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 With the fifth-generation (5G) networks, Mobile edge computing (MEC) is a 

promising paradigm to provide near computing and storage capabilities to 

smart mobile devices. In addition, mobile devices are most of the time 

battery dependent and energy constrained while they are characterized by 

their limited processing and storage capacities. Accordingly, these devices 

must offload a part of their heavy tasks that require a lot of computation and 

are energy consuming. This choice remains the only option in some 

circumstances, especially when the battery drains off. Besides, the local CPU 

frequency allocated to processing has a huge impact on devices energy 

consumption. Additionally, when mobile devices handle many tasks, the 

decision of the part to offload becomes critical. Actually, we must consider 

the wireless network state, the available processing resources at both sides, 

and particularly the local available battery power. In this paper, we consider 

a single mobile device that is energy constrained and that retains a list of 

heavy offloadable tasks that are delay constrained. Therefore, we formulated 

the corresponding optimization problem, and proposed a Simulated 

Annealing based heuristic solution scheme. In order to evaluate our solution, 

we carried out a set of simulation experiments. Finally, the obtained results 

in terms of energy are very encouraging. Moreover, our solution performs 

the offloading decisions within an acceptable and feasible timeframes. 
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1. INTRODUCTION 

Mobile Edge Computing (MEC) concept [1-3], it has been recognized as the next generation 

computing infrastructure that is based on Mobile Cloud Computing paradigm [4-7]. It can offer nearby 

customized services that require good transmission bandwidth, additional data storage and processing. 

As illustrated in Figure 1, MEC can augment mobile devices’ capabilities by offloading [8-10] some parts of 

their havy applications via wireless access to a resource-rich edge node, and then effectively reduces their 

power consumptions [11]. Moreover, to efficiently offload a greedy application while respecting deadlines, 

it is often decomposed into several independent offloadable tasks with a deadline constraint [12-14]. 

Many papers studied resource allocation within a MEC infrastructure to optimize the procecing time [15-18]. 

On the other hand, many state of the art works studied resource allocation within a MEC infrastructure to 

optimize the energy consumption [13, 19, 20]. In [21], the authors investigate a resource allocation policy to 

maximize the available processing capacity for MEC IoT networks with constrained power and unpredictable 

tasks.Unfortunatly, most of them consider users with a unique task only. However, current Smart Mobile 

Dvices (SMDs) can host several greedy applications that have to offload a part of their tasks to improve 

the quality of the experience or simply to avoid the waste of their available resources. Therefore, 
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the offloading decision should be generalized according to a multi-task scenario. This problem relies on 

the joint decision of tasks’ offloading and the allocation of communication or computing resources. 

 

 

 
 

Figure 1. Mobile edge computing illustration 

 

 

Recently, the authors of [13] studied a single-user multi-task offloading senario by optimizing radio 

resources and local frequency. They did not consider the local energy availability nor the remote server’s 

frequency. Besides, they consider tasks with the same deadline Td. In this work, we study the general multi-

task offloading senario where we introduce the control of the available local energy, and consider the edge 

server’s frequency as a decision parameter in our optimization problem. Moreover, we consider a general 

setting where each offloadable task has to be executed within its specific deadline ti
max. According to our 

vision, we can prolong the battery life of the mobile device by considering the amount of its available power, 

and reduce the tasks’ processing time by adjusting the edge server’s frequency. Subsequently, we have 

formulated an optimization problem that minimizes the energy consumed by jointly deciding the local and 

edge computing frequencies, as well as the offloading decisions. Due to its combinatorial nature and after its 

decomposition, we propose a heuristic solution based on a simulated annealing algorithm to jointly decide the 

tasks’ offloading and the allocation of computing resources. The objective is to minimize the consumed 

energy via the offloading by considering the tasks’ latency constraints and a threshold of available energy. 

The remainder of this paper is organized as follows : the system’s model and the optimization 

problem formulation are presented in Section 2. In Section 3, we present our method to solve the 

optimization problem. In section 4 we present the simulation results and their discussion. Finally, Section 5 

concludes the paper. 

 

 

2. SYSTEM MODEL AND PROBLEM FORMULATION 

2.1. System model 

Figure 2. Shows a single smart mobile device (SMD) containing an offloadable multi-task list. 

In this work, we plan to study the behavior of the offloading process for a multi-task SMD in an edge 

environment, while we optimize computation resources available at the edge server as well as at the mobile 

device. Particularly, the available energy at the SMD for tasks execution is limited. Besides, in the context of 

offloading, some pieces of a computationally intensive application are divided into multiple mutually 

independent offloadable tasks [22, 23]. Therefore, according to the available computational and radio 

resources, some tasks are pick-up from the resulting tasks list to be offloaded to the edge servers for 

computing. The others are performed locally on the SMD itself. The execution of the whole list must happen 

within the time limit of the application. Additionally, it is assumed that the SMD concurrently performs 

computation and wireless transmission.  
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Figure 2. System model illustration 

 

 

For all these considerations, we derive a mathematical energy consumption model that considers 

three main decisions: the offloading decision for each task, the local execution frequency of the SMD, and 

the server execution frequency at the edge. Then, we formulate an energy minimization problem. 

Practically, the SMD is connected to an Edge Node (EN), and is intended to offload a set of 

independent tasks by the mean of an Edge Access Point (EAP).Additionally, the wireless channel conditions 

between the SMD and the wireless access point are not considered in this work. Moreover, at the time of 

the offloading decision and the transmission of the offloadable tasks, the uplink rate r is assumed almost 

unchanged. 

As shown in Figure 2., the considered smart mobile device contains N independent tasks denoted 

as τ ≜ {τ1, τ2, … , τN}. In addition, these tasks are assumed to be computationally intensive and delay 

sensitive and have to be completed. Each task τi can be processed either locally or at the edge. It represents 

an atomic input data task that cannot be divided into sub-tasks. Moreover, it is characterized by the following 

three parameters τi ≜ 〈di, λi, ti
max〉. The first one denoted di[bits] identifies the amount of the input 

parameters and program codes to transfer from the user’s local device to the edge server. The second one 

denoted λi [cycles] specifies the workload referring to the computation amount needed to accomplish 

the processing of this task. The third parameter ti
max refers to the required maximum latency for this task. 

The execution nature decision for a task τi either locally or by offloading to the edge server is 

denoted xiwhere  xi ∈ {0; 1}.  xi = 1 indicates that the SMD has to offload τi to the edge server, and xi = 0 

indicates that τi is locally processed.  

From this point, all time expressions are given in Seconds, and energy consumptions are given in 

Joule. Then, if the SMD locally executes task τi, the completion time of its local execution is ti
L =

λi

fL
. So, for 

all tasks, we have: 
 

 tL = ∑ (1 − xi)
λi

fL

N
i=1  (1) 

 

Additionally, the corresponding energy consumption is given by: ei
L = kL. fL

2. λi [24]. Hence, 

the total energy consumption while executing all tasks that were decided to be locally executed in the SMD is 

given by  
 

   𝑒𝐿 = ∑ 𝑒𝑖
𝐿(1 − 𝑥𝑖)

𝑁
𝑖=1 = 𝑘𝐿 . 𝑓𝐿

2. ∑ 𝜆𝑖(1 − 𝑥𝑖)
𝑁
𝑖=1   (2) 

 

If task 𝜏𝑖 is offloaded to the edge node, the offloading process completion time is: 𝑡𝑖
𝑂 = 𝑡𝑖

𝐶𝑜𝑚 +

𝑡𝑖
𝐸𝑥𝑒𝑐 + 𝑡𝑖

𝑅𝑒𝑠, where ti
Com is the time to transmit the task to the EAP, and it is given by ti

Com =
di

r
 . ti

Exec is 

the time to execute the task τiat the EN, and it can be formulated as ti
Exec =

λi

fS
. ti

Res is the time to receive 

the result out from the edge node. Because the data size of the result is usually ignored compared to the input 

data size, we ignore this relay time and its energy consumption as adopted by [25]. Hence, for the 𝜏𝑖 task 

𝑡𝑖
𝑂 = 𝑥𝑖 (

𝑑𝑖

𝑟
+

𝜆𝑖

𝑓𝑆
), and for all tasks, we have: 

 

 tO = ∑ xi (
di

r
+

λi

fS
)N

i=1  (3) 
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So, the energy consumption of the communication process can be obtained by multiplying the 

resulting transmission period by the transmission undertaken power 𝑝𝑇 , and the rest of the execution period 

by the idle mode power 𝑝𝐼 . Thus, this energy is: 

 

 eC =
pT ∑ 𝑥𝑖𝑑𝑖

𝑁
𝑖=1

r
+

pI∑ 𝑥𝑖𝜆𝑖
𝑁
𝑖=1

fS
 (4) 

 

Similarly, energy consumption at the edge server while executing 𝜏𝑖 is given by:  

𝑒𝑖
𝑆 = 𝑘𝑆. 𝑓𝑆

2. 𝜆𝑖 [8]. The execution energy for all the offloaded tasks is: 

 

 eS = kS. fS
2. ∑ λixi

N
i=1  (5) 

 

Finally, given the offloading decision vector 𝕏 for all tasks, the local execution frequency 𝒇𝑳 of the 

SMD, and the server execution frequency 𝒇𝑺 at the edge, the total energy consumption for the SMD is 

composed of its local energy consumption, the communication energy as well as the execution energy at the 

EN, and it is given by 𝔼(𝕏, 𝑓𝐿 , 𝑓𝑆) = 𝑒
𝐿 + 𝑒𝐶 + 𝑒𝑆. Then, according to Equations (2), (4) and (5) and if we 

note  Λ = ∑ 𝜆𝑖
𝑁
𝑖=1  , the total energy consumption can be formulated as: 

 

𝔼(𝕏, fL, fS) = (kSfS
2 − kLfL

2 +
pI

fS
)∑ λixi

N
i=1 + 

pT

r
∑ dixi
N
i=1 + kLfL

2Λ  (6) 

 

2.2. Problem formulation 

In this section, we present our optimization problem formulation that aims to minimize the overall 

energy consumption in the local execution or the offloading process. Initially, to prepare the problem’s data 

we start with an initial sorting of the tasks list τ ≜ {τ1, τ2, … , τN} according to their deadlines ti
max. Hence, 

the tasks execution order within the SMD or the edge server in the final solution must fulfill the initial order 

for both cases. Accordingly, the obtained problem is formulated as: 

 

𝓟𝟏: min
{x,fL,fS}

{(kSfS
2 − kLfL

2 +
pI

fS
)∑λixi

N

i=1

+ 
pT

r
∑dixi

N

i=1

+ kLfL
2Λ} 

               s.t.(C1.1)              xi ∈  {0; 1};                                                     i ∈  ⟦1; N⟧; 
(C1.2)             FL

min ≤ fL ≤ FL
max; 

(C1.3)             0 < fS ≤ FS ; 

(C1.4)             ti
L =

(1−xi)

fL
∑ λk(1 − xk)
i
k=1 ≤ ti

max;         i ∈  ⟦1; N⟧; 

(C1.5)             ti
O = xi∑ xk (

dk

r
+

λk

fS
)i

k=1 ≤ ti
max ;            i ∈  ⟦1; N⟧; 

(C1.6)             e
L = kL. fL

2. ∑ λi(1 − xi)
N
i=1 ≤ Emax. 

 

In this work, each one of the available tasks can be either executed locally or offloaded to the edge 

node. Thus, every feasible offloading decision solution has to satisfy the above constraints: 

The constraint (C1.1) refers to the offloading decision variable xi for task τi which equals 0 or 1. 

The second constraint (C1.2)indicates that the allocated variable local frequency fLbelongs to a priori fix 

interval given by [FL
min, FL

max]. Similarly, the allocated variable remote edge server frequency fSbelongs to 

the interval ]0, FS
max] in constraint (C1.3). The constraint (C1.4) shows that the execution time of each decided 

local task must satisfy its deadline ti
max. Similarly, in constraint (C1.5), the offloading time of each decided 

offloadable task must satisfy the same deadline ti
max. The final constraint (C1.6) imposes that the total local 

execution energy must not exceed the tolerated given amount Emax. This constraint is important especially 

for SMDs with critical battery. 

 

 

3. PROBLEM RESOLUTION 

In this section, we will introduce how we derive our solution from the obtained optimization 

problem. 

 

3.1. Problem decomposition 

In our proposed model, the offloading decision vector for all the tasks is denoted 𝕏. Let define 

the vector that contains the offloadable tasks’ identifiers: 
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𝕏1 = {i ∈ 𝕏   /    xi = 1 } (7)  

 

𝕏0 = {i ∈ 𝕏   /    xi = 0 } (8) 

 

Additionally, we define: Λi = ∑ λi
i
k=1 , Λi

1 = ∑  xiλi
i
k=1  , Di = ∑ di

i
k=1   , Di

1 = ∑  xidi
i
k=1 .  

Also, given the decision vector 𝕏1, constraint (C1.4) for a local task can be reformulated as 

 
Λi−Λi

1

ti
max ≤ fL;  ∀ i ∈  ⟦1; N⟧. Finally, it is equivalent to one constraint: max

i
{
Λi−Λi

1

ti
max } ≤ fL. Likewise, constraint 

(C1.5) for an offloadable task means  
Di
1

r
+

Λi
1

fS
≤ ti

max (∀ i ∈  ⟦1; N⟧). So   
Di
1

r
 and  

Λi
1

fS
  must be strictly less than 

ti
max (∀ i ∈  ⟦1; N⟧) ; particularly min

i
{ti
max −

Di
1

r
} > 0. In this case constraints (C1.5) can be reformulated as 

Λi
1

ti
max−

Di
1

r

≤ fS;  ∀ i ∈  ⟦1; N⟧. Finally, it is equivalent to one constraint: max
i
{

Λi
1

ti
max−

Di
1

r

} ≤ fS. Similarly, 

constraint (C1.6) can be reformulated as fL ≤ √
Emax

kL(ΛN−ΛN
1 )

. For ease of use, let note: 

 

fL
− = max

i
{
Λi−Λi

1

ti
max } (9) 

 

fL
+ = √

Emax

kL(ΛN−ΛN
1 )

 (10) 

 

fS
− = max

i
{

Λi
1

ti
max−

Di
1

r

} (11) 

 

Thus, for a given offloading decision vector 𝕏, we get the following optimization sub-problem: 

 

𝓟𝟐(𝕏):   min
{fL,fS}

{(ΛN − ΛN
1 )kLfL

2 + ΛNkSfS
2 + ΛN

pI

fS
+ DN

1
pT

r
} 

               s.t.(C2.1)             FL
min ≤ fL ≤ FL

max; 
(C2.2)             fL

− ≤ fL ; 

(C2.3)             fS
− ≤ fS ≤ FS ; 

(C2.4)             kLfL
2(ΛN − ΛN

1 ) ≤ Emax. 
 

Considering the continuous variables fL and fS, problem P2 is a continuous multi-variable 

optimization problem. The objective function 𝔼𝕏(fL, fS) = (ΛN − ΛN
1 )kLfL

2 + ΛN
1 kSfS

2 + ΛN
1 pI

fS
+ DN

1 pT

r
 can be 

decomposed into the following two independent functions 𝔼1(fL) and 𝔼2(fS) where  

𝔼1(fL) = (ΛN − ΛN
1 )kLfL

2 and 𝔼2(fS) = ΛN
1 kSfS

2 + ΛN
1 pI

fS
+ DN

1 pT

r
. Moreover, given the disjunction between 

constraints (C2.1), (C2.2) and (C2.4) on the one hand, and (C2.3) in problem P2 on the other hand, this last can 

be equivalently decomposed into the following two independent optimization sub-problems. 

 

𝓟𝟑. 𝟏(𝕏):   min
{fL}

{𝔼1(fL) = (ΛN − ΛN
1 )kLfL

2} 

               s.t.(C3.1.1)             FL
min ≤ fL ≤ FL

max; 

                (C3.1.2)             fL
− ≤ fL ≤ fL

+. 

𝓟𝟑. 𝟐(𝕏):   min
{fS}

{𝔼2(fS) = Λ1kSfS
2 + ΛN

1
pI

fS
+ DN

1
pT

r
} 

               s.t.(C3.2.1)             fS
− ≤ fS ≤ FS. 

 

3.2. Problems resolution 

For the 𝒫3.1 problem, the objective function 𝔼1(fL) is a strictly increasing continuous function 

according to its variable fL. Hence, by taking into consideration the obtained constraints (C3.1.1) and (C3.1.1), 
we can derive the following function’s optimum fL

∗ given by: 
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fL
∗ =

{
 

 
0 if    𝕏 = 𝕏1
∅ if    fL

− > FL
maxor fL

+ < FL
min or fL

− > fL
+

FL
min

fL
−

if fL
− < FL

min

otherwise

  (12) 

 

For the 𝒫3.2 problem, the objective function 𝔼2(fS) is a continuous function according to its 

variable fSwith a first order derivate: 
∂𝔼2(fS)

∂fS
= 2ΛN

1 kSfS −
ΛN
1 pI

fS
2 ; consequently, 𝔼2(fS) decreases on ]0, √

pI

2kS

3
 ] 

and increases on [√
pI

2kS

3
, +∞[ . Then, 𝔼2(fS) has an optimal minimum value at the point √

pI

2kS

3
 without 

considering constraint (C3.2.1). Therefore, with (C3.2.1), we can derive the following function’s optimum fS
∗ 

given by:                

 

 fS
∗ =

{
  
 

  
 ∅ if min

i
{ti
max −

Di
1

r
} ≤ 0 or fS

− > FS

FS if   
pI

2kS
≥ FS

3

fS
−

√
pI

2kS

3
if   

pI

2kS
≤ (fS

−)3

otherwise

  (13) 

 

3.2.1. Processing frequencies determination 

From the above results, with a given offloading decision vector 𝕏 , we present the next Algorithm 1 

that gives the optimal allocated local frequency fLas well as the remote edge server’s processing frequency fS. 

 

3.2.2. The energy consumption determination 

Similarly, given an offloading decision vector 𝕏 the next algorithm 2 uses the first algorithm to 

determine the minimal energy consumption: 

 
Algorithm 1: frequencies optimum for a given 𝕏 

Input: The offloading policy 𝕏. 

Output: fLand fS. 

1: Determinate 𝕏1 according to (7); 

2: if 𝕏 = 𝕏1then 

3:     fL = 0; 
4:     goto 16; 

5: end if 

6: Calculate: fL
−, fL

+ according to (9) and (10) respectively; 

7: if fL
− > FL

maxor fL
+ < FL

min or fL
− > fL

+then 

8:        return ∅; 

9: else 

10:       if fL
− < FL

minthen 

11:               fL = FL
min; 

12:       else 

13:               fL = fL
−; 

14:       end if 

15: end if 

16: if min
𝑖
{𝑡𝑖
𝑚𝑎𝑥 −

𝐷𝑖
1

𝑟
} ≤ 0 then 

17:        return ∅; 
18: else 
19:        Calculate: fS

− according to (11); 
20:        if fS

− > FS then 
21:              return ∅; 

22:        else if 
pI

2kS
≥ FS

3 then  

23:                       fS = FS; 

24:               else if 
pI

2kS
≤ (fS

−)3then 

25:                             fS = fS
−; 

26:                      else 
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27:                             fS = √
pI

2kS

3
; 

28:                      end if 

29:               end if 

30:        end if 

31: end if 

32: return (fL, fS); 

 
 Algorithm 2: Energy calculation 

Input: The list 𝜏 of N sub-tasks, offloading policy 𝕏. 

Output:𝔼(𝕏, 𝑓𝐿 , 𝑓𝑆). 
1: Call Algorithm 1 to calculate (𝑓𝐿, 𝑓𝑆) using 𝕏; 

2: if  𝑓𝐿 = ∅ or 𝑓𝑆 = ∅ then  

3:         return ∞;     

4: else 

5:          Calculate 𝔼(𝕏, 𝑓𝐿, 𝑓𝑆)according to (6); 

6:          return 𝔼(𝕏, 𝑓𝐿, 𝑓𝑆) ; 
7: end if  

 

3.3. Proposed solutions 

Next, the problem relies on determining the optimal offloading decision vector 𝕏 that gives 

the optimal energy consumption. However, to iterate over all possible combinations of a list of N binary 

variables, the time complexity is exponential (the exhaustive search over all possible solutions requires 2N 

iterations). Subsequently, the total time complexity of the whole solution (including Algorithm 1) is 

O(2N)*O(1)=O(2N) that is not practical for large values of N. In the following, we propose a low complexity 

approximate algorithm to solve this question. 

 

3.3.1. Brute force search solution 

For comparison purpose, we introduce the Brute Force Search method for feasible small values of 

N. This method explores all cases of offloading decisions and saves the one with the minimum energy 

consumption as well as its completion time. Now, the next algorithm summarizes the Brute Force Search 

Solution. 

 

Algorithm 3 : Brute Force Search Offloading  

Input:The list τ of N sub-tasks; 

Output: the offloading policy 𝕏∗. 
Initialize: minEnergy=∞;  

1: for i=1 to 𝟐𝐍 − 𝟏  do 

2:             Use the N bits representation of integer i to build the policy 𝕏; 

3:             Call Algorithm 2 to get newEnergy using τ and 𝕏; 

4:             if 𝐧𝐞𝐰𝐄𝐧𝐞𝐫𝐠𝐲 < 𝐦𝐢𝐧𝐄𝐧𝐞𝐫𝐠𝐲 then  

5:                       𝐦𝐢𝐧𝐄𝐧𝐞𝐫𝐠𝐲 ← 𝐧𝐞𝐰𝐄𝐧𝐞𝐫𝐠𝐲  ;  

6:                       𝕏∗ ← 𝕏;   

7:             end if 

8: end for 

9: return 𝕏∗ ; 

 

3.3.2. Simulated annealing offloading based on workload density threshold 

For the second solution, we propose the use of a Simulated Annealing (SA) based method. The SA 

technique was adopted as a heuristic solution in the optimization field especially for hard problems. 

To improve a solution, it employs iterative random solution variation. Interested readers can refer to 

the following works [26] and [27] for more details about this issue. Some references dealing with 

the offloading in cloud environments [19, 28, 29] use tasks’ workload density defined as ωi =
λi

di
[cycle / bit] 

as a priority factor to decide the tasks’ offloading. Additionally, the generated tasks are generally with 

different workload densities.  Moreover, if two tasks are given with a slightly different data sizes, the one that 

consumes less energy is the one given by the smallest cycles’ count. Besides, with almost the same cycles’ 

count, the one that consumes less offloading energy is the one given by the smallest data size. In both cases, 

the task with the highest workload density is favorable for offloading (provided to have an offloading energy 
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gain compared to the local execution and not to exceed its execution deadline). On the other hand, a task with 

a high workload density often has a large number of cycles. Its local execution is generally very expensive 

and thus makes its offloading often very favorable. In this context, we introduce a workload density threshold 

ωT such that: tasks with ωi > ωT are more favorable to be offloaded. The others are executed locally or 

offloaded with a proportional probability to their computational densities. Those with small densities are 

favorable for local execution, and those with high densities are favorable to be offloaded. Accordingly, if we 

note ωmin = min
i
{ωi}, ωmax = max

i
{ωi} and the middle of the interval [ωmax, ωmin] as  

ωT = (ωmax + ωmin)/2 then ωT can be chosen such that ωT ≤ ωT < ωmax. 

In our proposed second solution, which we denote Workload Density based Simulated Annealing 

Offloading (WDSAO), we adopted the following general threshold probability:    

 

p = e−∆Ei/T0  (14) 

 

where T0 is the initial temperature constant. ∆Ei is the solutions’ energy variation while changing the task i 

state. Then, in each stage of our solution and with the intention to avoid local optimums, random solutions 

with poor energy performance are accepted in line with a certain probability threshold. Accordingly, 

Algorithm summarizes our heuristic solution.  

Algorithm 4 takes as input: the sub-tasks’ list 𝜏, the initial temperature T0, the cooling factor CF, 

the temperature treshold 𝜀, and the workload density threshold 𝜔𝑇.  

random(0,1) is a function’s call that generates a random number in [0,1]. 

 

3.3.3. Original simulated annealing offloading 

For the third solution and for comparison purpose, we take the version of the solution proposed 

by [5] and denote it Original Simulated Annealing Offloading (OSAO). In this solution, the local execution 

probability increases with the increase of the computing density. This fact leads to offload tasks with big data 

size and workload and prevent tasks with low data size and high workload to take high offload priority. 

 
Algorithm 4: workload density based Simulated Annealing Offloading  

Input:The list 𝜏 of N sub-tasks,T0, CF, 𝜀, 𝜔𝑇; 

Output: the offloading policy 𝕏∗. 
Initialize: a random policy 𝕏; 

1: Call Algorithm 2 to calculate oldEnergy using 𝜏 and 𝕏; 

2: minEnergy=∞; 

3: while T0> 𝜀  do 

4:     for each i in 𝜏 do 

5:            if 𝜔𝑖 > 𝜔𝑇 then  

6:                   if task i not in 𝕏1 then  

7:                         add  i to 𝕏1 ; 
8:                   end if 

9:            else if 𝜔𝑇 − 𝜔𝑖 > (𝜔𝑇 − 𝜔𝑚𝑖𝑛) ∗ random(0,1)   then 

10:                         if task i in 𝕏1 then  

11:                             move i from 𝕏1 to 𝕏0 ; 
12:                         end if 

13:                    else if task i in 𝕏0 then  

14:                                move i from 𝕏0 to 𝕏1 ; 
15:                            end if 

16:                    end if                        

17:            end if 

18:            Update 𝕏 using the new 𝕏1; 

19:            Call Algorithm 2 to get newEnergy using 𝜏 and 𝕏; 

20:             if newEnergy≠ ∞ then 

21:                      ∆𝐸𝑖 = newEnergy − oldEnergy  
22:                       if ∆𝐸𝑖 < 0 then  
23:                                 oldEnergy=newEnergy; 

24:                                  if newEnergy<minEnergy then  

25:                                             minEnergy =newEnergy ; 

26:                                             𝕏∗ = 𝕏 ; 
27:                                   end if 

28:                       else 

29:                                  Calculate p according to (13); 

30:                                   if 𝑒−∆𝐸𝑖/𝑇0 > random(0,1) then  
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31:                                             oldEnergy = newEnergy; 

32:                                  else 
33:                                             Put back i to its original set; 

34:                                  end if 

35:                       end if 

36:             end if 

37:      end for 

38:      T0= T0*CF 

39: end wile 

40: return 𝕏∗ ; 
 

 

4. RESULTS AND DISCUSSION 

4.1. Simulation setup 

The presented results in this work are averaged for 100 time executions. We implement all 

the algorithms on the C++language. Additionally, they are run on a laptop equipped with a 2.4 GHz Intel 

Core i5 processor and 8 GB of RAM. The transmission bandwidth between the mobile device node and 

remote edge server is set tor = 100Kb/s. The local CPU frequency fLof the mobile device will be optimized 

between FL
min = 1MHz and FL

max = 60MHz. The CPU frequency of the remote edge server node will be 

optimized under the value FS = 6GHz. The deadlines ti
max are uniformly defined from 0.5s to 2s. 

The threshold energy Emax is uniformly chosen in [0.6 , 0.8] ∗ Λ. kL. (FL
max)2.Additionally, the data size of 

each one of the N tasks is assumed to be in [30,300] Kb. For the cycle amount of each task, it is assumed to 

belong to [60,600]MCycles. The idle power and transmission power are set to be pI = 0.01 Watt and 

pT = 0.1 Watt respectively. For the energy efficiency coefficients, we set kL = 10−26 and kS = 10−29. 
For the simulated annealing methods, the following parameter values are adopted: factor = 0.5,  

ε= 0.3, T0 = 200, Δt = 0.02(in OSAO), and CF=0.85. 
 

4.2. Performance analysis 

We present our results in terms of average decision time and average energy consumption. We start 

by studying the average energy’s consumption throughput for each method. Thus, we carried an experiment 

where we vary the number of tasks parameter between 2 and 50 tasks.  
 

4.2.1. The parameter 𝛚𝐓 

The Figure 3 shows a rapid decrease of the energy consumption using the WDSAO method for ωT 

between 0.3 and 0.45 for N in {10,15,20,25,30}. Then, this energy increases from ωT  = 0.5 to ωT  = 0.75 for 

all values of N. In addition it slightly decreases after ωT  = 0.75 only for N = 10 and N = 30. As a result, we 

find that the best value of ωT  that minimizes the energy consumption for most of the values of N is  

ωT  = 0.5. Thereafter, we will set ωT  to the value 0.5. 
 

 

 
 

Figure 3. Average Energy consumption for ωT between 0.25 and 0.85 
 

 

4.2.2. The energy consumption 

In terms of energy consumption, the experiment’s results are depicted in the following two figures. 

Figure 4 represents the obtained results for the three methods where N is taken between 3 and 25. On the one 

hand, it shows a small distance between the results of the optimal BFS method and the OSAO method. 

This difference varies from 1.53% to 9.30%. On the other hand, the WDSAO results are almost the same as 

the optimal results. The difference varies from 0.00% to 2.88%. 
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Beyond the value N=25, and because of the considerable processing time of the BFS solution, we 

compared only the OSAO and the WDSAO methods. Figure 5 shows that the results of the WDSAO solution 

are better than those of OSAO for all N values. The results of the first represent a gain in energy consumption 

that varies between 5.55% and 8.33%. 

 

 

  
 

Figure 4. Average energy consumption for  

N between 3 and 25 

 

Figure 5. Average energy consumption for N 

between 26 and 50 

 

 

4.2.3. The Average Execution Time 

Now, we consider the average execution time in both Figure 6 and Figure 7. The first one illustrates 

the execution time comparison for all the three methods while N is between 3 and 25. It clearly shows the 

exponential variation of the BFS solution time with the N parameter. Additionally, The OSAO and WDSAO 

solutions give a stable execution time that reached for N=25 respectively 0.27ms and 0.91ms for both 

methods.  

 

 

  
 

Figure 6. Executuion time average for N  

between 3 and 25 

 

Figure 7. Executuion time average for N  

between 26 and 50 

 

 

The second Figure 7 illustrates the execution time comparison for OSAO and WDSAO methods 

while N is between 26 and 50. The OSAO curve illustrates a stable running time that starts from 0.28 ms for 

N=26 and reaches 0.75 ms for N=50. On the other hand, the WDSAO curve illustrates a near linear running 

time that starts from 1.01 ms for N=26 and reaches 3.11 ms for N=50. Accordingly, the performances in 

terms of the execution time of the OSAO method are slightly higher than those of the WDSAO method. 

Nevertheless, both solutions’ performances are always very very high and more acceptable compared to the 

FBS exact solution. This last reaches an execution time of 34862.35 ms for N=25 only, which is 

inappropriate for the context of this work. 
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4.3. Discussion 

In view of the experiments’ results, in the first experiment we study the effect of the ωT parameter 

for our WDSAO solution. Thus, this study revealed that a value for the threshold ωT=0.5 is beneficial for 

the energetic performance without any effect on the execution time. On the other hand, a second series of 

experiments revealed thet the OSAO and WDSAO heuristic solutions give satisfactory results in terms of 

execution time compared to the BFS exact solution which is with exponential time complexity. In addition, 

our WDSAO developed solution gives an energy consumption that is comparable and very close to the BFS 

exact solution with almost a linear execution time. Moreover, compared to the OSAO method, eventhough 

the execution time of our solution is slightly greater, its energetic performace are very close to the exact 

solution. 

 

 

5. CONCLUSION 

In this paper, we propose a simulated annealing based heuristic  to solve a hard decision problem 

that jointly optimizes energy and computational resources for a smart mobile device within a mobile edge-

computing node. The mobile device intends to optimally offload the content of a list of heavy tasks as much 

as possible where each task is time-constrained with a proper deadline ti
max. The obtained results show 

the performance of the proposed simulated annealing based algorithm. By optimally adjusting the local and 

the remote computing frequencies, the proposed implementation shows the effectiveness of our solution. 

It brought a real energy efficiency as well as near linear execution time that satisfies the decision’s time 

constraints in such edge systems. As a future work, we plan to generalize our study to the multi-user case 

while we introduce more relevant parameters, such as network state and wireless communication 

interference. 
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