crowded neighborhoods, and preference for

higher racial similarity easily produced patterns with higher mixing, under random urban density

settings. There is evidence that mixed patterns of segregation and integration might also be caused

due to acceptance of diverse tolerance to race in prospective neighborhoods and of neighborhoods

with an imbalance or conflict in residential satisfaction.

Thirdly, Evolutionary Model Discovery identified factors driving highly active, overloaded users

to prefer to respond to certain social media notifications over others. The strongest factor driv-

ing notification prioritization was message recency; messages received more recently were more

likely to respond to. This signals a decay of responsiveness to notifications the longer they re-

main unresponded to with the passage of time, which has been observed in studies such as [131].

Notifications of conversations that were received regarding conversations initiated by profiles that

had lower global popularity received higher priority of response under overload by highly active

users. This may explained the observation in analytical studies that show that globally popular

101

information is often less abundant in local neighborhoods [135, 136]. Due to scale-freeness of

social networks, highly popular users are also less abundant globally, and this could mean that

overloaded users prefer to respond to conversations started by their friends/followers who are most

likely globally less popular. Confirming this, overloaded highly active user’s were found to be

more likely to respond to friends with higher reciprocity; i.e. those with whom they have a history

of direct response to. Conversation size and presence of URLs in the content were irrelevant to

response prioritization.

These results provide empirical support to Claim 1 and demonstrate the successful application of

Evolutionary Model Discovery in finding mechanistic explanations of complex societal phenom-

ena, while respecting the fact that such systems must be studied holistically, with consideration

of the non-linear trajectories and high sensitivity to initial conditions that led to the emergence of

the phenomena at hand. Evolutionary Model Discovery embraces the arguments made by Grune-

Yanoff [18] and Elsenbroich [7] and extends the vision of Epstein [43] towards human-interpretable

explanation of societal phenomena, by seeking mechanistic explanations as defined by Machamer

et al. [14].

Future Work

This work opens the doors to many new avenues of study. First and more straightforward is

the application of Evolutionary Model Discovery in other agent-based modeling projects. Many

data/stylized-fact -driven agent-based models exist in the literature that would benefit from further

scrutinizing of the causal factors behind the societal phenomena they seek to simulate.

Secondly, in Sec. 3, I prove how the logic depth of the genetic program tree forming the behavior

rule has the highest cost on computational complexity of the genetic programming of agent-based

102

models. An improvement that could be made to this framework is, first, establishing that this

is reflected in practice, and next, incorporating such a strategy into the current implementation.

Unfortunately, NetLogo does not support parallel computing. In fact, parallelization of agent-based

models is not well supported by most software, with a few exceptions of RepastHPC or FLAME-

GPU. However, the code of models implemented in such software are in C or C++, compiled

programming languages, unlike the lisp-like scripting of NetLogo, making it difficult to implement

a compilable genetic program representation. This would be quite a challenging, yet beneficial,

avenue for extension of the current implementaiton of Evolutionary Model Discovery.

103

APPENDIX A: IRB OUTCOME LETTER

104

NOT HUMAN RESEARCH DETERMINATION

From: UCF Institutional Review Board #1
 FWA00000351, IRB00001138

To: Ivan I Garibay, Alexander Mantzaris, Gita Reese Sukthankar, Stephen M Fiore

Date: February 21, 2018

Dear Researcher:

On 02/21/2018, the IRB determined that the following proposed activity is not human research as
defined by DHHS regulations at 45 CFR 46 or FDA regulations at 21 CFR 50/56:

Type of Review: Not Human Research Determination
Project Title: Deep Agent: A Framework for Information Spread and

Evolution in Social Networks
Investigator: Ivan I Garibay

IRB ID: SBE-18-13732
Funding Agency: DARPA

Grant Title: Deep Agent: A Framework for Information Spread and
Evolution in Social Networks

Research ID: 1062483

University of Central Florida IRB review and approval is not required. This determination applies
only to the activities described in the IRB submission and does not apply should any changes be
made. If changes are to be made and there are questions about whether these activities are research
involving human subjects, please contact the IRB office to discuss the proposed changes.

This letter is signed by:

Signature applied by Jennifer Neal-Jimenez on 02/21/2018 04:32:37 PM EST

Designated Reviewer

University of Central Florida Institutional Review Board
Office of Research & Commercialization
12201 Research Parkway, Suite 501
Orlando, Florida 32826-3246
Telephone: 407-823-2901, 407-882-2012 or 407-882-2276
www.research.ucf.edu/compliance/irb.html

105

APPENDIX B: FURTHER CONSIDERATIONS

106

Evolvability

The driving force behind evolutionary search is the selection pressure experienced due to increases

in fitness with changes in the genes encoding the primitives structure of the gp-individuals. Primi-

tives that form ‘flat’ search spaces in terms of fitness, i.e. have no gradients of fitness with changing

values of genes, do not have any considerable selection pressure. Such a landscape has no driving

force for the evolutionary search and can be searched with a trivial random search. Therefore, it is

important to establish whether such selection pressure existed in the three cases explored above.

Two indicators of evolvability are considered, convergence and selection pressure. The gradual

convergence towards a common solution by all gp-individuals, indicates that the genetic program

tends to exploit regions of higher fitness in the search space. On the contrary no convergence

indicates that there was no tendency among the population of gp-individuals to evolve towards

higher fit solutions. Increasing tendency to select certain primitives over generations, indicates

higher selection pressure towards the variables represented by those primitives; i.e. if the absolute

presence of a certain primitive increases over time, it is indicative there are global or local optimal

solutions that can be reached through its selection. On the other hand, no indication of change in

absolute selection indicate that there are no gradients of fitness achieved through the selection of

the primitive; i.e. the represented factor does not lead to higher fit solutions.

Figs. B.1, B.2, and B.3 demonstrate the convergence of cases 1, 2, and 3 explained in the previous

chapters. The average convergence with the 95% confidence interval is shown. Genetic program

of the farm plot selection in the Artificial Anasazi converges relatively slowly in comparison to

the other two cases, at around 75 generations. Case 2, evolution of the residential location utility

function converges at a quicker pace, within around 10 generations. Response prioritization con-

verges relatively quite quickly, again at around 20 generations. Considering the fact that there less

distinction among high importance factors in the Artificial Anasazi case (FQual , FSoc, FDist , and

107

FMig), more in the response prioritization case (FMove, FRace, and FIsol), and even more (FRecn and

FInitPop were by far more important than other factors), this indicates that the search space for Case

1 was harder to navigate than Case 2, and Case 2 harder than Case 3, because for the first case

more primitives provided high fitness when selected than when compared to the latter case.

This is confirmed when looking at the plots on primitive selection by generation for the three cases

Figs. B.4, B.5, and B.6, respectively. Most factors appear to have reasonable positive or negative

selection bias as generations progress in Case 1 (Fig. B.4); e.g.: FQual , FMig, FDist , FYield , and FSoc

show higher presence as generations progress, and provide lower RMSE when present positively,

while FHAgri progressively is searched for negative presence providing lower RMSE. Overall most

primitives are searched over a reasonable range of presence. In case 2 (Fig. B.5), FRace, FMove,

FIsol , and FTolDiv are selected gradually selected either in a positive of negative bias, but only

FRace, FMove, and FIsol show large improvements in C-Index, under higher absolute selection. In

Case 3, even a smaller number of primitives demonstrate a significant change in selection with

the progression of generations. FInitPop, FRecn, and FIntr show to exert more selection pressure,

being selected more often as generations progress, and provide lower RMSE at higher absolute

presence. These results also reflect that fact that the best solutions in Case 1 generally have are

greater number of causal factors, than Case 2, and even more than for Case 3.

108

Figure B.1: Convergence of the genetic programming of the farm selection decision-making rule
in the Artificial Anasazi. Average RMSE and the 95% confidence interval are shown.

109

Figure B.2: Convergence of the genetic programming of the residential location utility function in
Hatna and Benenson’s model of segregation. Average C-index and the 95% confidence interval are
shown.

110

Figure B.3: Convergence of the genetic programming of the response prioritization utility function
in the model of extended working memory. Average RMSE and the 95% confidence interval are
shown.

111

Figure B.4: Primitive selection of the genetic programming of the farm selection strategy in the
Artificial Anasazi. Factor presence and the respective RMSE are shown over generations.

112

Figure B.5: Primitive selection of the genetic programming of the residential location utility func-
tion of Hatna’s model of segregation. Factor presence and the respective RMSE are shown over
generations.

113

Figure B.6: Primitive selection of the genetic programming of the response prioritization of the
model of extended working memory. Factor presence and the respective RMSE are shown over
generations.

114

Model Size and Bloat

The size of the syntax trees represented by a gp-individual provides an estimate of how complicated

the task being modeled actually is. More primitives on a decision tree that provides relatively

higher fitness, indicates a task that requires more information. However, genetic programming is

susceptible to bloating, where primitives accumulate over generations with no improvements to

fitness. Bloating is more probable if evolution continues beyond convergence. Several strategies

have been suggested to control bloating, out of which setting a maximum tree depth has been used

in the experiments above.

Figs. B.7, B.8, and B.9 show the fitness and simplified model size, or logic depth, with the pro-

gression of generations for all gp-individuals for the 3 cases considered in the previous chapters

respectively. In case 1 (Fig. B.7), there seems to be an increase in model size after generation

40. Though there’s somewhat of an decrease in RMSE, many large solutions also exist which have

higher RMSE, an indicaiton of bloat. In case 2 (Fig. B.8), larger models are evolved past gener-

ation 10, some of which achieve higher C-indices. Yet many of the largest solutions remain with

low C-indices, again indicating bloat. In case 3 (Fig. B.9), large solutions start appearing gradually

after generation 20, and there is a sudden set of very large rules around generation 48 to 50 that

have low RMSE. Yet, even in case 3, a few large solutions do exist that have high RMSE, despite

their size, indicating some bloat.

115

Figure B.7: Simplified model size (size and color of points) and fitness over the progression of
generations of all gp-individuals for genetically programming farm selection decision-making rule
in the Artificial Anasazi.

116

Figure B.8: Simplified model size (size and color of points) and fitness over the progression of
generations of all gp-individuals for genetically programming residential location utility function
in Hatna and Benenson’s model of segregation.

117

Figure B.9: Simplified model size (size and color of points) and fitness over the progression of gen-
erations of all gp-individuals for genetically programming response prioritization utility function
in the model of extended working memory.

118

LIST OF REFERENCES

[1] F. Stonedahl and U. Wilensky, “Netlogo artificial anasazi model,” Center for Connected

Learning and Computer-Based Modeling, Northwestern University, 2010. [Online].

Available: http://ccl.northwestern.edu/netlogo/models/ArtificialAnasazi

[2] J. S. Dean, G. J. Gumerman, J. M. Epstein, R. L. Axtell, A. C. Swedlund, M. T. Parker,

and S. McCarroll, “Understanding anasazi culture change through agent-based modeling,”

Dynamics in human and primate societies: Agent-based modeling of social and spatial

processes, pp. 179–205, 2000.

[3] M. A. Janssen, “Understanding artificial anasazi,” Journal of Artificial Societies and Social

Simulation, vol. 12, no. 4, p. 13, 2009.

[4] F. Stonedahl and U. Wilensky, “Evolutionary robustness checking in the artificial anasazi

model.” in AAAI Fall Symposium: Complex Adaptive Systems, 2010, pp. 120–129.

[5] J. M. Epstein and R. Axtell, Growing Artificial Societies: Social Science from the Bottom

Up. Brookings Institution Press, 1996.

[6] W. Rand, “Theory-interpretable, data-driven agent-based modeling,” Social-Behavioral

Modeling for Complex Systems, pp. 337–357, 2019.

[7] C. Elsenbroich, “Explanation in agent-based modelling: Functions, causality or mecha-

nisms?” Journal of Artificial Societies and Social Simulation, vol. 15, no. 3, p. 1, 2012.

[8] P. K. Davis and A. O’Mahony, “A computational model of public support for insurgency and

terrorism: A prototype for more-general social-science modeling,” Rand National Defense

Research Institute, Santa Monica, CA, Tech. Rep., 2013.

119

http://ccl.northwestern.edu/netlogo/models/ArtificialAnasazi

[9] J. M. Epstein, “Agent-based computational models and generative social science,” Complex-

ity, vol. 4, no. 5, pp. 41–60, 1999.

[10] N. S. Thompson and P. Derr, “Contra epstein, good explanations predict,” Journal of Artifi-

cial Societies and Social Simulation, vol. 12, no. 1, p. 9, 2009.

[11] J. M. Epstein, “Why model?” Journal of Artificial Societies and Social Simulation, vol. 11,

no. 4, p. 12, 2008.

[12] C. G. Hempel and P. Oppenheim, “Studies in the logic of explanation,” Philosophy of sci-

ence, vol. 15, no. 2, pp. 135–175, 1948.

[13] W. C. Salmon, Causality and explanation. Oxford University Press, 1998.

[14] P. Machamer, L. Darden, and C. F. Craver, “Thinking about mechanisms,” Philosophy of

science, vol. 67, no. 1, pp. 1–25, 2000.

[15] P. Kitcher, “Explanation, conjunction, and unification,” The Journal of Philosophy, vol. 73,

no. 8, pp. 207–212, 1976.

[16] F. Stonedahl and U. Wilensky, “Behaviorsearch [computer software],” Center for Connected

Learning and Computer Based Modeling, Northwestern University, Evanston, IL. Available

online: http://www. behaviorsearch. org, 2010.

[17] M. Laguna and R. Marti, “The optquest callable library,” in Optimization software class

libraries. Springer, 2003, pp. 193–218.

[18] T. Grüne-Yanoff, “The explanatory potential of artificial societies,” Synthese, vol. 169, no. 3,

pp. 539–555, 2009.

120

[19] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H. Thulke,

J. Weiner, T. Wiegand, and D. L. DeAngelis, “Pattern-oriented modeling of agent-based

complex systems: lessons from ecology,” science, vol. 310, no. 5750, pp. 987–991, 2005.

[20] J. M. Whitmeyer, M. Khouja, T. Carmichael, A. Saric, C. Eichelberger, M. Sun, and

M. Hadzikadic, “A computer simulation laboratory for social theories,” in Web Intelligence

and Intelligent Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Confer-

ence on, vol. 2. IEEE, 2008, pp. 512–515.

[21] E. Economo, L. Hong, and S. E. Page, “Social structure, endogenous diversity, and col-

lective accuracy,” Journal of Economic Behavior & Organization, vol. 125, pp. 212–231,

2016.

[22] J. Bednar and S. E. Page, “Complex adaptive systems and comparative politics: Modeling

the interaction between institutions and culture,” Chinese Political Science Review, vol. 1,

no. 3, pp. 448–471, 2016.

[23] L. Hong and S. E. Page, “Problem solving by heterogeneous agents,” Journal of economic

theory, vol. 97, no. 1, pp. 123–163, 2001.

[24] M. Weisberg, “Forty years of ‘the strategy’: Levins on model building and idealization,”

Biology and Philosophy, vol. 21, no. 5, pp. 623–645, 2006.

[25] R. Levins, “The strategy of model building in population biology,” American scientist,

vol. 54, no. 4, pp. 421–431, 1966.

[26] J. M. Epstein, Agent Zero : toward Neurocognitive Foundations for Generative Social Sci-

ence. Princeton, NJ : Princeton University Press, 2013.

[27] C. Gunaratne, “Evolutionary model discovery documentation,” 2019. [Online]. Available:

https://evolutionarymodeldiscovery.readthedocs.io/en/latest/

121

https://evolutionarymodeldiscovery.readthedocs.io/en/latest/

[28] U. Wilensky, “Netlogo,” 1999. [Online]. Available: http://ccl.northwestern.edu/netlogo/

[29] R. L. Axtell, J. M. Epstein, J. S. Dean, G. J. Gumerman, A. C. Swedlund, J. Harburger,

S. Chakravarty, R. Hammond, J. Parker, and M. Parker, “Population growth and collapse in

a multiagent model of the kayenta anasazi in long house valley,” Proceedings of the National

Academy of Sciences, vol. 99, no. suppl 3, pp. 7275–7279, 2002.

[30] T. A. Kohler, D. Cockburn, P. L. Hooper, R. K. Bocinsky, and Z. Kobti, “The coevolution

of group size and leadership: An agent-based public goods model for prehispanic pueblo

societies,” Advances in Complex Systems, vol. 15, no. 01n02, p. 1150007, 2012.

[31] R. L. Axtell, “120 million agents self-organize into 6 million firms: a model of the us

private sector,” in Proceedings of the 2016 International Conference on Autonomous Agents

& Multiagent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 2016, pp. 806–816.

[32] J. D. Farmer and D. Foley, “The economy needs agent-based modelling,” Nature, vol. 460,

no. 7256, p. 685, 2009.

[33] L. Tesfatsion, “Agent-based computational economics: modeling economies as complex

adaptive systems,” Information Sciences, vol. 149, no. 4, pp. 262–268, 2003.

[34] C. Deissenberg, S. Van Der Hoog, and H. Dawid, “Eurace: A massively parallel agent-based

model of the european economy,” Applied Mathematics and Computation, vol. 204, no. 2,

pp. 541–552, 2008.

[35] H. Dawid and M. Neugart, “Agent-based models for economic policy design,” Eastern Eco-

nomic Journal, vol. 37, no. 1, pp. 44–50, 2011.

[36] S. Heckbert, T. Baynes, and A. Reeson, “Agent-based modeling in ecological economics,”

Annals of the New York Academy of Sciences, vol. 1185, no. 1, pp. 39–53, 2010.

122

http://ccl.northwestern.edu/netlogo/

[37] I. Garibay, C. Gunaratne, M. I. Akbas, and O. Ozmen, “The importance of product space

complexity in agent-based computational economics,” 2016.

[38] J. J. Arsanjani, M. Helbich, and E. de Noronha Vaz, “Spatiotemporal simulation of urban

growth patterns using agent-based modeling: The case of tehran,” Cities, vol. 32, pp. 33–42,

2013.

[39] D. Weisburd, A. A. Braga, E. R. Groff, and A. Wooditch, “Can hot spots policing reduce

crime in urban areas? a,” Criminology, vol. 55, no. 1, pp. 137–173, 2017.

[40] E. Hunter, B. Mac Namee, J. Kelleher et al., “A taxonomy for agent-based models in hu-

man infectious disease epidemiology,” Journal of Artificial Societies and Social Simulation,

vol. 20, no. 3, pp. 1–2, 2017.

[41] D. S. Burke, J. M. Epstein, D. A. Cummings, J. I. Parker, K. C. Cline, R. M. Singa, and

S. Chakravarty, “Individual-based computational modeling of smallpox epidemic control

strategies,” Academic Emergency Medicine, vol. 13, no. 11, pp. 1142–1149, 2006.

[42] R. M. Axelrod, The complexity of cooperation: Agent-based models of competition and

collaboration. Princeton University Press, 1997.

[43] J. M. Epstein, Generative social science: Studies in agent-based computational modeling.

Princeton University Press, 2006.

[44] E. R. Smith and F. R. Conrey, “Agent-based modeling: A new approach for theory building

in social psychology,” Personality and social psychology review, vol. 11, no. 1, pp. 87–104,

2007.

[45] F. Lamperti, A. Roventini, and A. Sani, “Agent-based model calibration using machine

learning surrogates,” Journal of Economic Dynamics and Control, vol. 90, pp. 366–389,

2018.

123

[46] D. G. Brown, S. Page, R. Riolo, M. Zellner, and W. Rand, “Path dependence and the val-

idation of agent-based spatial models of land use,” International Journal of Geographical

Information Science, vol. 19, no. 2, pp. 153–174, 2005.

[47] S. Moss, “Alternative approaches to the empirical validation of agent-based models,” Jour-

nal of Artificial Societies and Social Simulation, vol. 11, no. 1, p. 5, 2008.

[48] C. Bianchi, P. Cirillo, M. Gallegati, and P. A. Vagliasindi, “Validating and calibrating agent-

based models: a case study,” Computational Economics, vol. 30, no. 3, pp. 245–264, 2007.

[49] C. M. Macal, “Model verification and validation,” University of Chicago, pp. 1–21, 2005.

[50] F. J. Stonedahl, “Genetic algorithms for the exploration of parameter spaces in agent-based

models,” 2011.

[51] J. P. Kleijnen and J. Wan, “Optimization of simulated systems: Optquest and alternatives,”

Simulation Modelling Practice and Theory, vol. 15, no. 3, pp. 354–362, 2007.

[52] M. Edali and G. Yücel, “Exploring the behavior space of agent-based simulation models

using random forest metamodels and sequential sampling,” Simulation Modelling Practice

and Theory, vol. 92, pp. 62–81, 2019.

[53] C. Georges and J. Pereira, “Market stability with machine learning agents,” Available at

SSRN 3374666, 2019.

[54] S. van der Hoog, “Deep learning in (and of) agent-based models: A prospectus,” arXiv

preprint arXiv:1706.06302, 2017.

[55] Y. Lu, K. Kawamura, and M. L. Zellner, “Exploring the influence of urban form on work

travel behavior with agent-based modeling,” Transportation Research Record, vol. 2082,

no. 1, pp. 132–140, 2008.

124

[56] D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Predictability of user behavior in so-

cial media: Bottom-up v. top-down modeling,” in 2013 International Conference on Social

Computing. IEEE, 2013, pp. 102–107.

[57] J. Harada, D. Darmon, M. Girvan, and W. Rand, “Forecasting high tide: Predicting times

of elevated activity in online social media,” in Proceedings of the 2015 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining 2015. ACM,

2015, pp. 504–507.

[58] A. Ariyaratne, “Modeling agent behavior through past actions: Simulating twitter users,”

Ph.D. dissertation, University of Maryland, College Park, 2016.

[59] J. R. Koza, Genetic programming: on the programming of computers by means of natural

selection. MIT press, 1992, vol. 1.

[60] R. Escobedo, D. Dutykh, C. Muro, L. Spector, and R. Coppinger, “Group size effect on the

success of wolves hunting,” arXiv preprint arXiv:1508.00684, 2015.

[61] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, “Wolf-pack (canis lupus)

hunting strategies emerge from simple rules in computational simulations,” Behavioural

Processes, vol. 88, no. 3, pp. 192 – 197, 2011. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0376635711001884

[62] J. Zhong, L. Luo, W. Cai, and M. Lees, “Automatic rule identification for agent-based crowd

models through gene expression programming,” in Proceedings of the 2014 international

conference on Autonomous agents and multi-agent systems. International Foundation for

Autonomous Agents and Multiagent Systems, 2014, pp. 1125–1132.

125

http://www.sciencedirect.com/science/article/pii/S0376635711001884
http://www.sciencedirect.com/science/article/pii/S0376635711001884

[63] S. M. Manson, “Agent-based modeling and genetic programming for modeling land change

in the southern yucatan peninsular region of mexico,” Agriculture, ecosystems & environ-

ment, vol. 111, no. 1, pp. 47–62, 2005.

[64] ——, “Bounded rationality in agent-based models: experiments with evolutionary pro-

grams,” International Journal of Geographical Information Science, vol. 20, no. 9, pp.

991–1012, 2006.

[65] S.-H. Chen and C.-H. Yeh, “Genetic programming in the agent-based modeling of stock

markets,” in Proceedings of the Fifth International Conference on Computing in Economics

and Finance, Boston College, MA, USA, 1999.

[66] L. An, “Modeling human decisions in coupled human and natural systems: review of agent-

based models,” Ecological Modelling, vol. 229, pp. 25–36, 2012.

[67] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback, “The odd

protocol: a review and first update,” Ecological modelling, vol. 221, no. 23, pp. 2760–2768,

2010.

[68] B. Müller, F. Bohn, G. Dreßler, J. Groeneveld, C. Klassert, R. Martin, M. Schlüter,

J. Schulze, H. Weise, and N. Schwarz, “Describing human decisions in agent-based models–

odd+ d, an extension of the odd protocol,” Environmental Modelling & Software, vol. 48,

pp. 37–48, 2013.

[69] J. Whitmeyer, The ACSES Model of Afghanistan: The Model Operation, Synthetic

Population, Calibration, and Surprises. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 59–83. [Online]. Available: https://doi.org/10.1007/978-3-642-39295-5_6

126

https://doi.org/10.1007/978-3-642-39295-5_6

[70] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R. Wood-

ward, “Genetic improvement of software: a comprehensive survey,” IEEE Transactions on

Evolutionary Computation, vol. 22, no. 3, pp. 415–432, 2017.

[71] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving cuda dna analysis

software with genetic programming,” in Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation. ACM, 2015, pp. 1063–1070.

[72] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, Using Genetic Improvement

and Code Transplants to Specialise a C++ Program to a Problem Class. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2014, pp. 137–149. [Online]. Available:

https://doi.org/10.1007/978-3-662-44303-3_12

[73] W. B. Langdon and R. Poli, “Fitness causes bloat: Mutation,” in European Conference on

Genetic Programming. Springer, 1998, pp. 37–48.

[74] W. Banzhaf and W. B. Langdon, “Some considerations on the reason for bloat,” Genetic

Programming and Evolvable Machines, vol. 3, no. 1, pp. 81–91, 2002.

[75] N. T. Hien, N. X. Hoai, and B. McKay, “A study on genetic programming with layered learn-

ing and incremental sampling,” in Evolutionary Computation (CEC), 2011 IEEE Congress

on. IEEE, 2011, pp. 1179–1185.

[76] P. Stone and M. Veloso, Layered Learning. Berlin, Heidelberg: Springer Berlin Heidelberg,

2000, pp. 369–381. [Online]. Available: https://doi.org/10.1007/3-540-45164-1_38

[77] S. Gustafson and W. Hsu, “Layered learning in genetic programming for a cooperative robot

soccer problem,” Genetic Programming, pp. 291–301, 2001.

127

https://doi.org/10.1007/978-3-662-44303-3_12
https://doi.org/10.1007/3-540-45164-1_38

[78] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley, and A. Chircop,

“Ecj: A java-based evolutionary computation research system,” Downloadable versions and

documentation can be found at the following url: http://cs.gmu.edu/eclab/projects/ecj, 2006.

[79] E. Pantridge and L. Spector, “Pyshgp: Pushgp in python,” in Proceedings of the Genetic and

Evolutionary Computation Conference Companion. ACM, 2017, pp. 1255–1262.

[80] D. Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, C. Gagné et al., “Deap: enabling

nimbler evolutions,” ACM SIGEVOlution, vol. 6, no. 2, pp. 17–26, 2014.

[81] K. Veeramachaneni, I. Arnaldo, O. Derby, and U.-M. O’Reilly, “Flexgp,” Journal of Grid

Computing, vol. 13, no. 3, pp. 391–407, 2015.

[82] I. Arnaldo, K. Veeramachaneni, A. Song, and U.-M. O’Reilly, “Bring your own learner:

A cloud-based, data-parallel commons for machine learning,” IEEE Computational Intelli-

gence Magazine, vol. 10, no. 1, pp. 20–32, 2015.

[83] P. Salza, E. Hemberg, F. Ferrucci, and U.-M. O’Reilly, “Towards evolutionary machine

learning comparison, competition, and collaboration with a multi-cloud platform,” in Pro-

ceedings of the Genetic and Evolutionary Computation Conference Companion. ACM,

2017, pp. 1263–1270.

[84] W. B. Langdon and M. Harman, “Optimizing existing software with genetic programming,”

IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 118–135, 2014.

[85] C. Gunaratne and I. Garibay, “Alternate social theory discovery using genetic programming:

towards better understanding the artificial anasazi,” in Proceedings of the Genetic and Evo-

lutionary Computation Conference. ACM, 2017, pp. 115–122.

[86] G. Louppe, “Understanding random forests: From theory to practice,” Ph.D. dissertation,

Université de Liège, Liège, Belgique, 2014, chapter 6.1.2: Importances in forests.

128

[87] L. Breiman, “Manual on setting up, using, and understanding random forests v3. 1,” Statis-

tics Department University of California Berkeley, CA, USA, vol. 1, 2002.

[88] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random forests,”

Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[89] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for assessing hyperparam-

eter importance,” in International Conference on Machine Learning, 2014, pp. 754–762.

[90] N. Dang and P. De Causmaecker, “Analysis of algorithm components and parameters: some

case studies,” 2018, accepted at the International Conference on Learning and Intelligent

Optimization (LION12).

[91] A. Saabas, “Interpreting random forests,” 2014. [Online]. Available: https://blog.datadive.

net/interpreting-random-forests/

[92] ——, “andosa/treeinterpreter,” May 2019. [Online]. Available: https://github.com/andosa/

treeinterpreter

[93] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized feature attribution

for tree ensembles,” arXiv preprint arXiv:1802.03888, 2018.

[94] E. M. Smith, A. Nantes, A. Hogue, and I. Papas, “Forecasting customer behaviour in con-

strained e-commerce platforms,” in 8th International Conference of Pattern Recognition

Systems (ICPRS 2017). IET, 2017, pp. 1–8.

[95] M. Beillevaire, “Inside the black box: How to explain individual predictions of a machine

learning model : How to automatically generate insights on predictive model outputs, and

gain a better understanding on how the model predicts each individual data point.” Master’s

thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2018.

129

https://blog.datadive.net/interpreting-random-forests/
https://blog.datadive.net/interpreting-random-forests/
https://github.com/andosa/treeinterpreter
https://github.com/andosa/treeinterpreter

[96] C. Rea, K. Erickson, R. Granetz, R. Johnson, N. Eidietis, K. Montes, and R. Tinguely,

“Initial results of a machine learning-based real time disruption predictor on diii-d,” in Proc.

45th EPS Conf. on Plasma Physics, Europhysics Conf. Abstracts, vol. 42, 2018.

[97] R. Granetz, C. Rea, K. Montes, R. TINGUELY, N. EIDIETIS, O. MENEGHINI, D. CHEN,

B. SHEN, B. XIAO, K. ERICKSON et al., “Machine learning for disruption warning on

alcator c-mod, diii-d, and east tokamaks,” in Proc. 27th IAEA Fusion Energy Conference,

IAEA, Vienna, 2018.

[98] X. Morice-Atkinson, B. Hoyle, and D. Bacon, “Learning from the machine: interpreting

machine learning algorithms for point-and extended-source classification,” Monthly Notices

of the Royal Astronomical Society, vol. 481, no. 3, pp. 4194–4205, 2018.

[99] E. Bastrakova, “Improving interpretability of complex predictive models,” Master’s thesis,

Universitat Politècnica de Catalunya, 2017.

[100] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evo-

lutionary algorithms made easy,” Journal of Machine Learning Research, vol. 13, pp. 2171–

2175, jul 2012.

[101] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau, “Once you scoop, no need to fork,” in

Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery

Environment. ACM, 2014, p. 60.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Ma-

chine Learning Research, vol. 12, pp. 2825–2830, 2011.

130

[103] M. Korobov and K. Lopuhin, “Permutation importance,” Apr 2019. [Online]. Available:

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html

[104] T. C. Schelling, “Dynamic models of segregation,” Journal of mathematical sociology,

vol. 1, no. 2, pp. 143–186, 1971.

[105] E. Hatna and I. Benenson, “Combining segregation and integration: Schelling model dy-

namics for heterogeneous population,” arXiv preprint arXiv:1406.5215, 2014.

[106] ——, “The schelling model of ethnic residential dynamics: Beyond the integrated-

segregated dichotomy of patterns,” Journal of Artificial Societies and Social Simulation,

vol. 15, no. 1, p. 6, 2012.

[107] M. Granovetter, “Threshold models of collective behavior,” American journal of sociology,

vol. 83, no. 6, pp. 1420–1443, 1978.

[108] F. M. Bass, “A new product growth for model consumer durables,” Management science,

vol. 15, no. 5, pp. 215–227, 1969.

[109] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: A complex systems look at

the underlying process of word-of-mouth,” Marketing Letters, vol. 12, no. 3, pp. 211–223,

8 2001. [Online]. Available: https://doi.org/10.1023/A:1011122126881

[110] W. Rand, J. Herrmann, B. Schein, and N. Vodopivec, “An agent-based model of urgent

diffusion in social media,” Journal of Artificial Societies and Social Simulation, vol. 18,

no. 2, p. 1, 2015.

[111] N. Cowan, “What are the differences between long-term, short-term, and working mem-

ory?” Progress in brain research, vol. 169, pp. 323–338, 2008.

[112] A. Baddeley, “Working memory: Theories, models, and controversies,” Annual review of

psychology, vol. 63, pp. 1–29, 2012.

131

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html
https://doi.org/10.1023/A:1011122126881

[113] Z. Chen and N. Cowan, “Chunk limits and length limits in immediate recall: a reconcil-

iation.” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 31,

no. 6, p. 1235, 2005.

[114] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our capacity

for processing information.” Psychological review, vol. 63, no. 2, p. 81, 1956.

[115] N. Cowan, “The magical number 4 in short-term memory: A reconsideration of mental

storage capacity,” Behavioral and brain sciences, vol. 24, no. 1, pp. 87–114, 2001.

[116] N. Cowan, C. C. Morey, A. M. AuBuchon, C. E. Zwilling, and A. L. Gilchrist, “Seven-year-

olds allocate attention like adults unless working memory is overloaded,” Developmental

science, vol. 13, no. 1, pp. 120–133, 2010.

[117] R. W. Belk, “Extended self in a digital world,” Journal of Consumer Research, vol. 40, no. 3,

pp. 477–500, 2013.

[118] R. W. Clowes, “Extended memory,” Routledge handbook on the philosophy of memory, pp.

243–255, 2017.

[119] U. Schultze, “Embodiment and presence in virtual worlds: a review,” Journal of Information

Technology, vol. 25, no. 4, pp. 434–449, 2010.

[120] R. Belk, “Digital consumption and the extended self,” Journal of Marketing Management,

vol. 30, no. 11-12, pp. 1101–1118, 2014.

[121] J. A. Bargh, K. Y. McKenna, and G. M. Fitzsimons, “Can you see the real me? activation

and expression of the “true self” on the internet,” Journal of social issues, vol. 58, no. 1, pp.

33–48, 2002.

[122] T. L. Taylor, “Living digitally: Embodiment in virtual worlds,” in The social life of avatars.

Springer, 2002, pp. 40–62.

132

[123] L. P. Tosun, “Motives for facebook use and expressing “true self” on the internet,” Comput-

ers in Human Behavior, vol. 28, no. 4, pp. 1510–1517, 2012.

[124] S. L. Buglass, J. F. Binder, L. R. Betts, and J. D. Underwood, “Motivators of online vulner-

ability: The impact of social network site use and fomo,” Computers in Human Behavior,

vol. 66, pp. 248–255, 2017.

[125] S. Hongladarom, “Personal identity and the self in the online and offline world,” Minds and

Machines, vol. 21, no. 4, p. 533, 2011.

[126] C. Gunaratne, C. Senevirathna, C. Jayalath, N. Baral, W. Rand, and I. Garibay,

“A multi-action cascade model of conversation,” in 5th International Conference on

Computational Social Science, 2019. [Online]. Available: http://app.ic2s2.org/app/sessions/

9kXqn5btgKKC5yfCvg/details

[127] G. Pask, “Conversation theory,” Applications in Education and Epistemology, 1976.

[128] T. Schreiber, “Measuring information transfer,” Physical review letters, vol. 85, no. 2, p.

461, 2000.

[129] C. Gunaratne, “Multi-action cascade model source code,” Sep 2019. [Online]. Available:

https://github.com/chathika/MACM

[130] A. D. Baddeley and G. Hitch, “Working memory. the psychology of learning and motiva-

tion,” New York, NY: Academicp, 1974.

[131] M. Gomez-Rodriguez, K. P. Gummadi, and B. Schoelkopf, “Quantifying information over-

load in social media and its impact on social contagions.” in ICWSM, 2014, pp. 170–179.

[132] K. Koroleva, H. Krasnova, and O. Günther, “‘stop spamming me!’: exploring information

overload on facebook,” in Proceedings of the Association for Information Systems (AMCIS)

2010, no. 447, 2010. [Online]. Available: https://aisel.aisnet.org/amcis2010/447

133

http://app.ic2s2.org/app/sessions/9kXqn5btgKKC5yfCvg/details
http://app.ic2s2.org/app/sessions/9kXqn5btgKKC5yfCvg/details
https://github.com/chathika/MACM
https://aisel.aisnet.org/amcis2010/447

[133] P. Li, W. Li, H. Wang, and X. Zhang, “Modeling of information diffusion in twitter-like

social networks under information overload,” The Scientific World Journal, vol. 2014, 2014.

[134] C. Gunaratne, N. Baral, W. Rand, I. Garibay, C. Jayalath, and C. Senevirathna, “A theory

of extended working memory and its role in online conversation dynamics,” arXiv preprint

arXiv:1910.09686, 2019.

[135] N. O. Hodas, F. Kooti, and K. Lerman, “Friendship paradox redux: Your friends are more

interesting than you,” in Seventh International AAAI Conference on Weblogs and Social

Media, 2013.

[136] K. Lerman and A. Galstyan, “Analysis of social voting patterns on digg,” in Proceedings of

the first workshop on Online social networks. ACM, 2008, pp. 7–12.

[137] D. Masad, Py2NetLogo, 2016. [Online]. Available: https://github.com/dmasad/Py2NetLogo

[138] B. Dagenais, Py4J: A Bridge between Python and Java, 2009–2015. [Online]. Available:

https://www.py4j.org

[139] P. S. Foundation, PyPI - the Python Package Index, Accessed 29 May, 2018. [Online].

Available: https://pypi.org/

[140] C. Gunaratne, NL4Py 0.5.0, 2018. [Online]. Available: https://pypi.org/project/NL4Py/

134

https://github.com/dmasad/Py2NetLogo
https://www.py4j.org
https://pypi.org/
https://pypi.org/project/NL4Py/

	Evolutionary Model Discovery: Automating Causal Inference for Generative Models of Human Social Behavior
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	Causal and Mechanistic Explanations through Agent-Based Models
	Why is Modeling Multiple Theories of Agent Behavior Difficult?
	EMD: Overcoming the Difficulties of `Many Modeling' of Agent-Based Models to Exploit their Explanatory Power
	Statement of Contributions
	Statement of Originality

	CHAPTER 2: LITERATURE REVIEW
	CHAPTER 3: THE EVOLUTIONARY MODEL DISCOVERY FRAMEWORK
	Mechanistic Explanation and Causal Factors of Human-Decision Making
	Genetically Programming Agent Rules with Hypothesized Causal Factors
	Representation
	From Narrative to GP Syntax Tree

	Evaluating Importance and Optimal Presence of Causal Factors with Random Forests
	Parallelization and Computational Complexity
	Implementation

	CHAPTER 4: CASE STUDY 1: SOCIO-AGRICULTURAL BEHAVIOR OF THE ANCESTRAL PUEBLO
	The Artificial Anasazi model
	Hypothesized Alternate Factors Influencing Farm Plot Selection
	Experiments
	Results
	Discussion

	CHAPTER 5: CASE STUDY 2: MIXED PATTERNS OF RESIDENTIAL SEGREGATION AND INTEGRATION
	Hatna's Model of Mixed Segregation-Integration Patterns
	Causal Factors for Mixed Patterns of Segregation and Integration
	Experiments
	Results
	Discussion

	CHAPTER 6: CASE STUDY 3: PRIORITIZATION OF RESPONSES UNDER INFORMATION OVERLOAD ON ONLINE SOCIAL MEDIA
	A Theory of Extended Working Memory and Implications of Information Overload
	The Multi-Action Cascade Model of conversation
	Modeling Extended Working Memory
	Causal Factors for Notification Response Prioritization
	Experimental Setup
	Results
	Discussion

	CHAPTER 7: OPEN SOURCE SOFTWARE CONTRIBUTIONS
	EvolutionaryModelDiscovery
	Documentation, Source, and Installation
	EvolutionaryModelDiscovery Annotations
	Strong Typing
	Running EvolutionaryModelDiscovery

	NL4Py
	Software Architecture
	Controlling NetLogo in Python with NL4Py
	Installation
	Requirements
	Using the NL4Py API
	Starting and stopping the NetLogoControllerServer
	Using NetLogo in GUI mode
	Using NetLogo headless workspaces
	Opening and closing models
	Commands and basic reporters
	Working with parameters
	Reporter scheduling

	CHAPTER 8: CONCLUSION
	Future Work

	APPENDIX A: IRB OUTCOME LETTER
	APPENDIX B: FURTHER CONSIDERATIONS
	Evolvability
	Model Size and Bloat

	LIST OF REFERENCES

