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 This paper proposes state-of the-art Automatic Speaker Recognition System 

(ASR) based on Bayesian Distance Learning Metric as a feature extractor. 

In this modeling, I explored the constraints of the distance between modified 

and simplified i-vector pairs by the same speaker and different speakers. 

An approximation of the distance metric is used as a weighted covariance 

matrix from the higher eigenvectors of the covariance matrix, which is used 

to estimate the posterior distribution of the metric distance. Given a speaker 

tag, I select the data pair of the different speakers with the highest cosine 

score to form a set of speaker constraints. This collection captures the most 

discriminating variability between the speakers in the training data. 

This Bayesian distance learning approach achieves better performance than 

the most advanced methods. Furthermore, this method is insensitive to 

normalization compared to cosine scores. This method is very effective in the 

case of limited training data. The modified supervised i-vector based ASR 

system is evaluated on the NIST SRE 2008 database. The best performance 

of the combined cosine score EER 1.767% obtained using LDA200 + 

NCA200 + LDA200, and the best performance of Bayes_dml EER 1.775% 

obtained using LDA200 + NCA200 + LDA100. Bayesian_dml overcomes 

the combined norm of cosine scores and is the best result of the short2-short3 

condition report for NIST SRE 2008 data. 
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1. INTRODUCTION 

Distinguish an individual by his or her voice is a God gifted human quality most take assure case in 

regular human-to-human association/ correspondence. Talking somebody via phone more often than not 

starts by distinguishing who is talking and, at the minimum in instances of recognizable speakers, 

a subjective confirmation by the audience that the personality is right and the discussion can continue. ASR 

frameworks have developed as a vital method for authenticating individuality in several online applications 

and in addition all in all business collaborations, criminology, what's more, law enforcement. Aside from 

individual validation for access control, speaker recognition is a vital device in law implementation, national 

security, and legal sciences [1, 2]. 

Extraordinarily, people routinely identify people by their voices with striking precision, particularly 

when the level of commonality with the subject is high. Normally, even a short nonlinguistic line, 

for example, a laugh quietly, is sufficient for us to recognize a well-known individual [3]. ASR research 

groups have produced different techniques pretty much autonomously for five decades [4]. On the other 

hand, native speaker recognition is a regular capacity of people which is, on occasion, extremely exact and 
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efficient. Latest studies on mind imaging [5, 6] have uncovered numerous subtle elements on how to perform 

psychological based speaker recognition, which may motivate new headings for ASR approach. 

To begin with, considering the general exploration area, it would be helpful to illuminate what is 

incorporated by the term speaker recognition, which comprises of two option undertakings: speaker 

identification and verification. In speaker recognition, the assignment is to distinguish an unknown speaker 

from the database of known speakers. There are two kinds of ASR system open-set and close-set. If all 

speakers are known in a set then it is called as closed-set on the other hand, if the test speaker could likewise, 

be from outside the predefined known speaker set, this turns into a the open-set situation, and, along these 

lines, a world model or universal background model (UBM) [7] is required. 

Speaker identification can be based on a voice stream that is content dependent or content free. 

This is more significant in speaker-verification systems in which a claimed person speaks a predefined text, 

like a password or personal identification number (PIN), to access system. All through this paper, 

the emphasis will be on text-independent automatic speaker recognition systems. 

A few algorithmic and its computational advances have empowered noteworthy ASR performance 

in the cutting edge. Approaches utilizing phonotactic data, phoneme recognizer followed by language models 

Phone Recognition and Language Modeling (PRLM) parallel PRLM, have been appeared to be very 

effective [8]. In this phonotactic demonstrating structure, an arrangement of tokenizes is utilized to interpret 

the speech information into token strings or cross sections which are later scored by n-gram dialect 

models [9] or mapped into a sack of trigrams highlight vector for support vector machine (SVM).   

In fact traditional Hidden Markov model (HMM) based speaker verification is generally based on 

the tokenizer class model, all tokenizations connected here to make a system [10], for example, Gaussian 

Mixture Model (GMM) tokenization [11], universal phone recognition (UPR) [12], articulator the property 

based methodology [13], deep neural network based telephone recognizer [14], just to give some examples.  

With the presentation of shifted delta-cepstral (SDC) acoustic components [15], promising results 

utilizing the GMM system with the variable investigation [16, 17], supervector model [18]. Furthermore, 

maximum mutual information (MMI) based discriminative training [19] have likewise been accounted for 

LID. In this work, I concentrate on the acoustic level frameworks. 

Acoustic-phonetic methodology, which is normally taken by specialists prepared on this, requires 

quantitative acoustic estimations from speech signal tests, and based on fact examination of the result. By and 

large, comparable phonetic units are removed from the known and addressed speech signal, and different 

acoustic parameters measured from these portions are evaluated. The Logistic Regression (LR)can be 

helpfully utilized as a part of this methodology since it depends on numerical parameters [20]. 

In spite of the fact that the acoustic-phonetic a methodology is a more target approach, it has some 

subjective components. For instance, an acoustic–phonetician may distinguish speech signal as being 

influenced by anxiety and after that perform the objective examination. In any, the case, whether the speaker 

was really under anxiety at that minute is a subjective amount controlled by the inspector through his or her 

experience. As on the date, aggregate variability i-vector ASR modeling has achieved critical consideration 

in both LID and SV areas because of its remarkable efficiency, less system complexity and compact system 

in size. In i-vector modeling, initial, a solitary element investigation is utilized as a front end to produce a low 

dimensional aggregate variability space which together models dialect, speaker and channel variability all 

together. At that point, inside this i-vector space, variability costs techniques, for example, Within-Class 

Covariance Normalization(WCCN), Linear Discriminative examination (LDA) and Nuisance Attribute 

Projection (NAP) [18], are performed to diminish the variability for consequent modeling (e.g., utilizing 

SVM, LR, and neural network and probabilistic linear discriminate analysis (PLDA) for Language 

Identification (LID). 

In this paper, the conventional i-vectors are stretched out to label regularized regulated i-vectors by 

connecting the marked vector and the straight relapse lattice toward the end of the mean supervector what's 

more, the i-vector element stacking network, separately [21, 22]. I can let the added name vector be the 

parameter vector that I need to perform and relapse with age paralinguistic measures to make the proposed 

system reasonable for regression. The explanation behind utilizing a linear regression matrix W is that 

numerous back end classification modules in LID and SV is linear. Additionally, if the regression connection 

is not linear, I can use non-linear mapping as a preprocessing venture before creating the mark vectors. 

The commitment weight of each supervector measurement and every objective class in the target capacity is 

consequently ascertained by iterative preparing. The conventional i-vector framework serves as our baseline. 

As a final point, motivated by the achievement of strong works for corrupted information based SV 

jobs, I likewise considered Gammatone frequency Cepstral coefficients (GFCC) features and 

the spectrotemporal Gabor features for powerful LID assignment on the corrupted information as extra 

execution enhancer steps. At the point when combined with customary MFCC and SDC speaker specific 

feature based frameworks, the general framework execution was further upgraded. 
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2. THE BASELINE i-VECTOR MODELING 

Let us consider a model λ of C component GMM UBM with  λc= {pc, μc, ∑c} where c = 1, . , , ..C 

and the speech signal Y={y1, y2……..,yL } having L feature sequences. UBM based on BW statistics 

computed as follows; 
 

Nc = ∑ PL
t=1 (c|yt, λ)  (1) 

 

where GMM component is c = 1, … . , … , … C.  and   yt on λc is occupancy  probability component P(c|yt, ). 
 

Fc =  ∑ PL
t=1 (c|yt, λ)(yt − μc) (2) 

 

I can generate the corresponding central mean supervector F̌ by concatenating all together F̌c as follows; 
 

F̌c =
Fc=   ∑ PL

t=1 (c|yt,λ)(yt−μc)

∑ PL
t=1 (c|yt,λ)

 (3) 

 

F̌c can be projected on rectangular total variability matrix T (low rank factor loading) and i-vector x as 

follows; 
 

F̌c → Tx  (4) 
 

The total variability matrix  T with C component GMM and acoustic features in  D dimension can be 

represented as CDXK matrix similar to eigenvoice matrix V. By considering F̌c and the i-vector can be 

computed as follows; 
 

x = {I + TtΣ−1NT}−1T−1Σ−1NF̌  (5) 
 

where N is CD X CD dimension diagonal matrix. To reduce the variability I applied two channel 

compensation methods in total variability space (i) LDA and (ii) WCCN. LDA minimizes intra-class 

variance and WCCN normalizes the cosine kernel. Let us consider two i-vector 1 and 2 then cosine kernel is 

defined as follows to adapt either PLDA or SVM classifier. 
 

k(x1, x2) =
〈x1,x2〉

‖x1‖1‖x2‖2
  (6) 

 

 

3. IMPLEMENTATION OF MODIFIED AND SUPERVISED I-VECTOR 

Using a combination of SVM classifiers and GMM supervectors have been an extremely fruitful 

methodology for ASR. Observing the way that the channel considers to contain speaker-dependant data, 

the speaker and channel elements were consolidated into a solitary space termed the total variability space. 
 

3.1. Label-regularized supervised i-vector 

Let us assume that the hidden variable i-vector is generation mean supervector. The steps involved 

in label-regularization as follows: 

Step I. Compute multivariate Gaussian distribution for jth utterances of  
 

P(xj) = 𝒩(0, I), P(F̌j|xj) = 𝒩(Txj, Nj
−1Σ). Where xj = i-vector of jth  utterances. 

 

Step II. Computation of posterior distribution of hidden variabl i-vector  
 

P(xj|F̌j) = 𝒩 {(I + TtΣ−1NjT)
−1

TtΣ−1NjF̌j, (I + TtΣ−1NjT)
−1

}  where Nj = N vector. 

 

Step III. Computation of discriminative i-vector, P(xj) = 𝒩(0, I). 

Step IV. Regularization of label information, 
 

P [(
F̌j

Lj
) |xj] = 𝒩 [(

Txj

Wxj
)] , [(

Nj
−1Σ1

nj
−1 Σ2

)]   

 

where  F̌j= Mean super vector, Lj= Label vector, Σ1= CD dimension mean super vector,  Σ2= M dimension 

label vector. 
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Step V. Designing of two supervised label vectors 

 

Type 1: Li,j = {
1       for class i
0      otherwise

,   

 

The class label will be correctly classified by regression matrix W. M is denoted as 

the dimensionality of label vector Lj. Total number of speakers in database to recognize =H  then Lj 

is H(H = M) dimension binary vector. H − 1 numbers of elements will have “0” and one element will have 

value "1".  

 

Type 2 : Lj = X̅sj, W = I. The last iteration  X̅sj specify the sample mean vector and compel 

regression matrix to be identity matrix. 

 

Step VI. Computation of the likelihood of the total training utterances of ASR system is: 

  

∑ ln{P(F̌j, Lj, xj)} = ∑ [ln {P ((
F̌j

Lj
) |xj)} + ln{P(xj)}]Γ

j=1
Γ
j=1   

 

Step VII. Computation of objective function Jm for Maximum Likelihood (ML): 

 

Jm = ∑ [
1

2
xj

txj +
1

2
(F̌j − Txj)

t
∑ Nj(F̌j − Txj) +

1

2
(Lj − Wxj)

t
∑ Nj(F̌j − Txj) −

1

2
ln(|Σ1

−t|) −−t
2

−t
1

Γ
j=1

1

2
ln(|Σ2

−t|)]  

 

After simplifying objective function equation. 

 

Jm = ∑ [
1

2
xj

txj +
1

2
(A)t ∑ Nj(A) +

1

2
(B)t ∑ Nj(B) −

1

2
ln(|Σ1

−t|) −
1

2
ln(|Σ2

−t|)−t
2

−t
1 ]Γ

j=1   

 

where A=F̌j − Txj and B=Lj − Wxj 

 

3.2. Modified and simplified i-vector  

The cosine distance score is fast and robust, but additional computation are required to standardize 

the score. A better generation model will fully simulate the speech data and generate scores without 

standardization or calibration.  

Feature extraction and training of ASR system based on i-vector is computationally very expansive. 

Let us consider the GMM size C, feature dimension as D and factor loading size as K. A single i-vector 

generation and its computation cost is O[(K)3 + (K)2. C + (K. C. D)]. The main objective is to redefine and 

reweight each and every speech data with mean super vector so that imbalance in intra-super vector can be 

compensated. The steps involved in simplification of i-vector as follows: 

Step I - i-vector with approximated computational cost O[(K)3 + (K)2. C + (K. C. D)]. 
Step II - supervised i-vector with approximated computational cost  O[(K)3 + (K)2. C + {K. (C. D + M)}]. 
Step III - modified i-vector without ID with approximated computational cost O[(K)3 + (K. C. D)]. 
Step IV - modified i-vector with ID with approximated computational cost O[(K. C. D)]. 
Step V - modified and supervised i-vector without ID with approximated computational cost O[(K)3 +

{K. (C. D + M)}]. 
Step VI - modified and supervised i-vector with ID with approximated computational cost 𝑂[{𝐾. (𝐶. 𝐷 +

𝑀)}]. 
For ASR application, I use a simple  cosine distance classifier on simplified and modified  i-vector 

of the target speker utterances 𝑤𝑡𝑎𝑟𝑔𝑒𝑡  and test atturances 𝑤𝑡𝑒𝑠𝑡  with decision threshold    𝜃  as follows. 

 

𝑠𝑐𝑜𝑟𝑒(𝑤𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑤𝑡𝑒𝑠𝑡) =
(𝑤𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 )𝑤𝑡𝑒𝑠𝑡

‖𝑤𝑡𝑎𝑟𝑔𝑒𝑡‖.‖𝑤𝑡𝑒𝑠𝑡‖
𝜃 <

≥  (7) 

 

3.3. Linear discrimamt Analysis for session compensation 

Treating a single speaker as a class LDA attempts to define a new axis to minimize intra-class 

variance caused by session/channel effects and to maximize the differences between classes. 

In the representation of total variability, there is no clear compensation for variability between intersessions. 

However, the low dimensional representation allows making technical compensation in the new place, 
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with the benefit of less computational cost. I use a linear discrimination analysis (LDA) for session 

compensation. Displaying speakers as the class, LDA attempts to define a new axis to reduce inter-class 

variation due to session/channel effects and to maximize differences between classes. 

I can define the problem of optimizing the LDA to find directions of q that maximize fisher criteria  

J(q) = qtSbq qtSwq⁄ . Between-class and within-class covariance matricws are represented as  

Sb = ∑ (ws̅̅ ̅̅ − w̅)(ws̅̅ ̅̅ − w̅)tS
s=1  and  Sw = ∑

1

ns
∑ ∑ (ws̅̅ ̅̅ − w̅)(ws̅̅ ̅̅ − w̅)tS

s=1
ns
i=1

S
s=1 . Where ns is the number of 

utterances of each speaker s,  ws̅̅ ̅̅ = (
1

ns
) ∑ wi

sns
i=1  is the mean of i-vector foe each speaker, speaker population 

is w̅ and total number of speakers is S. Projection matrix is composed by eigenvectors of Sw
−1Sb general 

matrix to get the optimization. 

 

3.4. Distance matric learning technique 

Using modified and supervised as a low-dimensional representation of the linguistic expression, 

cosine distance classifiers is used to measure the distance between classified cosine and the target user's 

accent and accentuation of the test. To define the distance between the vectors aiming to find a good distance 

metric in the feature space, there is an important issue in classification. In recent years, extensive research has 

been conducted on distance learning [23]. I explored two ways to distance learning metrics that are 

supervised in this paper. From now on, I will use modified and supervised to represent an utterance. 

 

3.5. Component analysis based on neighborhood method  

Neighborhood Component Analysis (NCA) near the random selection rule learns distance metrics to 

reduce the average classification error. Using transformation matrix B, each simplified and supervised 

modified and supervised 𝑤𝑖  chooses another simplified and supervised modified and supervised as its 

neighbor with some probability 𝑝𝑖,𝑗, which is defined at Euclidean distance in the transformed space: 

 

pi,j =
exp(−‖Bwi−Bwj‖

2
)

∑ ‖Bwi−Bwk‖2
k≠i

, pi,i = 0 (8) 

 

The probability of simplified and supervised modified and supervised 𝑤𝑖  select a neighbor with 

the same speaker is 𝑝𝑖 = ∑ 𝑝𝑖,𝑗𝑗∈𝑐𝑖
, where 𝐶𝑖 is a set of the same speaker modified and superviseds. 

The projection matrix B should maximize the number of expected simplified and supervised modified and 

superviseds that select neighbors from the same speaker: 

 

𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐵𝑓(𝐵) = ∑ ∑ 𝑝𝑖,𝑗 = ∑ 𝑝𝑖𝑖𝑗∈𝑐𝑖𝑖  (9) 

 

3.6. Bayesian distance metric learning approach 

Here I used conjugate gradient method to obtain the best seed. The NCA provides the one time 

estimate of the distance metric and can be unbelievable when the number of training data is less. 

I use the Bayesian structure to estimate the distribution after the distance metric [8]. Looking at the speaker 

tag for each utterance, I can create two sets of barriers for the same speaker S and D. The possibility of 

defining two utterances and related to the same speaker or different speakers under a given matrix: 

 

𝑝𝑟(𝑦𝑖,𝑗|𝑤𝑖,𝐴, 𝜇) =
1

1+𝑒𝑥𝑝(𝑦𝑖,𝑗‖𝑤𝑖−𝑤𝑗‖
𝐴

2
−𝜇)

  (10) 

 

This parameter μ is the threshold for separating expressions for the same speaker parameters with 

different speakers. Only when value of μ less than distance from matrix A, two expressions are likely to be 

identified by the same speaker. The yi,j is defined as follows [24, 25]: 

 

𝑦𝑖,𝑗 = {
+1             (𝑤𝑖 , 𝑤𝑗)𝜖𝑆

−1             (𝑤𝑖 , 𝑤𝑗)𝜖𝐷
 (11) 

 

I use the NCA as a preprocessing technique so that the vectors can be projected in such a place 

where the nearest neighbors of each simplified and supervised modified and supervised can share the same 

tag of high probability. Bayesian distance learning methods can emulate the distance between the carriers 

better and more dependable in a new place. Experimental results show the advantages of the Bayesian 

distance metric learning approach. 
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4. EXPERIMENTAL RESULTS 

Experiments are performed on the 13 different speaker detection tests that are defined by 

the duration and type of training and test data on the NIST 2008 SRE dataset. I present results on the short2-

short3 and 10sec-10sec conditions for the training and test voice data of conversational of five minutes 

duration. In this research it is also used for LDA and NCA training, and as the impostor set in the score 

normalization step. A 600- dimension modified and supervised is extracted from each utterance. The Equal 

Error Rate (EER) and the minimum Detection Cost Function (minDCF) are used as metrics for evaluation. 

Cosine similarity scoring and Bayesian distance metric learning on the short2-short3 condition of the NIST 

2008 SRE dataset. The Bayesian distance metric learning algorithm is referred to as \Bayes dml, cosine score 

after the combined score normalization for Cosine Score combined norm and PLDA with Gaussian GPLDA. 

Constraints from all possible modified and supervised pairs from the same speaker S, apply the cosine score 

to all possible modified and supervised pairs from different speakers and selects those with the highest score 

to form constraint D since these pairs are the largest distinction that distinguishes the metric distance. 

Since the number of all possible different speaker pairs is very large, I chose twice the number of similar 

speaker pairs from all possible speaker pairs to form a D. The experimental experiment showed a large set of 

offset speaker constraints (similar speaker pairs) does not improve performance but requires more 

calculations, and a smaller set of speaker constraints (same size) with different speaker constraints will 

degrade the ASR performance. The comparison of cosine scores, Bayesian_dml of NIST 2008 SRE GPLDA 

normalization is shown in Table 1. 

 

 

Table 1. Comparison of cosine scores, Bayesian_dml of NIST 2008 SRE GPLDA normalization 
Combination Norms EER minDCF 

LDA 200 

Cosine Score 2.541% 0.01445 
Cosine Score combined norm 1.790% 0.0097 

Bayes dml 2.158% 0.0106 

Bayes dml+znorm 2.159% 0.0107 
Bayes dml+tnorm 2.158% 0.0107 

GPLDA 3.12% 0.0156 

 

 

As one can see in Table 1, the cosine score combined with the LDA200 standard can achieve the 

best results, and GPLDA performs the worst. However, Bayesian dml performs better than the cosine score if 

the score is not normalized. Compared to the state-of-the-art ASR performance of the integrated cosine score 

standard, the gap with Bayesian_dml is very small. In addition, there is almost no advantage in the 

normalization of scores in Bayesian_dml. 

By understanding the differences between the Cosine Score combined criteria and Bayesian_dml, 

I compare their performance to the different combinations of technical preprocessing. Pretreatment 

techniques include LDA and NCA, which are applied before the scoring model. The comparison of cosine 

scores, Bayesian_dml of NIST 2008 SRE different normalization is shown in Table 2. 

 

 

Table 2. Comparison of cosine scores, Bayesian_dml of NIST 2008 SRE different normalization 
Combination Norms EER minDCF 

LDA 200 

 1.790% 0.0097 

NCA150+LDA150 43.345% 0.0987 

NCA200 2.345% 0.0131 
NCA200+LDA100 2.017% 0.0097 

NCA200+LDA200 1.767% 0.0095 

NCA200+LDA600 41.078% 0.0197 
NCA200 4.567% 0.0278 

Bayes_dml 

LDA 200 2.176% 0.0107 

LDA200+NCA150+LDA150 42.345% 0.1005 
LDA200+NCA200 3.034% 0.179 

LDA200+NCA200+LDA100 1.775% 0.0097 

LDA200+NCA200+LDA200 1.817% 0.1100 

LDA600+NCA200+LDA200 43.786% 0.1001 
NCA200+LDA200 3.564% 0.0178 

 

 

Table 2 gives us an idea of how NCA and LDA represent hidden structures in the total variation 

space. The worst performance appeared in the second and sixth lines. In both cases, the size of the NCA is 

different from the size of the previous LDA. That is to say, the NCA acts to reduce the size and has a serious 

impact on the results. In the fourth row, the NCA 200 only performs one rotation following the LDA 200, 
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and the LDA 100 later further reduces the size of the feature space, which has little effect on performance. 

With the exception of the second and fourth rows, the results in the seventh row are almost at the same level 

as the other rows, although the size of the NCA 200 is reduced on the 600-dimensional modified and 

supervised. The reason may be that this size reduction is done in the original total variability space, 

while the second and fourth line quota reductions are made in the reduced function space after the LDA. 

Improvements in the fourth row indicate that the LDA projection corrects the functional space indication 

learned from the NCA. Therefore, I can conclude that NCA did not play a role in reducing the dimension. 

The best performance of the combined cosine score is obtained using LDA200 + NCA200 + 

LDA200, and the best performance of Bayes_dml was obtained using LDA200 + NCA200 + LDA100. 

Bayesian_dml overcomes the combined norm of cosine scores and is the best result of the short2-short3 

condition report for NIST SRE 2008 data. 

With a specific end goal to check the performance of LDA200 + NCA200 + LDA200 based ASR, 

processed the real match scores with LDA200 + NCA200 + LDA100 with the impostor match scores. 

The Detection Error Trade-off (DET) of LDA200 + NCA200 + LDA200 performance with NIST 2008 SRE 

dataset an EER value of about 1.767% and with LDA200 + NCA200 + LDA100 the EER of about 1.776% is 

shown in Figure 1. 

 

 

 
 

Figure 1. Equal error rate of LDA200 + NCA200 + LDA200 and Bayes_dml 

using LDA200 + NCA200 + LDA100 based ASR system 

 

 

5. CONCLUSION 
This paper presents the ASR application with Bayesian Distance Learning Metric technique. The 

traditional i-vector has been modified by catenating the label vector, linear regression matrix, mean super 

vector and modified and supervised factor loading matrix. The modified and supervised i-vetor in proposed 

ASR has a very high degree of discriminatively in order to regularize the speaker specific label information 

to enhance the performance of ASR. 

The proposed Bayesian Distance Learning Metric technique in ASR can be utilized as an integrated 

to enhance the efficiency and outperform the traditional i-vector. The proposed ASR system has achieved the 

best performance of its EER as 1.767% using LDA200 + NCA200 + LDA200 with combined cosine score 

normalization and best performance of Bayes_dml was obtained using LDA200 + NCA200 + LDA100 of its 

EER at 1.776%. 
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