
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 1, February 2020, pp. 978~986

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i1.pp978-986 978

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Performance analysis of binary and multiclass models using

azure machine learning

Smitha Rajagopal, Katiganere Siddaramappa Hareesha, Poornima Panduranga Kundapur
Department of Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education, India

Article Info ABSTRACT

Article history:

Received Apr 17, 2019

Revised Sep 26, 2019

Accepted Oct 3, 2019

 Network data is expanding and that too at an alarming rate. Besides,

the sophisticated attack tools used by hackers lead to capricious cyber threat

landscape. Traditional models proposed in the field of network intrusion

detection using machine learning algorithms emphasize more on improving

attack detection rate and reducing false alarms but time efficiency is often

overlooked. Therefore, in order to address this limitation, a modern solution

has been presented using Machine Learning-as-a-Service platform.

The proposed work analyses the performance of eight two-class and three

multiclass algorithms using UNSW NB-15, a modern intrusion detection

dataset. 82,332 testing samples were considered to evaluate the performance

of algorithms. The proposed two class decision forest model exhibited 99.2%

accuracy and took 6 seconds to learn 1,75,341 network instances.

Multiclass classification task was also undertaken wherein attack types

like generic, exploits, shellcode and worms were classified with a recall

percentage of 99%, 94.49%, 91.79% and 90.9% respectively by

the multiclass decision forest model that also leapfrogged others in terms of

training and execution time.

Keywords:

Azure machine learning

Decision forest

Intrusion detection

Locally deep SVM

Mutual information

UNSW NB-15

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Poornima Panduranga Kundapur,

Department of Computer Applications,

Manipal Institute of Technology, Manipal Academy of Higher Education,

Manipal, India.

Email: poornima.girish@manipal.edu

1. INTRODUCTION

The increased use of devices associated with internet generate huge volumes of network data [1].

This is also accompanied by advanced level of cyber-attacks that severely hamper the confidentiality,

integrity and availability of computer resources [2, 3]. Robust network intrusion detection systems are

the need of the hour to safeguard confidential information against malicious activities [4]. Machine learning

algorithms are commonly used to address the problem of network intrusion detection [5]. Whenever machine

learning algorithms are employed in the field of network intrusion detection, two recurring problems are

commonly encountered by security experts, i.e., prolonged training and prediction time. The training time of

algorithms span from seconds to hours [6, 7]. The longer training time taken by the Intrusion Detection

Systems to analyse the data leads to substantial delays in generating alerts [8, 9],obviously considered

unfavourable in the field of intrusion detection research. The problem, however, persists because network

intrusion detection involves big data investigation too given its mammoth complexity [9, 10]. According

to [11], 1 Gigabits per second (GBPs) of network traffic alone can introduce big data challenges. Traditional

data mining tools like Weka, Scikitlearn and conventional numerical environments like Matlab may not be

able to address the ever increasing issues of distributed data settings [12]. Performance and scalability are

the two major considerations for conducting network intrusion detection study. Big data processing platforms

like Pig [13], Spark machine learning [14] and Azure machine learning [15] are the preferred choices in

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of binary and multiclass models using azure machine learning (Smitha Rajagopal)

979

the modern scenario given their ability to uphold memory requirements and implementation essentials [16].

Going by these considerations, it is imperative to introduce radical advancements to intrusion detection

infrastructure. Azure Machine Learning is one such Machine learning as-a Service initiative by Microsoft

that can be employed to develop predictive models. The proposed work is an illustration to highlight

the advantages of this initiative by considering a network intrusion detection use case implemented through

supervised machine learning techniques. Given the existence of diverse algorithms in machine learning

study, it is often advisable to investigate the performance of individual algorithms so that optimal

predictions can be achieved. It is worthwhile to mention that algorithms perform differently for a given

dataset. Therefore, such a comparative study as proposed, becomes indispensable in the field of machine

learning research.

The objective of the proposed work is to analyse the performance of various algorithms and

investigate their training time, prediction time, attack detection rate and false alarm rate by considering

network instances of UNSW NB-15 dataset on a sophisticated Machine learning as a service (MLaaS)

platform called Microsoft Azure Machine Learning Studio(MAMLS).A modern and a comprehensive dataset

is essential to evaluate the effectiveness of the proposed approach and UNSW NB-15 dataset serves

the purpose [17-19]. A significant advantage of any MLaaS offering is its ability to save computational

resources that involve exceesive costs [20, 21].The novelty of the proposed approach is that the false alarm

rate generated by two class decision forest model is quite negligible and the attack detection capability of

multiclass decision forest model is definitely desirable. It is worthwhile to mention that the results of

classification tasks are quite superior than existing state of the art techniques.Some existing studies in

the literature have explored the performance of different machine learning algorithms on UNSW NB-15

dataset as elucidated below.

As described in [18], six different techniques were applied to classify the network instances of

UNSW NB-15 dataset. The highest accuracy obtained was 85.56% using decision tree that also generated

a false alarm rate of 15.78%. As discussed in [22], experimentation was conducted on Apache Spark to

improve the accuracy and it can be noted that REP tree model achieved an accuracy of 93.56%. The training

time taken was 7.92 seconds to learn 47,342 instances. A wrapper approach was implemented in [23] using

genetic algorithm and various tree based classifiers by selecting different subsets of features. An accuracy of

81.42% and a false alarm rate of 6.39% was obtained using this approach but wrapper approaches are

considered to be computationally exhaustive [24]. The performance of four classification algorithms like:

Decision Tree, Random Forest, SVM and Naive Bayes were compared and Apache Spark was used as

a processing paradigm [25]. It was noticed that Random Forest was the best performing classifier with

97.49% accuracy and the training time was reported as 5.69 seconds. Another insightful study was presented

in [26] that focussed on the implementation of supervised machine learning techniques on UNSW NB-15

dataset to test their robustness. Empirical results revealed that logistic regression performed better than other

algorithms like Tree-J48, SVM and Naive Bayes. An overall accuracy of 89.26% was reported by logistic

regression model.

2. METHODOLOGY

This section describes in detail the various aspects of experimentation. This article focuses on eight

two-class and three multiclass classification algorithms. Classification models were designed in four different

stages: preprocessing, feature selection using mutual information, tuning of hyper- parameters and designing

predictive workflows. Basically, UNSW NB-15 has 47 features and two class labels. The dataset has

continuous, discrete and symbolic features in varied ranges thus subjected to pre-processing. During

the experimentation, all nominal features were converted into integers. Numerical features with a wide range

are difficult to handle. Hence logarithmic scaling was applied to decrease their range of values. Boolean

features did not need any scaling. Min-max normalization was applied to determine the smallest and largest

value of each feature in the range [0, 1].

 (1)

In (1), min and max refer to the minimum and maximum values of each feature “i”. Each feature

value V is scaled to V
‟
. Feature scoring was used to prioritize the features followed by the design of

workflows to perform classification tasks. Upon experimentation, mutual information yielded comparatively

better results than other filter based feature selection methods. Mutual information, as the name suggests is

a measure of information between a random feature „x‟ and target variable „y‟ or the label [27]. The mutual

information between two variables is given by (2) as explained in (2) and (3).

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 978 - 986

980

 ∬

 (2)

 | | (3)

In (2) includes p (x, y) which denotes the joint probability density function, p(x), p(y) are

the marginal density functions. In the context of feature selection, „n‟ refers to the number of selected

features and is known as joint mutual information. The subset of selected features is referred to as XS as

given in (3). The distribution of training and test datasets is shown in Table 1. It can be noted that there was

no redundancy found in training and testing distributions unlike benchmark datasets [17, 18].

As mentioned above, mutual information was used as feature scoring method available as a module on Azure

Machine learning studio. The salient features, as listed in Table 2, were given as input to the various

classifiers to obtain the best possible predictions from them. In order to aptly assess the performance of all

machine learning algorithms considered in the study, 10-fold cross validation was applied and a separate

testing set was considered for evaluation. Cross validation becomes important in machine learning research

to control overfitting and corroborate the capability of algorithms to generalize on independent data

(testing set) [28].

Table 1. Dataset distribution
Class Training samples Testing samples

Normal 56000 37000

Analysis 2000 677
Backdoor 1746 583

Reconnaissance 10491 3496

Shellcode 1133 378
Worms 130 44

DOS 12264 4089

Fuzzers 18184 6062
Generic 40000 18871

Exploits 33393 11132
Total 1,75,341 82,332

Table 2. List of salient features
Sl.No Name of the feature Feature score

1 ct_state_ttl 0.686
2 dttl 0.56

3 Sttl 0.27

4 dinpkt 0.23
5 smean 0.20

6 rate 0.199

7 ct_dst_sport_ltm 0.196
8 sload 0.190

9 state 0.1875

10 dload 0.1872
11 sbytes 0.185

12 dpkts 0.175

13 dbytes 0.171

14 dur 0.158

15 ackdat 0.156

16 dmean 0.147
17 synack 0.138

18 tcprtt 0.131

2.1. Averaged perceptron

Averaged Perceptron is a simplified form of neural network that uses a linear function to classify

the samples. MAMLS offers an option of setting a single value or multiple values as learning rates in order to

test the proficiency of two class Averaged Perceptron model. Different parameter values like 0.1, 0.5 and 1.0

were set as learning rate to determine the optimal configuration of the stochastic gradient descent optimizer.

The advantage of using a parameter range is that the model reprises over several combinations eventually

producing the optimal model.

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of binary and multiclass models using azure machine learning (Smitha Rajagopal)

981

2.2. Bayes point machine

Bayes point machine is based on Bayesian principle to efficiently classify network instances by

choosing a Bayes point (average). Typically, iterations are set in the range of 5 to 100. This value indicates

the number of times the algorithm iterates over the training data. Numerous trials were conducted by varying

the number of iterations within the given range but the results were not convincing enough and longer

training time was observed during those trials. However, on setting the number of training iterations as 30 for

two-class Bayes Point Machine, the results obtained were satisfactory and this was the basis for retaining 30

as the number of training iterations for the experiment.

2.3. Boosted decision tree

Boosted decision tree is an ensemble model primarily aimed at rectifying the errors of previously

built trees. The four critical hyper-parameter values as shown in Table 3 were used to examine

the competence of Two- class Boosted Decision Tree. Here, maximum number of leaves indicate

the maximum leaves that can be created in any tree. The size of the tree can be increased by varying this

value but overfitting and prolonged training time were encountered by increasing the number of leaves.

Minimum number of samples per leaf node refers to the number of cases considered to create a leaf node.

The value 10 signifies that the training data contains 10 cases meeting the same condition as the rules

formulated. The initial learning rate was assigned a value 0.2 which basically hints at the rate of convergence.

Further, 100 decision trees were created in the ensemble. There is also a provision to create more than 100

trees but again, the training time becomes considerably longer, hence considered inadvisable.

Table 3. Critical parameters used for configuring boosted decision trees

2.4. Decision forest

Two-class Decision forest, as recommended by Team Azure [15] is one of the most preferred

models to perform binary classification. There are two resampling methods namely replicate and bagging

available to design a two class decision forest model. Replicate method trains each tree on the same training

data whereas bootstrap aggregating or bagging allows each tree to be grown on a new sample. It can be noted

that the values as shown in Table 4, when assigned bestowed the optimal results.

Table 4. Critical parameters used for configuring decision forest

Raising maximum depth led to a maximum precision of 1 but overfitting was noted which also

resulted in a longer training time (not desirable). The number of random splits signifies the number of splits

generated per node from which the optimal split could be chosen. Minimum number of samples per leaf node

refers to the number of cases needed to create the leaf. Attempts were made to ascertain whether better

results could be obtained by varying the values of critical parameters but were not effectual.

2.5. Decision jungle

Unlike decision trees that allow only one path to every node, a decision jungle allows multiple paths

from root to each leaf. Unlike decision forest which uses tree as the base learner, decision jungle employs

Directed Acyclic Graph (DAG) as the base learner. Shotton et al. [29] introduced the concept of decision

jungle to conserve memory and improve generalization. Number of optimization steps per decision DAG

layer indicates the number of steps to be used to enhance each level of the DAG. The values as enumerated in

Table 5 were used to build the model and variations introduced resulted in unsatisfactory predictions.

Table 5. Critical parameters used for configuring decision jungle

Max. leaves per tree Minimum number of samples per leaf node Learning rate Number of trees constructed

20 10 0.2 100

Number of decision trees Maximum depth of decision

tree

Number of random splits per

node

Minimum number of samples per

leaf node

8 32 128 1

Number of DAG Maximum depth of DAG Maximum width of DAG Number of optimization steps per
decision DAG layer

8 32 128 2048

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 978 - 986

982

2.6. Locally deep SVM (support vector machine)

Locally deep kernel can be beneficial in producing better classification accuracy than Radial Basis

Function (RBF) kernels due to their capability to increase feature embedding and attain consistent speed [30].

Depth of the tree is a hyper-parameter used to configure two class locally deep SVM which indicates

the maximum tree depth. Choosing an appropriate value of tree depth becomes important since the training

cost increases sequentially with tree depth. Thus, three regularization parameters were used to control

overfitting namely lambda (W), lambda theta and lambda theta prime set at 0.1, 0.01 and 0.01 respectively.

Lambda indicates the weight to be assigned to the regularization term. Lambda theta defines the space

between a region boundary and the nearest data point. Lambda theta prime, a parameter needed to control

the curvature in decision boundaries is also an integral component required to build the two class locally deep

SVM. Usually, lambda theta and lambda theta prime will be one tenth of lambda, if chosen otherwise causes

overfitting. Sigmoid sharpness refers to the scaling parameter. Sigmoid kernel is quite favorable due to its

genesis from neural networks. However, its usage is not encouraged widely due to its non-positive semi

definite properties [31]. Sigmoid kernel does not satisfy Mercer‟s theorem. Therefore, large values cannot be

assigned to sigmoid sharpness. Smaller values like 1 when used can control the threshold. Table 6 illustrates

the critical default parameters tuned to model the two class locally deep SVM.

Table 6. Critical parameters used for configuring locally deep SVM
Depth of the tree Lambda Lambda theta Lambdatheta prime Sigmoid sharpness

3 0.1 0.01 0.01 1

2.7. Support vector machine

Two class SVM uses L1 (Lasso) regularization to control overfitting. The default value of Lambda

W=0.001 was set as weight since it is preferable to use a non-zero value to control the degree of overfitting.

2.8. Logistic regression

Optimization tolerance is a threshold that is normally specified while designing two class logistic

regression model using L-BFGS (limited memory Broyden-Fletcher-Goldfarb-Shanno) optimization [15].

This model necessitates proper tuning of L1 and L2 values set as 1 and 1 respectively. The memory size in

megabytes used by L-BFGS optimizer was set as 20 which indicates the past gradients stored in memory for

the execution of successive steps. If the memory size is higher, then in all possibilities, it slows down

the training process and the model ends up being flawed. Three significant parameters were used to build and

test the effectiveness of two class logistic regression model as mentioned in Table 7. Regularization is often

applied to classification problems in order to minimize overfitting.

Table 7. Critical parameters used for configuring logistic regression
L1 Regularization L2 Regularization Memory size used by L-BFGS

1 1 20

3. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results obtained through experimentation using MAMLS. The four

classification possibilities of any intrusion detection study are: True positives(TP), True negatives (TN),

False Negatives (FN) and False Positives(FP) that determine the significant performance metrics namely

Accuracy(A), Precision(P), Recall(R), F1-score(F1), Area under the curve(AUC) and false alarm rate.

Additionally, the training and execution time of each model is also reported. Execution time refers to the time

taken by the model to output the predictions (Class labels with respect to binary and attack type with respect

to multiclass models). True Positive (Sensitivity) defines the number of positive samples correctly classified

as positive. False Negative (FN) is the number of positive examples wrongly classified as negative.

False Positive (FP) is the number of negative examples wrongly classified as positive and True Negative

(Specificity) (TN) is the number of negative examples correctly classified as negative. The (4) to (10) define

these various performance metrics:

 (4)

 (5)

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of binary and multiclass models using azure machine learning (Smitha Rajagopal)

983

 (6)

 (7)

False Positive Rate (FPR) =

 (8)

False Negative Rate (FNR) =

 (9)

False Alarm Rate (FAR) =

 (10)

In the proposed work, eight two-class classification algorithms were considered and their

performance was analysed. Results are enumerated in Table 8. The Confusion matrix shown below represents

the results of classification obtained from three classifiers namely multiclass decision forest, multiclass

decision jungle and multiclass logistic regression. The actual (A) versus predicted (P) classifications

presented in the confusion matrix pertain to the ten classes wherein the top most row signifies the name of

the class: A (Analysis), B (Backdoor), D (DOS), E (Exploits), F (Fuzzers), G (Generic), N (Normal), R

(Reconnaissance), S (Shellcode) and W (Worms). The Results obtained using Multiclass Decision Forest

shown in Table 9 (Confusion Matrix 1), Table 10 (Confusion Matrix 2), and Table 11 (Confusion Matrix 3).

Table 8. Classification results obtained by applying eight two-class algorithms considered in the work
Algorithm Testing

Accuracy

(%)

Precision
(%)

Recall
(%)

F1-score AUC FAR
(%)

Training
Time

(seconds)

Executio
n Time

(seconds)

Training
accuracy

(%)

Average Perceptron 77.2 80.3 88.1 0.84 0.885 28.9 9 2.5 73.5

Bayes point machine 91 90 97 0.936 0.948 12.5 8 2.3 89.4
Boosted Decision Tree 95.9 96.6 97.4 0.97 0.994 4.9 7 2.7 92.2

Decision Forest(Using

Bagging as
Resampling)

99.2 99% 99.6 0.994 1 1% 6 2 97

Decision Forest(Using

Replicate as
Resampling)

99.5 99.4 99.8 0.996 1 0.7 6 2 96.6

Decision Jungle 94.6 94.3 98 0.961 0.9 7.2 6.5 2.9 92.2

Locally deep SVM 93.3 91.6 99.3 0.953 0.975 10 7.8 3.3 91.0
SVM 85.7 89.4 89.6 0.895 0.917 16.5 7.9 3.5 83.8

Logistic Regression 91.6 90.8 97.6 0.941 0.952 11.7 7 3 88.8

Table 9. Results obtained using multiclass decision forest (confusion matrix 1)

A

A B D E F G N R S W Recall

(%)

Analysis 197 13 74 385 0 3 3 2 0 0 29
Backdoor 9 127 76 365 3 0 0 2 1 0 21.78

DOS 0 0 1300 2670 3 0 0 113 3 0 31.79

Exploits 0 0 558 10519 27 0 3 22 0 3 94.49

Fuzzers 0 0 79 467 5383 3 115 6 6 3 88.79

Generic 0 0 57 113 0 18701 0 0 0 0 99

Normal 0 0 0 24 666 0 36310 0 0 0 98.13
Reconnaissance 0 0 112 521 7 0 0 2856 0 0 81.69

Shellcode 0 0 0 13 7 0 2 9 347 0 91.79

Worms 0 0 0 4 0 0 0 0 0 40 90.9
Precision (%) 95.63 90.7 57.62 69.75 88.3 99.96 99.66 94.88 97.19 86.95

The time taken by multiclass models to learn numerous network instances and subsequently

distinguish between attack categories and normal patterns ranged between 16 to 20 seconds. The least

training time of 16 seconds was taken by multiclass decision forest, followed by multiclass decision jungle

that took 18 seconds to recognize the patterns belonging to different classes. The maximum training time of

20 seconds was taken by multiclass logistic regression model. It is worthwhile to mention that the execution

time of Multiclass decision forest and Multiclass decision jungle was reported as 6 and 6.5 seconds

respectively whereas Multiclass logistic regression took 7 seconds to output the class-wise predictions.

P

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 978 - 986

984

Table 10. Result obtained using multiclass decision jungle (confusion matrix 2)

A

A B D E F G N R S W Recall

(%)

Analysis 15 0 2 498 7 2 141 11 0 1 2.2
Backdoor 0 37 0 504 16 0 4 19 3 0 6.34

DOS 0 0 107 3667 137 0 22 142 10 4 2.6

Exploits 0 1 22 10352 366 2 111 267 11 0 92.9
Fuzzers 10 1 1 723 4455 0 757 103 12 0 73.49

Generic 0 0 28 339 47 18455 0 0 1 1 97.79

Normal 10 0 0 430 3848 0 32597 111 0 4 88.1
Reconnaissance 0 4 10 1010 36 0 49 2387 0 0 68.27

Shellcode 0 0 0 121 89 0 9 106 53 0 14

Worms 0 6 0 5 2 0 1 0 0 30 68
Precision (%) 42.85 75.5 62.94 58.65 49.48 99.97 96.75 75.87 58.88 75

Table 11. Result obtained using multiclass logistic regression (confusion matrix 3)

A

A B D E F G N R S W Recall

(%)

Analysis 30 0 11 338 52 0 134 23 39 50 4.43

Backdoor 0 90 8 300 86 0 38 61 0 0 15.4

DOS 0 0 101 2900 466 29 258 335 0 0 2.47
Exploits 0 0 67 8539 957 22 812 735 0 0 76.7

Fuzzers 0 0 36 1660 3469 97 624 176 0 0 57.22

Generic 5 0 8 302 38 18455 20 38 0 5 97.79
Normal 20 11 40 1850 4403 0 30599 77 0 0 82.7

Reconnaissance 0 0 14 1304 696 10 77 1395 0 0 39.9

Shellcode 0 0 0 30 98 0 10 210 30 0 7.93
Worms 0 0 0 33 0 0 0 0 0 11 25

Precision (%) 54.54 89 35.43 49.48 33.79 99.15 93.9 45.73 43.47 16.66

Typically, any Intrusion Detection System (IDS) aims at improving the attack detection rate and

reducing false alarms. Technically, it is very challenging to achieve a lower false alarm rate in spite of

a satisfactory recall percentage. The proposed study demonstrates that the decision forest models are quite

robust. A rigorous investigation of all the models considered in the study made some interesting revelations

as elaborated in this section. False Alarm Rate (FAR) has been considerably low (<= 10%) with respect to

four binary classifiers namely boosted decision tree, decision forest, decision jungle and locally deep SVM as

mentioned in Table 8. Particularly, two class decision forest surpassed other classifiers with highest recall

rate of 99.8% and lowest FAR of 1% with bagging and 0.7% with replicate as re-sampling techniques

respectively as mentioned in Table 8. Although other performance measures have been used to validate

the effectiveness of the proposed models, Recall and FAR are the two standard metrics widely employed in

intrusion detection research and the remaining metrics serve as supplementary. Two-class locally deep SVM

has performed well with seemingly good attack detection rate of 99.3% and false alarm rate as low as 10%.

Two-class Bayes point machine (BPM) and Boosted Decision Tree (BDT) models have been consistent in

their performance with 97% recall. However, BPM has recorded a higher (12.5%) FAR as compared to BDT

model (4.9% as FAR). The FAR reported by Averaged perceptron is seemingly high i.e., 28.9%. There is

a substantial difference between the recall percentage of two-class SVM and two-class locally deep SVM

(89.6% and 99.3% respectively). Two class SVM‟s capability to detect false alarms has not been impressive

since its FAR is reported to be as high as 16.5%. On the other hand, locally deep SVM has been

comparatively better in reducing false alarms due to the application of sigmoid kernel. Two class Logistic

regression has been mediocre in its performance with a reasonable recall percentage of 97.6% and apparently

a higher FAR of 11.7%.

Network samples in any dataset are not uniformly distributed across various classes and machine

learning practitioners often encounter the problem of imbalanced datasets in real time [32]. Binary

classification alone may not be insightful because two class algorithms cannot classify the samples into

a particular attack type or category. In view of the above mentioned limitation of binary classification, three

algorithms were employed to perform multiclass classification tasks. Empirical investigation demonstrated

that multiclass decision forest outperformed others in identifying various attack types.The recall percentage

of seven classes including normal are quite appealing except Analysis, Backdoor and Denial of

Service(DOS) as predicted by multiclass decision forest (as enumerated in confusion matrix 1).

On the multiclass classification front, the results obtained from both decision jungle and logistic regressions

were trivial. Both these classifiers reported a good recall percentage, i.e., above 90% with respect to only two

attack categories like generic and exploits. This can be attributed to the presence of larger samples in

P

P

Int J Elec & Comp Eng ISSN: 2088-8708

Performance analysis of binary and multiclass models using azure machine learning (Smitha Rajagopal)

985

the training set with respect to generic and exploits as observable from Table 1. It is discernible that

the sequence of experimentation conducted on Azure Machine Learning Studio supported by an ingenious set

of algorithms strengthened the implementation aspect since overall attack detection rate is visibly high and

false alarm rate is apparently low. The current study considers substantial samples for experimentation

(257,673 network instances inclusive of both training and testing datasets). It is worthwhile to mention that

training time of all the eight two-class predictive models was found to be quite minimal as reported in

the range of 6 to 9 seconds whereas multiclass classification models took relatively longer to get familiar

with different attack categories.

4. CONCLUSION AND PROSPECTS

In this study, eight two-class and three multiclass classification models were developed using

UNSW NB-15 dataset. Based on empirical investigation, it can be stated that decision forest accomplished

the best performance. Since it is extremely time consuming to execute the experiments on local systems,

Microsoft Azure Machine Learning Studio (MAMLS) was chosen for experimentation. Apart from standard

performance metrics like accuracy, precision, recall, f1-score and AUC, the proposed work also considered

training time and execution time to evaluate the effectiveness of the algorithms. The proposed study has

highlighted that MAMLS can serve as an expedient Integrated Development Environment (IDE) for handling

large datasets. As a part of future work, it will be interesting to employ different intrusion detection datasets,

subsequently gauge the performance of various classifiers. Experts have always urged the research

community to experiment with different datasets and introduce novel techniques for network intrusion

detection [33, 34]. Another avenue which can be explored in future can possibly include the deployment of

predictive models as scalable web services thereby leveraging the capabilities of MAMLS. It will be

technically challenging to implement a wrapper based approach on MAMLS. Such wrapper based

approaches may be helpful to demonstrate the effectiveness of MAMLS, eventually resuting in a perceptive

assessment of its computational performance.

REFERENCES
[1] Hakimi, Zahra, Karim Feaz, Morteza Barati, "A Flow-based Distributed Intrusion Detection System Using Mobile

Agents," International Journal of Electrical and Computer Engineering (IJECE), vol. 3, no. 6, pp. 732-740, 2013.

[2] Jang-Jaccard J, Nepal S., "A survey of emerging threats in cybersecurity," Journal of Computer and System

Sciences, vol. 80, no. 5, pp. 973-93, 2014.

[3] Yan F, Jian-Wen Y, Lin C., "Computer network security and technology research," In 2015 Seventh International

Conference on Measuring Technology and Mechatronics Automation, IEEE, pp. 293-296, 2015.

[4] Yazdani, Navid Moshtaghi, Masoud Shariat Panahi, and Ehsan Sadeghi Poor, "Intelligent Detection of Intrusion

into Databases Using Extended Classifier System," International Journal of Electrical and Computer Engineering

(IJECE), vol. 3, no. 5, pp. 2088-8708, 2013.

[5] Aburomman, Abdulla Amin, and Mamun Bin Ibne Reaz, "Review of IDS Development Methods in

Machine Learning," International Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 5,

pp. 2432-2436, 2016.

[6] Buczak, Anna L., and Erhan Guven, "A survey of data mining and machine learning methods for cyber security

intrusion detection," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, 2015.

[7] Othman, Suad Mohammed, Fadl Mutaher Ba-Alwi, Nabeel T. Alsohybe, and Amal Y. Al-Hashida, "Intrusion

detection model using machine learning algorithm on Big Data environment," Journal of Big Data, vol. 5, no. 1,

pp. 34, 2018.

[8] Tchakoucht, Taha AIT, and Mostafa Ezziyyani, "Building a fast intrusion detection system for high-speed-

networks: probe and DOS attacks detection," Procedia Computer Science, vol. 127, pp. 521-530, 2018.

[9] Zuech, Richard, Taghi M. Khoshgoftaar, and Randall Wald, "Intrusion detection and big heterogeneous data:

a survey," Journal of Big Data, vol. 2, no. 1, pp. 3, 2015.

[10] Suthaharan, Shan, "Big data classification: Problems and challenges in network intrusion prediction with machine

learning," ACM SIGMETRICS Performance Evaluation Review, vol. 41, no. 4, pp. 70-73, 2014.

[11] Nassar, Mohamed, Bechara al Bouna, and Qutaibah Malluhi, "Secure outsourcing of network flow data analysis,"

In 2013 IEEE International Congress on Big Data, IEEE, pp. 431-432, 2013.

[12] Sparks, Evan R., Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xinghao Pan, Joseph Gonzalez, Michael J.

Franklin, Michael I. Jordan, and Tim Kraska, "MLI: An API for distributed machine learning," In 2013 IEEE 13th

International Conference on Data Mining, IEEE, pp. 1187-1192, 2013.

[13] Casado, Ruben, and Muhammad Younas, "Emerging trends and technologies in big data processing," Concurrency

and Computation: Practice and Experience, vol. 27, no. 8, pp. 2078-2091, 2015.

[14] Zaharia, Matei, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng

et al., "Apache spark: a unified engine for big data processing," Communications of the ACM, vol. 59, no. 11,

pp. 56-65, 2016.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 978 - 986

986

[15] Team, AzureML, "AzureML: Anatomy of a machine learning service," In Conference on Predictive APIs and

Apps, pp. 1-13. 2016.

[16] Elshawi, Radwa, Sherif Sakr, Domenico Talia, and Paolo Trunfio, "Big data systems meet machine learning

challenges: Towards big data science as a service," Big data research, vol. 14, pp. 1-11, 2018.

[17] Moustafa, Nour, and Jill Slay, "UNSW-NB15: a comprehensive data set for network intrusion detection systems

(UNSW-NB15 network data set)," In 2015 military communications and information systems conference (MilCIS),

IEEE, pp. 1-6, 2015.

[18] Moustafa, Nour, and Jill Slay, "The evaluation of Network Anomaly Detection Systems: Statistical analysis of the

UNSW-NB15 data set and the comparison with the KDD99 data set," Information Security Journal: A Global

Perspective, vol. 25, no. 1-3, pp. 18-31, 2016.

[19] Moustafa, Nour, and Jill Slay, "The significant features of the UNSW-NB15 and the KDD99 data sets for network

intrusion detection systems," In 2015 4th international workshop on building analysis datasets and gathering

experience returns for security (BADGERS), IEEE, pp. 25-31, 2015.

[20] Ribeiro, Mauro, Katarina Grolinger, and Miriam AM Capretz, "Mlaas: Machine learning as a service," In 2015

IEEE 14th International Conference on Machine Learning and Applications (ICMLA), IEEE, pp. 896-902, 2015.

[21] Tafti, Ahmad P., Eric LaRose, Jonathan C. Badger, Ross Kleiman, and Peggy Peissig, "Machine learning-as-a-

service and its application to medical informatics," In International Conference on Machine Learning and Data

Mining in Pattern Recognition, Springer, Cham, pp. 206-219, 2017.

[22] Dahiya, Priyanka, and Devesh Kumar Srivastava, "Network intrusion detection in big dataset using Spark,"

Procedia computer science, vol. 132, pp. 253-262, 2018.

[23] Khammassi, Chaouki, and Saoussen Krichen, "A GA-LR wrapper approach for feature selection in network

intrusion detection," computers & security, vol. 70, pp. 255-277, 2017.

[24] Ambusaidi, Mohammed A., Xiangjian He, Priyadarsi Nanda, and Zhiyuan Tan, "Building an intrusion detection

system using a filter-based feature selection algorithm," IEEE transactions on computers, vol. 65, no. 10,

pp. 2986-2998, 2016.

[25] Belouch, Mustapha, Salah El Hadaj, and Mohamed Idhammad, "Performance evaluation of intrusion detection

based on machine learning using Apache Spark," Procedia Computer Science, vol. 127, pp. 1-6, 2018.

[26] Bhamare, Deval, Tara Salman, Mohammed Samaka, Aiman Erbad, and Raj Jain, "Feasibility of supervised

machine learning for cloud security," In 2016 International Conference on Information Science and Security

(ICISS), pp. 1-5, IEEE, 2016.

[27] Vergara, Jorge R., and Pablo A. Estevez, "A review of feature selection methods based on mutual information,"

Neural computing and applications, vol. 24, no. 1, pp. 175-186, 2014.

[28] Smith, Tony C., and Eibe Frank, "Introducing machine learning concepts with WEKA," In Statistical genomics,

Humana Press, New York, NY, pp. 353-378, 2016.

[29] Shotton, Jamie, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and Antonio Criminisi, "Decision

jungles: Compact and rich models for classification," In Advances in Neural Information Processing Systems,

pp. 234-242, 2013.

[30] Jose, Cijo, Prasoon Goyal, Parv Aggrwal, and Manik Varma, "Local deep kernel learning for efficient non-linear

svm prediction," In International conference on machine learning, pp. 486-494. 2013.

[31] Howley, Tom, and Michael G. Madden, "The genetic kernel support vector machine: Description and evaluation,"

Artificial intelligence review, vol. 24, no. 3-4, pp. 379-395, 2005.

[32] Krawczyk, Bartosz, "Learning from imbalanced data: open challenges and future directions," Progress in Artificial

Intelligence, vol. 5, no. 4, pp. 221-232, 2016.

[33] Moustafa, Nour, Jiankun Hu, and Jill Slay, "A holistic review of Network Anomaly Detection Systems:

A comprehensive survey," Journal of Network and Computer Applications, vol. 128, pp. 33-55, 2019.

[34] Ring, Markus, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas Hotho, "A survey of network-

based intrusion detection data sets," Computers & Security, 2019.

