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 In this paper, electromagnetic and uniform precession magnetostatic mode 
interaction theory is reformulated to include comprehensive electromagnetic 
modal impact in the determination of modal coupling calculations. For this 
purpose orthogonal electromagnetic and normal magnetostatic modes 
character is solved with coupled field Maxwell’s equations and vectorized 
magnetization expression to model the interactions between electromagnetic 
modes and magnetostatic uniform precession mode. Calculations for modal 
coupling factors are presented here for the first time and frequency/ bias 
planes are constructed using the developed modal interaction formulation 
with an ameliorated accuracy. The proposed formulation is validated and 
tested against closed form frequency/ bias solutions concerning these 
gyromagnetic boundary value problems.  
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1. INTRODUCTION 

A meticulous conception regarding modal spectrum, and its frequency/magnetic bias dependency, is 
mandatory for efficient gyromagnetic device characterization at Watts and Kilowatts. A preliminary mode 
spectrum theory was developed by Auld [1] and Weiner [2] specializes Auld [1] theory to model interaction 
between electromagnetic modes to a single magnetostatic mode. The modal interactions between 
magnetostatic waves either in non-exchange and exchange limit with electromagnetic waves have been 
reported in literature for both linear and non-linear response [3-5]. In microwave ferrite devices, it is of 
interest to establish that how the magnetostatic uniform precession mode interacts with the electromagnetic 
modes at higher power thresholds. In this paper the coupling solving a uniform precession magnetostatic field 
expression and electromagnetic field equation in cylindrical coordinates with the magnetized vector 
expression develops expressions. By substituting the related field components of each boundary value 
problem in cylindrical coordinates to the filling factor expression and by imposing condition of orthogonality 
provides the required filling factor expressions for planar gyromagnetic disk, and axially magnetized circular 
gyromagnetic cavities. The proposed formulation is flexible and can be used to evaluate coupling factor 
expressions for any gyromagnetic boundary value problem having properly defined demagnetization factors, 
field expressions and orthogonality conditions. 

 
 
2. MODAL COUPLING FORMULATION 

The coupling factor Bnv specifies the coupling between vth magnetostatic mode to the nth 
electromagnetic mode and is given by [1]; 
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* ( )v
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oferrite
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B h dvµ φ
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= ⋅ ∇ +∫

      (1) 

where φ∇  is the magnetostatic irrotational part, hn normal electromagnetic magnetic field component, and 

v

o

m

µ  represents the normal magnetostatic part in the coupled field expressions. Similarly the factor, Knv, 
specifies the coupling between the nth electromagnetic mode to the vth magnetostatic mode and can be 
expressed as; 

*m
vn n v

o ferrite

K h m dv
ω
µ

= − ⋅∫
      (2) 

 

2.1 Coupling Expressions for Electromagnetic/ Uniform Precession Mode Interactions 
If the coupling factor is small electromagnetic field pattern is relatively uniform inside the sample 

and only the uniform mode among all the magnetostatic modes is coupled to the electromagnetic mode [1, 2].  
The magnetostatic field for the uniform mode is given by; 

[( )] /o up
upup o

m

m
ω ω

φ µ
ω
+

∇ =
      (3) 

The resonant frequency for the uniform precession can be expressed as; 

1/ 2 (3 1)up o m zNω ω ω= − + −
      (4) 

whereNz is the demagnetization factor in the z-direction. 
( )/ ( ) / 2 upj t

up x yom a ja V e ωµ = −
     (5) 

Substituting Eq. (4) & Eq. (5) in Eq. (3), the magnetostatic field for the uniform mode becomes; 

( )( )
1/ 2(3 1)

2
upx y j t

up z

a a
N e

V

ωφ −∇ = +
     (6) 

The electromagnetic field, hn, can be expressed in Cartesian coordinates as; 

( )x y zn nx ny nzh h a h a h a= + +
      (7) 

Eqs. (8-9) are obtained by expressing a linear combination of rotational and irrotationalmagnetostatic fields. 
Adding Eq. (5) to Eq. (6), and by making use of the electromagnetic field expression in Eq. (7), and finally 
substituting these results in Eqs. (1-2) yieldsEqs. (8-9).Eq. (1) & Eq. (2) describes the coupling between 
electromagnetic and magnetostatic modes in the modal spectrum plane. Similarly the modal interaction 
formulation between an electromagnetic mode to uniform precession modes is given by; 

1/ 8 (3 1) ( )no o z nx ny

ferrite

B V N h jh dvµ= − + +∫
    (8) 

1/ 2 ( )on m nx ny

ferrite

K V h jh dvω= − +∫
     (9) 

The Filling factor (F), which is simply the multicative product of the coefficients determined in Eq. (8) and 
Eq. (9), (F = BnoKon/ωm) can be obtained by using Eqs. (8-9) and is given by; 

2

/ 4 (3 1) ( )o z nx ny

ferrite

F V N h jh dvµ= + +∫
    (10) 

 
 
3. RESULTS & ANALYSIS 

By employing standard coordinate transformation from Cartesian to cylindrical coordinates gives 
the magnetization of the uniform mode as; 

( )( )
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      (11) 
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The electromagnetic field expression in Eq. (7) can be expressed in cylindrical coordinates as;  

( ( , ) ( , ) ( , ) ) j
r zn nr n nzh h r z a h r z a h r z a eθθθ= + +

    (12) 
Similarly the filling factor Expression in Eq. (10) takes the form; 

2

/ 4 (3 1) ( )exp( )o z nr n

ferrite

F V N h jh j rdrd dzθµ θ θ= + +∫
   (13) 

 
 

Filling factors acutely influence the modal spectrum and are presented here for the axially magnetized planar 
and circular gyromagnetic cavities. 
 

3.1 Axially magnetized Circular Disk 
A schematic illustration of axially magnetized ferrite filled cavity of circular cross-section is presented in 

Fig.1.  

 
 

Figure 1. A schematic illustration of an axially magnetized circular cavity. 
 

The filling factor expression in Eq. (10) can be re-expressed in simplified cylindrical co-ordinates form as; 
2

(3 1)
4

o
zF N I

V

µ= +
       (14) 

whereI2needs to be determined. The magnetic field expressions in cylindrical coordinates can be given as; 

2 2
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       (17) 
The dominant mode for this problem is TE111 and factor I in Eq. (14) is given by; 

2

0 0 0

( )
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π
θ

θ θ= +∫ ∫ ∫
     (18) 

where I can be determined as; 
3

13

4
[ (1.84)1.84]

(1.84)

AR
I J

π=
       (19)  

The orthogonality condition to be imposed is given by Eq. (20); 
* * * * *[ ] [ ] 1o r r r o r r z ze e e e h h h h h h rdrd dzθ θ θ θε ε µ θ+ + + + =∫∫∫    (20) 

By using Eq. (20) the factor I can be expressed as; 

E HI I I= +  (21) 
where 

* *[ ]E o r r r
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The required fied expressions to determine IE follows; 
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And IHbecome; 
* *[ ]H o r r

z r

I h h h rdrd dzθ
θ

µ θ= +∫ ∫ ∫
  (25) 

Substituting the field components in Eq. (23-25) yields; 

2 2 2
12

1.19
(1.84)[1 ( ) ]2H o
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πµ π= +
  (26) 

Using Bessel integral expressions and evaluated Eq. 29 yields factor Aas; 
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Finally the filling factor expression in Eq. (14) comes out to be; 

11
2

0.248(3 1)
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 (28) 
The dispersion expression governing the interaction between an electromagnetic and magnetostatic mode for 
different values of coupling factor (Fnv) becomes; 
 

2 2 2(1/ 2)[ ] 1/ 4( ) 4( ) (1/ 4)n v m n v n v m mF F Fω ω ω ω ω ω ω ω ω ω= + + ± − + + +
 (29) 
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Figure 2. Comparison of developed mode interaction theory with the resonant frequencies of characteristic 
equation for a gyromagnetic filled circular cavity [Magnetization (M) =140 KA/m, Cavity Radius (R) = 3 

mm, Cavity Length (L) = 4mm, ǫr= 15, Resonant Frequency (Fr) = 12.3 GHz, and the Demagnetization 
Factor (Nz)= 1. 
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2 2 21
( )c o o r
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k
L

πω ε µ ε
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      (31) 

Using Eq. 24  and eθ=0.  At the outer radius of the cavity r = R, yields a value of kc for the dominant mode 
i.e., kc = 1.84/ R. Subsituting this value of kc in Eq. (30) yields; 

2 2 2( ) [ (1.84 / ) ][1 ]m
o o r

o

R
L

ωπ ω ε µ ε
ω ω

= − +
±     (32) 

The related frequency/ bias plot is presented in Fig. 2 by making use of Eq. (29) and Eq. (32) and 
comparitive analysis included. 
 
The spin wave frequency in Fig. 2 can be determined using Eq. 33 and is given by; 6 

 
2 2 2 2 2[( )( sin )]swm o z m ex o z m ex m kN a k N a kω ω ω ω ω ω ω ω θ= − + − + +

(33) 
 
where lattice spacing (a) is 5x 10-8cm, Exchange field (Hex) = 397500 A/m, θk =0° and θk = 90° represents the 
bottom and top of spin wave manifold. The exchange frequency, ωex = γ Hex where γ = 2.21 x 10-5 rad m/ A 
sec.By employing a similar procedure the filling factor expression for a planar gyromagnetic resonator 
presented in Fig. 3 becomes; 
 
 

 

Figure 3. A schematic illustration of planar 

gyromagnetic disk 

 

 

 

 
Figure 4. Comparison of developed mode segregation theory 
with the resonant frequencies of characteristic equation for a 
planar gyromagnetic disk [Magnetization (M) =140 KA/m, 

Disk Radius (R)= 2.52 mm, ǫr= 15.9, Resonant Frequency (Fr) 
= 9 GHz, and the Demagnetization Factor (Nz)= 1. 
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The expression in Eq. (34) can be further simplified to; 

11 0.209(3 1)zF N= +        (35) 
The frequency/ bias plot is developed and is illustrated in Fig. 4. 
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4. CONCLUSION 
The proposed formulation is flexible and can be used to evaluate coupling factor expressions for any 

gyromagnetic boundary value problem having properly defined demagnetization factors, field expressions 
and orthogonality conditions. This technique has been employed very recently by the authors to develop a 
four-port X- band differential ferrite circulator [6] (1.2 MW peak power, and 2KW average power 
operational capability), to be used for air traffic surveillance radar system.    
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