
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 6, December 2020, pp. 6507~6520

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i6.pp6507-6520 6507

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Ontology-based context-sensitive software security knowledge

management modeling

Mamdouh Alenezi
College of Computer and Information Sciences, Prince Sultan University, Saudi Arabia

Article Info ABSTRACT

Article history:

Received Mar 3, 2020

Revised May 12, 2020

Accepted May 27, 2020

 The disconcerting increase in the number of security attacks on software calls

for an imminent need for including secure development practices within

the software development life cycle. The software security management

system has received considerable attention lately and various efforts have

been made in this direction. However, security is usually only considered in

the early stages of the development of software. Thus, this leads to stating

other vulnerabilities from a security perspective. Moreover, despite

the abundance of security knowledge available online and in books,

the systems that are being developed are seldom sufficiently secure. In this

paper, we have highlighted the need for including application context

sensitive modeling within a case-based software security management

system. Furthermore, we have taken the context-driven and ontology-based

frameworks and prioritized their attributes according to their weights which

were achieved by using the Fuzzy AHP methodology.

Keywords:

Fuzzy AHP

Ontology-based context

Security knowledge

Security management

Software security

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mamdouh Alenezi,

College of Computer and Information Sciences,

Prince Sultan University,

P.O.Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia.

Email: malenezi@psu.edu.sa

1. INTRODUCTION

The digital age has witnessed a large number of businesses being aided and automated by using

state-of-the-art web development technologies. E-commerce based applications and their integral

contribution to transforming business processes remain an unparalleled success. However, this rising

trajectory is beset with an alarming increase in security attacks on such applications [1-2]. The rise in

the number of security attacks has led to huge losses for the organizations that are dependent on e-commerce

based applications for generating revenue [3]. Security attacks affect the functionality of the application

which leads to the unavailability of the service on the internet. This, in turn, has a direct impact on customer

satisfaction. Most of the security attacks are experienced as a result of software flaws or vulnerabilities left

untended during the software development process. Many Software development processes have not been

able to ensure security within the product in the past [4]. Also, the team involved in developing software

often lacks the required expertise for generating secure systems.

 However, the recent research initiatives have given considerable attention to this lacuna and are

working towards security practices that need to be made efficacious during the software development process

itself. Software security is a term used to describe security during the whole development procedure of

software. To enhance the security of any software, it is imperative to ensure that the software engineers are

equipped with the necessary information and mandatory skills for the development of secure software [5].

Only with this elemental knowledge can the software engineers tackle security attacks and deal with security

errors in a correct manner. Further, the software engineer’s expertise needs to be complemented by security

artifacts which assist in understanding the security of the software. To enable the practitioners to gain insight

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/329119593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6508

into the security of the software, there is a need for an automated system that manages the security

knowledge and depending on the cases, presents recommendations to the software engineer.

To cite a pertinent example, SHIELDS project targets constructing a secure software engineering

environment which is assisted by the repository of the software security knowledge [6]. With the help of

the repository, security models can be shared and stored representing the expertise of the specialists.

The project provides a modeling tool but lacks the relationship between artifacts and knowledge of software

security. Hence, the authors in [7] proposed a management system that manages knowledge and artifacts of

software security generated during the development process. The system assists practitioners who may not

have the requisite expertise by helping them to analyze heterogeneous cases of software security.

However, the work lacks application context-related cases. Modeling software security knowledge in

a context-sensitive manner using ontologies can be found in [8] where software security-related knowledge is

extracted by assessing the application context at hand.

Anticipating the need for inclusion of application context sensitivity within the case-based

management systems, as in [9], is the most efficacious solution. The authors of this paper propose

a context-sensitive case-based software security management system. Further, this work prioritizes

the artifacts involved in decision making by practitioners for security management. This study is categorized

as follows: The second segment on Literature Review discusses the related and relevant work done in this

domain. The third segment highlights the need for and significance of the proposed ideation. The segments

thereafter discuss the implementations and conclusion.

Literature Review. With the help of semantic tools to assist the security of software, several efforts

have been made to achieve ontology-based modeling. Ontologies have clear and formal specifications [6].

Also, ontology is recognized universally as a tool for the modeling of context information. Ontology is being

used to provide application context related to security information as in [7, 10]. Some of the pertinent work

has been discussed in Table 1.

Table 1. Ontology related pertinent work in security perspective
Year Title Summary of Contribution

2016 [3]

Analytical Network Process

for Software Security: A
Design Perspective

This work presented a novel ontology with a focus on secure web applications.
This model was based on SecEval model which was a domain model for describing

tailored knowledge objects. Authors integrated the proposed model with UML based

web engineering approach and attained good results.

2014 [4]
Risk management perspective

in SDLC

Authors in this work produced a new picture of security knowledge artifact which is

aimed to assure the requirements of practitioners. This artifact is named Domain

Security Met model. This artifact contains knowledge about every security aspect
specific to a domain. The use of Domain Security Met was completed on

the SecFutur project and results were found to be satisfactory.

2015 [5]

A Case-based Management
System for Secure Software

Development Using Software

Security Knowledge

This work presents a framework for generic Ontology-based user modeling.
Also, this work discusses selected inferences of ontology-based user modeling from

a different perspective including semantic-enhanced knowledge management and

personal knowledge management.

2018 [6]

An Ontology-Based Context

Model for Managing Security

Knowledge in Software
Development

In this paper, the authors have identified the problems associated with necessities on

the knowledge desired to make an ICS security assessment. After the problem

definition, ICS security knowledge and development life cycle framework for
security assessment is developed.

2002 [7]
Knowledge management in

software engineering

The study proposed that security knowledge must first integrate features that state
what contextual features are to be controlled and signify the knowledge of security

in a layout. Further, the layout is logical and satisfactory for the practitioners.

Hence, the work proposed to achieve ontology with the context-based approach.

Literature review of the research work and articles in the area of software security, knowledge

management, and ontological approaches have paved the ideas for combining and analyzing three of these

with a focused temperament on software security. The ontology-based approach is easy to implement by

the developers in the security of software. Also, the review has revealed the fact that knowledge management

for developers is the prime necessity nowadays where knowledge is everywhere, but it remains unorganized.

2. PROPOSED METHOD

2.1. Needs and significance

In 2006, authors determined that the most significant resources for context modeling are found in

the ontology-based models [11]. The study listed six criteria that would be best for context modeling and these

six were: richness and quality of information, distributed composition, level of formality, incompleteness,

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6509

and ambiguity, partial validation and applicability to existing environments [12-15]. In addition, the study

analyzed the markup scheme, key-value, logic-based, graphical, and object-oriented models. The interrelation

between software security management and context-driven ontologies has been shown in Figure 1.

Figure 1. Interrelation between software security management and context-driven ontologies

Figure 1 shows the relationship between software security management, context-driven ontology,

and ontology for security management. The concept of ontology plays an important role in the semantic web

and particularly in universal computing and next-generation mobile communication systems [16-20].

Ontology can provide a better way of creating associations. It creates real-life scenarios into machine

understandable relationships. Further, a context-driven modeling approach for security management also

needs a framework that is based on ontology. It will help in diversifying the interrelationships of artifacts

depending on security management. The data thus coming from varied sets of information foundations leads

to improved user experience.

The problem of security management is also due to the extensive knowledge available on web-based

resources which most of the developers use for gaining their knowledge for security services. Hence,

an ontology-based and context-sensitive software security management framework would facilitate in

gaining an accurate approach for the software developers. This immense challenge needs the specific usage

of the tools of ontology and languages which have been introduced in the next section of this paper.

Formalizing attributes related to context-driven security modeling and ontology security management criteria

to conform the heterogeneity, vagueness, and some quality-related issues. After the critical analysis of

the available literature, the authors came up with the two important models of ontology-based context model,

which are: Software security domain model and the Application context model. Hierarchy has been shown in

Figure 2 and indicated in the ensuing section:

2.1.1. Software security domain model

The ontology-based context model consists of two types. One of them is the software security

domain model. The software security domain model is designed with the consideration of the central idea of

reviewing important security knowledge resources and is also concerned with the security knowledge

repositories such as CWE, stack overflow open question-answer platform, OWASP checklists, and SEI

CERT coding guideline, etc. [21, 22]. After this analysis, we divided this analysis further into four security

development phases. Elucidation of the major terms used in our ontology is as follows:

a. Security requirement

Designing secure software depends on the security requirements which set a premise for the security

guidelines for the developers [23, 24]. Developers need support in deciding the security requirements which

further plays a decisive role in the context-based ontology security model.

b. Production practices

Practices that involve designing and coding of a system are termed as production practices and these

include design and coding practices [23]. Design practices of security represent practices approved in

the system design time. Adopting security design practices may reduce the security risk associated with

the production phase. Coding Practices represent a set of rules that are adopted at the code level. Knowledge

and context of both levels affect the overall ontology-based context modeling.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6510

Figure 2. Hierarchical structure of ontology-based context model

c. Verification/validation practices

Verification and Validation ensure that the developed product satisfies the given requirements and

that the right product has been developed. These practices include two major processes which are code

review and testing process. Description of both is given below:

- Code Review Practice: This practice focuses on identifying security mistakes by the inspection of

software at the source code level with the help of different tools such as manual code analysis.

This practice also helps to ensure the strengthening of verification and validation practices and, hence,

seems important for the building of an ontological based context model [23].

- Testing Practice: This practice focuses on the testing of software while executed in order to find security

problems and errors. Most of the errors and problems are found in this level of testing. Hence, it is

significant to deliberate it in the preparation of the ontology-based context model [22].

- Security Error: Security error is a noticeable fault during the development of software that may become

the cause of a future software weakness [12]. In our ontology, a software security error can be:

- Design Flaw: Design flaw is an unsuitable logical judgment at the design level. A flaw can be instantiated

in code but can be a result of a mistake at the design level. These flaws can create major bugs in

the future. Hence, looking over these flaws is as important as the manual review of the code [12].

- Coding Error: A code error or a mistake (bug) occurs at the code level. Code error can change the results

that were expected to be something else. The fault of the systems is created by a number of coding

errors [24].

Both the design flaws and coding errors play a significant role in creating a big security error which further

may harm the ontology-based context model.

d. Application context model

The knowledge and application of software security are essential to be put in a framework to

develop a context-based ontological model. In our study, we are describing the different attributes that take

part in deciding the application in software security for its context. Capturing this context is significant

during the process of ontology modeling where context representation depends on the features and

relationships created between them. The features are described as follows:

- Software Security Paradigm: The software security paradigm represents the groups of software

applications that share some common characteristics. Security paradigm refers to where all the security

engineering concepts pertaining to the development of security are applied. For example, Web application

security, desktop application security, mobile security, etc., [17].

- Subject Area: It signifies domains that a security application belongs to. For instance, Banking,

Defense systems, health, Travel, etc. It signifies the vital elements of the security attributes of

the software. The security feature is related to the software as well [25].

- Security Language: It signifies the programming language used to improve a secure application.

For example, Java, JavaScript, and other high-level security languages [26].

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6511

- Secure Technology: It represents a collection of security tools and frameworks that are used along with

programming languages to develop security, for example, Web security framework toolkit, SDK,

OWASP guidelines [27].

- System Security Structure: It contains the secure structure in which the application has to be

implemented. For example, Secure Database management system and other run time platforms

- Security Tool: Security tools consist of the concrete structure that is implemented towards

the specification of security in the application. For example, HTML Purifier [25].

Figure 2 shows the complete hierarchical structure including the interrelationships of the software

security domain model and the application context model. Authors tried to create hierarchical relationships

between both of these sub-attributes. Software security domain model and its attributes contain specific

phases of security development such as security requirement, construction practices, verification,

and validation practice and security error which further depend on their sub-attributes which are design

practice, coding practice, code review practice, testing practice, design flaw, and coding error. Application

context modeling contains artifacts such as software security paradigm, subject area, security language,

secure technology, system security structure, and security tools.

The hierarchical structure of the ontology-based context model shows that different artifacts and

factors decide the modeling of the context model. But their contribution to modeling is not known. To know

the different contributions of each artifact, a qualitative analysis of the ontology-based context model is

to be done.

2.1.2. Evaluation criteria

a. Context-driven security modeling criteria

Model-driven or context-driven security is a contemporary topic for which the software developers

are being asked to carry out security tests. But, quite often, security developers confront the dilemma of

where to start and where to end this and in which context should they start their test. Context-driven security

modeling is an apt solution for such questions and ambiguities [27]. The criteria on which the security-based

context modeling should be done are also the reasons for this confusion. In this research, the authors are

focusing on the criteria with their defined priority to ease the problems of developers. Table 2 shows

the different criteria on which the context-driven modeling should be done.

Thus, the non-deterministic contextual information is what is available at any point in time.

The ontologies and the value ranges cleared herein provide means to address these issues by confining

the unpredictability of contextual data. Figure 3 shows the interrelationships between the artifacts of context

driven security modeling.

Table 2. Context-driven security modeling criteria
Usability The usability of the software or application is the first which is affected while ensuring security. For this reason,

researchers usually call security and usability two different sides of a coin. Hence, ensuring both is a challenge and

priority as well [28]. Usability is termed as the ease of use and learnability of software. The degree of usability

defines how easy it is going to be for the end-user to handle the system.

Quality The quality of the application system is well affected by its security. Ensuring quality increases the reliability of

the user to the system, as it believes that the specified requirements are fulfilled. For this reason, quality becomes an
important and considerable artifact of context-driven security modeling [26].

Applicability A model is developed for a specific reason and its applicability for that reason should be higher. This attribute

considers the usability and applicability of the context model within existing infrastructures [25].
Comparability Different applications of the same system give different results. Hence, it is essential to deliver a means to compare

values including different units and encodings, etc., Thus, the comparability of the model should be considered while

designing it [28].
Traceability To provide adequate information about the context and origin, the formulations of tools should be known to

the developer. Here, the traceability of the system becomes important in the context-based ontological system [26].

Acceptability Acceptability deals with the accordance or agreement of measured or derived information with the well-defined
context model. A model should define the range that a context value can take, or define a particular co-existence of

values to be impossible [29].

Inference Inference can be defined as the conclusions drawn by evidence collected. In context model terms, the process of
making context information is openly available from other context sources [30].

b. Ontology security management criteria

The second set of criteria is used to assess the ontologies of security management including

flexibility, extensibility, and completeness of the ontology, consistency, and granularity of the concepts and

properties, as well as the flexibility applied. The description of each artifact is given in Table 3. The growing

dependency on secure systems preserves the need for ontology development of security management.

Ensuring the consistency of ontology developed for security management is important and largely depends

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6512

on its artifacts, which are defined in Table 3. Although every artifact contributes to the production of a better

ontology for security management, still there are some artifacts that should be given preference over others.

Hence to quantify the preference of artifacts, the authors propose a methodology followed with Fuzzy AHP

to quantify the priority of ontology security management artifacts. Figure 4 shows the interrelationships of

artifacts in the ontology of security management.

Table 3. Ontology security management criteria
Reusability Reuse of knowledge and specification process of security requirements during software development is an important

concern [31]. Increasing the reusability improves the expansion of using the ontology among many other tasks.
Flexibility

Flexibility is essential in managing policies across multiple domains, flexibility in the level of abstraction, flexibility

across different environments, etc. There are multiple scenarios faced in ontology security management that need

flexibility. Hence, it appears to be an important cognition in ontology-based security management criteria [32].
Extensibility Extensibility refers to the possibility of extending new definitions to the ontology without altering the existing

dependencies. The strength and new updates that an application can accept can be defined under extensibility [33].

Granularity Granularity is related to collating different concepts to create a better ontology for security management [34].
Consistency A consistency check is about testing the existence of obvious or understood flaws in the signified ontological

security management model [35].

Completeness An ontology for security management is said to be complete if it covers the domain for which it is developed.

Completeness of ontology depends on its boundaries and limits [36].

Redundancy This artifact tests for the repetition of logical flows. This is challenging and time-consuming [37].

Readability Readability can be related to usability and quality as well, but in the ontology of the security management model,

readability prefers checking for security policies and guidelines that are being used in security management [38].
Scalability Scalability refers to determining the scale of ontology which could be large for major applications and limited for

small scale applications. The scalability of ontology also defines its boundaries [38].

Figure 3. Interrelationship of context-driven security

modeling and its artifacts

Figure 4. Interrelationship of ontology security

management criteria and its artifacts

3. RESEARCH METHOD

Till now we have defined the specific artifacts of ontology-based context model and criteria of

ontology-based security management and context-driven security modeling. 10, 7, and 7 attributes were

found, respectively, which affect the ontology-based context modeling of security management.

Now the pertinent question that arises is that among these numbers of attributes which is a more important

concern and which one is not. To solve this issue, the authors came up with prioritizing these attributes

according to their weight of contribution towards their respective models. To prioritize the attributes which

are in a hierarchical format, authors are using the Fuzzy AHP method for decision making. With the help of

Fuzzy AHP, there is a need to assess these attributes of ontology-based context-driven modeling for ensuring

the security of software for satisfaction and ease of usage. The multi-criteria problem is decomposed into

a hierarchy using AHP, and it was adopted by the author [31]. It is also used to measure the priority and

importance of every attribute.

Further, AHP is considered as a better method than every other MCDM method such as ELECTRE.

But, still, AHP cannot resolve the uncertainty and vagueness related to the mapping of a decision maker’s

awareness of exact numbers. To deal with uncertainty and vagueness authors have combined AHP and fuzzy

into one. In this work, Fuzzy AHP is chosen for assessing the security of ontology because context-sensitive

security management is proficient in handling multiple criteria decision-making problems very easily [33].

It is also capable of converting qualitative or linguistic inputs into quantitative or numerical results.

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6513

Further, the results are an effective assessment of security management in the form of weight and

ranking [34]. For assessing the ontology-based security model using experts’ data and reaching an agreement

among the experts, this work implements the Buckley method [32] and also uses the eigenvector method to

estimate the weights of attributes. The first step is to create a pair-wise comparison method from expert’s

opinions because the AHP method only uses the pair-wise comparison matrix to estimate ambiguity in

MCDM difficulties. The Fuzzy AHP method contains four major steps which are deliberated below:

The first step is describing triangular fuzzy numbers for the paired linguistic values. A Triangular

Fuzzy Number (TFN) is represented as (Lo, Mi, Up). The equations (1-3) are used in changing the linguistic

values into TFN [18] and denoted as (Loij, Miij, Upij) where, Loij is lowermost value, Miij is middle value

and Upij is uppermost level values assigned to linguistic values. Further, TFN [ɳij] is recognized as

the succeeding:

ɳij= [Loij, Miij, Upij]

where Loij ≤Miij≤ Upij

Loij = min(Jijk) (1)

Miij= (Jij1, Jij2………… Jijk)1/k (2)

Upij= max(Jijk) (3)

In the above equations, Jijk is showing the comparative value of ij with reference to expert k,

where i and j signify a pair of criteria being judged by practitioners. Value ɳij is estimated based on

the geometric mean of practitioner’s views for a specific judgment. Further, after the construction of

pair-wise comparisons a matrix different fuzzy operation is performed on it and then defuzzification is

performed. This work used alpha cut method for defuzzification [18] where alpha cut method as formulated

in (4)-(6).

µα,β(ɳij) = [β.ɳα(Loij)+ (1-β). ɳα(Upij)] (4)

where 0 ≤α ≤ 1 and 0 ≤β≤ 1. Such that,

ɳα(Loij)= (Miij- Loij).α+Loij (5)

ɳα(Upij)=Upij- (Upij- Miij).α (6)

Where α and β in these equations are used for the preferences of experts and intolerance of experts

respectively. The values of α and β vary between 0 and 1. The maximum or threshold value of α is any value

taken from a scale of 0 to 1, which has its membership value greater than or equal to an alpha threshold

value, represented by α. Crisp sets ρα,β (Ã) simply describe whether an element is either a member of the set

or not. The single pair-wise comparison matrix is expressed in (8) [32].

After evaluating a single pair-wise comparison matrix, eigenvectors have to be determined. The next

step is to determine the eigenvalue and eigenvector of the pair-wise comparison matrix. To determine

the aggregated weight of particular criteria, the eigenvector is calculated.

 C1 C2 ……………… Cn

ρα,β (Ã) = ρα,β[ãij] =

𝐶1

𝐶2....

𝐶𝑛 [

1 ρα,β (ã11) …… ρα,β (ã1i)

1/ρα,β (ã21) 1… . . ρα,β (ã2i)

. . .

. . .
1/ρα,β (ãj1) 1/ρα,β (ãj2) … . . . 1]

 (7)

Let us assume that µ is denoting the eigenvector while λ denotes the eigenvalue of fuzzy pair-wise

comparison matrix ɳij. Then,

[µα,β(ɳij)- λI]. µ = 0 (8)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6514

In (8) symbol I signify the unitary matrix. By applying equations (1-8), the weights of every

attribute with respect to all other attributes may be attained. For checking the consistency and continuing

the AHP process, check the consistency ratio (CR) [31]. If CR value is less than 0.1, the AHP analysis is

correct otherwise analyze the AHP process again.

4 RESULTS AND DISCUSSION

For implementing the abovementioned methodology of Fuzzy AHP, we prepared three

questionnaires for the ontology-based context model, context-driven security modeling criteria, and ontology

security management criteria. These questionnaires were distributed to experts and the profile of experts

included developers, researchers, and experts from organizations. 40 valid responses were collected and

according to these data and implementing equations (1)-(8) on these data, the authors came up with

the results that are as follows:

4.1. Implementation for ontology-based context model

Table 4 represents the combined pair-wise judgment matrix for level 1 of the hierarchal tree.

For simplicity, the artifacts have been named as Software Security Domain Model (C1) and Application

Context Model (C2). Table 5 represents the combined pair-wise judgment matrix for level 2 attributes.

For ease, the attributes have been named as security requirement (C11), Construction practice (C12),

Verification practice (C13), and Security error (C14). Table 6 represents the combined pair-wise judgment

matrix for level 2 attributes. For ease, the attributes have been named as software paradigm (C21), subject

area (C22), Language (C24), Secure Technology (C24), System Structure (C25), and Security tool as C26.

Table 4. Aggregated pair-wise comparison matrix at level 1
 Software Security

Domain Model (C1)
Application Context Model

(C2)

Software Security Domain Model (C1) 1,1,1 1.0660, 1.5280, 1.9800

Application Context Model (C2) - 1,1,1

Table 5. Combined pair-wise judgment matrix at level 2 for software security domain model

Security

Requirement (C11)

Construction Practice

(C12)

Verification Practice

(C13)
Security Error (C14)

Security Requirement (C11) 1,1,1 1.3990, 1.8160, 2.4460 1.6050, 2.3360, 3.1470 1.0850, 1.3430, 1.8720
Construction Practice (C12) - 1,1,1 0.4810, 0.6070, 0.8530 1.1920, 1.4890, 1.8980

Verification Practice (C13) - - 1,1,1 0.1990, 0.2950, 0.4630

Security Error (C14) - - - 1,1,1

Table 6. Combined pair-wise judgment matrix at level 2 for application context model

Software

Security
Paradigm

(C21)

Subject Area
(C22)

Security

Language

(C23)

Secure

Technology

(C24)

System

Security
Structure

(C25)

Security Tool
(C26)

Software Security
Paradigm (C21)

1,1,1
1.0640, 1.5290,

1.9900
0.5110, 0.5980,

0.8590
1.7290, 2.3110,

2.9010
1.6920, 2.4140,

3.1470
1.5760, 2.0930,

2.613

Subject Area

(C22)
- 1,1,1

1.1820, 1.4740,

1.8720

0.7910, 0.9600,

1.1350

1.4590, 1.8590,

2.2150

1.3330, 1.5230,

1.7970
Security Language

(C23)
- - 1,1,1

1.0850, 1.3430,

1.8720

1.6050, 2.3360,

3.1470

0.3350, 0.4270,

0.574

Secure
Technology (C24)

- - - 1,1,1
1.4960, 1.9280,

2.3540
0.9450, 1.0810,

1.6370

System Security

Structure (C25)
- - - - 1,1,1

1.1870, 1.5350,

2.0280
Security Tool

(C26)
- - - - - 1,1,1

Table 7 represents the combined pair-wise judgment matrix for construction practice at level 3.

Attributes have been named as Design practice (C121) and Coding Practice (C122). Table 8 shows

the combined pair-wise comparison matrix for verification practice at level 3. Attributes have been renamed

as code review practice (C131) and Testing Practice (C132). Table 9 represents the combined pair-wise

judgment matrix for security error at level 3. Attributes have been named as Design flow (C141) and Coding

error (C142).

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6515

Table 7. Combined pair-wise judgment matrix at level 3 for construction practice

Design Practice (C121) Coding Practice (C122)

Design Practice (C121) 1,1,1 1.3750, 1.7180, 2.1780

Coding Practice (C122) - 1,1,1

Table 8. Combined pair-wise judgment matrix at level 3 for verification practice

Code Review Practice (C131) Testing Practice (C132)

Code Review Practice (C131) 1,1,1 0.3350, 0.4270, 0.5740

Testing Practice (C132) - 1,1,1

Table 9. Combined pair-wise judgment matrix at level 3 for security error

Design Flaw (C141) Coding Error (C142)

Design Flaw (C141) 1,1,1 0.9450, 1.0810, 1.6370

Coding Error (C142) - 1,1,1

Defuzzification is performed using (4)-(8) from the abovementioned methodology and defuzzified

matrix of each pair-wise comparison matrix is shown from Table 10 to Table 15. Table 10 shows

the defuzzifed matrix of level 1 attributes and local weights have been obtained as C1 is 0.6400 and C2 is

0.3600. Table 11 shows the defuzzifed matrix of level 2 attributes and local weights have been obtained as

C11 is 0.3571, C12 is 0.2705, C13 is 0.1840, C14 is0.1884.

Table 10. Defuzzified matrix and local weights for ontology-based context model

Software Security

Domain Model (C1)

Application Context

Model (C2)

Local

Weights

Software Security Domain Model (C1) 1 1.7780 0.6400
Application Context Model (C2) 0.5624 1 0.3600

CR= 0.0003

Table 11. Defuzzified matrix and local weights for software security domain model at level 2

Security Requirement

(C11)
Construction

Practice (C12)
Verification

Practice (C13)
Security Error

(C14)
Local

Weights

Security Requirement (C11) 1 1.8640 1.7780 1.4110 0.3571

Construction Practice (C12) 0.5360 1 1.7740 1.6650 0.2705
Verification Practice (C13) 0.5620 0.5640 1 1.1260 0.1840

Security Error (C14) 0.7090 0.6010 0.8880 1 0.1884

CR= 0.0145

Table 12. Defuzzified matrix and local weights for application context model at level 2

Software

Security
Paradigm

(C21)

Subject

Area

(C22)

Security

Language

(C23)

Secure

Technology

(C24)

System

Security
Structure

(C25)

Security

Tool

(C26)

Local
Weights

Software Security Paradigm (C21) 1 1.7780 0.8920 2.5630 2.6670 2.3440 0.2650

Subject Area (C22) 0.5620 1 1.7510 1.2120 1.8530 1.7940 0.1921
Security Language (C23) 1.1210 0.5710 1 0.9890 2.6060 0.6910 0.1678

Secure Technology (C24) 0.3900 0.8250 1.0110 1 2.1770 0.7710 0.1404

System Security Structure (C25) 0.3750 0.5400 0.3840 0.4590 1 1.8210 0.1049
Security Tool (C26) 0.4270 0.5570 1.4470 1.2970 0.5490 1 0.1298

CR=0.0430

Table 13. Defuzzified matrix and local weights for construction practice at level 3

Design Practice (C121) Coding Practice (C122) Local Weights

Design Practice (C121) 1 1.9980 0.6664

Coding Practice (C122) 0.5020 1 0.3336

CR= 0.0006

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6516

Table 14. Defuzzified matrix and local weights for verification practice at level 3

Code Review Practice (C131) Testing Practice (C132) Local Weights

Code Review Practice (C131) 1 0.6910 0.4086

Testing Practice (C132) 1.4472 1 0.5914
CR=0.0005

Table 15. Defuzzified matrix and local weights for security error at level 3

Design Flaw (C141) Coding Error (C142) Local Weights

Design Flaw (C141) 1 0.7710 0.4354
Coding Error (C142) 1.2970 1 0.5646

CR= 0.0008

After the calculation of local weights, the final weight of each attribute is to be calculated and

Table 16 is showing the final weights and with the overall priority being calculated. Figure 5 denotes

the graphical notation of the final weights of attributes of the ontology-based context model. It is clear from

Figure 5 that the security requirement attribute is the most significant one and system security structure has

got the lowest priority amongst all.

Table 16. Overall weights and priorities

First Level

Attributes

Local
Weights of

First Level

Second
Level

Attributes

Local

Weights of

Second
Level

Final

Weights of

Second
Level

Third
Level

Attributes

Local

Weights of

the Third
Level

Overall

Weights

Overall

Priority

C1 0.6400 C11 0.3571 0.2285 - - 0.2285 1

C12 0.2705 0.1731 C121 0.6664 0.1154 2
C122 0.3336 0.0577 8

C13 0.1840 0.1178 C131 0.4086 0.0481 11

C132 0.5914 0.0697 4
C14 0.1884 0.1206 C141 0.4354 0.0525 9

C142 0.5646 0.0681 5

C2 0.3600 C21 0.2650 0.0954 - - 0.0954 3
C22 0.1921 0.0692 - - 0.0692 6

C23 0.1678 0.0604 - - 0.0604 7

C24 0.1404 0.0505 - - 0.0505 10
C25 0.1049 0.0378 - - 0.0378 13

C26 0.1298 0.0467 - - 0.0467 12

Figure 5. Graphical representation of final weights of ontology-based context model

4.2. Implementation for ontology security management criteria

Table 17 enlists the combined pair-wise comparison matrix for the ontology security management

perspective. For the ease of calculation, the artifacts have been named as Applicability (F1), Comparability

(F2), Traceability (F3), Usability (F4), Quality (F5), Acceptability (F6) and Inference (F7).

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6517

Table 17. Aggregated pair-wise comparison matrix for ontology security management criteria

Applicability

(F1)
Comparability

(F2)
Traceability

(F3)
Usability

(F4)
Quality

(F5)
Acceptability

(F6)
Inference

(F7)

Applicability

(F1)
1,1,1

0.5520,

0.6390,
0.9050

1.2870,

1.5230,
2.1080

0.4810,

0.6070,
0.8530

1.1920,

1.4890,
1.8980

0.3980,

0.5110,
0.6620

0.4110,

0.5380,
0.7310

Comparability

(F2)
- 1,1,1

1.5530,

2.2000,
2.8500

1.7340,

2.2020,
2.6920

0.7910,

0.9600,
1.1350

1.7340,

2.2020,
2.6920

1.4790,

1.8590,
2.2150

Traceability (F3) - - 1,1,1

1.3990,

1.8160,
2.4460

1.2600,

1.8050,
2.2170

0.1990,

0.2950,
0.4630

0.538,

0.8130,
1.2770

Usability (F4) - - - 1,1,1

1.2500,

1.6390,
2.0280

1.2870,

1.5910,
2.0000

0.4720,

0.7060,
1.2520

Quality (F5) - - - - 1,1,1

1.1920,

1.4890,
1.8980

0.5780,

0.7330,
0.9580

Acceptability

(F6)
- - - - - 1,1,1

0.677, 0.749,

1.027
Inference (F7) - - - - - - 1,1,1

Solving the fuzzified values using (1)-(4) and defuzzying using (4)-(8), we got the defuzzified

values in Table 18. Weights with the priority of each attribute are also shown in Table 18. Figure 6 maps

the graphical representation of the attributes of ontology security management criteria. It is evident from

Figure 6 that the Comparability has the highest priority and acceptability has the lowest priority among all.

Table 18. Defuzzified matrix and weights for ontology security management criteria
 Applicability

(F1)

Comparability

(F2)

Traceability

(F3)

Usability

(F4)

Quality

(F5)

Acceptability

(F6)

Inference

(F7)

Weights Priority

Applicability

(F1)

1 0.9340 1.8600 1.7740 1.6650 1.4360 0.8050 0.1761 2

Comparability

(F2)

1.0707 1 2.4150 2.4580 1.2120 2.4580 1.8530 0.2261 1

Traceability

(F3)

0.5376 0.4141 1 2.1200 2.0220 1.1260 1.1120 0.1438 3

Usability (F4) 0.5637 0.4069 0.4717 1 1.8900 1.0010 1.0340 0.1117 6

Quality (F5) 0.6006 0.8251 0.4946 0.5291 1 1.7670 1.0010 0.1150 5

Acceptability
(F6)

0.6964 0.4068 0.8881 0.9990 0.5659 1 1.0510 0.1026 7

Inference

(F7)

1.2422 0.5397 0.8993 0.9671 0.9990 0.9515 1 0.1247 4

CR=0.02457

Figure 6. Graphical representation of final weights of ontology security management criteria

4.3. Implementation for context-driven security modeling criteria

Table 19 enunciates the aggregated pair-wise comparison matrix for context-driven security

modeling criteria. The attributes have been named as Reusability (A1), Flexibility (A2), Extensibility (A3),

Granularity (A4), Consistency (A5), Redundancy (A6) and Scalability (A7).

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6518

Table 19. Aggregated pair-wise comparison matrix for context-driven security modeling criteria

Reusability

(A1)

Flexibility

(A2)

Extensibility

(A3)

Granularity

(A4)

Consistency

(A5)

Redundancy

(A6)

Scalability

(A7)

Reusability

(A1)
1,1,1

0.6900,
0.8900,

1.1000

0.6601,
1.1700,

1.6900

0.7000,
0.9500,

1.3500

1.1900,
1.5800,

2.1500

0.2300,
0.2800,

0.3600

1.1500,
1.4400,

1.7000

Flexibility

(A2)
- 1,1,1

0.3100,
0.3900,

0.5600

0.2300,
0.2800,

0.3600

0.7910,
0.9600,

1.1350

1.7340,
2.2020,

2.6920

1.4790,
1.8590,

2.2150

Extensibility

(A3)
- - 1,1,1

1.1500,
1.4400,

1.7000

0.6900,
0.8900,

1.1000

0.6600,
1.1700,

1.6900

0.7000,
0.9500,

1.3500

Granularity

(A4)
- - - 1,1,1

1.1900,
1.5800,

2.1500

0.2300,
0.2800,

0.3600

1.1500,
1.4400,

1.7000

Consistency

(A5)
- - - - 1,1,1

0.2300,

0.2800,

0.3600

0.7910,

0.9600,

1.1350

Redundancy

(A6)
- - - - - 1,1,1

0.6900,
0.8900,

1.1000

Scalability
(A7)

- - - - - - 1,1,1

Defuzzification is performed using (4)-(8). The overall weights along with their corresponding

priority have been shown in Table 20. Figure 7 depicts the graphical representation of attributes of context-

driven security modeling criteria. It can be seen from Figure 7 that redundancy has the highest priority and

consistency has the lowest priority among all.

Table 20. Defuzzified matrix and weights for context-driven security modeling criteria
 Reusabilit

y (A1)
Flexibilit

y (A2)
Extensibilit

y (A3)
Granularit

y (A4)
Consistenc

y (A5)
Redundanc

y (A6)
Scalabilit

y (A7)
Weight

s
Priorit

y

Reusability

(A1)

1 0.8900 1.1700 0.9900 1.6300 0.2900 1.3600 0.1168 6

Flexibility
(A2)

1.1236 1 0.4100 0.2900 1.2120 2.4580 1.8530 0.1520 4

Extensibilit

y (A3)

0.8547 2.4390 1 1.3600 0.8900 1.1700 0.9900 0.1577 2

Granularity

(A4)

1.0101 3.4482 0.7353 1 1.6300 0.2900 1.3600 0.1565 3

Consistency
(A5)

0.6135 0.8251 1.1236 0.6135 1 0.2900 1.2120 0.0928 7

Redundanc

y (A6)

3.4482 0.4068 0.8547 3.4483 3.4483 1 0.8900 0.2175 1

Scalability

(A7)

0.7353 0.5370 1.0101 0.7354 0.8251 1.1236 1 0.1067 6

CR=0.03507

Figure 7. Graphical representation of attributes of context-driven security modeling criteria

Int J Elec & Comp Eng ISSN: 2088-8708

Ontology-based context-sensitive software security knowledge management modeling (Mamdouh Alenezi)

6519

4.4. Discussion

This research work is focused on providing help to those developers who have no idea of security

knowledge management and who don’t have any idea of where to begin and when to stop. The proposed

work here has taken three important model frameworks which are: ontology-based context model, ontology

security management criteria, and context-driven security modeling criteria. The core intent is to prioritize

the attributes or artifacts contributing to these three models. This prioritization is performed using the famous

multi-criteria decision-making technique- Fuzzy AHP. This prioritization and ranking help the developers to

find the highest priority attribute and make them focus on that particular attribute for managing

the knowledge on security guidelines and procedures. According to the results achieved, the following points

of discussion that become nodal are:

- Security requirement has the highest priority among all attributes of the ontology-based context model.

Hence it might be said that security requirements are responsible for a secure and proven good

ontology-based context model.

- Comparability is the highest priority attribute amongst all the attributes of ontology security management

criteria. From this, it can be inferred that the comparability of an ontology security management is

responsible for its successful implementation. Developers should focus on the comparability of security

management while preparing ontology for any software.

- Redundancy is found to be the highest weighted attribute amongst all attributes of context-driven security

modeling criteria. For this, the developers should focus on minimizing redundancy to prepare

a context-driven model.

- Fuzzy AHP is found to give precise results. Though there has been no comparison made for results, it can

be done in the future using other methods of decision making.

5. CONCLUSION

Context-driven ontology for security management is an effective mechanism to analyze the better

framework, guidelines, or tools for assuring security. This paper presents a new way of analysis of

ontology-based security management modeling using Fuzzy AHP as an analysis mechanism. Furthermore,

this work can assist developers in prioritizing their ontology-based framework accordingly and save the time

invested in and the cost incurred over software. It also helps in making better choices, since it allows

the developers to assist themselves by ranking attributes according to their specification.

REFERENCES
[1] F. Liu, et al., “Unsupervised heterogeneous domain adaptation via shared fuzzy equivalence relations,” IEEE

Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3555-3568, 2018.

[2] A. K. Pandey, et al., “Key Issues in Healthcare Data Integrity: Analysis and Recommendations,” IEEE Access,

vol. 8, pp. 40612-40628, 2020.

[3] R. Kumar, et al., “Analytical Network Process for Software Security: A Design Perspective,” CSI Transactions on

ICT, vol. 4, no. 2, pp. 255-258, 2016.

[4] K. Sahu, Rajshree and R. Kumar, “Risk management perspective in SDLC,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 4, no. 3, pp. 1247-1251, 2014.

[5] M. Saito, et al., “A Case-based Management System for Secure Software Development Using Software Security

Knowledge,” Procedia computer science, vol. 60, pp. 1092-1100, 2015.

[6] S. F. Wen and B. Katt, “An Ontology-Based Context Model for Managing Security Knowledge in Software

Development,” Proceedings of the 23rd Conference of Open Innovations Association FRUCT, pp. 416-424, 2018.

[7] I. Rus and M. Lindvall, “Knowledge management in software engineering,” IEEE Software, vol. 19, no. 3,

pp. 26-38, 2002.

[8] M. Alenezi and F. I. Khan, “Context-Sensitive Case-Based Software Security Management System,” in

Proceedings of the Computational Methods in Systems and Software, pp. 135-141, 2019.

[9] R. Kumar, et al., “An Integrated Approach of Fuzzy Logic, AHP and TOPSIS for Estimating Usable-Security of

Web Applications,” IEEE Access, vol. 8, pp. 50944-50957, 2020.

[10] J. Xie, et al., “Why do programmers make security errors?” in 2011 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), pp. 161-164, 2011.

[11] S. Schaffert, “IkeWiki: A semantic wiki for collaborative knowledge management,” in 15th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'06), pp. 388-396, 2006.

[12] R. Kumar, et al., “A Knowledge Based Integrated System of Hesitant Fuzzy Set, AHP and TOPSIS for Evaluating

Security-Durability of Web Applications,” IEEE Access, vol. 8, pp. 48870-48885, 2020.

[13] A. Agrawal, et al., “Measuring the Sustainable-Security of Web Applications through a Fuzzy-Based Integrated

Approach of AHP and TOPSIS,” IEEE Access, vol. 7, pp. 153936-153951, 2019.

[14] T. Takahashi, et al., “Ontological approach toward cybersecurity in cloud computing,” in Proceedings of the 3rd

International conference on Security of information and networks, pp. 100-109, 2010.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 : 6507 - 6520

6520

[15] L. Razmerita, “An ontology-based framework for modeling user behavior—A case study in knowledge

management,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41, no. 4,

pp. 772-783, 2011.

[16] K. Sahu and R. K. Srivastava, “Revisiting Software Reliability,” Data Management, Analytics and Innovation,

pp. 221-235, 2019.

[17] K. Sahu and R. K. Srivastava, “Soft Computing Approach for Prediction of Software Reliability,” ICIC Express

Letters, vol. 12, no. 12, pp. 1213-1222, 2018.

[18] R. Kumar, et al., “A Hybrid Model of Hesitant Fuzzy Decision-Making Analysis for Estimating Usable-Security of

Software,” IEEE Access, vol. 8, no. 4, pp. 72694-72712, 2020.

[19] M. Bishop, “A Clinic for ‘Secure’ Programming,” IEEE Security & Privacy, vol. 8, no. 2, pp. 54-56, 2010.

[20] R. Kumar, et al., “Fuzzy-Based Symmetrical Multi-Criteria Decision- Making Procedure for Evaluating the Impact

of Harmful Factors of Healthcare Information Security,” Symmetry, vol. 12, no. 4, pp. 664-686, 2020.

[21] F. I. Khan, et al., “Security assessment of four open source software systems,” Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 16, no. 2, pp. 860-881, 2019.

[22] M. Alenezi and Y. Javed, “Developer companion: A framework to produce secure web applications,” International

Journal of Computer Science and Information Security, vol. 14, no. 7, pp. 12-16, 2016.

[23] K. Sahu and R. Shree, “Software Security: A Risk Taxonomy,” International Journal of Computer Science &

Engineering Technology, vol. 6, no. 2, pp. 36-41, 2015.

[24] M. T. J. Ansari, et al., “Store: Security threat oriented requirements engineering methodology,” Journal of King

Saud University-Computer and Information Sciences, 2018.

[25] R. Kumar, et al., “Measuring the Security Attributes through Fuzzy Analytic Hierarchy Process: Durability

Perspective,” ICIC Express Letters-An International Journal of Research and Surveys, vol. 12, no. 6, pp. 615-620,

2018.

[26] R. Kumar, et al., “Durability Challenges in Software Engineering,” CrossTalk-The Journal of Defense Software

Engineering, pp. 29-31, 2016.

[27] R. Kumar, et al., “Security Assessment through Fuzzy Delphi Analytic Hierarchy Process,” ICIC Express Letters-

An International Journal of Research and Surveys, vol. 12, no. 10, pp. 1053-1060, 2018.

[28] K. Sahu and R. Shree, “Helpful and Defending Actions in Software Risk Management: A Security Viewpoint,”

Integrated Journal of British, vol. 2, pp. 1-7, 2015.

[29] A. K. Pandey, et al., “A Framework for Producing Effective and Efficient Secure Code through Malware Analysis,”

International Journal of Advanced Computer Science and Applications, vol. 11, no. 2, pp. 497-503, 2020.

[30] R. Kumar, et al., “Revisiting Software Security: Durability Perspective,” International Journal of Hybrid

Information Technology, vol. 8, no. 2, pp. 311-322, 2015.

[31] S. A. Khan, et al., “Evaluating Performance of Software Durability through an Integrated Fuzzy-Based

Symmetrical Method of ANP and TOPSIS,” Symmetry, vol. 12, no. 4, pp. 493-507, 2020.

[32] R. Kumar, et al., “Revisiting Software Security Risks,” British Journal of Mathematics & Computer Science,

vol. 11, no. 6, pp. 1-10, 2015.

[33] R. Kumar, et al., “Software Security Testing: A Pertinent Framework,” Journal of Global Research in Computer

Science, vol. 5, no. 3, pp. 23-27, 2014.

[34] R. Kumar, et al., “Software Security Durability,” International Journal of Computer Science and Technology,

vol. 5, no. 2, pp. 23-26, 2014.

[35] W. Schwittek, et al., “A common body of knowledge for engineering secure software and services,” in 2012

Seventh International Conference on Availability, Reliability and Security, pp. 499-506, 2012.

[36] R. Kumar, et al., “Durable Security in Software Development: Needs and Importance,” CSI Communication,

vol. 39, no. 7, pp. 34-36, 2015.

[37] R. Kumar, et al., “Modern Security Challenges,” International Journal of Innovations & Advancement in Computer

Science, vol. 5, no. 4, pp. 67-72, 2016.

[38] A. Agrawal, et al., “Security durability assessment through Fuzzy Analytic Hierarchy process,” PeerJ Computer

Science, pp. 1-44, 2019.

BIOGRAPHY OF AUTHOR

Dr. Mamdouh Alenezi is currently the Dean of Educational Services at Prince Sultan

University. Dr. Alenezi received his MS and Ph.D. degrees from DePaul University and North

Dakota State University in 2011 and 2014, respectively. Dr. Alenezi is an associate professor in

software engineering with the teaching emphasis on software engineering and software security.

He participates in organizing several international scientific conferences and editorial boards of

the well-reputed journals. He has extensive experience in applying data mining and machine

learning techniques to solve software engineering problems. He published more than 80 papers.

He conducted several research areas and development of predictive models using machine

learning to predict fault-prone classes, comprehend source code, and predict the appropriate

developer to be assigned to a newly reported bug. His research focuses on Software Engineering,

Software Security, Machine Learning, and Open Source Software Systems.

