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ABSTRACT

As control over wireless network in the industry is receives increasing attention, its appli-
cation comes with challenges such as stochastic network delay. The PIDs are ill equipped
to handle such challenges while the model based controllers are complex. A settlement be-
tween the two is the PPI controller. However, there is no certainty on its ability to preserve
closed loop stability under such challenges. While classical robustness measures do not re-
quire extensive uncertainty modelling, they do not guarantee stability under simultaneous
process and network delay variations. On the other hand, the model uncertainty measures
tend to be conservative. Thus, this work uses extended complementary sensitivity function
method which handles simultaneously those challenges. Simulation results shows that the
PPI controller can guarantee stability even under model and delay uncertainties.
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1. INTRODUCTION
Emergence of WirelessHART and ISA100 Wireless as the only industrial wireless standards for monitoring

and automation has prompted researchers to explore their control application capabilities [1, 2]. This is due to the
advantages wireless has over the wired system of flexibility, scalability and improved reliability due to the mesh
topology the two standards support [3, 4]. The two standards both operate on the 2.5GHz Industrial scientific and
medical (ISM) radio frequency band and are based on the IEEE802.14.4 physical layer [1].

WirelessHART being based on the traditional HART standard and the first to hit the public domain, has
an edge over the ISA100 wireless standard. There are close to 30 million HART enabled devices already installed
globally in the industries that can easily be converted to support WirelessHART [4]. However, application of the
standard for control comes with problems of stochastic network delay, non periodic update of measurement and
uncertainties such as packet loss [5, 6]. To curtail this problems, especially that of the stochastic network delay,
several control strategies have been proposed, among which is the use of Predictive PI controller (PPI) [7, 8]. The
controller is a compromise between the expensive and complex model based controllers and the simple but poorly
performing PID. The controller allows for model mismatch hence can function well in a stochastic delay setting [9].

It is worth noting that a key task of any control system is to ensure close loop system stability even in the
presence of uncertainties and process parameter change. This is not an exception with the PPI controller. Thus, the
PPI controller if used in the WirelessHART environment must also ensure system stability under changing conditions
of the network and plant. There are many robustness measures to evaluate the extend to which controllers can
effectively perform while maintaining system instability [10, 11, 12, 13]. The two most commonly used measures
are the classical and model uncertainty methods [14]. The former is based on phase, gain and deadtime margins
while the latter is based on sensitivity and its complimentary functions. However, the key shortcomings of these
approach is that they too conservative. For example, the classical method consider variation in the process separately
while the model uncertainty does not take into account variation in delays.
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In this work, a robustness measure using complementary sensitivity function [14, 15] will be used to ex-
amine the robustness of the PPI controller in a WirelessHART environment. The method considers simultaneously
variation in process parameters such as gain, phase, deadtime and also network stochastic delays.

The rest of the paper is organized as follows: the methodology is given in Section 2, while results are
discussed and analysed in Section 3.. The last section draws conclusion.

2. METHODOLOGY
2.1. The Predictive PI controller
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Figure 1. PPI controller in wireless network set-up

Consider the control set-up shown in Fig. 1, the network delay τN is the sum of the controller-to-actuator
delay τca and the sensor-to-controller delay τsc given as

τN = τca + τsc (1)

Thus, the total loop delay is then given as
L = τN + Lp (2)

where LP is the process deadtime. Consequently, the PPI controller Gc(s) of Fig. 1 for the wireless systems can be
expressed as (3).

U(s) = KcE(s) +
1

1 + Ts
e−sLU(s) (3)

Equation (3) can be expressed as a cascade of a PI controller and the predictor as follows

Gc(s) = Kc

(
1 +

1

Tis

)( 1

1 + 1
Tis

(1− e−sL)

)
, (4)

where, CPI(s) = Kc(1 + 1
Tis

), is the PI controller and Cpred(s) = 1
1+ 1

Tis
(1−e−sL)

is the predictor.

2.2. Extended Complementary Sensitivity Function Based Robustness

Robust stability condition of the PPI controller given in (3) and (4) will be established based on the extended
sensitivity function method proposed by [14]. The method is adopted here to include alongside model parameter
variations the wireless stochastic delay. The robustness computation is established on the open loop transfer func-
tion. If the controller in (4) is used to control the process Gp(s)e−Lps of Fig. 1, assuming commutativity between
process deadtime Lp and total network dealy τN , the entire process model including network delays under nominal
conditions can be expressed as

G(s) = Gp(s)e−sL, (5)

where, Gp(s) is the delay free process. Consider some deviations from nominal condition where there is variation
in both process deadtime and network induced delays, assuming that the delay error is ∆L ∈ [∆Lmin,∆Lmax].
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Figure 2. Open loop transfer function Nyquist plot for nominal system and its uncertainty due to respective variation
in process ∆G and total network delay ∆L.

Assume also that the multiplicative uncertainty between the nominal process Gp(s) and the real process G(s) is
∆G(s), then the process model together with uncertainties can be written as

G(s) = Gp(s)

(
1 +

∆G(s)

Gp(s)

)
e−s(L+∆L), (6)

If the controller of the system is considered to be Gc(s), the nominal open loop in the frequency domain given as
Gc(iω)G(iω) is thus assumed to be stable and also norm bounded. Consider the Nyquist diagram of the nominal
open system (GcG) shown in Fig. 2, with uncertainty in the delay ∆L, if point A is rotated through angle −ω∆L
and moved slightly to any direction |Gc∆G(iω)| = |Gc∆G(iω)eiω(L+∆L)|, it will stay within a circle defined
by centre GcG(iω)eiω(∆L) and radius ||Gc∆G(iω)||∞. The distance from centre GcG(iω)eiω(∆L) to the critical
point −1 is |1 + Gc∆G(iω)eiω(∆L)|. This indicates that the upset Gc∆G(iω)eiω(L+∆L) will not drive the system
unstable as long as

|Gc∆G(iω)| < |1 +GcG(iω)eiω(∆L)|, ∀ ω,∆G,∆L (7)

Dividing (7) by GcGp and assuming e−iω(L+∆L) = 1, the equation can be written as∣∣∣∣1 +Gc(iω)G(iω)e−iω(∆L)

Gc(iω)G(iω)e−iω(∆L)

∣∣∣∣ > ∣∣∣∣∆G(iω)

Gp(iω)

∣∣∣∣ , (8)

Defining the extended complementary sensitivity function as the inverse of LHS of (8) we have

T (s,∆L) =
Gc(s)G(s)e−s∆L

1 +Gc(s)G(s)e−s∆L
, (9)

Therefore, the condition for robust stability can be given as∥∥∥∥∆G(s)

Gp(s)
T (s,∆L)

∥∥∥∥
∞
< 1, ∆L ∈ [∆Lmin,∆Lmax]. (10)

where ∆Lmin and ∆Lmax are the lower and upper delay variation bound, ∆G is the process model change. If for
ease of presentation in this work

∥∥∥∆G(s)
Gp(s) T (s,∆L)

∥∥∥
∞

is represented as γ, the robust stability condition can now be
written in terms of γ as follows

γ < 1, ∆L ∈ [∆Lmin,∆Lmax]. (11)
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3. RESULT AND ANALYSIS
For the purpose of this analysis, we use the model of a thermal chamber given in (12) [16]. The measured

network delay as obtained from the network is shown in Fig. 3, while the statistics of the delay is given in Table 1. In
the result analysis, robustness of the controller to changes in both delay and process variable for the WirelessHART
network based on the delay information obtained from the network will be evaluated in both time and frequency
domains. The parameters of the PPI controller used for this plant throughout this work are Kc = 0.125 and
Ti = 9.13s. The simulation results in this work will be reported in two phases. The first phase will report on
robustness while the second will focus on stability.

G(s) =
8

1 + 9.13s
e−10s (12)
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Figure 3. Network delay profile

Table 1. Network Delay Statistics

Delay type Max Min Mean Std.
Upstream (s) 2.084 1.214 1.573 0.217
Downstream (s) 1.280 1.280 1.280 0.000

3.1. Robustness Analysis

This section first analyses the robustness of the PPI controller to stochastic network delay, then further
analysis is provided to its robustness to process model perturbation. The analysis here is given in the time domain.

3.1.1. Robustness to Delay Mismatch

To analyse the performance of the PPI controller to delay mismatches, the plant with the controller is
simulated to three different conditions of delay as given in Table 1. These conditions are maximum, minimum and
average delays. However, the controller design is based on the average value of the delay. The simulation results
for this scenario are given in Fig. 4, while the regions of interest from this table are zoomed in Fig. 5. Numerical
figures of the figures are given in Table 2. From both the figures and the table, PPI 1, PPI 2 and PPI 3 represents the
three conditions of average, maximum and minimum delays respectively. Thus, it can be observed that for all cases
of delay, the performance of the PPI is still better than that of PI controller in terms of both setpoint tracking and
disturbance regulation ability. For all the three conditions, the overshoot rise time and both settling times of the PPI
controller are less than those of the PI controller compared.

Table 2. Robustness performance of the PPI controller to delay change

Parameters PPI 1 PPI 2 PPI 3 PI
Rise Time (s) 19.7659 18.4454 21.4858 26.7562
Settling Time 1 (s) 55.7688 51.4477 60.3851 99.4896
Settling Time 2 (s) 269.0980 268.0324 272.1358 301.2938
Overshoot (%) 0.0000 0.0050 0.0000 5.8924
IAE 2309.3 2290.7 2341.1 3044.7
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Figure 4. Robustness of the PPI controller to change in
network delay.
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Figure 5. Zoomed-in view of regions of interest A, B,
C and D of Fig. 4.

3.1.2. Robustness to Model Mismatch

To analyse the performance of the PPI controller to model mismatches, The plant with the controller is
simulated to three different conditions of model parameters. These conditions are nominal and ±10% change in
both process gain K and time constant T . However, the controller design is based on the average value of the
delay. The simulation results for this scenario are given in Fig. 6 while the regions of interest from this table are
zoomed in Fig. 7. Numerical figures of the figures are given in Table 3. From both the figures and the table, PPI,
PPI+10% and PPI−10% represents the three conditions of nominal, 10% increase and 10% decrease in plant model
parameters respectively. Therefore, it can be observed that for all the three cases of nominal, increase and decrease
in parameters, the performance of the PPI outperformed than that of PI controller in terms of both setpoint tracking
and disturbance regulation capability. Numerical assessment of settling time before and after disturbance, overshoot
and IAE also confirmed that the performance of PPI controller is better. However, the PI controller responds faster
than PPI-10% with a rise time of about 27s as against the 29s of the latter.
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Figure 6. Robustness of the PPI controller to ±10%
change in model parameters.
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Figure 7. Zoomed-in view of regions of interest A, B,
C and D of Fig. 6.

3.2. Stability Analysis

This section analyses the stability of the PPI controller in the frequency domain through Nyquist plots based
on the robust stability conditions given in Section 2.2.. First, analysis will be given based on the delay statistics of
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Table 3. Robustness performance of the PPI controller to model mismatch

Parameters PPI PPI +10% PPI −10% PI
Rise Time (s) 19.7698 15.4891 29.4930 26.7578
Settling Time 1 (s) 55.7806 68.5160 78.6990 99.4898
Settling Time 2 (s) 269.1218 261.5824 280.7254 301.3191
Overshoot (%) 0.0000 3.8335 0.0000 5.8919
IAE 2184.9 2169.6 2358.3 2920.2

Table 1 and ±10% change in model parameters as discussed in Section 3.1.2., then a variation of both delay and
model parameters of up to ±20% will be analysed for stability.

3.2.1. Stability of PPI Controller Under WirelessHART Network Delay and Model Mismatch

The Nyquist plot of the plant for mean, maximum and minimum WirelessHART network delays in Table
1 is given in Fig. 8 while the plot for plant with ±10% model mismatch is given in Fig. 9. From the first figure, it
can be seen that the Nyquist plots for all the three delay condition satisfy the Nyquist stability criteria. The second
figure contains the Nyquist plots of the plant with both delay and model mismatches. To further confirm the stability
of controller at these conditions, the robust stability condition given in Section 2.2. is tested for different frequencies
as given in the results of Table 4. It is noted as given in the table that for all the frequencies considered, the robust
stability condition is met.
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Figure 8. Nyquist plot for mean, maximum and mini-
mum network delays.
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Figure 9. Nyquist plot for nominal, ±10% in model
mismatch.

Table 4. Robust stability test of PPI controller at different frequencies

ω(rad/s)
γ

γ < 1?
∆max ∆min

0.1 0.0269 0.0357 Yes
1 6.41×10−4 9.12×10−4 Yes
10 6.54×10−6 9.30×10−6 Yes
100 6.55×10−8 9.31×10−8 Yes

3.2.2. Stability of PPI Controller Under ±20% Delay and Model Mismatches

To further ensure that the PPI controller will maintain stability even with wider range of parameter varia-
tions, ±20% mismatches in both model parameters and network delay are considered. The corresponding Nyquist
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plots are shown in Fig. 10. The two robust stability conditions of (7) and (11) are applied at frequency ω =
0.6 rad/s. The result of this stability test is given in Table 5. From the table, it is shown that the PPI controlled
plant is stable at that frequency even with the large perturbation.
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Figure 10. Nyquist plot for ±20% mismatches in both delay and model parameters ω = 0.6 rad/s.

Table 5. Robust stability test of PPI to model and delay variations at different frequencies

Parameter change γ Length (L) Radius (r) γ < 1? r < L ?
∆max 0.5716 0.6450 0.1301 Yes Yes
∆min 0.3888 1.0080 0.1402 Yes Yes

4. CONCLUSION
This paper has discussed the robustness and stability of a PPI controller when used in a wireless networked

environment. The robust stability analysis is based on the condition derived from the extended complementary
sensitivity function which handles simultaneously both process parameter changes and delay variations. It has been
found from the analysis result that the plant controlled with the PPI controller still retains stability even with wide
variation of model parameters and delay. This implies that the PPI control though simple in design, can handle the
challenges of uncertainties associated with wireless networked control.
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