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 Using MapReduce in Hadoop helps in lowering the execution time and 

power consumption for large scale data. However, there can be a delay in job 

processing in circumstances where tasks are assigned to bad or congested 

machines called "straggler tasks"; which increases the time, power 

consumptions and therefore increasing the costs and leading to a poor 

performance of computing systems. This research proposes a hybrid 

MapReduce framework referred to as the combinatory late-machine (CLM) 

framework. Implementation of this framework will facilitate early and timely 

detection and identification of stragglers thereby facilitating prompt 

appropriate and effective actions. 
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1. INTRODUCTION 

A significant amount of data (big data) is stored and transferred online by thousands of companies, 

organizations, and individuals. This largely unstructured data is difficult to analyze and process using 

conventional database management tools which creates new challenges in the analysis and the storage of  

data [1]. Recently, there has been an increasing interest in key areas such as real-time data extraction,  

which reveals an urgent need for bulk and strict performance constraints. Consequently, the adaptation of 

huge data to implementations on distributed computing platforms is necessary. One way of doing this is to 

adopt and implement the popular programming model known as MapReduce [2]. Its success lies in 

simplicity, scalability, efficiency and extensibility that pushes the IT industry leaders such as Google, Yahoo, 

Facebook and Amazon to extensively adopt MapReduce as a powerful and reliable tool for Big Data 

processing. There are four factors, including processing, storing, visualization, and analyzing large data in 

modern organizations and enterprises. MapReduce can run the applications on a parallel cluster of hardware 

automatically. In addition; it can process terabytes and petabytes of data more rapidly [3,4]. Recently, it has 

gained popularity in a wide range of applications due to its ability to provide a highly effective and efficient 

framework for the parallel execution of the applications, data allocation in distributed database systems, and 

fault tolerance network communications [5]. For instance, Google runs more than 10,000 distinct programs 

using MapReduce including graph processing[6], text processing, machine learning, and statistical machine 

translation. Moreover, the famous open-source Hadoop software framework for distributed storage and 

processing of big data Figure 1 sets uses Mapreduce as a central tool to split the data, process it and make it 

not only manageable but also available for users’ consumption or further processing. Also, the Hadoop 

MapReduce environment provides fault-tolerant solutions in case of hardware failures or software errors 

during the execution of tasks [7].  
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Figure 1. Hadoop framework 

 

 

According to the work presented by [8], Hadoop MapReduce has the ability to tolerate several types 

of faults and they are as follows: 

a. Nodes failure: A node in a MapReduce cluster may fail at any time. In this case, the JobTracker removes 

this slave node from the list of nodes available and re-executes the tasks on other nodes. It can be 

concluded that a node is declared failing if at least one task launched on it has failed. At the time,  

the JobTracker checks if the node in question should not be blacklisted. If a slave node is "blacklisted", 

the JobTracker will no longer assign it map or reduce. It can be removed from this list if his behavior 

becomes normal and does not commit faults during a certain time interval.  

b. Software Failure: A task may stop because of an error or exception in the mapping or reduction program. 

In this case, the JobTracker orders the re-execution of the failed task to a limited number of attempts  

(four by default), beyond which the task and the job of the task is considered faulty. 

c. Stopped Task: As an example, the process of running a task may stop unexpectedly due to a transient bug 

in the underlying virtual machine. In this case, the JobTracker show in Figure 2 will be notified and it will 

reorder the job as described above. 

d. Blocked Task: It’s considered faulty if after some timea mapping or reduction task remains blocked 

without any progress; in this case, the JobTracker orders to kill the process running this task. 

e. Delayed Tasks:When some tasks are unexpectedly taking longer execution time compared with  

the average execution time, these tasks called stragglers.  

 

 

 
 

Figure 2. Job tracker  

 

 

Several studies have been devoted to improving the tolerance of systems to faults. For instance, 

Microsoft reveals that when the CPU and core parts’ errors occur in one million customers’ computers, 

Hadoop does not have the capacity to deal with these types of potential errors. This also includes other types 

of errors related to the task itself (when one or more of these tasks take longer or stops before the work 

outcomes are realized).  

Problem statement. The delayed tasks are called stragglers and play a key role in increasing  

the execution time of big data and energy consumption. Following the MapReduce framework, stragglers 

refer to the tasks that take a longer time to be executed compared to other tasks. There are various techniques 

of detecting and handling stragglers such as Dolly, the Hadoop native scheduler, MonTool, LATE and 

Mantri. Regardless of the techniques already in place, straggler detection remains problematic in the field of 

data analytics. 
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The proposed solution. We propose an algorithm that facilitates the calculation of straggler tolerance 

threshold using CPU test and LATE methodology. Our approach considers crucial issues such as the QoS 

with a major focus on the timing constraints, the progress of task execution, and the usage of cluster 

resources. Even though task selection does not appear to be a big problem in the initial stages, we have been 

able to show that it is a big issue that requires close attention. Therefore, we recommend identifying those 

tasks that lead to the longest response times. We also recommend that this needs to be done as early as 

possible so that there could be no later surprises. Taking these into account, it is possible to see that our 

LATE methodology is based on the estimate of the time that is left with the goal of early detection of 

the tasks that are running slowly. In summary, the methodology is based on making decisions early, using 

the finishing times and not the progress rates, not assigning speculative tasks to slow nodes and optimization 

of resource utilization. 

Significance of the research. In the current study, a method is proposed with the purpose of 

addressing the straggler problem. We propose an algorithm which can enable calculation of threshold of 

straggler tolerance earlier using CPU test and Longest Approximate Time to End (LATE) methodology. 

Our approach focuses on the timing constraints, progress of task execution, and the usage of cluster 

resources. In this work, our major contribution is that unlike other studies that assume that it is hard to have 

a correlation between task execution and node status, we show that it is possible and feasible to have 

a correlation and detect stragglers using LATE methodology and CPU test. Our methodology is simple 

enough and easy to accommodate with low overheads.  

Organization of the research. The rest of this paper is organized as follows: Section 2 covers  

the literature review, section 3 covers the methodology, section 4 the results and discussion, section 5 covers 

the proposed solution/recommendation, and section 6 covers the conclusion. 

 

 

2. LITERATURE REVIEW 

Hadoop and Map Reduce are among the most commonly used frameworks when it comes to task 

execution across several nodes for optimal performance. Even though the frameworks have become popular, 

they still face several challenges when it comes to the effectiveness of tasks execution [8]. Specifically, 

achieving predictable execution has become problematic because of stragglers. Due to stragglers, tasks 

execution takes longer to complete than originally anticipated [9]. Such delays are undesirable because they 

result in reduced service performance and can also potentially violate QoS (Quality of Service) requirements 

concerning time taken to complete tasks. For service providers, tasks that take more time to complete lead to 

reduced availability of systems and cause jobs to consume more time. Stragglers have become common 

especially in cloud data centers [10].  

Therefore, it is vital to detect and mitigate them promptly. Additionally, centers with large 

computing infrastructure can also experience delays that can lead to ineffective job execution. Also, large 

data centers have a high intake of service creation which make them vulnerable to stragglers. There are 

several root causes to stragglers including resource contention, hardware heterogeneity, background network 

traffic, and operating system related-level causes [11]. Considerable effort has been made to study stragglers. 

Over the years, the size of computing infrastructure and jobs executed have continued to grow which has 

dramatically increased the impact of stragglers. Stragglers are known to extend job execution substantially 

which negatively affects the “Consumer Service Level Agreement” and QoS performance requirements. 

In a study conducted by Bortnikov, Frank, Hillel, and Rao, the authors propose two ways of dealing with 

stragglers namely tolerance and avoidance [12]. However, avoiding stragglers is difficult since it is 

impractical to pursue. Therefore, straggler tolerance is the approach adopted by most stakeholders. 

In straggler tolerance, the execution progress of a task is monitored using a percentage score made up of 

values ranging from 0 to 1 which represent start and completion. Currently, the approaches used for straggler 

detection can either be described as offline or online analytics [13].  

Nonetheless, it is worth noting that online detection can occur too late during the execution cycle of 

a task. Therefore, stragglers cannot be prevented from running slower even after the implementation of 

speculative copies. On the other hand, offline approaches are normally applied to avoid stragglers.  

This approach is seen as less feasible and thus it is uncommon. However, better results can be achieved by 

combining both online and offline approaches. When used together, they can significantly help to improve 

the effectiveness of “straggler detection”. 

 

2.1.   Related works 

For Straggler Detection, many techniques have been developed. Ouyang et al. proposes an algorithm 

based on the progress score of task execution that enables dynamic threshold detection for straggler  

tasks [14]. This strategy has improved performance significantly by reducing job execution by 44 percent. 
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In a study conducted by Zaharia et al., the authors propose a new Straggler Detection that takes into account 

both the progress score and elapsed time with the objective of improving the progress score strategy [15].  

The authors determine that the strategy does not have the capacity of determining how fast a task runs among 

different tasks starting at different times hence the need for improvement. Dean and Ghemawat have adopted 

a technique called Speculative Execution in which they launch copies of the straggler on alternative nodes 

with the aim of improving performance [16]. Google acknowledges that Speculative Execution improves job 

execution by 44 percent. However, this technique can reduce the overall throughput due to the duplication of 

tasks. Therefore, some Hadoop administrators prefer not to use the Speculative Execution option [17, 18]. 

Yanfei et al proposed another technique for Straggler handling which consists of ending the delayed tasks 

and reassigning them to another node without stragglers, however, Guo, Rao, Jiang, and Zhou disagrees with 

this technique and argue that it results in wastage of resources and therefore increases energy consumption [19].  

In a similar study, Zhou, Li, Yang, Jia, and Li propose a technique known as “BigRoots” which 

involves incorporating both system features and framework for the analysis of root causes of stragglers 

especially in big data systems [20]. The authors establish that “BigRoots” is effective when it comes to 

identifying the “root causes” of stragglers which can significantly help in optimizing performance. 

An examination by Phan attempted to come up with “energy efficient straggler mitigation” technique for big 

data applications especially in the cloud environment [21-23]. The framework employed by the author takes 

into account how heterogeneity of resources affect the performance and energy consumption of big 

data applications. 

In another studies by Harlap et al., Kim, W., the authors sought to solve the straggler problem for 

parallel ML [24, 25]. The authors combined a more “flexible synchronization model” together with 

the experiments involving real straggler behaviors and synthetic straggler behaviors to come up with near-ideal 

run times across all the straggler patterns they tested. Similarly, Yadwadkar et al. came up with a framework 

called “Wrangler” which could predict when stragglers were going to occur and aid in making scheduling 

decisions [26]. The formulations employed by the authors captured the shared structure in their data so that it 

could improve the generalization performance of their data. 

 

 

3. METHODOLOGY 

As noted earlier, we estimate the time remaining for each task based on the process score derived 

from Hadoop. In practice, this heuristic works well. However, we want to point out that there are incidences 

when it can backfire. When this happens, the heuristic can provide incorrect estimates and give results that 

a task launched later finishes earlier. To demonstrate the delay, we assume that the progress of a task grows 

by five percent during the first phase. We assume that during this first phase, the total score is fifty percent 

and that the rate reduces by one percent in the second phase. In the first phase, it is expected that the task will 

take ten seconds and fifty seconds in the second phase to produce a total of sixty seconds. When two copies 

of the same task are launched at the same time, the first task is denoted by T1, the second is noted by T2 and 

the first task starts at time 0 while the next starts after ten seconds. The progress rate is checked after twenty 

seconds whereby twenty seconds, it is expected that T1 will have finished the first phase and will be through 

a fifth of the second phase. Therefore, it will have a progress score of sixty percent. Its rate of progress will 

be 60%/20s=3%/s. On the other hand, T2 will just be through with the first and its score will be 50%. Its rate 

will, therefore, be 50%/10s=5%/s. The estimated time remaining for T1 will be (100%-60%)/(3%/s)=13.3s. 

For T2, the estimated time left will be (100%-50%)/(5%/s)=10s. Therefore, the heuristic will illustrate that 

T1 will take a longer time to run compared to T2. However, in reality, T2 will finish second compared to 

T1. We also determined the criteria that we could use to identify stragglers. We took the finish time for every 

task to be represented by (1).  

 

EF𝑇
𝑖
𝑗
 =tk + 

1−PS(task
𝑖
𝑗

) 

PS(task
𝑖
𝑗

)
(tk-t0) (1) 

 

In this instance, EF𝑇
𝑖
𝑗
 represents the estimated finish time. PS is used to represent the progress score 

for a 𝑡ask
𝑖
𝑗
 whereas t0 is starting time while tk is the timestamp recording for PS(task

𝑖
𝑗
). Our proposed 

LATE methodology takes into account the scope of data and the speed of processing data. By taking these 

into account, we can determine the pattern of straggler detection and correlate this with the attributes of 

a system normally hypothesized to give them the ability to cause stragglers. Some of the attributes include 

resource utilization (memory, CPU, disk), hardware faults, unhandled requests, among others. When we  
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combine these runtime features with dynamic information, we can come up with better prediction and 

learning models that can discriminate stragglers promptly and lower the number of failures occurring due to 

late timing. 

 

 

4. RESULTS AND DISCUSSION 

This research has identified the need for improving the effectiveness of MapReduce processes to 

facilitate costs reduction and maximum utilization of resources. Performance improvement can be achieved 

by eliminating inefficiencies brought about by the existence of stragglers. Stragglers have the effect of 

resulting in poor user code and uneven aggregation of workloads. Poor user code is the product of looping 

conditions that are designed ineffectively and uneven aggregation of workloads results from extreme 

co-allocation of workloads due to inefficient scheduling. In the case of MapReduce tasks with a massive 

number of write and read queries, it is common for file requests to be overloaded thereby leading to 

inefficiency in handling the requests. It is notable that once the threshold of the master node is surpassed, 

stragglers set in which implies that the waiting queue for requests becomes long. If the requests continue 

increasing, then the master node becomes overloaded thereby further slowing down the handling process of 

the requests. This experiment focused on investigating how the occurrence of stragglers is affected by 

contention of resources. An observation of the occurrence of stragglers that took place over a period of 

20 days yielded the results presented in Figure 3.  

 

 

 
 

Figure 3. Graphical presentation of the findings 

 

 

In the analysis, millions of tasks processed in five hundred servers in Cloud Datacenter [27] were 

investigated. The inclusion criteria involved: 

a. Servers whose tasks had DoS-Index values greater than or equal to 10 

b. Servers whose utilization of CPU was greater than or equal to 80% 

c. Latency from file processing greater than 400ms which translates to slow handling of write and read 

requests 

From the investigation, it came to our attention that 42% of stragglers are brought about by 

overloading of disks while 59% of stragglers exist under high server CPU conditions. The findings also 

revealed that slow handling of requests was responsible for the occurrence of 34.3% of stragglers.  

From the findings, it is evident that the existence of stragglers is significantly caused by high utilization of 

resources. It was also observed that stragglers can be caused by other factors such as the conditions of  

the network. 

 

 

5. RECOMMENDATION/PROPOSED SOLUTION 

In this paper, we propose a combined strategy called COMBINATORY LATE-MACHINE that tests 

the CPU machine. The CPU machine is tested to determine its vulnerability to stragglers. To achieve this,  

the CPU and the RAM are tested to determine machines that have a CPU usage less than 85. Those found to 

meet this condition are dropped and the ones that exceed 85 are selected and placed in a performance chart 
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starting with those that have the highest performance. If for any reason the CPU/Memory is lower than 

a certain threshold, the jobs will automatically be redirected to another machine with a higher CPU/Memory 

performance. This stage is run once and helps in creating a list of performances for all the machines.   

After this step, Straggler Detection and handling are initiated at the same time using LATE algorithm.  

The algorithm has several benefits that make it suitable for heterogeneous jobs since it re-executes only  

the slowest tasks. The primary advantage of the proposed methodology is the increasing probability to detect 

the straggler machines and straggler tasks with the same algorithm in earlier stages. Our LATE scheduler is 

designed such that it includes all the features needed for it to function well in a realistic environment.  

The major insight behind the LATE algorithm is that tasks believed to finish last can be executed at any time 

in the future because this is the best way through which the response time can be improved. The framework 

of the proposed combinatory Late-Machine strategy is illustrated in Figure 4. 

 

 

 
 

Figure 4. Proposed combinatory late-machine framework 

 

 

5.1.   Limitations and future research  

Our observation did not focus on the conditions of the memory capacity as well as overlapping of 

conditions. Therefore, this warrants the need for further investigations.  

 

 

6. CONCLUSION 

In this paper, we proposed the Combinatory Late-Machine (CLM) strategy to identify (in earlier 

stages) the straggler for both nodes and tasks, and the optimal node for re-execution of slow tasks.  

The overall execution time is improved significantly using this technique compared to traditional job 

schedulers. In the future, the CLM strategy will be tested with Hadoop to evaluate the efficiency of this 

technique. The findings provide new insights into early straggler detection. However, the current strategy has 

its shortcomings and there is a need for exhaustive analytics to establish the relationship between stragglers 

and the contention of resources. The proposed algorithm could be used for research as well as in the industry 

to improve the time and cost for big data processing. 
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