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 Designing low power, low noise, wide tuning range and small size circuit in 
one single chip is very challenging. This paper describes alow power, wide 
tuning range three-stage current-controlled ring oscillator (CCO) which has 
been designedon 0.18µm CMOS technology. The CCO circuit has tuning 
range from 251 MHz to 5.5 GHz or it has tuning width 183%. Using 1.8V 
supply voltage, the CCO circuit consumes current from144 µA to 9.76mA. 
Phase noise is -104 dBc /Hz at 5.5 GHz and 4Mhz offset frequency.  FoM is 
-154.4 dBc /Hz which is the best among published counterpart papers. The 
size of the core oscillator circuits without bonding pads is only 0.0003 mm2. 
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1. INTRODUCTION 

Oscillator is a crucial component in phase-locked loop (PLL) and phase locked loop is one of the 
key elements in many communication devices and circuits. According on its controlling input, oscillator can 
be classified into two groups, voltage-controlled oscillator (VCO) and current-controlled oscillator (CCO) as 
shown in Fig. 1(a) and 1(b).Among the oscillator types, LC oscillator is widely used because it has better 
phase noise. However, LC oscillators have narrow tuning range and need large die area. Ring oscillatorsin 
the other hand provide wide tuning range, relatively constant voltage swing and low voltage operation [1], [2], 
[7]. These oscillators also require less die area compared with LC counterpart and can be built in any 
standard CMOS processes.  

Various topologies of ring oscillator circuits have been reported in the literatures. Among them, 
three-stage ring oscillator topology has been reported successfully in [8], [11] and [12]. This success makes 
three-stage topology very attractive. 

This paper presents the analysis and design of 5.5 GHz controlled oscillator in which its frequency 
varies linearly with its load current source or it can be written as a current controlled oscillator (CCO). 
Circuit architecture is described in Section II along with a simplified analysis for its frequency of oscillation. 
Section III presents oscillator design and post layout simulation results. Finally, Section IV concludes the 
paper. 
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Figure 2.Circuit of the 
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ure 1.A block diagram of a VCO (a) and CCO (b). 

 
Circuit of the proposed three-stage ring oscillator with current load

ure3.Simplified steady state oscillating waveforms. 
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2. CIRCUIT ARCHITECTURE
Fig. 2 shows general topology of the 

three-stage inverting ring oscillator
Current source can be implemented by using 

A simplified analysis of this circuit by u
NMOS assumed becomes short circuit when its gate
By this assumption,only one NMOS can 
identical or in other word they have same V
of each transistor as shown in Fig. 

It can be seen from the picture that
2T/3when the charging process in the capacitor
threshold voltage (VTH) and OFF when its gate voltage rea
period. Thus NMOS is ON in T/3 period. 
rises from zero to some point before V
V1 reach some point above VTH

output (V2) goes to ground. Thus, b
turning off which then the charging process of C2 is taking place. 
output is zero and it is turned off
rises from zero at a slope of I/C and 
mechanism, we can derive formulae 

THV
I

C
=T

3
  

Thus 

THCV

I
=f

3
  

It shows that frequency varies linearly with 
applications. The minimum supply voltage can be calculated by looking at the maximum output voltage 2V
added by the minimum operating voltage of the current source as below

( ) ITHDD V+= 2VminV  

whereVIis the minimum operating voltage of the current source
device as current source. It can be

In practice, steady state oscillating waveform cannot behave as ideal as sh
circuit needs a small duration (δ
resistance when turn on. Fig.4 illustrate

Figure4. Steady state waveforms when each NMOS has finite W and L
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CIRCUIT ARCHITECTURE 
general topology of the proposedcurrent-controlled ring oscillator

stage inverting ring oscillator [2]. Inverting stage consist of NMOS inverters driving a current source.
Current source can be implemented by using resistive load circuit. 

A simplified analysis of this circuit by using a switch model of NMOSis 
NMOS assumed becomes short circuit when its gate-source voltage VGS exceeds its threshold volta

NMOS can turn on at any given time. Assumed the three NMOS devices are 
they have same VTH, the total period T can be divided equally by the ON duration 

ch transistor as shown in Fig. 3. 
can be seen from the picture thatone NMOS can turnon for T/3period and 

process in the capacitor is taking place. An NMOS is ON when its gate voltage reach 
and OFF when its gate voltage reach 2VTH. Voltage rises from V

Thus NMOS is ON in T/3 period. For example, in the first T/3 periode when the output of M1 (V1) 
rises from zero to some point before VTH, the next transistor (M2) is still turned off. M2 is

TH.M2 is turned onuntilV1 reach 2VTHin T/3 period. When M2 
hus, because V2 supply the gate of M3, M3 change its state from 

charging process of C2 is taking place. Each transistor is turned on
it is turned off for another T/3 during charging time of output capacitor by

I/C and then turn on the next transistor in the ring. Therefore
formulae to obtain the period of the oscillation as follows 

      

      

cy varies linearly with current which is a desirable property for phase
applications. The minimum supply voltage can be calculated by looking at the maximum output voltage 2V
added by the minimum operating voltage of the current source as below 

       

is the minimum operating voltage of the current source that can be minimized by the use of PMOS 
. It can be as low as PMOS overdrive voltage. 

In practice, steady state oscillating waveform cannot behave as ideal as shown in Fig. 
δ ) for discharging each output capacitor since an NMOS cannot have ze

illustrates this behavior. 
 

Steady state waveforms when each NMOS has finite W and L
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controlled ring oscillator. It is based on a 
driving a current source. 

is provided by [5]. The 
exceeds its threshold voltage VTH. 

at any given time. Assumed the three NMOS devices are 
the total period T can be divided equally by the ON duration 

period and turn off for another 
NMOS is ON when its gate voltage reach 

oltage rises from VTHto 2VTHin T/3 
in the first T/3 periode when the output of M1 (V1) 

. M2 is turned on when 
in T/3 period. When M2 turn on, its 

ecause V2 supply the gate of M3, M3 change its state from turning on to 
turned on for T/3when its 

output capacitor byI.Thus,the output 
Therefore,based on this 

 (1) 

 (2) 

which is a desirable property for phase-locked 
applications. The minimum supply voltage can be calculated by looking at the maximum output voltage 2VTH 

 (3) 

can be minimized by the use of PMOS 

own in Fig. 3 because the 
) for discharging each output capacitor since an NMOS cannot have zero 

 
Steady state waveforms when each NMOS has finite W and L. 
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This behavior has an increasing effect on its period of oscillation (T), which is derived as follows.

C
VV LTH








 Ι−ΙΤ

+=
δ

3
 

C
VV THH 3

ΙΤ+=
 

 

where VL≈ 0 is the minimum drain voltage of an NMOS to carry current. The dynamic equation during this 
duration is derived as 

C

βt

dt

dv
C

2

22Ι−Ι=
 

 

where voltage at t = 0 to δ is VH 

By doing some integration and algebraic 
an exact formulae to determining T as given by

n
+)V(VC

T

LTH





−

=
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3. CIRCUITS DESIGN AND 
Fig.5 shows the core circuit 

the main inverting stage, while M4, M5, M6 
that commonly formed using NMOS static inverters are now replaced
consumption depends directly on the current. Hence, spike 
found in a static inverter has been
overdrive voltage that increases
connecting the gate to ground to obtain maximum current load. There is no capacitance used in order to get 
high frequency output, but there are parasitic capacitances at the output nodes that cannot be elim
which can reduce frequency output.

The chip is implemented in 0.18
The size of the core oscillator and digital control circuits include bonding pads is 0.09 mm
without bonding pads). This is noted as the smallest chip area compared
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an increasing effect on its period of oscillation (T), which is derived as follows.

       

      

m drain voltage of an NMOS to carry current. The dynamic equation during this 

      

 and VTH, while 
L

W
Cµ= oxnβ  

By doing some integration and algebraic manipulation at the above equations
an exact formulae to determining T as given by 

I

m
+
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+

m
+

n
+
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CIRCUITS DESIGN AND POST LAYOUT SIMULATION RESULTS 
circuit of the proposed current-controlled oscillator circuit. M1, M2, M3 are 

the main inverting stage, while M4, M5, M6 are the resistive load circuits. However, resistive load devices 
that commonly formed using NMOS static inverters are now replaced by PMOS resistive load so that

n depends directly on the current. Hence, spike that is caused by voltage supply 
has been removed. Using PMOS as current source made

 output voltage swing. PMOS load gate is operated in saturation region by 
connecting the gate to ground to obtain maximum current load. There is no capacitance used in order to get 
high frequency output, but there are parasitic capacitances at the output nodes that cannot be elim

reduce frequency output. 
The chip is implemented in 0.18µm CMOS technology. Picture of the chip layout is shown in Fig. 

The size of the core oscillator and digital control circuits include bonding pads is 0.09 mm
nding pads). This is noted as the smallest chip area compared to the published papers

Figure 5.Schematic of the designed circuit. 
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an increasing effect on its period of oscillation (T), which is derived as follows. 

 (4) 

 (5) 

m drain voltage of an NMOS to carry current. The dynamic equation during this 

 (6) 

, we can come up with 

 (7) 

circuit. M1, M2, M3 are 
the resistive load circuits. However, resistive load devices 

by PMOS resistive load so that power 
caused by voltage supply which is typically 

 VDS can be as low as 
operated in saturation region by 

connecting the gate to ground to obtain maximum current load. There is no capacitance used in order to get 
high frequency output, but there are parasitic capacitances at the output nodes that cannot be eliminated 

m CMOS technology. Picture of the chip layout is shown in Fig. 6. 
The size of the core oscillator and digital control circuits include bonding pads is 0.09 mm2 (0.0003 mm2 

to the published papers. 
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Figure 6. Chip layout of the proposed CCO 
 

Figure 7. Tuning curve of the proposed CCO. 

Figure 8. Output waveform at 5.5 GHz. 
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Figure 9. Phase noise

Fig. 7 shows the measured CCO tuning range. It shows a linear tuning curve. Tuning range is 
obtained by varying its voltage supply from 0.
GHz or about 183% wide.Output waveform in 5.5 GHz is shown in Fi
than 1.5 Volt. Phase noise -104 dBc/Hz at 4 MHz offset frequency from 5.5 GHz carrier frequency
in simulation result in Fig. 9.  Current consumption noted as low as 9.76 mA at 1.8V supply voltage. At 251 
MHz, phase noise and power consumption is 

Table I summarize and 
(CCO) to the recently published papers 
the best FoM performance. It has also wider tuning range
high frequency output with adequate phase noise. Figure of merit (FoM) of the proposed CCO is 
dBc/Hz, by using FoM definition

 
Table 1.Performance Comparison.
 

Ref. Freq. 
(GHz) Technology

[8] 2 
BiCMOS 
0.6 µm 

[9] 2.2 
BiCMOS 
0.5 µm 

[3] 3.6 
CMOS 
0.18 µm 

[10] 2.2 
BiCMOS 
0.6 µm 

[4] 11.5 
BiCMOS 
0.5 µm 

[12] 3.5 
CMOS 
0.18 µm 

[11] 10 inP HBT 

[6] 1.8 Bipolar 

This 
work 5.5 

CMOS 
0.18 µµµµm 

-----  Not Available 
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Phase noiseofthe proposed current-controlled oscillator at 

shows the measured CCO tuning range. It shows a linear tuning curve. Tuning range is 
obtained by varying its voltage supply from 0.8V to 1.8V resulting output frequencies from 251 MHz to 5.5 

183% wide.Output waveform in 5.5 GHz is shown in Fig. 8 which shows voltage swing more 
104 dBc/Hz at 4 MHz offset frequency from 5.5 GHz carrier frequency
.  Current consumption noted as low as 9.76 mA at 1.8V supply voltage. At 251 

ase noise and power consumption is -79 dBc/Hz and 68.4 mW respectively. 
and compare the performance of the proposed current

to the recently published papers on the same technology. It can be seen that the 
It has also wider tuning range. The proposed CCO also exhibits a low power for 

high frequency output with adequate phase noise. Figure of merit (FoM) of the proposed CCO is 
dBc/Hz, by using FoM definition as 

omparison. 

nology Pdc (mW) Area 
(mm2) 

Tuning 
range 

PN 
(dBc/Hz) 

 
17 0.023 19% -75 

 
100 0.5 84% -106 

 
17 0.24 70% -90.1 

 
11.8 - - -94 

 
75 0.13 16% -94.3 

 
16.2 - 189% -106 

 250 0.85 - -97 

22.5 - 32% -82 

 
17.5 0.0003 183% -104 
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controlled oscillator at 5.5 GHz 

shows the measured CCO tuning range. It shows a linear tuning curve. Tuning range is 
V to 1.8V resulting output frequencies from 251 MHz to 5.5 

shows voltage swing more 
104 dBc/Hz at 4 MHz offset frequency from 5.5 GHz carrier frequency is shown 
.  Current consumption noted as low as 9.76 mA at 1.8V supply voltage. At 251 

current-controlled oscillator 
the proposed (CCO) has 
exhibits a low power for 

high frequency output with adequate phase noise. Figure of merit (FoM) of the proposed CCO is -154.4 

Offset 
(MHz) 

FoM 
(dBc/Hz) 

1 -140.2 

2 -146.8 

1 -148.9 

1 -150.3 

2 -150.7 

4 -152.7 

1 -153 

1 -153.6 

4 -154.4 
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)(log10)(log20 mWdissp
o PfL
f

f
FoM +∆+









∆
−=    (9) 

withfosc, 1/f, L (1/f ), and Pdissp(mW) denoting oscillation frequency, offset frequency, phase noise in dBc/Hz 
and power consumption in mW, respectively. 

 
 

4. CONCLUSIONS 
In conclusion, a CMOS three-stage current controlled ring oscillator based on an inverting NMOS 

with current load is analyzed and designed. The post layout simulation shows that the proposedcurrent-
controlled oscillator (CCO)circuit consumes small current to produce high frequency output. The proposed 
CCO has better performance compared to the published referred papers. FoM comparison result shows 
proposed CCO to be the best among published results. It has linear and wide tuning range and has very small 
chip area which makes it suitable for PLL and clock generation. 
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