
International Journal of Electrical and Computer Engineering (IJECE)

Vol.8, No.6, December 2018, pp. 4321~4333

ISSN: 2088-8708, DOI: 10.11591/ijece.v8i6.pp4321-4333 4321

Journal homepage: http://iaescore.com/journals/index.php/IJECE

The Improved Hybrid Algorithm for the Atheer and

Berry-ravindran Algorithms

Atheer Akram Abdul Razzaq1, Nur’Aini Abdul Rashid2, Alaa Ahmed Abbood3, Zurinahni Zainol4
1,3Businesses Informatics College, University of Information Technology and Communications, Iraq

2College of Computer & Information Sciences, Princess Nourahbint Abdulrahman University, Saudi Arabia
4School of Computer Sciences, University Saints Malaysia, Malaysia

Article Info ABSTRACT

Article history:

Received Aug 26, 2017

Revised Jul 12, 2018

Accepted Jul 26, 2018

 Exact String matching considers is one of the important ways in solving the

basic problems in computer science. This research proposed a hybrid exact

string matching algorithm called E-Atheer. This algorithm depended on good

features; searching and shifting techniques in the Atheer and Berry-

Ravindran algorithms, respectively. The proposed algorithm showed better

performance in number of attempts and character comparisons compared to

the original and recent and standard algorithms. E-Atheer algorithm used

several types of databases, which are DNA, Protein, XML, Pitch, English,

and Source. The best performancein the number of attempts is when the

algorithm is executed using the pitch dataset. The worst performance is when

it is used with DNA dataset. The best and worst databases in the number of

character comparisons with the E-Atheer algorithm are the Source and DNA

databases, respectively.

Keyword:

E-Atheer algorithm

Exact string matching

algorithms

Type of database

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Atheer Akram Abdul Razzaq,

Businesses Informatics College,

University of Information Technology and Communications,

Al-Nidhal Street, Baghdad, Iraq.

Email: athproof@uoitc.edu.iq

1. INTRODUCTION

String matching is the process of identifying all occurrences of alignments by comparing two finite-

length strings [1]. String matching is among the most important problems applied in many computer science

applications, such as web search engines [2], operating systems, compilers, command interpreters [3],

intrusion detection systems [4], information retrieval and artificial intelligence [5]. String matching involves

a matching process involving patterns and texts to identify the identical characters between them. The

matching character comparisons, and the number of attempts; these factors are changeable depending on the

type of algorithm used [6], [7].

Permanent challenges require the use of the most efficient string matching algorithms with

increasing memory size and computer speed [8], [9]. Thus, string matching algorithms have been recently

proposed to minimize these problems [10]. The hybrid string matching algorithm is the appropriate solution

to mitigate disadvantages of original string matching algorithms [11]. The proposed algorithm in this paper

depends on the good advantages of two exact string matching algorithms which are (Atheer and

Berry-ravindran) and decreasing the disadvantages of them. All types of databases in benchmark standard are

used in this research to find the suited and unsuited databases with proposed algorithm. The objective of this

research overcome the weaknesses and improves the performance of exact string matching algorithms.

The original algorithms: Two original algorithms were used as referenced in this research, which are

Atheer and Berry-Ravindran algorithms. Atheer algorithm is a hybrid algorithm of three algorithms which

are Raita, Smith, and Karp-Rabin [3]. There are three functions preprocessing of the Atheer algorithm which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/329119576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4322

are, the BM bad character (bmBc) function, the quick search bad character (qsBc) function and the hashing

function. In the searching phase of the Atheer algorithm, all the comparison steps depending on the hash

process which were derived from the Karp-Rabin algorithm. The comparison technique start between the

hash values of the three characters (rightmost, leftmost, and middle) in the pattern with the hashing value of

the three characters in the text window. If matching occurs between them, then one by one these three

characters of the text window versus the three characters of the pattern will be compared. When matching

occurs, then comparison starts in the remaining characters, but without comparing the middle character again.

When a matching or mismatching occurs, the shifting of the pattern would depend on the maximum value

between the m value in the bmBc table and on the m+1 value in the qsBc table.

The Berry-ravindran algorithm is a hybrid approach and is characterized by left-right character

comparisons [12]. This algorithm is a hybrid of the Zhu-takaoka and Quick-search algorithms and has two

phases, namely, preprocessing and searching. The preprocessing phase of this algorithm depends on the

Berry-ravindran bad character (brBc) function. The searching phase of the Berry-Ravindran algorithm has

left-right character movements. This algorithm depends on the shifting operation of the next two characters in

the text window, which depends on the m+1 and m+2 of the text window. The shifting value is obtained from

the brBc table in the preprocessing phase. The comparison process starts from the leftmost character in the

pattern with the leftmost character in the text window. If a match is found, the comparison will continue to

another character until all characters are matched. When a matching or mismatching occurs, the shifting

depends on the next two characters of the text window (m+1 and m+2) and the obtained value from the brBc

table in the preprocessing phase.

2. PROPOSED E-ATHEER ALGORITHM

The proposed E-Atheer algorithm consists of two phases, namely, the preprocessing phase and

searching phase.

2.1. Preprocessing Phase

The preprocessing phase contains the techniques selected from the Atheer and Berry-Ravindran

algorithms. These techniques are regulated in functions to obtain the exact string matching of the E-Atheer

algorithm. These functions are presented as follows:

a) Boyer-moore Bad Character (Bmbc) Function

The technique selected from this function is similar to that in the preprocessing phase of the Atheer

algorithm. The main purpose of using the bmBc table in this function is to determine and choose the best

shifting for each character in the matching operation as shown in Lines 21–26, Figure 1. The form of the

bmBc function is defined by the equation below.

min {i: 1 ≤ i < m −1 and x [m−1−i] =c}

if c occurs in x,

bmBc [c] (1)

m otherwise

b) Berry-ravindran Bad Character (Brbc) Function

 The technique in this function is selected from the Berry-Ravindran algorithm. The main purpose

of using the brBc table in this function is to determine and choose the maximum value in the shifting process

as shown in Lines 5-19, Figure 1. The form of the brBc function is defined by the equation below. The main

text format consists of a flat left-right.

1 if P [m−1] = u,

m – i + 1 if P[i] P[i+1] = uv, (2)
m + 1 if P [0] = v,

m + 2 otherwise.

brBc [u, v] = min

c) Hashing Function

This function is derived from the Atheer algorithm and the hashing technique of E-Atheer

algorithm, which is similar to the hashing technique of the Atheer algorithm. The proposed hybrid algorithm

uses the (Fh) and (Fhw) symbols for first hashing step in pattern and first hashing step in the text window,

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4323

respectively. It uses the (Sh) symbol for second hashing and (Th) for third hashing steps in the pattern as

shown in Lines 28–34; Figure 1. The hashing value is calculated using the following equations:

First hashing step: (wF [0, m ∕ 2, m-1]) = (wF [0] ×2u-1 +wF [m/2] × 2u-2 +wF [m -1] ×20) mod q (3)

Second hashing step: (wS [1… m ∕ 2-1]) = (wS [1] × 2u-1 +wS [2] × 2u-2 + ...+ wS [m ∕ 2-1] ×20) mod q (4)

Third hashing step: (wT [m ∕ 2+1... m -2]) = (wT [m ∕ 2+1] ×2u-1+ wT [m ∕ 2+2]×2u-2 +...+ wT [m-2]

×20) mod q (5)

Figure 1. Preprocessing phase in the E-Atheer algorithm

2.2. Searching Phase

The searching phase technique in the E-Atheer algorithm depends on the searching phase techniques

of the Atheer and Berry-Ravindran algorithms and on some of the modulations obtained during the matching

operation. In the first step, the hash values of the three characters in pattern (Fh) are compared with the hash

values of the three characters (Fhw) in the text window. If a match is obtained between the hashing values,

the remaining three characters in the text window and the remaining three characters in the pattern will be

compared. If a match is obtained between these characters, the second step will be conducted as shown in

Line 11; Figure 2. However, if a mismatch is obtained in the hashing comparison or in the character

comparison, the new shift of this algorithm will depend on the maximum value of m from the bmBc table and

the (m+1 and m+2) values from the brBc table as shown in Line 24; Figure 2. The m refers to the last

character in the text window, the m+1 is the first character after the text window, and m+2 is the second

character after the text window. The rehash function is then used to calculate the three characters of the new

text window after the shift as shown in Line 26; Figure 2.

1. Algorithm E-Atheer(X [0 …..m−1]
2. //Input: Pattern X
3. //Output: Shift tables of (bmBc), (brBc) and compute the hush values.
4. //prebrBc (preprocessing Berry-Ravindran bad-character function)
5. brBc[ASIZE][ASIZE] //2D array to keep shift values
6. For k← 0 to ASIZE Do
7. For j ← 0 to ASIZE Do
8. brBc[k][j] ←m+2
9. End For
10. End For
11. For k←0 to ASIZE Do
12. brBc[k][x[0]]← m +1
13. End For
14. For i ←0 to m−2 Do
15. brBc[x[i]][x[i+1]] ←m − i
16. End For
17. For k ←0 to ASIZE Do
18. brBc[x[m−1]][k] ←1
19. End For
20. //prebmBc (preprocessingBoyer-Moore bad-character function)
21. For j ←0 to size of alphabet Do

22. bmBc[j] ←m

23. End For

24. For j ←0 to m−2 Do

25. bmBc [X[j]]← m− j−1

26. End For
27. // Compute the hush values h = d^S−1 mod q
28. For i← w to S−1 Do
29. hy←(hy<<1)+y[i]
30. End For
31. firstCh←x[0], secondCh ← x+1, middleCh ← x[m/2], lastCh←[m−1]
32. // Hash values of all steps in pattern and the first three characters in text window
33. fhx← (fhx<<1) + firstCh, fhx ← (fhx<<1) + middleCh, fhx←(fhx<<1) + lastCh
34. fhy← (fhy<<1) + y[0], fhy ← (fhy<<1) + y[m/2], fhy ← (fhy<<1) + y[m−1]

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4324

Figure 2. Searching phase in the E-Atheer algorithm

In the second step, when a match is obtained in the first step, the hashing from the second to

 middle -1 characters in the text window (denoted by Shw) is calculated and is compared with the hashing

characters (Sh) in the pattern. If a match is obtained, the comparison of characters between will continue

(Lines 12 and 14, as shown in Figure 2. If another match is obtained between the characters, the third step

will commence. If a mismatch is obtained between the characters, the shift will depend on the same

technique mentioned in the previous step as shown in Line 24; Figure 2 and the rehash function will be used.

In the third step, when a match is obtained in the second step, the hashing from the middle +1 to last −1

characters in the text window (denoted by (Thw)) is calculated and is compared with the hashing characters

(Th) in the pattern. If a match is obtained, the comparison of the characters between the characters will

continue as shown in Lines 15 and 17; Figure 2. If a match or a mismatch is obtained between the characters,

the shift will depend on the same technique mentioned on the previous steps as shown in Line 24; Figure 2

and the last step (i.e., the rehash function) will commence.

3. PROPOSED ALGORITHM ANALYSIS

Preprocessing of the proposed algorithm has three functions which are brBc, bmBc and hash

function. The time complexity of brBc function is denoted as O (m+σ2), the bmBc function is denoted as O

(m+σ) and hash function is denoted as O (m). The space and time complexity of the preprocessing phase of

the proposed algorithm is denoted as O (m+σ2). The time complexity of the searching phase explains in the

following section. Lemma.3.1 The time complexity of the searching phase is O (n/(m+2)) in the best case.

Proof. In each attempt, if any character does not happen in the pattern during the matching process, then the

shifting process will depend on maximum value between m from bmBc and (m+1 and m+2) from brBc

functions that calculated in the preprocessing phase. The best case occurs when all characters in the pattern

totally different than those in the text window, then the shifting will depend on m+2 and the time complexity

will be O (n/(m+2)).

For example: Text: yyyyyyyyyyyyyyyy

 Pattern: xxxx

Lemma.3.2 The time complexity of the searching phase is O (n × m) in the worst case.

Proof. In the matching process every character in the text does not occur more than m times and all

the character comparisons for n characters of the text cannot be greater than n × m. The worst case happens if

all the characters in the pattern are same with those in the text window in every attempt. Then the shifting

1. Algorithm E-Atheer (X [0 …..m−1], Y [0…….n−1])
2. //Input: Pattern X, Text Y
3. //Output: number of attempts and number of character comparisons of pattern with text
4. If (m%2 == 0) Then
5. par ← 1
6. End If
7. j ←0
8. While j <= n − m Do
9. c ← y[j + m − 1]
10. // Comparing the Fh and Fhw
11. If (fhx == fhy&&lastCh == c &&firstCh == y[j]&&middleCh ==y[j + m/2]) Then
12. shfy← gethy(j + 1, j + m/2, y) //calculate the hash of (Shw)
13. // Comparing the Sh and Shw
14. If (shfx == shfy&& match(x + 1, m/2−1, y, j + 1, &temp) == 1) Then
15. shly← gethy(j+m/2+1, j + m−1, y) // calculate the hash of (Thw)
16. // Comparing the Th and Thw
17. If(shlx == shly&& match(x + m/2 + 1, m/2−1-par, y, j + m/2+ 1, &temp) ==)Then
18. Count //The first occurrence of the pattern in the text
19. EndIf
20. EndIf
21. EndIf
22. Output the first attempt and character comparisons
23. //shifting//
24. j +=max(brBc[y [j + m]][y[j+m+1]],bmBc[y[j + m−1]])
25. // Rehash operation for the text window
26. fhy← 0,fhy ← (fhy<<1) + y[j],fhy ← (fhy<<1) + y[j+m/2],fhy← (fhy<<1) + y[j+m−1]
27. End While

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4325

will be one and the time complexity will be O (n × m).

For example: Text: yyyyyyyyyyyyyyyy

Pattern: yyyy

In this algorithm cannot accurately determine the average time complexity because of its

dependence on the alphabet size of characters and the possibility of the appearance of each character

individually in the text.

4. EXPERIMENTAL DESIGN AND EVALUATION OF STUDY OUTCOMES

The proposed algorithm design depended on selecting the good features of original algorithms,

which are the hash and bmBc functions from Atheer algorithm and brBc function from Berry-Ravindran

algorithm. The proposed algorithm used all types of benchmark standard databases and the results of E-

Atheer compared to results of the original and recent and standard algorithms.

4.1. Databases

This study investigates the differences in the performance and properties of several exact string

matching algorithms when different types of databases are used (200 MB data size). The benchmark standard

of databases deals with common types of data, such as DNA, Protein, XML Pitch, English text, and Source

code. These datasets were downloaded from the Pizza & Chili Corpus Web site

(http://pizzachili.dcc.uchile.cl/ (Pizza Chili Corpus). Two pattern lengths were used in this study: the short

pattern length, which ranged from 4 characters to 28 characters, and the long pattern length (length power of

two), which ranged from 2^5 characters to 2^10 characters [13], [14]. The DNA data sequence is composed of

four nucleotides, namely, Adenine, Guanine, Cytosine, and Thiamin, and these types are encoded as A, G, C,

and T respectively.

The Gutenberg project is included in this database [15], [16]. The Proteins are necessary to the

structure and function of the cells of an organism. The Protein data sequence is composed of 20 amino acids

arranged in a linear series and encoded using uppercase letters [17], [18]. The databases were obtained from

the Swiss-Prot database. The XML structure database contains the bibliographic information of computer

sciences. The Pitch (Midi Pitch values) database contains tuning data used in digital music [19], [20]. The

English text database uses all the characters in the English alphabet. The Gutenberg project has established

this database [15]. The Source program code database is composed of all the characters used in the C and

Java languages [21].

4.2. Implementation and Environment

This experiment was conducted using the Biruni cluster in the School of Computer Sciences at USM

(biruni.cs.usm.my). The operating system used was Ubuntu Linux 10.04 and the compiler used was GCC

v4.4.3. This study showed that the hybrid algorithm was “best in performance” as the result of the hybrid

algorithm was better than those of the original algorithms. The tables of evaluation for each hybrid algorithm

were arranged based on the best result and followed by the other algorithms. The algorithms were then

ranked as “first,” “second,” or “third,” In the evaluation the performance of the hybrid algorithm in various

types of databases, the results are regarded as “best” when the hybrid algorithm performed better in specific

databases compared with the other algorithms, whereas “worst” refers to the poorest performance of the

hybrid algorithm for that database. When the hybrid or other algorithms obtained the best performance in all

types of databases, then “all databases” isused, whereas when the hybrid or other algorithms obtained the best

performance in almost all databases, “most databases” is used. To clarify the results in the figures in number

of attempts, the proposed hybrid algorithms show only (10000) display units compared with the original

algorithm. Compared with the recent and standard algorithms, the proposed algorithm has a logarithmic scale

and base of (10), display units of (10000), and minimum number of (100000). In number of character

comparisons, the proposed hybrid algorithm has a logarithmic scale and base of (10) and display units of

(10000) compared with the original, standard, and recent algorithms.

5. RESULTS AND DISCUSION

The results of E-Atheer algorithm compared with those of the original algorithms in first step and

then with those of the recent and standard algorithms in second step. Number of attempts and number of

character comparisons considered the main factors that used in this study. The databases used in this study

are DNA, Protein, XML, Pitch, English, and Source. The size of data is 200 MB. Two pattern lengths were

used, which are short (4 to 28) and long that depends on the length power of two (2^5 to 2^10).

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4326

5.1. Evaluation and Results Analysis of the E-Atheer Algorithm and the Original

The E-Atheer algorithm obtains the best results compared with the Berry-Ravindran and Atheer

algorithms in both short and long patterns. The Pitch database shows the best results in number of attempts

when using short and long patterns, whereas the DNA database show the worst results as shown in

Figures 3 and 4. The E-Atheer algorithm obtains the best results compared with the Atheer and

Berry-ravindran algorithms in both short and long patterns. The Source database shows the best results in

number of character comparisons when using short and long patterns, whereas the DNA database shows the

worst results as shown in Figures 5 and 6.

Figure 3. Number of attempts for E-Atheer compared with the original algorithms when using a short pattern

and a 200 MB data size

Figure 4. Number of attempts for E-Atheer compared with the original algorithms when using a long pattern

and a 200 MB data size

0

2000

4000

6000

8000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

DNA

BR AT E-AT

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Protein

BR AT E-AT

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

XML

BR AT E-AT

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Pitch

BR AT E-AT

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

English

BR AT E-AT

0

1000

2000

3000

4000

5000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Source

BR AT E-AT

0

2000

4000

6000

8000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

DNA

BR AT E-AT

0

500

1000

1500

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Protein

BR AT E-AT

0

200

400

600

800

1000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

XML

BR AT E-AT

0

200

400

600

800

1000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Pitch

BR AT E-AT

0

200

400

600

800

1000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

English

BR AT E-AT

0

200

400

600

800

1000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Source

BR AT E-AT

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4327

Figure 5. Number of character comparisons for E-Atheer compared with the original algorithms when using

a short pattern and a 200 MB data size

Figure 6. Number of character comparisons for E-Atheer compared with the original algorithms when using

a long pattern and a 200 MB data size

5.2. Evaluation and Results Analysis of the E-Atheer Algorithm and Recent and Standard Algorithms

The E-Atheer algorithm considered the best algorithm in all types of databases when using short

pattern except when using DNA it was the second best. The Maximum shift algorithm is the best algorithm in

all databases when using long pattern and followed by the E-Atheer algorithm except when using Pitch

database it is the best with E-Atheer. The Two-way algorithm is the worst algorithm in short and long pattern

lengths as shown in Figures 7 and 8.

The E-Atheer algorithm considered the best algorithm in all databases when using short pattern,

while AKRAM is the best algorithm in all databases and E-Atheer is the second best algorithm using long

pattern length in all databases except XML the E-Atheer and AKRAM are the best. The Two-way is the

worst algorithm in short and long pattern lengths as shown in Figures 9 and 10.

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

DNA

BR AT E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

Protein

BR AT E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

XML

BR AT E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

Pitch

BR AT E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

English

BR AT E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

Source

BR AT E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

DNA

BR AT E-AT

0.0001

0.01

1

100

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

pattern length

Protein

BR AT E-AT

0.0001

0.01

1

100

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

XML

BR AT E-AT

0.0001

0.01

1

100

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

Pitch

BR AT E-AT

0.0001

0.01

1

100

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

English

BR AT E-AT

0.0001

0.01

1

100

32 64 128 256 512 1024

N
u

m
b

er
 o

f
ch

ar
ac

te
r

co
m

p
ar

is
o

n
s

x
1

0
0

0
0

Pattern length

Source

BR AT E-AT

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4328

Figure 7. Number of attempts for E-Atheer compared with recent and standard algorithms when using

a short pattern and a 200 MB data size

Figure 8. Number of attempts for E-Atheer compared with recent and standard algorithms when using

a long pattern and a 200 MB data size

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

DNA

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Protein

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

XML

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Pitch

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

English

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Source

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

DNA

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Protein

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

XML

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Pitch

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

English

H QS T-W FS SS TV AK MS E-AT

10

100

1000

10000

100000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

at
te

m
p

ts
x

1
0

0
0

0

Pattern length

Source

H QS T-W FS SS TV AK MS E-AT

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4329

Figure 9. Number of character comparisons for E-Atheer against recent and standard algorithms when using

a short pattern and a 200 MB data size

Figure 10. Number of character comparisons for E-Atheer against recent and standard algorithms when using

a long pattern and a 200 MB data size

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

x
1

0
0

0
0

Pattern length

DNA

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

x
1

0
0

0
0

Pattern length

Protein

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

XML

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

Pitch

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

English

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

4 8 12 16 20 24 28

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

Source

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

DNA

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

x
1

0
0

0
0

pattern length

Protein

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

x
1

0
0

0
0

Pattern length

XML

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

Pitch

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s

x
1

0
0

0
0

Pattern length

English

H QS T-W FS SS TV AK MS E-AT

0.0001

0.01

1

100

10000

32 64 128 256 512 1024

N
u

m
b

e
r

o
f

ch
ar

ac
te

r
co

m
p

ar
is

o
n

s
x

1
0

0
0

0

Pattern length

Source

H QS T-W FS SS TV AK MS E-AT

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4330

5.3. Evaluation of the E-Atheer Algorithm Compared with the Original Algorithms

The performance results of the E-Atheer algorithm and the original algorithms are compared in

terms of the number of attempts and the number of character comparisons in both short and long patterns

with different data types and sizes. Table 1 shows comparison of the results of the e-atheer and original

algorithms.

Table 1. Comparison of the Results of the e-atheer and Original Algorithms

Algorithms
Data size (200MB)

Short Long

Best performance in Number of attempts

Berry-Ravindran Second Second

Atheer Third Third

E-Atheer First First

Best performance in Number of character comparisons

Berry-Ravindran Third Third

Atheer Second Second

E-Atheer First First

The E-Atheer algorithm obtains the best results in terms of the number of attempts made because it

depends on the best shifting function from the maximum value of brBc and bmBc. The E-Atheer algorithm

obtains the lowest number of character comparisons because it relies on the hash function, thus simplifying

the character comparison between patterns and texts [22]. The best shifting functions also help reduce the

number of character comparisons as shown in Table 1. Table 2 shows performance of the e-atheer algorithm

in different database types.

Table 2. Performance of the e-atheer Algorithm in Different Database Types

Performance

Databases

Data size 200 MB

Pattern length Short Long

Attempts
Best Pitch Pitch

Worst DNA DNA

Character comparisons
Best Source Source

Worst DNA DNA

The E-Atheer algorithm obtains the fewest number of attempts in the Pitch database because this

algorithm depends on two good functions, namely, hash and bmBc, in the Atheer algorithm [3]; these

functions are considered efficient when employed in the Pitch database [23]. Pitch data contain a high

percentage of numbers because the data are encoded as MIDI pitch numbers in computer applications

[24], [25]. The hash function also uses integer numbers and the bmBc function, which is considered a good

shifting function that helps reduce the number of attempts.

The E-Atheer algorithm obtains the lowest number of character comparisons in the Source code

because it relies on the efficiency of the Atheer technique. The Source database also benefits from this

technique. The two algorithms use the hash function in databases with large alphabet sizes to produce large

hash values, thus reducing the probability of character comparison. The E-Atheer and Atheer algorithms

show the highest number of attempts and character comparisons in the DNA database as shown in Table 2.

5.4. Evaluation of the E-Atheer Algorithm Compared With Recent and Standard Algorithms

The performance results of the E-Atheer algorithm and the recent and standard algorithms were

compared in terms of the number of attempts and character comparisons using short and long patterns, with

different data types and sizes. The standard and recent algorithms employed in this study are Horspool,

Quick-search, Two-way, Fast search, SSABS, TVSBS, AKRAM, and Maximum shift. Table 3 shows

comparison of the results between the e-atheer algorithm and recent and standard algorithms.

The E-Atheer algorithm obtains the fewest number of attempts when using short patterns because

this algorithm depends on the efficient shifting functions (bmBc and brBc) of the Atheer algorithm. The

Maximum shift algorithm shows the fewest number of attempts because this algorithm relies on the efficient

functions of (ztBc) and (qsBc) in long patterns [26]. The E-Atheer algorithm obtains the lowest number of

character comparisons when using short patterns because this algorithm depends on the useful technique of

the Atheer algorithm in comparing characters. If a mismatch is obtained in the second step, the loss will only

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4331

involve three characters because the first step depends on three characters only [3]. The AKRAM algorithm

also obtains the lowest number of character comparisons in long patterns because the high hash value in long

patterns reduces the mismatch probability [27]. The Two-way algorithm shows the worst results in terms of

the number of attempts and character comparisons because this algorithm depends on the factorization

technique [8] as shown in Table 3. Table 4 shows ranking of the e-atheer algorithm in different data types.

Table 3. Comparison of the Results between the e-atheer Algorithm and recent and Standard Algorithms

Algorithms
Data size (200MB)

Short Long

Number of attempts

Best algorithm
E-Atheer

(most databases)

Maximum shift

(all databases)

Worst algorithm
Two-way

(all databases)

Two-way

(all databases)

Number of character comparisons

Best algorithm
E-Atheer

(all databases)

AKRAM

(all databases)

Worst algorithm
Two-way

(all databases)

Two-way

(all databases)

The E-Atheer algorithm ranks first in most data types and sizes when short patterns are used in

terms of the number of attempts performed. This algorithm ranks second in most databases when using long

patterns. For the number of character comparisons, the E-Atheer algorithm ranks first in all databases with

different sizes when short patterns are used. The E-Atheer algorithm ranks second in most databases when

long patterns are used as shown in Table 4.

Table 4. Ranking of the e-atheer Algorithm in Different Data Types

Databases
Ranking of E-Atheer algorithm

Pattern length Data size 200 MB

Attempts

Short First in all databases (but second in DNA)

Long
First in Pitch, Second in DNA, Protein, XML,

English & Source

Character

comparisons

Short First in all databases

Long
 First in XML, Second in DNA, Protein, Pitch,

English & Source

6. CONCLUSION

The E-Atheer algorithm obtains the best results in terms of the number of attempts compared with

the original algorithms when short and long pattern lengths are used. The algorithm rank first in short

patterns compared with the recent and standard algorithms and rank second in some of data types when long

patterns are used. For the number of character comparisons, the proposed algorithm show the best results

compared with the original algorithms in short and long pattern lengths. The improved algorithm also

performs better than the recent and standard algorithms in short pattern lengths, while it ranks second in long

patterns. The Pitch database shows the best performance in the number of attempts with the proposed

algorithm, whereas the DNA database performs the worst. The best and worst databases in the number of

character comparisons with the E-Atheer algorithm are the Source and DNA databases, respectively.

REFERENCES
[1] S. Faro and T. Lecroq, “The Exact Online String Matching Problem: a Review of the Most Recent Results”, ACM

computing survey, vol. 45(2), pp.1-42, 2013.

[2] B. Leonardo and S. Hansun, "Text Documents Plagiarism Detection using Rabin-Karp and Jaro-Winkler Distance

Algorithms", Indonesian Journal of Electrical Engineering and Computer Science (ijeecs), Vol. 5(2), pp. 462 -

471,2017.

[3] A.A. Abdul Razzaq, et al., “A New Efficient Hybrid Exact String Matching Algorithm and Its Applications”, Life

Science Journal (Life Sci J), vol. 11(10), pp.474-488, 2014.

[4] A.A. Hasan and N.A. Rashid, “Hybrid Exact String Matching Algorithm for Intrusion Detection System,

Proceedings of the Second International Conference on Communications and Information Technology, ICCIT

2012, 2012.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 : 4321 - 4333

4332

[5] A.A. Abdul Razzaq, et al., “Influenced Factors on Computation Among Quick Search, Two-Way and Karp-Rabin

Algorithms”, Proceeding of the 3rd International Conference on Informatics and Technology, Informatics '09, pp.

100-106, 2009.

[6] T. Lecroq, “Experimental Results on String Matching Algorithms”, Software-Practice and Experience, vol. l (25),

pp. 727–765, 1995.

[7] I. Hussain, et al., “Improved-Bidirectional Exact Pattern Matching”, International Journal of Scientific &

Engineering Research, vol. 4 (5), pp.659-663, 2013.

[8] C. Charras and T. Lecroq, “Handbook of Exact String Matching algorithms”, King’s College Publications, 2004.

[9] V. Radhakrishna, et al., “A Two Way Pattern Matching Algorithm Using Sliding Patterns”, 3rd International

Conference on Advanced Computer Theory and Engineering, ICACTE,2010.

[10] M. Zubair, et al., “Improved Text Scanning Approach for Exact String matching”, International Conference on

Information and Emerging Technologie, ICIET. pp. 1-5, 2010.

[11] M.A S. Naser, et al., “Quick-Skip Search Hybrid Algorithm for the Exact String Matching Problem”, International

Journal of Computer Theory and Engineering, vol. 4(2), pp.259-265, 2012.

[12] T. Berry and S.A. Ravindran, “fast string matching algorithm and experimental results”, In Proceedings of the

Prague Stringology Club Workshop`99, J. Holub and M. Simáneked, Collaborative, Report DC-99-05, pp. 1-17,

1999.

[13] Y. Huang, et al., “A Fast Improved Pattern Matching Algorithm for Biological Sequences”, International

Symposium on Computational Intelligence and Design, ISCID '08, IEEE, pp. 8-12, 2008.

[14] G. Cai, et al., “A Fast Hybrid Pattern Matching Algorithm for Biological Sequences”, Proceedings of 2nd

International Conference on Biomedical Engineering and Informatics, BMEI '09, pp. 1-5, 2009.

[15] J. Karkkainen and C.N. Joong, “Faster Filters for Approximate String Matching”, Proceedings of the Nine

Workshop on Algorithm Engineering and Experiments, ALENEX, pp. 84-90,2009.

[16] K. Saputra, et al., "Fuzzy-based Spectral Alignment for Correcting DNA Sequence from Next Generation

Sequencer", TELKOMNIKA, Vol. 14(2), pp. 707-714, 2016.

[17] A.F. Klaib and H. Osborne, “BRQS Matching Algorithm for Searching Protein Sequence Databases”, Proceedings

of the 2009 International Conference on Future Computer and Communication, ICFCC '09 IEEE, pp. 223-226,

2009.

[18] V. Kurt, “Protein Structure Prediction using Decision Lists”, M.Sc. Thesis, Dept, Computational Sciences and

Engineering, Koç University, İstanbul, Turkey, 2005.

[19] E. Chew and Y.C. Chen, “Mapping Midi to the Spiral Array: Disambiguating Pitch Spellings”, In H. K. Bhargava

and Nong Ye, eds. Computational Modeling and Problem Solving in the Networked World, Proceedings of the 8th

INFORMS Computer Society Conference, ICS2003, pp. 1-17, 2003.

[20] J. Doherty, et al., "Streaming Audio Using MPEG–7 Audio Spectrum Envelope to Enable Self-similarity within

Polyphonic Audio", TELKOMNIKA, Vol. 15(1), pp. 190-202, 2017.

[21] P. Ferragina and J. Fischer, “Suffix Arrays on Words. In: Bin Ma, Kaizhong Zhang (eds.)”, Proceedings of the 18th

Annual Symposium on Combinatorial Pattern Matching, CPM’07, pp. 328-339, 2007.

[22] R.A. Deighton, “Using Rabin-Karp fingerprints and LevelDB for faster searches”, M.Sc. Thesis, Dept, Department

of Computer Science, University of Ontario Institute of Technology (UOIT), Oshawa, Canada, 2012.

[23] R. Nidadavolu, “Content-based Retrieval of Music Using Monophonic Queries on a Database of Polyphonic”,

MIDI Information. ProQuest information and learning company, 2008.

[24] E.Cambouropoulos, “Automatic pitch spelling: From numbers to sharps and flats”, In VIII Brazilian Symposium on

Computer Music SBC&M, 2001.

[25] A. Honingh, “Pitch spelling: Investigating reductions of the search space”, Proceedings SMC'07, 4th Sound and

Music Computing Conference, 2007.

[26] H.A. Kadhim, “New Sequential and Gpu-Based Hybrid String Matching Algorithms”, M.Sc. Thesis, Dept,

Computer Science School, University Science Malaysia (USM), Penang, Malaysia, 2012.

[27] A.A. Abdul Rozaq, “Fast Hybrid String Matching Algorithm Using Message Passing Programming Model”, M.Sc.

Thesis, Dept, Computer Science School, University Science Malaysia (USM), Penang, Malaysia, 2009.

BIOGRAPHIES OF AUTHORS

Dr. Atheer Akram Abdul Razzaq was born in Baghdad, Iraq. He got his bachelor from Al

Mustansiriya University, Iraq in 2006. He got his M.Sc. from Universiti Sains Malaysia in 2009.

He got his Ph.D in High performance computing (Parallel tools and applications) in 2014,

School of Computer Sciences, Universiti Sains Malaysia. He is currently a senior lecturer at the

Businesses Informatics College, University of Information Technology and Communication,

Baghdad, Iraq. His main research area is High Performance Computing. His research interests

are in exact string matching algorithms, parallel and distributed processing, network security,

and data mining. Dr. Abdul Razzaq is Deputy Dean for Academic and Scientific Affairs in

Businesses Informatics College. He has published numerous papers in string matching, parallel

and distributed processing, network security, and genomic information Processing.

Int J Elec& Comp Eng ISSN: 2088-8708

The Improved Hybrid Algorithm for the Atheer and ... (Atheer Akram A.R.)

4333

Associate Prof. Dr. Nur’Aini Abdul Rashid was born in Singapore. She got her bachelor from

Mississippi State, U.S.A. She got her M.Sc. and PhD from Universiti Sains Malaysia. She was

with the School of Computer Sciences, University Saints Malaysia for more 25 years. Currently

she is an Associate Professor at Department of Computer Sciences in Princess Nourahbint

Abdulrahman University, Kingdom of Saudi Arabia. Her main research area is High

Performance Computational Biology. Her interest now is applying the parallel techniques to

genomic information retrieval and analysis, and biological big data mining. The method that she

is investigating is on shared memory platforms. The concentration is on parallel sequence

comparison and parallel graph-based clustering algorithms. Dr. Abdul Rashid was member in

Association of Computing Machinery (ACM) from 2002 to 2010, International Society of

Computational Biology from 2008 to 2009and MASBIC, Malaysian Bioinformatics from 2007

to2010. She has published more than 70 refereed paper in the field of Bioinformatics, String

matching and Information retrieval.

Dr. Alaa Ahmed Abbood Al-shammariwas born in Baghdad, Iraq. He got his bachelor from Al

Mustansiriya University, Iraq in 2007. He got his M.Sc. from Hamdard University, New Delhi,

Indai. He got his Ph.D in image processing (fingerprint classifications) in 2014, faculty of

computing, Universiti Teknolgi Malaysia (UTM), Johor Bahru, Malaysia. He is currently a

senior lecturer at the Businesses Informatics College, University of Information Technology and

Communication, Baghdad, Iraq. His main research area is Image Processing. His research

interests are in biometrics, human identifications, medical image enhancement and

segmentations, and data hiding. Dr. Alaa Al-Shammari is Head of Business Information

Technology Department in Businesses Informatics College. He has published numerous papers

in string biometrics system, medical image and steganography.

Associate Prof. Dr. Zurinahni Zainol was born in Kedah, Malaysia. She has Bachelor (Hons)

Computer Science from UITM-UKM, Malaysia, MSc (Artificial Intelligence) from Universiti

Sains Malaysia. She got her PhD from University of Hull, UK. She is an Associate Professor at

the School of Computer Sciences, University Saints Malaysia, Malaysia. Her research interests

are in the Data Modeling, XML Database Design, Information Retrieval in Multidisciplinary

such as in Education and Computational Biology. Dr. Zainol has published numerous papers in

XML database design, database integration for bioinformatics application and data modeling and

information retrieval in Education.

