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 Instructions pipelining is one of the most outstanding techniques used in 

improving processor speed; nonetheless, these pipelined stages are constantly 

facing stalls that caused by nested conditional branches. During the execution 

of nested conditional branches, the behavior of the running branch depends 

on the history information of the previous ones; therefore, these branches 

have the greatest effect in reducing the prediction accuracy of a branch 

predictor among conditional branches. The purpose of this research is to 

reduce the stall cycles caused by correlated branches misprediction by 

introducing a hardware model of a branch predictor that combines both local 

and global prediction techniques. This predictor integrates the prediction 

characteristics of the alloyed predictor with those of the correlated predictor. 

the predictor design which implemented in VHDL (Very high-speed IC 

hardware description language) was inserted in previously designed MIPS 

(microprocessor without interlocked pipelined stages) processor and its 

prediction accuracy was confirmed by executing a program using  

the selection sort algorithm to sort 100 input numbers of different 

combinations ascendingly.   
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1. INTRODUCTION 

The direction of a conditional branch depends on the outcome of its condition test which be either 

true or false. When it is true, the branch is taken and the instruction at the branch target address is fetched. 

Otherwise, the branch is untaken and the next instruction in ordinary sequence is fetched [1]. This repetitive 

pattern of a conditional branch has been applied in dynamic branch prediction to keep a local history for each 

conditional branch from which its future direction can be predicted [2]. 

In the case of nested conditional branches, the conditions may be related to each other,  

so the outcome of the running condition test will also depend on that of the previous conditions which in turn 

will cause the direction of current branch to be affected by the directions of preceding branches [3]. 

Consequently, each prediction is based on the histories of past branches rather than just its individual history. 

This global history besides the local history should be recorded by an effective branch prediction unit and 

exploited in revealing correlation among branches, or high-performance processors will continue to 

experience pipeline stalls due to correlated branches [4, 5]. For instance, Pentium Pro uses the result from  

the last two branches to select one of the four sets of branch history table (BHT) bits [6], while VIA Nano 

processor uses a prediction technique that amalgamates the local and global principles of prediction [7]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/329119182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 :  265 - 271 

266 

According to its parallelism which is also considered as one of the major factors that affect 

processor performance, field programmable gate array (FPGA) is recently adopted by many researchers for 

the branch prediction implementation [8-13]. Where in [8], an accurate and fast branch predictor that uses 

few resources on FPGA was implemented for general purpose, pipelined, single core soft processor,  

whereas [9] implemented a configurable VHDL model of a branch predictor unit which is composed of  

a branch direction predictor and a branch target buffer. A new TAGE branch predictor was proposed by [12], 

it can avoid being the critical path of the processor while keeping the same prediction accuracy as TAGE.  

Later sections of this research are ordered as follows; section 2 expresses a theoretical review of 

how some dynamic branch predictors utilize the global history of previous branches in predicting current 

branch direction. Then the proposed VHDL design of the alloyed-correlated branch predictor and how it is 

implemented in FPGA is described at section 3. Section 4 reveals how the required results which confirmed 

the efficiency of the design are obtained. Finally, the conclusion is demonstrated in section 5. 

 

 

2. THEORETICAL FEATURES OF CORRELATED PREDICTION  

In order to reduce the branch misprediction penalty raised due to branch correlating, two levels of 

history should be used to guess the branch direction. The first level holds the patterns of former branches, 

while the second level catches the branch directions associated with the last occurrence of a particular pattern 

in the first level [14, 15]. Here is a summarized illustration of how the feature of two history levels is 

employed in designing some types of branch prediction schemes.  

 

2.1.  Correlated branch predictor 

This technique takes benefit of the correlation between conditional branches therefore it has 

improved branch prediction accuracy remarkably. Branch prediction process in correlated predictor passed 

through two levels of history as Figure 1 shows [16]. The first level which is an m-bit global history register 

(GHR) records the behavior of the last m branches. As for the second level, the pattern history table (PHT) 

holds the last direction taken by each branch when a certain pattern in the first level occurs [17-19].  

The lower n bits of the branch address are used to select one of the 2n entries of the PHT, where each entry 

consists of 2m sets. one of these sets is chosen by the GHR. Each set holds a 2-bit saturating counter with 

saturation levels ranged from (00) as the minimum value to (11) as the maximum value, and the predicted 

path is specified by the MSB (Most Significant Bit) of the counter [1, 20]. 

Because this predictor only records correlation between m+1consecutive branches, the GHR may 

not catch any bit belonging to the same branch especially if there are many irrelevant branches in between. 

This may lead to branch misprediction which in turn will increase the branch penalty [21].  

 

 

 
 

Figure 1. Design of the correlated branch predictor 
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2.2.  Alloyed branch predictor 

This dynamic scheme which also consists of two levels of history has been suggested to address  

the issue associated with the correlated predictor to some extent. Where a single k-bit GHR, a shift register,  

is used to record outcomes of the most recently executed k branches. This register which represents the first 

level is then concatenated with the lower n bits of the branch address to produce an m-bit index which is used 

to pick one of the 2m counters of the second level performed by the pattern history table (PHT) as in  

Figure 2 [22-24]. The main drawback of the alloyed predictor lies in the number of history bits in the PHT 

index which might be insufficient to include all previous branches correlated with the branch being  

executed [25]. 

 

 

 
 

Figure 2. Design of the alloyed branch predictor 

 

 

3. ALLOYED-CORRELATED BRANCH PREDICTOR IN VHDL  

This research aims to increase the speedup of the processor by designing a dynamic branch predictor 

with higher accuracy and lower branch penalty. This predictor which is modelled in VHDL using Xilinx ISE 

(integrated synthesis environment) Design Suite 14.7 merges the prediction attitudes of both the alloyed 

predictor and the correlated predictor. 

The proposed design of the alloyed-correlated branch predictor shown in Figure 3 is placed within  

a predesigned 32-bit MIPS processor that is taught as a main subject in the microprocessor architecture 

course, and its predictive action depends on two levels of history:  

 The first level is a 7-bit GHR that records the actual direction of the most recent seven branches. 

 The second level is a PHT with 1024 entries. Each entry has 4 sets, and each set contains a 2-bit 

saturating counter that is initialized to a default value of “11”. 

During the fetch stage, the seltF (9:0) address is created, as in the alloyed predictor,  

by concatenating the GHR upper five bits (GHRF (6:2)) with the lower five bits (pcF (6:2)) of the Program 

Counter (PC) which holds the branch address. Subsequently, the seltF is used to select one of the 1024 entries 

of the PHT. Here the proposed predictor acts as a correlated predictor and uses the two lower bits GHRF 

(1:0) of the GHR to choose only one set from the four sets of the indexed entry according to Table 1.  

The upper bit (predictF (1)) of the selected set content (predict (1:0)) provides the predicted direction as 

taken or not taken whenever it is ‘1’ or ‘0’ respectively. 

Later in the decode stage as shown in Figure 3, whenever the branch is really taken (pcsrcD=1),  

the corresponding saturating counter is incremented until the maximum value (11) is reached, otherwise it is 

decremented until the minimum value (00) is reached. Every saturating counter is modelled as a mealy finite 

state machine (FSM) in which the predfsmop (1:0) output depends on the pcsrcD input besides the current 

state (predictD (1:0)) as in Figure 4. The output (predfsmop (1:0)) and the next state are generated at the next 

state logic which is a combinational logic, whereas the current state is held by the current state register which 

is modeled as a D flip-flop. 
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Figure 3. Design of the alloyed-correlated branch predictor 

 

 

Table 1. Set selection 
GHRF(1:0) Selected set 

00 Set0 

01 Set1 
10 Set2 

11 Set3 

 

 

 
 

Figure 4. The block diagram of 2-bit saturating counter 
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After completing the VHDL implementation of the alloyed-correlated branch predictor module,  

a schematic representation of its components has been created using the RTL and Technology Schematic 

viewer of Xilinx ISE Design Suite 14.7. As illustrated in Figure 5, this schematic represents the branch 

predictor design by generic symbols to each of the PHT, the GHR and the 2-bit saturating counter. 

 

 

 
 

Figure 5. Schematic module of the alloyed-correlated branch predictor  

 

 

4. RESULTS AND DISCUSSIONS  

The alloyed-correlated branch predictor gathers the design aspects of both alloyed and correlated 

predictors, and to prove effectiveness of the designed predictor, its performance was compared with that of 

each of alloyed and correlated predictors in terms of program execution time, predictor performance, clock 

per instruction (CPI) and processor speedup. In this section, the selection sort algorithm that consists of 

conditional branches as 20% out of its all instructions was used to sort 100 integer numbers of three different 

distributions: sorted, uniform and normal. Since this algorithm is in-place comparison algorithm, using 

different types of input data would make the correlation between branch conditions uneven, this made it 

possible to demonstrate the impact of the proposed design. It can be clearly seen from Table 2 that  

the alloyed-correlated branch predictor achieved the best results by having the least execution time across all 

of the three groups of input numbers which in turn means it took the least number of clock cycles to execute 

the sorting program. 

 

 

Table 2. Comparison in terms of program execution time and number of clock cycles between  

three branch prediction designs 
Branch prediction design Program Execution time No. of clock cycles Clock period 

Sorteda numbers Alloyed 5055 ns 505.5 10 ns 

Correlated 5085 ns 508.5 10 ns 
Alloyed-Correlated 4425 ns 442.5 10 ns 

Uniformb numbers Alloyed 5325 ns 532.5 10 ns 

Correlated 5375 ns 537.5 10 ns 
Alloyed-Correlated 5235 ns 523.5 10 ns 

Normalc numbers Alloyed 5355 ns 535.5 10 ns 

Correlated 5365 ns 536.5 10 ns 

Alloyed-Correlated 5235 ns 523.5 10 ns 
a Sorted number: numbers that are already arranged ascendingly. 
b Uniform numbers: numbers that are symmetrically distributed. 
c Normal numbers: numbers that are naturally ordered. 
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The reciprocal relation between the predictor performance and its CPI is presented in Figure 6,  

that is, the higher the performance, the less the CPI and vice versa. Where the highest performance for  

the alloyed-correlated branch predictor (225.989) was recorded in part (a) of Figure 6 during the arrangement 

of the sorted numbers group, which in part (b) corresponding to the lowest CPI value (1.516) for arranging 

the same input group. The effect of the three prediction schemes on MIPS processor speedup are revealed in 

Figure 7. It can be deduced that processor speedup rates of the first two predictors (alloyed and correlated) 

were almost close for all combinations of input data, then these values increased noticeably when using  

the alloyed-correlated predictor. 

 

 

 
 

Figure 6. Branch predictor performance and clock per instruction (CPI) required by each scheme 

 

 

 
 

Figure 7. Comparison between three branch prediction schemes in term of processor speedup 

 

 

5. CONCLUSION  

In this research, a hardware model for a proposed dynamic branch predictor design has been 

configured in VHDL and synthesized using Xilinx ISE design suite 14.7 tool. This design decreases  

the penalty of branch misprediction caused by correlated branches by amalgamating the prediction 

mechanisms of two predictors (the alloyed predictor and the correlated predictor). After completing  
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the design, it has been included inside the fetch stage of a 5 stages pipelined MIPS processor then  

the selection sort algorithm was executed in order to arranging input numbers of different combinations 

ascendingly. The obtained results showed the effectiveness of the alloyed-correlated predictor design.  

At the end, it should be mentioned that this research is intended to be used in a computer architecture course 

where students will be able to design, implement, and debug a dynamic branch predictor and study its 

efficacy in minimizing the effect of nested conditional branches on prediction accuracy. 
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