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 This paper presents a new robust bounded control law to stabilize uncertain 

nonlinear system with time varying disturbance. The design idea comes from 

the advantages of backstepping with Lyapunov redesign, which avoid the 

needs of fast switching of discontinuous control law offered by its 

counterpart - a variable structure control. We reduce the conservatism in the 

design process where the control law can be flexibly chosen from Lyapunov 

function, hence avoiding the use of convex optimization via linear matrix 

inequality (LMI) in which the feasibility is rather hard to be obtained. For 

this work, we design two type control algorithms namely normal control and 

bounded control. As such, our contribution is the introduction of a new 

bounded control law that can avoid excessive control energy, high magnitude 

chattering in control signal and small oscillation in stabilized states. 

Computation of total energy for both control laws confirmed that the 

bounded control law can stabilize with less enegry consumption. We also use 

Euler's approximation to compute average power for both control laws. The 

robustness of the proposed controller is achieved via saturation-like function 

in Lyapunov redesign, and hence guaranting asymptotic stability of the 

closed-loop system. 
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1. INTRODUCTION 

Stabilizing nonlinear unstable system requires massive control effort. Therefore, a challenge to 

control system engineers is the requirement to bound the control effort. If the switching type or discontinuous 

stabilizing function is applied, the law tends to produce high-magnitude of chattering in the control signal. As 

such, the designed control law must be bounded in respect the admissible set of input to the system. For 

instance, it is easy to stabilize unstable systems by forcing their poles to the left-hand-side of the S-plane so 

that the closed-loop system stable. Theoretically, placing the closed-loop poles near to   result in fast 

convergence rate but require high energy as a trade-off. In some industrial cases are DC drive systems where 

the constraints are due to the physical limitation of the motor drive such as converter protection, magnetic 

saturation and motor overheating that make the current command is limited to an admissible set of input [1]. 
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For another case such as electric vehicles where the controlled variable is a speed, the motor torque or 

voltage may be bounded. To date, many approaches have been proposed to design the bounded control law 

such as variable structure approach as explained in [2]-[4]. Some reviews show that variable structure control 

has been an established method for nonlinear control since early 1960s. Since then, variable structure control 

has been applied for robust regulation of fuzzy systems [5], tracking systems [6], optimal control [7], output 

feedback control systems [8], [9] and many more. There also immerge many methods to search sliding 

surface for variable structure control. Based on literature, convex optimization via LMI has been used widely 

to search sliding surface [4], [10], [11] and observer-based control [12] and output feedback sliding mode 

control in [13]. However in [10], [4], the approach require nonsingular transformation to obtain the LMI such 

that sliding surface exists, hence involving generalized inverse to reach main results. 

Another nonlinear control approach namely Backstepping technique was developed in early 1990s. 

As such, progress in backstepping controllers for nonlinear uncertain systems with bounded control is rather 

slow and still at infancy level. Only in 1990s the research in backstepping scheme for bounded control 

problem is getting blossom, but does not consider uncertainties and exogenous perturbations. For instance, 

progress in backstepping for nonlinear system with bounded control in [14], backstepping with bounded 

feedbacks for nonlinear system in [15] and integrator backstepping for     order integrator cascade system 

with state constraint in [16]. Approach in [16] is a recursive-interlacing procedure for tracking, under 

assumption that the system is linear and no uncertainty is considered. More recently, authors in [17] devised 

robust adaptive control algorithm for uncertain nonlinear system using backstepping with consideration of 

input saturation and external disturbance. 

This paper propose robust backstepping with Lyapunov redesign to stabilize uncertain system. The 

design begins with the stabilization of unperturbed subsystem via judicious selection of control Lyapunov 

function. Afterward, the control Lyapunov function for nominal subsystem is utilized again for system with 

uncertainties such that the effect of uncertainties is monitored for robustness. The challenge might be in 

searching for robust Lyapunov functions and some advanced mathematics to structure the system dynamics 

equation to suit control approach, that is a strict feedback form. However, the remaining tasks of selecting a 

control law is straightforward such that the necessity of Lyapunov stability criterion is fulfilled. Despite 

offering flexible design, other advantages of backstepping with Lyapunov redesign is the elimination of 

useful nonlinear terms can be avoided, leading to reduce control complexity. Early work on Lyapunov 

redesign has been established in 1979 and can be reviewed in [18] and [19]. However to date, the use of 

Lyapunov redesign in backstepping has been at a new stage. Latest work by [20] augment nonlinear damping 

functions to the unperturbed stabilizing function in redesign phase. Whereas [21] uses saturation-type control 

as an augmentation to the stabilizing function in redesign phase. Both approaches proved robust stability and 

robust performance. In this article, we use backstepping with Lyapunov redesign approach to design normal 

control and bounded control in order to stabilize system with matched uncertainties. We prove the stability 

robustness upon perturbation in initial states as well as lumped matched uncertainties via Lyapunov 

sufficiency and necessity criterion. The numerical systems in [10] is used as test bed and the system structure 

is rearranged to ease of design where the disturbance-like function is separated from model uncertainties. 

As the fact that stabilizing unstable system require massive energy, one of the performance index in 

this work is to obtain control signal with less average power and energy. As such, in bounded control design, 

we relax the transient performance by allowing the closed-loop-system to be slightly sluggish in order to 

respect the admissible set of inputs to the system. Therefore, our bounded control law satisfies small control 

property. Our main concern also to avoid excessive control energy, reduce high magnitude chattering control 

signal and eliminate small oscillation in the stabilizing state without having catastrophic effect to the closed-

loop system. 

The content of this paper is as follows. Section 2 discuses about theoretical background. Section 3 

and section 4 discus about normal controller design. Section 5 discuses about bounded controller design. 

Section 6 tabulates performance indices. Lastly, we concluded the results in Section 7. 

 

 

2. PROBLEM FORMULATION 

Let the system to be controlled be represented by the following differential equation [10]: 

 
 ̇      (   (               (1) 

 

where      is the state,      is the control input and  (                    is the lumped 

uncertainty which matched to the control input.        and        is the system characteristic and 

input matrix with full rank    . 
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2.1.  Normal backstepping 

We represented the system (1) in strict feedback form (i.e    ) to facilitate recursive 

backstepping and admits robust control Lyapunov function. Thus our approach restricted to strict feedback 

form: 

 

 ̇    (       (        ,                  (2a) 

 

 ̇    (      (  [      (      ]      (2b) 

 

where    (   
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Alternatively, the system can be represented as 

 

 ̇   (    (     (   (         (3) 

 

If there exist some continuous function  (   which satisfies structural condition  (    (   (  , 
then the matching condition can be applied to the class of system in (3). Control problem now is to stabilize  ̇ 

with control  (  . The design begins with seeking a control Lyapunov function  (   for nominal system 

 ̇   (    (   . The function should be smooth, positive definite, radially unbounded such that. 

 

  (    (        (    (     (         (4) 

 

for all     and some function     . For system with order    (that is          , the stabilizing 

function for   -subsystem is designed such that the derivative of  (   negative definite. The stabilizing 

function behaves as a desired state for subsystem     . We therefore define error dynamics between the 

desired state and actual state in subsystem     . For that, we make the error dynamics perished after     

to facilitates control design for next subsystem     . After the stabilizing function for nominal subsystem is 

successfully designed, the control Lyapunov function for nominal subsystem is re-used for redesign phase. In 

redesign phase, the stabilizing function is augmented with robust control or robust function such as nonlinear 

damping function [20], saturation-type function [21] or others to combat with uncertainties. In redesign, 

overall control for particular subsystem is obtained using the priori Lyapunov function such that when 

  (    (    , implies. 

 

  (    (    ‖  (    (  ‖            (5) 

 

Then, the approach is back-step and being repeated recursively such that the actual control  (   is finally 

obtained. 

 

2.2.  Bounded control 

Consider the unperturbed version of system in Equation (3): 

 

 ̇   (    (            (6) 

 

where controls take place in the open unit ball     {            }. With Lyapunov theorem, there 

exists a positive definite, proper and smooth function as before, namely  (  . There also exists operators 

 (     (    (   and  (     (    (   that contribute to the existence of a continuous and regular 

feedback law  (          where: 

 

 (   {
 

 (   √ (     (   

 (  √   (   )
     (    

      (    

      (7) 

 

If  (   continuous at origin, then  (   satisfies small control property with respect to system in Equation (6) 

as in definition 1. 
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Definition 1: Small Control Property 

For system in equation (6) satisfy small control property, there is known control Lyapunov function  (  , for 

every    , there exists a  (     so that for all     and ‖ ‖   , there is control u with ‖ ‖    such 

that  (    (     . 

 

With definition 1, we use Lemma 1 to reach main results.  

Lemma 1: Assume that  (  ,  (   and   are real numbers such that  (    | (  | and       for    , 

then there exists a stabilizing function  (     with property. 

 
| (    |     {   | |  }       (8) 

 

Proof: 

Without loss of generality, we set  (    ; thus  (     (  . If  (    , condition  (    | (  | is not 

valid. Therefore, 

 

| (    |  
 

  √    
     ,

 

 
  -       (9) 

 

When  (    , we can see that | (    | bounded by   as    , and also bounded by its numerator. This 

yields:  
 

| (    |  
   √(       

 (  √    )
  

  √     

  √    
     {   | |  }     (10) 

 

 

3. BACKSTEPPING CONTROL 

Consider numerical values for system in (1) be   *
  
  

+,   *
 
 
+ and 

 (             (              (     . Respectively, the nonlinear system can be represented in strict 

feedback form: 

 

 ̇              (11a) 
 

 ̇        (               (            (11b) 

 

It is easy to see that for any        ,       (          be a desired state that stabilized   -

subsystem in equation (11a). This can be confirmed by a Lyapunov function   (      
   , where the 

derivative about   -subsystem is negative definite: 

 

 ̇ (         
           (12) 

 

We define error dynamics,   between the desired state    and actual state   : 

 

                (13) 

 

Our control problem now is to design control law to weaken  . Therefore, we represent actual 

system in Equations (11a) and (11b) in new coordinate [    ]: 
 

 ̇                (14a) 
 

 ̇        (               (            (14b) 

 

Cosine terms in system parameters can be lumped together and regarded  (       (       as 

exogenous time varying disturbance. Hence, we design the stabilizing function for unperturbed  -subsystem 

in Equation (14b). With Lyapunov function   (      (  
          (        , the stabilizing 

function is obtained as 

 

  (       
 

 
(                  (            (              (15) 
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which asymptotically stabilized unperturbed system in Equation (14). This can be proved by inserting the 

stabilizing function   (      in the derivative of   (      about system in Equation (14), which yields: 

 

 ̇ (           
     

          (16) 

 

 

4. LYAPUNOV REDESIGN 

Consider system (14b) in the presence of  (  . We augment the stabilizing function   (      with 

robust control   (       . Our control problem now is to design   (        such that overall system is 

stabilized and robust toward  (  . Therefore, our chosen control law is:  

 

    (        (               (17) 

 

4.1.  Preliminary results - normal control law 

In Lyapunov redesign, one may easily found that a saturation-like function  

  (            
    

                    (18) 

 

with    
   (         

 
, when constitute to final control law 

 

   
 

 
(                  (            (       

    

          
 (19) 

 

will stabilize overall system in Equation (11). 

 

4.2.  Proof of stability 

With saturation-like function in (18), re-consider Lyapunov function   (     . The derivative about 
[    ] yields: 
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If       were the actual control and    , it is shown that    preserve  ̇ (       negative outside 

the residual compact set   where: 

 

  {   |  |  √
     

  
 }        (21) 

 

Hence, the control law in (19) guarantees asymptotic stability of   (   as shown in Equation (22): 

 

‖  ‖  {|  (  | √
     

  

 }       (22) 

 

Figure 1 shows stabilized state    upon perturbation in initial states  (   [   ] for both 

backstepping and variable structure control. Figure 4 confirm asymptotic stability condition in Equation (22). 

Figure 2 and Figure 3 show control signal for backstepping control law and variable structure control law in 

[17] respectively. Figure 4 shows overall system trajectories for both backstepping and variable structure 

control. 
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Figure 1. Stabilizing x1- comparison between 

bacstepping with Lyapunov redesign and variable 

structure control 

 

Figure 2. Control signal - backstepping with 

Lyapunov redesign 

 

 

  

  

  

Figure 3. Control signal for variable structure control 

 

Figure 4. Overall system trajectories 

 

 

5. MAIN RESULTS – BOUNDED CONTROL 

In this section, we extend our result by designing a bounded control law which robust toward  (   

and perturbation in initial states. It is observed that backstepping control eliminates high frequency chattering 

in system trajectories (Figure 1 and Figure 4) and offers smooth control signal as shown in Figure 2. 

However, the stabilizing state by backstepping still having low frequency oscillation during steady state. 

Moreover, stabilizing using backstepping require massive energy during the transient part (Figure 2). As 

such, it is desirable to bound the control law without having catastrophic effect to the closed-loop system. 

The rest of this paper improve the control law in equation (19) such that the control law satisfies small 

control property and bounded within admissible set of inputs. To assist our design, we exploit definition 1 

and Lemma 1. 

 

5.1.  Bounded backstepping 

With   (      
    and from Equation (7), we can easily obtain the stabilizing function for  

  -subsystem in equation (11a) be: 

 

 (     
  

  √    
 
        (23) 

 

and with   (      (  
          (        , the stabilizing function for unperturbed system in  
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Equation (11) is defined as 

 

  (          
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Via backstepping and Lyapunov redesign, we reach the bounded control law: 
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5.2.  Proof of stability 

With saturation-like function in Equation (18), consider again the derivative of Lyapunov function 

  (      be: 

 

 ̇ (          
  

 

  √    
 
  *    (      (    

  

  
)     [     ]   (  + 

       
  

 

  √    
 
    

    [   
   

 
] 

     
  

 

  √    
 
    

    [(
 (  

 
) 

  
 (  

 

  
 (  

 
      

 
 (  

 
] 

     
  

 

  √    
 
    

  
‖  

 (  

 
‖

 

‖  
 (  

 
‖      

   
 (  

 
 

     
  

 

  √    
 
    

             (26) 

 

Hence, completes the proof. The advantage of this control is that the number of control parameters 

has been reduced as tabulated in Table 1: 

 

 

Table 1. Control Parameters 
 K1 K2     

Normal Control 

in (19) 
2 23 0.05 0.05 

Bounded 
Control in (25) 

Not 
required 

23 0.05 0.05 

 

 

For perturbation in  (   [   ], Figure 5 shows smooth bounded control signal where the amount 

of control energy is bounded within              unit as compared with the unbounded or normal 

control of           (comparison chart is shown in Figure 6). Figure 7 shows that bounded control 

law eliminates small frequency oscillation in the stabilizing state, which is the drawback of the normal 

backstepping control law in (19). Overall system trajectories in Figure 8 shows both control laws guarantee 

asymptotic stability upon perturbation in initial states. However, normal control does not satisfy small control 

property as bounded control does. Another advantages of the resulting bounded control law is that the control 

signal is fairly smooth although the solution convergence rate slightly sluggish. 

 

 

 
Figure 5. Bounded control signal in Equation (25) 
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Figure 6. Control signal - comparison between normal control in Equation (19) and bounded control in 

Equation (25) 

 

 

 

 

Figure 7. Stabilizing x1 - comparison between 

normal control in Equation (19) and bounded control 

in Equation (25) 

 

Figure 8. System trajectories - comparison between 

normal control in Equation (19) and bounded control 

in Equation (25) 

 

6. PERFORMANCE INDICES 

Steering perturbed states toward origin require massive energy. As such, it is important to observe 

the amount of energy and average power produced by both normal control law in (19) and bounded control 

law in (25). The energy of both control signals are computed by the area under the squared signals as 
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After the stabilization takes place, control signal (19) and (25) decay in the steady state and approaching 

zero. The time average of energy (energy per unit time) is considered as signal power of both control signal 

in (19) and (25). In this case, Euler's approximation can be exploited to compute the average power of the 

control signal. Therefore, average power for both control signals are 
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∫       (  
 

 
   ∑       (           

         (30) 

 

where   is the number of integral part in Euler's approximation,     is the control signal duration and 

   (       is the duration (or interval) for each integral part in seconds. With  (   [   ] and signal 

interval          seconds, Table 2 tabulates the energy, power and the initial control magnitude for both 

controllers within    seconds of stabilization process. 

 

 

Table 2. Performance indices for controllers (19) and (25) 

 
Total Energy 

(Joule) 

Average Power 

(watt) 

Initial control magnitude 

(unit) 

Normal Control in (19) 280660 8.6663 x 10-4 | |      
Bounded Control in (25) 623.955 4.2029 x 10-4 |      |       

 

 

7. DISCUSSION 

This article presented didactic approach to stabilize uncertain nonlinear numerical system. The 

controller has been developed using backstepping technique and Lyapunov redesign. Therefore, the control 

law is continuous and does not require high frequency switching which normally not suitable for some 

application that require continuous control signals. In some application, the control signal has to be bounded 

within admissible set of inputs. As such, the improvement has been made to produce robust control law that 

is allowed to be bounded without catastrophic effects to system performance and stability. For bounded 

control law, the number of control parameters that need to be defined have been reduced. Bounded controller 

consumes less energy as well as less average power for stabilization process. To stabilize the system with 

 (   [   ], bounded controller requires only 623.955 joule energy with average power 4.2029 x 10-4 watt 

as compared to normal controller which require 280660 joule and 8.6663 x 10-4 watt respectively. Bounded 

controller produces initial control around |      |       units which is lower than the signal produced by 

normal controller, i.e | |      units. 
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