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 The paper presents an Artificial Neural Network (ANN) model for short-term 

load forecasting of daily peak load. A multi-layered feed forward neural 

network with Levenberg-Marquardt learning algorithm is used because of its 

good generalizing property and robustness in prediction. The input to the 

network is in terms of historical daily peak load data and corresponding daily 

peak temperature data. The network is trained to predict the load requirement 

ahead. The effectiveness of the proposed ANN approach to the short-term 

load forecasting problems is demonstrated by practical data from the 

Bangalore Electricity Supply Company Limited (BESCOM). The 

comparison between the proposed and the conventional methods is made in 

terms of percentage error and it is found that the proposed ANN model gives 

more accurate predictions with optimal number of neurons in the 

hidden layer. 
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1. INTRODUCTION 

Electrical energy plays a vital role in day to day life. It is required for domestic purpose, industrial 

purpose and in many areas. Electrical energy is in great demand by consumers. At present, in India according 

to Central Electricity Authority, New Delhi survey [1] the total installed capacity as on 31-03-2017 is 

326.848 GW and has energy shortage of 0.7% and peak shortage of 1.6% during the financial year 2016-17 

and similarly in Karnataka the total installed capacity is 21.316 GW and has energy shortage of 0.5% and 

peak shortage of 0.2%. The shortage of power is because of lack of generation due to shortage of resources, 

unscheduled maintenances, outages and faults. This deficit can be reduced to some extent by demand side 

management or by transmitting power at high voltages which reduces transmission losses, but the basic 

means of meeting the demand is by increasing the generation itself. For this purpose, prediction of future 

load requirement is essential. Determining an estimate of load requirements for future is known as load 

forecasting. Depending on the duration, load forecasting is generally classified into short-term, medium-term 

and long-term [2]. 

The development of an accurate, fast and robust electrical load forecasting methodology is of 

importance to both the electric utility and its customers. A forecast that is too low or too high can result in 

revenue loss [3]. A wide variety of forecasting models have been proposed in the literature, most of which 

can be generally classified into two broad categories: 1) Statistical or Classical approaches such as multiple 

regression, exponential smoothing, minimum mean square estimation, Box and Jenkins methods, Kalman 

filter and state estimation. 2) Artificial Intelligence (AI) based methods such as Expert system, Neural 

Networks, Fuzzy Logic, Particle Swarm Optimizer (PSO), Support Vector Machine (SVM) and Genetic 

Algorithm (GA). Other category such as hybrid techniques is a combination of more than one technique i.e., 

either the combination of classical and AI techniques or the combination of different AI techniques [4]. 
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Tomonobu Senjyu et al. [5], employed ANN with back propagation algorithm to forecast the load 

by adding a correction to the selected similar day data. Load deviation and temperature deviation data is used 

as the correction for forecasting load. If the temperature curves change rapidly on the forecast day, load 

power changes greatly and forecast error would increase. Vitor Hugo Ferreira et al. [6], proposed ANN 

model with Bayesian training and SVM learning algorithm to control the ANN complexity. The three input 

datasets used were hourly load and temperature, daily peak load and temperature, and half-hourly load 

temperature and price. Z. A. Bashir et al. [7], implemented adaptive artificial neural networks to predicted 

hourly load demand and trained the ANNs with PSO algorithm with load, temperature, wind speed, humidity 

as input data. Ying Chen et al. [8], developed wavelet based neural network method to forecast next day 

demand, with similar day load and weather information such as wind-chill temperature, humidity, wind 

speed, cloud cover, and precipitation as inputs. Madasu Hanmandlu et al. [9], proposed hybrid neural 

networks to forecast hourly load demand, with load data and weather data comprising temperature, wind 

speed and relative humidity. Ni Ding et al. [10], proposed Generalized Neural Network model, with load 

data, temperature data and cost function (minimization) as input parameters. Yizheng Xu et al. [11], applied 

ANN and Monte Carlo Simulations technique to predict load a day ahead using load data, temperature, 

humidity and wind speed as input variables. Filipe Rodrigues et al. [12], proposed Feed-forward ANN with 

the Levenberg-Marquardt learning algorithm. Input variables are area location, number of consumers and 

consumption of electrical appliance with hourly load consumption were considered to forecast the residential 

demand. Anamika et al. [13], proposed multilayer feed forward network with ten hidden layers and 

Levenberg Marquardt back propagation learning algorithm for training the network. The input to the network 

is half hourly load data. 

The above work [5-11], employs either hybrid techniques that is the combination of different AI 

techniques or combination of classical and AI techniques or utilizes more than two input parameters to 

forecast the load demand and [12-13], though employs ANN techniques with Levenberg-Marquardt learning 

algorithm but does not provides any information regarding the number of neurons in the hidden layer(s) that 

represents the actual ANN model. Hence, the present work proposes an ANN model that uses load and/or 

temperature data for training the network to predict daily peak load demand with optimal number of hidden 

layer neurons and is validated on BESCOM power systems. 

 

 

2. CONVENTIONAL TECHNIQUES  

The simplest conventional method employed for load forecasting is curve fitting techniques. 

The procedure of determining the empirical equation of the curve of best fit is known as curve fitting 

techniques. Some of the curve fit techniques used in electrical load forecasting are 

- Linear: 𝑦 = 𝐴𝑥 + 𝐵 

- Exponential: 𝑦 = 𝐴𝑒𝐵𝑥 

- Logarithmic: 𝑦 = 𝐴𝑙𝑛(𝑥) + 𝐵 

- Polynomial: 𝑦 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 

- Power: 𝑦 = 𝐴𝑥𝐵  

Where A, B and C are the constants determined by principle of least squares. Let x be the independent 

variable that represents days of a month and y be the dependent variable on x representing the forecasted 

demand such that 𝑦 = 𝑓(𝑥). Now consider the nth polynomial function 

 

𝑓(𝑥) =  𝑎0 + ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=1  (1) 

 

In (1), the constant a0 is the interceptor of y-axis which represents the base load. In present work, 

for i = 1, 2 the other constants a1 and a2 are the exogenous factors. With the known parameters y (historical 

load) and x (day) the best fit can be done to evaluate these constants with least error.  

 

 

3. ARTIFICIAL NEURAL NETWORK TECHNIQUES  

 A fully connected multilayer feed-forward neural network model shown in Figure 1 is employed for 

daily peak load forecasting of the month. The input layer consists of 24 nodes corresponding to two input 

parameters viz., 12 input nodes, each node representing a month and has a maximum of 31 daily peak load 

data represents the corresponding days of a particular month and similarly another 12 input nodes for daily 

peak temperature data. The output layer consists of 12 nodes each node corresponds to a month and has a 

maximum of 31 daily peak forecasted load representing days of the month. The single hidden layer is used 

with variable number of nodes to verify the dependency upon the correct percentage of forecasting and 

repeatability in convergence. The output function of each unit in the hidden and output layers is non-linear 
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(sigmoid). Inputs to the proposed model are a1, a2…a12, daily peak load growth data and a13, a14…a24, daily 

peak temperature data of the corresponding month. The outputs of input layer for 𝑖 = 1, 2…24 is given by (2). 

 

𝑠𝑖 =  𝑎𝑖    (2) 

 

The outputs of the hidden layer (𝑠𝑗
ℎ) and output layer (𝑏𝑘) are represented by (3) and (4) 

respectively for 𝑗 = 1, 2… m and 𝑘 = 1, 2...12 

 

𝑠𝑗
ℎ = 𝑓{∑ 𝑊𝑗𝑖

ℎ𝑠𝑖 − 𝜃𝑗
ℎ24

𝑖=1 } (3) 

 

𝑏𝑘 = 𝑓{∑ 𝑊𝑘𝑗
𝑜 𝑠𝑗

ℎ𝑚
𝑗=1 − 𝜃𝑘

𝑜} (4) 

 

Where, 𝑊𝑗𝑖
ℎ and 𝑊𝑘𝑗

𝑜  represents weights of the links for input-hidden layers and hidden-output layers 

respectively and 𝜃𝑗
ℎ and 𝜃𝑘

𝑜 are the bias terms of hidden and output layers respectively. The outputs of the 

network correspond to b1, b2 …b12 are the daily peak load forecast of the corresponding month. 

 

 

 
 

Figure 1. Multilayer feed-forward neural network model for daily peak load forecast 

 

 

4. INPUT DATA SELECTION 

In the present work, the hourly peak load data for more than five years i.e., from Jan 2012 to 

March 2017 is collected from Bangalore Electricity Supply Company and the hourly peak temperature data 

from Jan 2016 to March 2017 is collected from Meteorological Centre, Bangalore. Using the daily peak load 

data from 2012 to 2016, the average load data for 2017 is calculated to obtain the empirical curve fit equation 

in conventional method. For ANN technique, the load growth data for 2017 is estimated, with the load 

growth data of 2017 and the temperature data, the daily peak load as per the requirements can be 

forecasted ahead.  

Normalization of data, the input data for the neural network will have very wide ranges if the actual 

load data is directly used. This may cause convergence problem [14] during the learning process. To avoid 

this, the input data were normalized such that they were within the range of 0 to 1. For this purpose, the load 

and temperature data are normalized using (5). 
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𝐿𝑛𝑜𝑟 =  
𝐿(𝑖,𝑗)

𝐿𝑗𝑚𝑎𝑥

  (5) 

 

Where, 𝐿𝑛𝑜𝑟 is the normalized load/temperature data which is used as input to the net, 𝐿(𝑖,𝑗) is the actual load 

growth/temperature data, i = 1 to n, n (number of days) = 1,2 …31 and j=1 to m, m (number of 

months) = 1,2, …..12 and 𝐿𝑗𝑚𝑎𝑥
 is the maximum load/temperature of a particular month. Thus, the input 

matrix will be in the order of 31x12 and using these data the daily peak load for any particular month or 

complete year can be forecasted. 

 

 

5. TRAINING THE NETWORK 

Training of the network is completely based on the actual load data and temperature data collected 

from the respective authority on hourly basis. From the collected data, the data for more than five years have 

been analyzed for the percentage growth from year to year, month to month and hour to hour. 

After understanding the percentage growth, the training file for the neural network has been prepared and 

used to predict the future load demand. The size of the training file with temperature parameter included, for 

entire year will be in the order of 31x24 and testing file size can be same as that of training file or subset of 

training file as per the demand to be forecasted. 

The network is trained using Levenberg-Marquardt training algorithm for 2000 epochs and 

threshold on error, set to a very low value of 10-5. The learning rate parameter and momentum factors are 0.1 

and 0.9 respectively [15]. Training is carried out until the total sum of mean squares error reaches either the 

desired error limit of 10-5 or till the completion of 2000 epochs. The network was initially trained with 

varying number of nodes in the hidden layer. The smallest sum of squares error (10-5) was obtained for the 

network structure with 24Ni, 21Nh and 12No input layer, hidden layer and output layer respectively. Figure 2 

shows the trend in the training error for each epoch for 21 nodes in the hidden layer for March 2017. 

 

 

 
 

Figure 2. Training error curve for March 2017 

 

 

6. RESULTS AND DISCUSSIONS 

6.1.  Demand forecasting using conventional methods  

In this method, the trend in the historical load data points is plotted with the use of linear and 

polynomial of second order function to obtain the equation of empirical curve fit. The coefficients values of 

the fitted curve are given by least square approach. The error will minimum for the best fit, when the 

goodness of fit i.e. R2 tends towards one. The coefficient a0 represents the base load and other a1, a2 

represents the exogenous factors. The linear and polynomial fit for March 2017 is shown in Figure 3 and the 

corresponding empirical curve fit equation is given by (6a) and (6b), respectively. 

 

Y = 3.7762x + 4011.8 MW (6a) 

 

Y = −0.1816x2 + 9.5869x + 3979.8 MW  (6b) 

 

Where, Y is forecasted load in MW and x is the day of the month. 

The demand forecast calculated by using above equations and percentage error is calculated 

using (7) is tabulated in Table 1. The result shows that forecasted values by these methods has large error due 
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to the non-linearity of load. The linear fit has the maximum error of 13% and minimum of 2.82%, 

while polynomial fit has maximum of 13.06% and minimum of 2.55% error of actual demand. The plot of 

actual demand against the forecasted load of linear and polynomial fit is shown in Figure 4a and 4b 

respectively. This method requires one equation for a month and 12 equations for a year and hence the 

process becomes complex and tedious. Further the number of equations required can be reduced to one 

equation for a year by taking average of corresponding daily peak load over a complete year. With the 

reduction in number of equations, the percentage error increases drastically.  

 

%𝐸𝑟𝑟𝑜𝑟 = |
𝐿𝑜𝑎𝑑𝐴𝑐𝑡𝑢𝑎𝑙− 𝐿𝑜𝑎𝑑𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑

𝐿𝑜𝑎𝑑𝐴𝑐𝑡𝑢𝑎𝑙
| × 100 (7) 

 

 

Table 1. Daily load forecast results for March 2017 

Day 

Actual 

Load 

(MW) 

Forecasted 

Load (MW) 

with linear fit 

% 

Error 

Forecasted 

 Load (MW) 

with 

Polynomial fit 

% 

Error 

ANN Forecasted Load (MW) 

Without 

Temperature 

% 

Error 

With 

Temperature 

% 

Error 

1 4438 4016 9.52 3989 10.11 4471 -0.74 4456 -0.40 
2 4490 4019 10.48 3998 10.95 4560 -1.57 4536 -1.02 

3 4527 4023 11.13 4007 11.49 4545 -0.40 4537 -0.22 

4 4499 4027 10.49 4015 10.75 4619 -2.68 4609 -2.44 
5 4246 4031 5.07 4023 5.25 4420 -4.10 4413 -3.94 

6 4419 4034 8.70 4031 8.79 4298 2.73 4297 2.76 

7 4417 4038 8.58 4038 8.58 4520 -2.34 4511 -2.12 
8 4455 4042 9.27 4045 9.21 4365 2.01 4359 2.15 

9 4420 4046 8.47 4051 8.34 4529 -2.47 4513 -2.11 

10 4431 4050 8.61 4058 8.43 4582 -3.40 4564 -3.01 
11 4390 4053 7.67 4063 7.44 4575 -4.21 4564 -3.96 

12 4175 4057 2.82 4069 2.55 4368 -4.61 4359 -4.40 

13 4296 4061 5.47 4074 5.17 4467 -3.97 4448 -3.53 
14 4249 4065 4.34 4078 4.01 4452 -4.78 4433 -4.32 

15 4546 4068 10.50 4083 10.19 4328 4.81 4426 2.65 

16 4523 4072 9.97 4087 9.65 4336 4.14 4433 2.00 
17 4550 4076 10.41 4090 10.09 4443 2.33 4438 2.46 

18 4605 4080 11.41 4094 11.11 4508 2.10 4507 2.12 

19 4324 4084 5.56 4096 5.26 4475 -3.49 4465 -3.26 
20 4667 4087 12.42 4099 12.17 4623 0.95 4621 0.98 

21 4541 4091 9.91 4101 9.69 4713 -3.78 4684 -3.15 

22 4707 4095 13.00 4103 12.84 4722 -0.33 4712 -0.12 
23 4554 4099 10.00 4104 9.88 4728 -3.83 4721 -3.67 

24 4635 4102 11.49 4105 11.43 4667 -0.68 4657 -0.48 

25 4626 4106 11.24 4106 11.24 4516 2.37 4516 2.37 
26 4435 4110 7.33 4106 7.41 4406 0.65 4404 0.69 

27 4723 4114 12.90 4106 13.06 4573 3.18 4670 1.12 

28 4652 4118 11.49 4106 11.74 4605 1.02 4606 1.00 
29 4434 4121 7.05 4105 7.42 4620 -4.20 4593 -3.58 

30 4434 4125 6.97 4104 7.44 4610 -3.98 4594 -3.62 

31 4605 4129 10.34 4102 10.91 4663 -1.25 4641 -0.79 

 

 

 
 

Figure 3. Linear fit and polynomial fit for March 2017 
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(a) 
 

(b) 
 

Figure 4. a. Comparison of actual and forecasted load curve of linear fit for March 2017 

b. Comparison of actual & forecasted load curve of polynomial fit for March 2017 

 

 

6.2.  Demand forecasting using developed ANN model 

MATLAB code is written to train and test the proposed ANN model to forecast the demand. 

The performance of the ANN model has been tested for March 2017. The percentage of correct prediction 

obtained from the ANN model with varying number of nodes in the hidden layer has been performed. It is 

observed that the network structure with 21 nodes in the hidden layer gave the most accurate forecast, trained 

with temperature as shown in Table 2. The forecasted daily peak load for March 2017 is compared with the 

actual load data and shown in Figure 5. The percentage error calculated using (7) is tabulated in Table 1. 

The proposed ANN model, when trained with only load data as its input parameter predicted the demand 

with maximum percentage error of 4.81 and minimum of -0.33. The same ANN model on training with both 

load and temperature data as its input parameters gave further accurate prediction with maximum of -4.40% 

error and minimum of -0.12% error as shown in Table 1. The results show that one of the influential factors 

such as temperature has an impact on the demand forecast. Figure 6 shows the comparison of forecasted 

demand by conventional methods and proposed ANN model. The ANN model gives more accurate 

prediction as compared to the empirical curve fitting technique and also it can handle large number of non-

linear load data with ease. Using the same training file the proposed ANN model can forecast the daily peak 

demand for complete year. 

 

 

Table 2. Maximum percentage error for different Neural Network structure 

SL No 

Neural Network Structure  
Maximum % 

Error 
No of Input  

Layer Neurons (𝑁𝑖) 

No of Hidden layer 

Neurons (𝑁ℎ) 

No of Output layer 

Neurons (𝑁𝑜) 

1 24 20 12 -4.61 

2 24 21 12 -4.40 

3 24 22 12 -4.78 

 

 

  
 

Figure 5. Comparison of actual & forecasted load 

curve of ANN model for March 2017 

 

Figure 6. Comparison of conventional & ANN 

method for March 2017 
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7. CONCLUSIONS 

The conventional and Artificial Neural Network based approach has been applied for daily peak 

load forecasting and detailed study has been carried out in terms of training and testing the neural network 

with historical daily peak load data pertaining to the Bangalore Electricity Supply Company Limited. 

The ANN model is trained by varying the number of neurons in the hidden layer and it is found that the 

forecasted values are in good agreement with the actual values for optimal neurons. The ANN model 

proposed in the present work results in accurate prediction of daily peak load as compared to actual demand. 

The conventional method gives higher value of error due to nonlinear behavior of most of the loads. 

Hence the proposed ANN model gives better results in comparison with conventional methods. 
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