
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 4, August 2019, pp. 2481~2490

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i4.pp2481-2490 2481

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Adapted branch-and-bound algorithm using SVM

with model selection

Kabbaj Mohamed Mustapha1, El Afia Abdellatif2
ENSIAS, Mohamed V University, Rabat, Morocco

Article Info ABSTRACT

Article history:

Received May 1, 2018

Revised Jan 5, 2019

Accepted Mar 4, 2019

 Branch-and-Bound algorithm is the basis for the majority of solving methods

in mixed integer linear programming. It has been proving its efficiency in

different fields. In fact, it creates little by little a tree of nodes by adopting

two strategies. These strategies are variable selection strategy and node

selection strategy. In our previous work, we experienced a methodology of

learning branch-and-bound strategies using regression-based support vector

machine twice. That methodology allowed firstly to exploit information from

previous executions of Branch-and-Bound algorithm on other instances.

Secondly, it created information channel between node selection strategy and

variable branching strategy. And thirdly, it gave good results in term of

running time comparing to standard Branch-and-Bound algorithm. In this

work, we will focus on increasing SVM performance by using cross

validation coupled with model selection.

Keywords:

Node selection strategy

Variable branching strategy

Branch and bound

SVM

Cross validation

Model selection
Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Kabbaj Mohamed Mustapha,

ENSIAS, University Mohamed V,

Abdellah Regragui Street, Madinat AL Irfane, Rabat, Morocco.

Email: mustapha.kabbaj@um5s.net.ma

1. INTRODUCTION

In real life, MILP has countless applications in different fields like logistics, finance and

transportation. A very common solution technique of MILP framework is Branch-and-Bound. It continues to

prove its relevance nowadays. Branch-and-Bound algorithm is an iterative algorithm, and at each iteration,

we eventually get a feasible or optimal solution of an initial problem. Concretely, the algorithm constructs

little by little a tree of nodes, where each node represents a modified version of the original problem. The

construction of child nodes is conducted by a variable branching strategy. Another fundamental element in

Branch-and-Bound algorithm is Node Selection Strategy that aims to choose among a nodes queue, one that

will speed up the search.

Recently, some works has been trying to identify an analytic approach that decide about strategies

described above, given a set of problem features. Authors use likely machine learning techniques. The main

remark is that few authors who deal with node selection strategy, and if so, they did not use machine learning

framework.

Our contribution is oriented towards learning efficient branch-and-bound strategies. This is the

result of a consistent methodology beginning with the collection of the data set, and ending with the test of

the final hypothesis. More explicitly, we:

- Define features

- Collect data set

- Pick the optimal learning model

- Learn the final hypothesis with the chosen model

- Implement and test the final hypothesis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/329118824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mustapha.kabbaj@um5s.net.ma

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 2481 - 2490

2482

Next, we address research papers relative to our work. To do so, we divide contributions in five sub-

sections relatively to the strategy and to the learning technique used. Firstly, relatively to variable branching

strategy, authors in [1], learned a function to be with approximatively the same performance as strong

branching in term of precision, and in the same time, results in a gain of the processing time.

In this same category, we cite [2], wherein authors infer consistent data from applying an algorithm

for detecting clauses. A clause being a combination of binary values affected to a set of indexed variables,

that if it happens, the whole problem would be infeasible. In addition, that algorithm generates minimal

clauses and restarts with active clauses (“those that can be used in fathoming child nodes”). In parallel, this

information is used to choose branching variable with the best effect. Also [3] and [4] use backtracking to

improve branching decisions.

Besides, there are classic variable branching rules, like strong branching, pseudo costs branching,

hybrid branching, reliable branching, inference-based branching [5]. Note that reliability branching is known

to be the best branching rule with the reliability 𝜂𝑟𝑒𝑙 = 4 𝑜𝑟 8 [6]. For our experiments, we used: 𝜂𝑟𝑒𝑙 = 8.

The reliability parameter 𝜂𝑟𝑒𝑙 is fixed to stop the calculation of pseudocost values after attaining a certain

level of the branch and bound tree. This is because pseudocost value remain approximatively constant after

calculating it several times for a determined variable.

Secondly, we cite from node selection strategy literature, in addition to classic node selection

strategies, such as depth-first rule, breadth-first rule, and node best-estimate [5], authors of [1], extracted

information from MILP Benchmark libraries by using specific algorithm called oracle. Thirdly, concerning

learning algorithms, they are used in different engineering fields. Algorithms purposes are classification,

regression, clustering [7][8]. There are algorithms that tend to do well in practice more than others [9][10].

In the same context of applying learning in branch and bound, the ExtraTrees is applied in [11].

Fourthly, when looking at model selection and the performance of algorithms, there are techniques

used to tune parameters such as Fuzzy Logic controller for Ant Colony System (ACS) epsilon

parameter [12]. Also, [13] and [14] used Hidden Markov Model (HMM) algorithm to tune the Particle

Swarm optimization population size and acceleration factors parameters. Besides, authors in [15] used HMM

to tune the inertia weight parameter of the Particle Swarm Optimization algorithm. Moreover, [16] used

Fuzzy controller to control Simulated Annealing cooling law, [17] and [18] used HMM to tune ACS

evaporation parameter and local pheromone decay parameter respectively, [19] and [20] used HMM to adapt

the simulated annealing cooling law. Furthermore, [14] used SVM algorithm to predict the performance of

optimization problems. Finally, authors in [20] used the Expectation-Maximization algorithm to learn the

HMM algorithm parameters. Finally, this paper is the continuity of our previous papers which deals with the

learning of branch-and-bound algorithm strategies, namely variable branching strategy and node selection

strategy [21], [22]. The learning algorithm used was Support Vector Machine (SVM).

The rest of this paper is organized as follows: Section 2 recalls some basics on branch-and-bound

algorithm and SVM algorithm with parameter tuning. In section 3, we present our methodology of inferring

efficient branch and bound strategies and experimentation configuration. Sections 4 is dedicated to results.

Finally, we conclude and propose some future work.

2. BRANCH-AND-BOUND AND SVM

In this section, we are first going to see an overview of a formal description of branch-and-bound

strategies and present the features used in the algorithm. Secondly, we will investigate SVM most important

advantages with a remainder of learning theory.

2.1. Branch-and-bound algorithm

Branch-and-bound algorithm is outlined in this section. We first define useful notation and then

proceed with the explanation of the algorithm steps. Let us define a general MILP problem P as follows:

𝑧 = min {𝑐𝑇𝑥 |𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑥 Non-negative vector of dimension 𝑛 containing at least one integer}

where 𝑐 𝜖 𝑅𝑛, 𝑏 𝜖 𝑅𝑚𝑎𝑛𝑑 𝐴 is 𝑚 ∗ 𝑛 dimension matrix. We will use also define: 𝑃𝑟𝑒𝑙 is a relaxed version

of 𝑃: which is

𝑧𝑟𝑒𝑙 = 𝑚𝑖𝑛 {𝑐
𝑇𝑥 |𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

𝑃𝑘 is the problem in the 𝑘𝑡ℎ iteration which corresponds to a node in branch-and-bound tree.

𝑃𝑘,𝑟𝑒𝑙 is a relaxed version of 𝑃𝑘.

𝑧𝑘 is the objective value of 𝑘𝑡ℎ node.
(𝑥∗) is the incumbent point at iteration 𝑘, which means the vector that leads to the best 𝑧𝑘 so far.

𝑧∗ is the objective function value on (𝑥∗)

Int J Elec & Comp Eng ISSN: 2088-8708

Adapted branch-and-bound algorithm using SVM with model selection (Kabbaj Mohamed Mustapha)

2483

Briefly, the Branch-and-bound algorithm, in the case of minimization, is described as follows as

shown in Algorithm 1. It is an iterative algorithm, and in each iteration 𝑘, we have at least three steps

which are:

Firstly, the node selection step aims to retrieve a node from a node list that maximizes some

criterion. This latter is specific to the node selection strategy. Secondly, and once we have picked a node 𝑃𝑘,

we solve its relaxation 𝑃𝑘,𝑟𝑒𝑙 by an algorithm from the linear programming framework such as simplex or

interior points. Depending on the results, we distinguish three cases. The first one is when the problem 𝑃𝑘,𝑟𝑒𝑙
is infeasible or the resulting objective function 𝑧𝑘 value is greater than 𝑧∗. Consequently, the current iteration

is termintated. The second case is when the solution is integer and 𝑧𝑘 < 𝑧
∗. In this moment, we update the

incumbent point and its objective value 𝑧∗, then we move to the next iteration. In the third case, when none of

the condifions mentioned before happens, we perform variable branching. In this final step, we must select a

variable from a set of non-integer variables relatively to some defined criterion. And this criterion is defined

by the variable branching strategy.

Algorithm 1. Branch-and-bound Algorithm

2.2. Support Vector Machine

SVM is in top ten machine learning algorithms [9], it is used for both classification and regression.

It aims to find the hyperplane with the best margin. The best is demonstrated to be the large one differentiating

between the hyperplane and nearest data points called support vectors.

2.2.1. Case of Linear Hypothesis set for SVM:

In the case of regression, and especially one variant of SVM called 𝜀-SVM, we will present nextly,

the case of linear hypothesis set. Let’s have in have in the input, 𝑁 training data, namely (𝑥𝑛, 𝑦𝑛),0 ≤ 𝑛 ≤ 𝑁

The output of the algorithm is a linear function: 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏, with 𝑤 a coefficient vector, x the unknown

vector and b a constant.

The distance between a hyperplane of equation 𝑤𝑇𝑥 + 𝑏 = 0 and the support vectors, is
1

||𝑤||
.

Consequently, maximizing the margin is equivalent to the next optimization problem:

𝑃(𝑤): {
min

1

2
𝑤𝑇𝑤

𝑠. 𝑡. |𝑦𝑛 − (𝑤
𝑇𝑥 + 𝑏)| ≤ 𝜀, ∀𝑛

With, 𝜀 being the error tolerance between 𝑦𝑛 and 𝑓(𝑥).

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 2481 - 2490

2484

The last problem might be infeasible. And to add more chance to be feasible, we add slack variables

to the problem, in the following way:

𝑃(𝑤):

{

 min𝑃(𝑤) =

1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑛 + 𝜉𝑛

∗)𝑁
𝑖=1

𝑠. 𝑡. 𝑦𝑛 − (𝑤
𝑇𝑥 + 𝑏) ≤ 𝜀 + 𝜉𝑛 , ∀𝑛

(𝑤𝑇𝑥 + 𝑏) − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛
∗ , ∀n

𝜉𝑛 , 𝜉𝑛
∗ ≥ 0,∀𝑛

with, 𝜉𝑛𝑎𝑛𝑑 𝜉𝑛
∗ are the slack variables, and 𝐶 is the cost parameter used to penalize data points outside the

margin 𝜀.

By using lagragian function, and quadratic optimization or other resolution methods, one can prove

that the solution is with the form of:

𝑓(𝑥) = ∑ (𝛼𝑖

∗ − 𝛼𝑖)𝑥𝑖
𝑇𝑥𝑁

𝑖=1 + 𝑏

with 0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, ∀1 ≤ 𝑖 ≤ 𝑁.

2.2.2. Case of non linear hypothesis set

In the situation, where we cannot find a hyperplane containing all training instances, one might

transform the space of the training data to another, in such way can be comprised in one hyperplane on the

new space. To do this transformation, one can use the well-known kernel methods. In fact, there are in

literature different kernels used for SVM, such as RBF and polynomial. For the rest, we will present the

distance calculation method for the RBF kernel.

Instead of using the standard L2 − 𝑛𝑜𝑟𝑚 ||. ||, we used the norm associated with RBF kernel that is

described as follows:

𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) = exp(−γ ||x𝑗 − x𝑖||
2
)

with γ, is the gamma parameter. Its geometrical interpretation is, when the gamma parameter has larger values,

the hyperplane associated with the solution will have more inclinations to contains, as far as possible, all

training data. The form of the resulting target function, will be as follows:

𝑓(𝑥) = ∑ (𝛼𝑖

∗ − 𝛼𝑖)𝑅𝐵𝐹(𝑥𝑖 , 𝑥)
𝑁
𝑖=1 + 𝑏

In this paper, we will use 𝜀-SVM regression algorithm with the RBF kernel twice for learning node selection

strategy and variable branching strategy respectively.

2.3. Learning of variable branching strategy and node selection strategy

Concerning the variable branching strategy, we aim in this paper to imitate the behavior of the

reliability branching rule. This rule is based on strong branching, which is time consuming. By and large,

reliability branching uses an unreliability quality for variable pseudo-costs values. For this reason, reliability

depends on numerous problem features. These features are to be classified in node-based features and variable-

based features.

2.3.1. Node-based features
We use in this category features below:

- Reduced Objective values gain:

Δ𝑘,𝑟𝑒𝑑 =
|𝑧𝑘−𝑧𝑘−1|

|𝑧𝑘−1|
 (Note that the features should be independent of the problem scale)

- Depth in branch and bound tree 𝑑𝑘 starting from zero.

- Node estimate.

- LP Objective Value

2.3.2. Variable-based features

In the same thinking line, we use:

- Pseudo-cost value

- The positive reduced cost and the negative reduced costs i.e.

Int J Elec & Comp Eng ISSN: 2088-8708

Adapted branch-and-bound algorithm using SVM with model selection (Kabbaj Mohamed Mustapha)

2485

max (
|𝑐𝑗,𝑘|

∑ |𝑐𝑗,𝑘|

𝑗: 𝑐𝑗 ,𝑘 ≤0

, 0) and max (
|𝑐𝑗,𝑘|

∑ |𝑐𝑗,𝑘|

𝑗: 𝑐𝑗 ,𝑘 ≥0

, 0)

with 𝑐𝑗,𝑘 is the 𝑗𝑡ℎ component value of cost vector of iteration 𝑘. These features aim to present either in

minimization or maximization problems how we approach to the optimal solution.

The other specificity in our work beyond changes in features based on those presented in [11], is we

add the value of learned function representing node selection in the set of features. This last point is justified

in the following sub-section. For learning node selection strategy, we will imitate node estimate strategy.

This strategy is the default one used in SCIP solver.

2.4. Interaction of node selection strategy and variable selection strategy

Intuitively, the choice of a node, by a node selection strategy, influences the choice the next

branching variable. For this reason, we describe formally the variable branching strategy function VB in

function of a combination of NS (Node selection strategy function) and other features described below:

𝑉𝑅(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡) = 𝑎 ∗ 𝑁𝑆(𝑑𝑘 , 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑡) + ∑ 𝑎𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

𝑖

where 𝑎 and 𝑎𝑖 are real numbers. Note that we double use NS features add more precision.

2.5. Overfitting and parameter tuning

In this sub-section, we will define overfitting, which is a very common problem in learning

techniques that affects the final performance.

2.5.1. Overfitting

A learning model is, by definition, a couple of a learning algorithm and a hypothesis set. A learning

algorithm is an iterative algorithm that searches the best hypothesis fitting the training data. This hypothesis

is included in the hypothesis set chosen initially. A very common problem encountered in learning is

overfitting. This phenomenon occurs when the learned hypothesis does not generalize well to all possible

values beyond the training data. Causes are number of data points, noise and target complexity [7].

The choice of learning algorithms could affect the noise by affecting either bias or variance. In the

case of SVM, the thorough choice of SVM parameters is required to prevent from overfitting. The RBF

Kernel SVR algorithm used in this work has two parameters, cost and gamma. Cost defines how much is

penalized misclassified examples and gamma defines how far the influence of a single training example

reaches. As known small cost and large gamma, give higher bias and lower variance. In addition, large cost

and small gamma give lower bias and larger variance. Consequently, we should tune cost and gamma

parameters until we find tradeoff values to minimize the generalization error. One way to tune gamma and

cost parameters is to use cross validation.

2.5.2. Cross validation with model selection
Before defining cross validation, let us find out what is validation. To do so, we define some useful

notation:

𝐷 the data set

𝐷𝑡𝑟𝑎𝑖𝑛 the training set

𝐷𝑣𝑎𝑙 the validation set

The goal of validation is to give an estimation of the generalization error. First, it divides 𝐷 of 𝑁

data points, to 𝐷𝑡𝑟𝑎𝑖𝑛 of size 𝑁 − 𝐾 and 𝐷𝑣𝑎𝑙 of size 𝐾, then learns the target function based on 𝐷𝑡𝑟𝑎𝑖𝑛.

Finally, we calculate error of the target function in 𝐷𝑣𝑎𝑙 . This latter error is proven an estimation of the

generalization error. The Figure 1 represents what is described above.

Figure 1. Validation method

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 2481 - 2490

2486

The 𝐸𝑣𝑎𝑙 error is a good estimate of generalization error but it is not too precise. To improve the

precision, other techniques repose on validation like cross validation. Without the loss of generality,

we present next 10-fold cross validation process.

Let’s partition 𝐷 to 𝐷1, 𝐷2 to 𝐷10. We use validation process ten times for 𝐷𝑣𝑎𝑙,𝑖 = 𝐷𝑖 where

1 ≤ 𝑖 ≤ 10 and 𝐷𝑡𝑟𝑎𝑖𝑛,𝑖 = 𝐷\𝐷𝑖 . In the output, we have 10 errors 𝐸𝑣𝑎𝑙1 to 𝐸𝑣𝑎𝑙10. Then we calculate cross

validation error denoted by 𝐸𝐶𝑉 which is the mean validation errors. The cross validation error is more

precise that validation error. We resume this process in the Figure 2.

Figure 2. Cross validation for a specific learning algorithm

Now that we have presented cross validation, let us look forward model selection, that used in this

paper to tune parameters of gamma and cost. For 𝑘 ∗ 𝑙 different combinations of cost and gamma, let’s note a

couple (𝐶𝑖, 𝐺𝑎𝑚𝑚𝑎𝑗) with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑙. As mentioned in the Figure 3, cross validation is

executed multiple times with different parameter configuration. As result, we get errors 𝐸𝐶𝑉1,1 to 𝐸𝐶𝑉𝑘,𝑙.
In the end, we have the configuration that have the lower error.

Figure 1. Cross validation for model selection

3. RESEARCH METHOD

In this section, we outline the methodology, step by step, of learning the node selection strategy NS

and variable branching strategy VB using parameter tuning. Then, we present the experiment configuration.

3.1. Collecting Datasets

We use the MIPLIB2010 library as instances to which we apply the Branch-and-Bound algorithm

featured by reliability branching rule and best estimate selection rule. Then we extract information of features

described before. Note that the best estimate selection rule is the default one is various optimization tools like

SCIP. Here is the pseudo-code of the data collection step as shown in Algorithm 2.

For I instance in MIPLIB2010

Solve I by branch-and-bound ruled by reliability branching and node estimate selection rule and

collect feature values.

Return the list of features values

Algorithm 2. Data Collection

Int J Elec & Comp Eng ISSN: 2088-8708

Adapted branch-and-bound algorithm using SVM with model selection (Kabbaj Mohamed Mustapha)

2487

3.2. Learning NS and VB

First, we divide collected data into two sets, one used for training and validation and the other for

test. By applying twice cross validation based model selection descripted above, we firstly learn the score

function of every node in the nodes queue. So the node having the best score 𝑁𝑆(𝑛𝑜𝑑𝑒) will be chosen in

branch-and-bound. Secondly, we will learn the score function VB of variable branching selection.

3.3. Experiments

In this sub-section, we present the lab-test used to experiment our methodology and we give the

pseudo-codes used for tests.

3.3.1. Experimentation configuration

We used SCIP 3.2.1 for the raison that is the best in open-source and free tools [23]. Moreover, for

SVM algorithm and model selection, we used the package e1071 [23] of the language R 3.2.5 known to be

among the most performant languages in implementation of SVM algorithms [13].

 The cost range used is {10−4, 10−3, … , 105} and the gamma range is {2−8, 2−7, … , 21}. These ranges

cover too small and too high values of cost and gamma. The OS used is Debian 7 32 bits, 8 Go RAM,

Intel 2.40 GHz Processor. We use for MILP instances the benchmark set of MIPLIB2010 [28] to collect data,

valid it, and to test resulting models. For training and validation set, we took the following instances as

shown in Figure 4.

30n20b8.mps acc-tight5.mps aflow40b.mps air04.mps app1-2.mps ash608gpia-3col.mps bab5.mps

beasleyC3.mps biella1.mps bienst2.mps binkar10_1.mps bley_xl1.mps bnatt350.mps core2536-

691.mps cov1075.mps csched010.mps danoint.mps dfn-gwin-UUM.mps eil33-2.mps eilB101.mps

enlight13.mps enlight14.mps ex9.mps glass4.mps gmu-35-40.mps iis-bupa-cov.mps iis-pima-

cov.mps lectsched-4-obj.mps m100n500k4r1.mps macrophage.mps mcsched.mps mik-250-1-100-

1.mpsmine-166-5.mps mine-90-10.mps n3div36.mps n4-3.mps neos-1109824.mps neos-

1337307.mps neos-1396125.mps neos13.mps neos-1601936.mps neos18.mps neos-686190.mps neos-

849702.mps neos-916792.mps neos-934278.mps net12.mps

Figure 4. Training and validation sets

These instances about tens of thousands of rows and columns. The total description is available

in [28]. Concerning the validation set, it contains approximatively fifth of number of mentioned instances

above [7]. Finally, the node limit is fixed to five hundred nodes and running time limit is fixed to

six-hundred seconds.

3.3.2. Pseudo-codes

In the solving process, the algorithm as it is implemented in SCIP is executing numerous event

codes related to some events. Next, we will describe these events, and give the pseudo-code relative to each

one. Besides, main events modified are respectively:

3.3.3. Node selection event
This event occurs when the algorithm is in the phase of selecting the next node to solve. The criteria

of selection is determined by the strategy implemented. Note that this event code is also executed even in the

root node selection. In this event, we implement the node selection rule score function NS that is already

established. Moreover, it calculates the score for each node in the node list. Finally, it returns the node with

the maximum score. The pseudo-code is the Algorithm 3.

For each leap n

 Calculate NS(n)

Return the leap with maximum NS(n)

Algorithm 3. Node selection event pseudo-code

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 2481 - 2490

2488

3.3.4. Variable branching event
This event occurs when the algorithm is in the phase of selecting a branching variable of a node

already solved and had gave a non-integral value. In this event, we implement the variable selection rule

score function VB. The input of this function is the values of the node-based features and the variable-based

features. The node-based features are related to a fixed node and they are calculated for the current node as a

first step. Besides, we calculate, the value of NS on the current node. Then we calculate the values of the

variable-based features and consequently the value of VB for each variable. In the output, we will return the

variable with the maximum score VB. Finally, we branch on the selected variable and created two related

children nodes. The pseudo-code is as Algorithm 4.

Calculate the value of the node-based features

 Calculate the value of NS relative to the present node.

 For each branching variable candidate

 Calculate values of variable-based features

 Calculate VB in terms of calculated features.

 Return the max of VB and relative variable

 Create two children nodes relying upon the chosen variable

 Calculate possible node-based features values of the two children

Algorithm 4. Variable branching event pseudo-code

3.3.5. Node Solved event
This event occurs when the algorithm is the state of leaving the node already solved. We use this

event to calculate the values of LP Objective Value of the current node, and the reduced objective values

gain. The pseudo-code is the Algorithm 5.

Get the LP Objective Value of the present node.

Calculate the reduced objective values gain

Algorithm 5. Node solved event pseudo-code

4. RESULTS

We present in this section, a comparison between algorithms resulted from our approaches and

standard branch-and-bound algorithm. The comparison is done in term of Running Time, Dual Bound and

Number of Solved nodes. The dual bound being a quantity converging to the optimal solution if it exists.

The greater value of dual bound is the best one.

To get to this comparison, we did three different solving configurations on test set. The first is done

by standard branch-and-bound (SBB) algorithm ruled by reliability pseudo-cost branching rule and best

estimate node selection rule. Then for the second and third, we used our algorithms with SVR without model

selection (ABB) and with model selection (ABB+MS). The results are detailed in the Table 1.

Table 1. Results of experimentation

Int J Elec & Comp Eng ISSN: 2088-8708

Adapted branch-and-bound algorithm using SVM with model selection (Kabbaj Mohamed Mustapha)

2489

In this test, we had ten instances from MIPLIB2010. These instances have three different types.

The first one is mixed integer program (MIP) that regroups integer and continuous variables. The second is

mixed binary program (MBP), which includes both continuous and binary variables. And the final one is

Binary program (BP) that contains exclusively binary variables.

These results show up that our approaches give equivalent if not better dual bound comparing to

standard branch-and-bound in term of dual bound in 80% of cases except from opm2-z7-s2 and ran16x16

instances. Another important result, is that our last approach gives equivalent or better running time

comparing our last approach in 80% of cases. Also, when comparing it to the standard branch and bound

algorithm ruled by reliability branching and node best esimate rule, our approach gives better or equivalent

result in about half of total instances.

We noticed that there is an empirical relation between the performance of dual bound and the number

of constraints of the problem from the one hand, and a relation between the performance of running time and

the number of variables from the other hand. To concretize these last points, we plot these in Figure 5.

Figure 5. Increase or decrease of dual bound and running time respectively

The left-hand figure shows that instances with less that 5000 constraints gave better dual boud for

our approaches comparing to standard branch and bound. As a matter of fact, the opm2-z7-s2 instance, which

is represented by the isolated point in the down-rignt side has approximatively 31000 variables. Concerning

the right-hand figure, it shows that instances with more than 2500 variables, increased the performance of

running time, when resolved by our approaches, especially for ns1208400, ns1688347 and rail507 instances.

5. CONCLUSION

In this paper, we add parameter tuning to infer better configuration of SVM. Saying this, we used

𝜀 −SVM regression learning algorithm known for his high accuracy to learn branch-and-bound algorithm

node selection and variables branching strategies. These choices lead to better results comparing to reliability

pseudo cost rule and best estimate selection rule, which are known to be from the best in literature. In

perspectives, we will work on eliminating noise in data, compare with different learning algorithms available

in literature.

REFERENCES
[1] He H., et al., “Learning to search in branch and bound algorithms,” Advances in neural information processing

systems, pp. 3293-3301, 2014.

[2] Moll R., et al., “Learning instance-independent value functions to enhance local search,” Advances in Neural

Information Processing Systems, pp. 1017-1023, 1999.

[3] Karzan F. K., et al., “Information-based branching schemes for binary linear mixed integer problems,”

Mathematical Programming Computation, vol/issue: 1(4), pp. 249-93, 2009.

[4] Davey B., et al., “Efficient intelligent backtracking using linear programming,” INFORMS Journal on Computing,

vol/issue: 14(4), pp. 373-86, 2002.

[5] Chen D. S., et al., “Applied integer programming: modeling and solution,” John Wiley & Sons, 2011.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 2481 - 2490

2490

[6] Achterberg T., et al., “Branching rules revisited,” Operations Research Letters, vol/issue: 33(1), pp. 42-54, 2005.

[7] Abu-Mostafa Y. S., et al., “Learning from data,” New York, NY, USA, AMLBook, 2012.

[8] C. Rudin, “Prediction: Machine Learning and Statistics,” 2012.

[9] X. Wu, et al., “Top 10 algorithms in data mining,” Knowledge and information systems, vol/issue: 14(1), pp. 1-37,

2008.

[10] B. Lantz, “Machine learning with R,” Packt Publishing Ltd, 2015.

[11] Alvarez A. M., et al., “A machine learning-based approximation of strong branching,” INFORMS Journal on

Computing, vol/issue: 29(1), pp. 185-95, 2017.

[12] Aoun O., et al., “Investigation of hidden markov model for the tuning of metaheuristics in airline scheduling

problems,” IFAC-PapersOnLine, vol/issue: 49(3), pp. 347-52, 2016.

[13] E. Afia A., et al., “Hidden markov model control of inertia weight adaptation for Particle swarm optimization,”

IFAC-PapersOnLine, vol/issue: 50(1), pp. 9997-10002, 2017.

[14] E. Afia A. and Sarhani M., “Performance prediction using support vector machine for the configuration of

optimization algorithms,” Cloud Computing Technologies and Applications (CloudTech), 2017 3rd International

Conference, pp. 1-7, 2017.

[15] E. Afia A., et al., “Fuzzy logic controller for an adaptive Huang cooling of simulated annealing,” Proceedings of

the 2nd international Conference on Big Data, Cloud and Applications, pp. 64, 2017.

[16] Bouzbita S., et al., “A novel based Hidden Markov Model approach for controlling the ACS-TSP evaporation

parameter,” Multimedia Computing and Systems (ICMCS), 2016 5th International Conference, pp. 633-638, 2016.

[17] Lalaoui M., et al., “Hidden Markov Model for a self-learning of Simulated Annealing cooling law,” Multimedia

Computing and Systems (ICMCS), 2016 5th International Conference, pp. 558-563, 2016.

[18] Lalaoui M., et al., “A self-adaptive very fast simulated annealing based on Hidden Markov model,” Cloud

Computing Technologies and Applications (CloudTech), 2017 3rd International Conference, pp. 1-8, 2017.

[19] E. Afia A., et al., “The Effect of Updating the Local Pheromone on ACS Performance using Fuzzy Logic,”

International Journal of Electrical and Computer Engineering (IJECE), vol/issue: 7(4), pp. 2161-8, 2017.

[20] Bouzbita S., et al., “Dynamic adaptation of the ACS-TSP local pheromone decay parameter based on the Hidden

Markov Model,” Cloud Computing Technologies and Applications (CloudTech), 2016 2nd International

Conference, pp. 344-349, 2016.

[21] Kabbaj M. M. and E. Afia A., “Towards learning integral strategy of branch and bound,” Multimedia Computing

and Systems (ICMCS), 2016 5th International Conference, pp. 621-626, 2016.

[22] E. Afia A. and Kabbaj M. M., “Supervised learning in Branch-and-cut strategies,” Proceedings of the 2nd

international Conference on Big Data, Cloud and Applications, pp. 114, 2017.

[23] http://Scip.zib.de.

[24] http://Miplib.zib.de.

[25] David M., “Support Vector Machines: The Interface to libsvm in Package e1071,” David. Meyer@ R-Project. org.

2017.

BIOGRAPHIES OF AUTHORS

M. Kabbaj Mohamed Mustapha is a PHD student in at National School of Computer Science and

Systems Analysis (ENSIAS), Rabat, Morocco. He obtained M.Eng. in 2013 in Computer Science

from National School of Computer Science and Systems Analysis. Research areas of interest are

Machine Learning, Combinatorial Optimization, Stochastic Programming and Feature Selection.

Abdellatif El Afia is an Associate Professor at National School of Computer Science and Systems

Analysis (ENSIAS), Rabat, Morocco. He received his M.Sc. degrees in Applied Mathematics from

University of Sherbrook. He obtained his Ph.D. in 1999 in Operation Research from University of

Sherbrook, Canada. Research areas of interest are Mathematical Programming (Stochastic and

deterministic), Metaheuristics, Recommendation Systems and Machine Learning.

http://scip.zib.de/
http://miplib.zib.de/

